
N94-34047

Learning procedures from interactive natural language instructions*

Scott B. Huffman and John E. Laird

Artificial Intelligence Laboratory

The University of Michigan
1101 Beal Ave.

Ann Arbor, Michigan 48109-2110
huffman@umich.edu

Abstract

Despite its ubiquity in human learning, very little work has been done in artificiaJ intelligence on

agents that learn from interactive natural language instructions. In this paper, we examine the problem

of learning procedures from interactive, situated instruction, in which the student is attempting to
perform tasks within the instructional domain, and asks for instruction when it is needed. We present

Instructo-Soar, a system that behaves and learns in response to interactive natural language instructions.
Instructo-Soar learns completely new procedures from sequences of instruction, and also learns how to

extend its knowledge of previously known procedures to new situations. These learning tasks require
both inductive and analytic learning, lnstructo-Soar exhibits a multiple execution learning process in

which initial learning has a rote, episodic flavor, and later executions allow the initially learned knowledge
to be generalized properly.

1 Introduction

The hallmark of universal computation systems is their ability to take instructions. This ability separates

computers from other machines, which can perform only a limited number of tasks. Instructability allows

computers to perform any of an infinite number of tasks. However, computers take instructions in a way

that is radically different from the way humans do. Computers receive instructions in the form of programs.

This method of communication from instructor (programmer) to computer is characterized by the following
properties.

• Artificial language. Programmers must translate knowledge into a language that requires precise
artificial terminology and syntax.

• Unsituated instruction. The instruction does not occur within the context of the computer at-
tempting to solve a specific problem.

• Non-interactive instruction. The instructor determines when and what to instruct without any
feedback from the computer.

These properties have a number of implications for the instructor:

1. The instructor must know what procedures are already encoded in the computer, to avoid redundancy
and conflicts.

2. The instructor must understand the effects of long sequences of instruction, because a complete in-
structional sequence must be generated.

3. The instructor must create a procedure that applies in every situation it will be exposed to.

4. The instructor must specify the procedures in complete detail; no steps may be omitted or abstracted.

*This paper also appeared in Machine Learning: Proceedings of the Tenth" International Conference, ed. Paul E. Utgoff,Amhearst, Mass., June 1993.

207



In contrast, humans can engage in apprenticeship instruction, in which the student actively tries to

acquire knowledge to aid in problem solving. This type of instruction has the following properties:
• Natural language. Instructor and student speak the same language, and the language is highly

flexible.
• Situated instruction. The instructor and student are situated within a specific task. The instructor

does not need to predict the effects of long instruction sequences because the student performs the
task in response to individual instructions. The instructor needs to produce instructions for only the
situation at hand, not for all possible situations. The student can use the situation to disambiguate

instruction, and cue the recall of relevant domain knowledge.
• Interactive instruction. The student can request help during a task. This frees the instructor from

specifying the procedure in full detail; instructions are given when needed. The instructor need not
know exactly what the student knows about the task. If the student is unable to fill in missing steps

or details, more instruction can be requested.

In this paper, we describe Instructo-Soar, a system that learns procedures from interactive natural lan-

guage instructions. Instructo-Soar attempts to solve problems within a task domain, and requests instruction
when it does not know how to make progress on a problem. The instructions are simple English imperative

sentences. They can include commands for primitive or known operators, for complex operators that the

system does not know how to apply in the current situation, and for completely new complex operators
that the system must learn from scratch. These latter cases lead to a recursive use of instruction where the

system learns a hierarchy of operators. Both analytic and empirical learning methods are employed so that
after instruction, the system can perform similar tasks (and subtasks) without instruction. Learning of a

new procedure is initially by rote, using an episodic memory acquired as a side-effect of natural language

comprehension. During l_ter executions of the task, analytic techniques generalize the procedure.

2 Related Work

This work is most closely tied to work on learning from external guidance and advice taking [McCarthy,

1968; Carbonell et al., 1983]. Prior research in these areas has usually emphasized one of the following:

natural language instruction, situated instruction, or interactive instruction.
SHRDLU [Winogra_i, 1972] learned new goal specifications by directly transforming sentences into state

descriptions, but did not learn how to perform procedures. Others have learned declarative knowledge bases
from natural language (e.g., [Haas and Hendrix, 1983]). A number of recent systems perform in response
to natural language input, but do no learning [Vere and Bickmore, 1990; Chapman, 1990; DiEugenio and

White, 1992]. Lewis et al. [1989] present a system that learns operator sequences from natural language
instructions taken in batch form (unsituated and non-intera_tive). Alterman et al. [1991] and Martin and

Firby [1991] describe situated systems that recover from execution errors by learning from instruction.
There have been a variety of systems that learn from observation [Redmond, 1989; Segre, 1987; Wilkins,

1988; VanLehn, 1987]. These systems take traces of expert behavior on a specific problem and learn general

procedures using analytic techniques such as explanation-based learning [Mitchell et al., 1986]. However,

these system do not support interaction with the instructor.
Learning apprentice systems (LAS's) [Mitchell e1 al., 1990; Kodratoff and Tecuci, 1987; Golding et al.,

1987; Laird et al., 1990] extend the work on learning from observation by providing some interactivity:

typically, the system suggests steps to the instructor. However, the instructor can only select actions that
are directly performable at the current problem state. LAS's cannot take instructions specifying new,
unknown actions (that thus must be learned) or actions with unmet preconditions (which the agent may Or

may not know how to achieve). For example, LEAP's [Mitchell et al., 1990] instructor inputs a complete
circuit implementing a desired function, but cannot instruct the system to perform some new, unknown
circuit transformation. Since whole circuits are learned for each function, LEAP avoids the problem of

an instructor "skipping steps" by specifying operations with unmet preconditions. In addition, learning

apprentice systems require that either the termination conditions of the procedure being taught (the goal
concept [Mitchell et al., 1986]) are already known, or that the instructor provide a complete description of
termination conditions. Finally, these systems typically have no natural language capability.

f

2O8



(a)

Pick up the red block.
Move to the yellow table.
Move the arm above the red block.

Move up.
Move clown.
Close the hand.
Move up.
The operator is finished.

(b)

Figure 1: (a). Initial situation of agent; (b) Instructions to teach operator.

3 Instruction within an autonomous agent

One factor that most previous work on instruction has ignored is the integration of learning from instruction

within an autonomous agent. To learn from interactive instruction, an autonomous agent must have general
reasoning capabilities, and be able to recognize when its knowledge is insufficient and instruction is needed.

Instructions must be assimilated into a possibly large body of existing knowledge, and instructional learning
must be smoothly integrated with the agent's other learning and problem solving methods. An agent must
maintain its ability to respond to its environment even while accepting instructions, and must be able to
apply learning from instruction to a wide variety of tasks.

Supporting these capabilities is dependent in part upon the architecture in which the agent in constructed.
We use Soar [Laird et al., 1987] as our underlying architecture. Soar's basic structure provides a framework
in which these capabilities can be approached.

In Soar, all activity occurs by applying operators to states within problem spaces, supporting general
problem solving and planning. Our instruction learning techniques learn and extend operators, and thus have

the potential to be applicable to any problem encoded in Soar. When a Soar agent cannot make progress
within a problem space, an impasse arises, and a subgoal is generated to resolve the impasse. Any type of

knowledge might be applied within the subgoal, so learning from instruction can co-exist with learning from
other knowledge sources, such as experimentation, analogy, etc. Learning occurs through chunking, a form

of explanation-based learning, which summarizes the results of subgoal processing, avoiding the impasse in
the future. Chunking occurs over all subgoals, so instructional learning can be performed as part of the
ongoing activity of the agent, rather than using a separate mechanism that interrupts the normal course of
activity.

Instructo-Soar's problem spaces implement an agent with three main categories of knowledge: natural

language processing knowledge, originally developed for NL-Soar [Lehman ef aL, 1991]; knowledge about
obtaining and using instruction; and knowledge of the task domain itself. This task knowledge is extended
through learning from instruction. Assumed characteristics of the Instructo-Soar agent include:

1. Relevant relationships. The agent has knowledge of all of the relevant task relationships, and can
derive them from perception.

2. Primitive operators. The agent knows a set of primitive operators that it can execute, internally
simulate, and map natural language to.

3. Reading ability. The agent can read the instructions, even if it has no knowledge of an operation
within the current task domain that corresponds to the instruction.

4. Locality of instruction. The agent assumes that an instruction applies to the mosf recenf unachieved
operation.

4 Learning from instruction

Consider the agent and situation shown in Figure l(a). The agent has primitive operators for moving to

tables, opening and closing its hand, and moving its arm up, down, and into relationships with objects (e.g.,
above blocks). This is the primary domain Instructo-Soar has been applied to; the techniques have also been
applied in a more limited way to a flight domain, in which Soar controls a flight simulator and instructions

are given for simple maneuvers like taking off [Pearson el at., 1993]. To explMn Instructo-Soar's performance,

we will use the example of teaching the agent in Figure l(a) to pick up blocks. Since picking up blocks is
not a known operator, when told "Pick up the red block," the agent must learn a new operator.

To learn a new operator, an agent must learn each of the following:

209



1. Mapping from natural language: What instruction(s) map onto the new operator. The mapping
allows the agent to select the operator when commanded in the future.

2. Operator template: Knowledge of the operator's arguments and how they can be instantiated. For

picking up blocks, the agent acquires a new operator with a single argument, which may be instantiated

with any block that isn't currently picked up.
3. Implementation: How to perform the operator. New operators are built from primitive and/or

previously learned operators, so implementation takes the form of a series of sub-operators (e.g., move
to the proper table, grasp the block, etc.)

4. Termination: Knowledge of when the new operator is achieved. This is the goal concept of the new

operator. For "pick up", the termination conditions include holding the desired block, with the arm

up.
Instructo-Soar handles simple imperative sentences, and learns a straightforward mapping of an instruc-

tion's semantic argument structure to a newly generated operator template. In general, mapping from
instructions to task operators and objects can be difficult, as it can require complex natural language com-

prehension, and possibly reasoning about the task itself [Huffman and Laird, 1992; DiEugenio, 1992].
To learn a general operator implementation from instructions, an agent must determine the proper scope

of applicability of each instruction. Some features of the current task and situation are important conditions,
while others may be ignored. For example, when told to pick up a red block, does it matter that the block
is red? Perhaps, if building a stoplight. But if trying to block open a door, the key feature may be the

block's weight. Thus, learning from instruction can involve both generalization (that "red" doesn't matter,

although explicitly mentioned) and specialization (that the weight matters, although not mentioned).
To learn general implementations, Instructo-Soar uses explanation-based learning (EBL) as realized by

chunking in Soar. Proper generalization requires understanding how each instruction contributes to achieving

the goal. However, during the initial execution of the instructions for a new operator, the agent does not
know the termination conditions (goal concept) of the operator; therefore, generalization on this basis is

impossible. Thus, initial learning is based on a weak inductive step: believing what the instructor says.
This learning is rote and overspecific, with an "episodic" flavor. At the end of the initial execution, the
termination conditions, or goal concept, of the new operator can be induced. On later executions, the agent
can form an understanding of how the instructions, recalled from its episodic memory, allow the goal to be

reached, using its knowledge of primitive operator effects (domain theory). This allows the implementation
sequence to be learned deductively (and generally), based on achievement of the induced goal concept. We
will describe the details of the technique using an example.

5 Example

Consider the agent shown in Figure l(a) being instructed to pick up blocks. The agent is given the instructions

shown in Figure l(b) during the course of performing the task.

5.1 First execution

The agent begins with knowledge of the primitive operators, but no knowledge of the new operator it will
be instructed to perform. Following the first execution, the agent must be able to perform at least the exact

same task without being re-instructed. Thus, the agent must learn, in some form, all of the parts of the new

operator, as described in the previous section.
The first instruction given is "Pick up the red block." It is comprehended using Soar's natural language

capability, NL-Soar [Lehman et al., 1991], which produces a semantic structure and resolves "the red block"
to a block in the agent's environment. However, the semantic structure produced does not correspond to

any known operator, indicating that the agent must learn a new operator. Thus, a new, empty operator is

generated (e.g., new-opl4), with an argument structure that directly corresponds to the semantic structure's
arguments (here, one argument, object). The system learns a mapping from the semantic structure to the

new operator, heuristically restricting arguments to be of the same type (e.g., isa block) as in the current

instruction.
Next, the new operator is selected for execution. Since the agent doesn't know any implementation for

the operator, it immediately impasses and asks for further instructions. Each instruction in Figure l(b)

210



is given,comprehendedand executed in turn. For instance, "Move to the yellow table" is comprehended,
mapped to a known operator, and executed. These instructions provide the implementation for the new
operator.

The instruction "Move the arm above the red block" provides an example of learning to achieve the
preconditions of a known operator. This operation is known, and the agent can perform it when its hand

is in the upper plane. However, here the hand is in the lower plane, so the operation cannot be performed

directly. Thus, the agent asks for instruction about this operator, and is told to move the arm up. This
achieves the precondition, and after moving up the agent has sufficient knowledge to complete the move above

operation without further instruction. As a result, a rule is learned that will propose moving up to achieve
this precondition in the future. Thus, a known operation has been extended to apply in a new situation;

further instruction could extend it even further, for instance allowing the agent to "move above" starting
from a state where it's not even next to the table. Note that the interactive nature of instruction means

that the instructor need not know beforehand whether the agent knows how to apply an operation from the

current situation. This recursive instruction of sub-operations could be multiple levels deep, allowing for a
great flexibility of instruction sequences, depending what the agent already knows. A simple mathematical
analysis shows that for a sequence of only six primitive actions, with preconditions for each action, over 100

possible sequences of interactive instruction are possible [ltuffman, 1992]. This contrasts with learning from
observation, in which systems learn from observing only the sequence of primitive operations performed to
carry out the task.

After completing the "move above" action, the agent continues receiving and executing instructions for
the new "pick up" operator. Ultimately, the implementation sequence for "pick up" will be learned at the

proper level of generality, based on understanding how each instructed operator leads to successful execution

of the new operator. During the initial execution, however, this is impossible, because the goal of this new
operator is not yet known. Thus, the agent resorts to rote learning, recording exactly what it was told to
do, in exactly what situation.

This recording process is not an explicit memorization step; rather, it occurs as a side effect of language
comprehension. While reading each sentence, the agent learns a set of rules that encode the sentence's

semantic features. The rules help NL-Soar to resolve referents in later sentences (implementing a simple
version of Grosz's focus space mechanism [Grosz, 1977]). The rules record each instruction, indexed by the

goal it applies to and its place in the instruction sequence. This episodic "case" corresponds to a lock-step,
overspecific sequencing of the instructions given to perform the new operator. For instance, the agent encodes

that "to pick-up (that is, new-op14) the red block, rbl, I was first told to move to the yellow table, ytl."
One issue that arises here is whether and when to generalize the index and information contained within

the case. However,' at this point any generalization would be purely heuristic, since the agent was unable to
explain the various steps of the episode.

Finally, the agent is told "The operator is finished," indicating that the goal of the new operator has

been achieved. This triggers the agent to learn termination conditions for the new operator. Learning
termination conditions is an inductive concept formation problem. Standard concept learning approaches

may be used here; however, typically, an instructor will expect learning within a small number of examples.
Currently, the system uses a simple heuristic: it compares the current state to the initial state the agent
was in when commanded to perform the new operator. Everything that has changed is considered a part of

the termination conditions of the new operator. In this case, the changes are that the robot is standing at
a table, holding a block, and the block and gripper are both up in the air.

This heuristic forms the system's inductive bias for learning termination conditions. It allows learning
from a single example, but is clearly too simple. Conditions that changed may not matter; e.g., perhaps it

doesn't matter to picking up blocks that the robot ends up at a table. Unchanged conditions may matter;
e.g., if learning to build a "stoplight", block colors are important.

lnstructo-Soar performs this induction by EBL over an overgeneral theory (as, e.g., [Miller and Laird,
1991; VanLehn et al., 1990; Rosenbloom and Aasman, 1990]). Although not sophisticated here, this type of

inductive learning has the advantage that the agent can alter the bias to reflect other available knowledge.

This might include more instruction (e.g., simply asking which features are relevant [Laird et al., 1990]);
analogy to other known operators (e.g., pick up actions in related domains), domain heuristics, etc.

On the first pass, then, the agent:

• Carries out a sequence of instructions achieving a new operator.
• Learns a new operator template.

211



• Learnsthemapping from natural language to the new operator.
• Learns a rote execution sequence for the new operator.

• Induces the termination conditions of the new operator.

Since the agent has learned all of the necessary parts of an operator, it will be able to perform the same task

again without instruction. However, since the implementation of the operator is rote, it can only perform
the ezact same task. It has not learned generally how to pick up blocks yet.

Since the goal is now known, the system could explain and generalize the instruction sequence directly
after the first execution. This is a reasonable possibility, but the multi-step simulation required has two

disadvantages:

1. The agent's ongoing performance of the tasks at hand (either by acting or by taking more instruction)
is temporarily suspended. This could be awkward if instruction of the new procedure being simulated
is nested within the instructions for larger tasks that must still be completed, or if these tasks have

temporal constraints.

2. The multiple step simulation is susceptible to compounding of domain theory errors. That is, a

significant error in simulating any step of the procedure (or the interaction of multiple small errors)
can lead to an incomplete or incorrect explanation of goal achievement. Simulating to explain each

individual instruction, as described below, avoids this problem because each successive simulation

begins from the current external state, which reflects the true effects of the previous instructions.

Thus, we have opted for generalizing on future executions.

5.2 Later executions

Later,in the same situationthe agent isagain asked to pick up the red block. The agent selectsthe newly

learned operator, and then reaches an impasse because itdoes not yet know the generalimplementation

sequence for the operator (how to pick up blocks in the general case). Here, the agent attempts to recall

instructionsitwas given during the firstexecution. Itretrieves,instructionby instruction,the rote case it

learnedpreviously.
After each retrieval,before carrying out the instructionin the external world, the agent attempts to

explainto itselfwhy the instructedoperator leads to achievement of the higher-levelgoal of pickingup the

block.This explanationattempt takes the form of an internalsimulation.Starting from the currentworld

state,the agent internallysimulatesthe recalledoperator. Thus, the situatednessof the instructionplays a

key roleinthe learningprocess,because the currentsituationgrounds the explanation.The agent continues
to simulate operators untiliteitherreachesitshigher-levelgoal (internally)or does not know what to do

next. Ifthe goal isreached,the path taken to the goalcomprises an explanationofhow the recalledoperator

leads to goal achievement.
From thisexplanation,the system learnsa generalrule that proposes the recalledoperator under the

rightconditions.The ruleboth generalizesand specializesthe originalinstruction.In "move to the yellow
table"'scase,the colorof the table isgeneralizedaway, because itwas not criticalfor achievement of the

goal,while the factthat the table has the block to be picked up on itisincluded in the proposal rule's

conditions.
Afterlearningthe complete generalimplementation, the agent willperform the task without referenceto

the rotecase.Ifaskedto "Pickup the greenblock,"new-opl4 isselectedand instantiatedwith the greenblock

as itsargument. Then, the generalsub-operatorproposal rulesfornew-opl4 fireone by one, implementing

the operator,untilfinallythe termination conditionsare recognized and the operator isterminated. Since

the general proposal rulesteststateconditionsdirectly,the agent can perform the task startingfrom any

statealong the implementation path, and can react to unexpected conditions(e.g.,another robot stealing

the block).In contrast,the roteimplementation had to be performed from the same initialstateeach time,

and itsstepswere not conditionalon the state.

6 Results

In the roboticdomain describedearlier,Instructo-Soarhas been appliedto learna hierarchyoftaskoperators,

shown in Figure 2.The system read 24 naturallanguage instructions(14 unique sentences)and learned1357

212



move left of(51ock l,blo_2)

pick up (block)

move arm up

l move to table (table)_move above (block) _-_ move arm down _icl°se gripper J

t
I move arm upl

Chunks (1357):

operatortemplate 4
operatorproposal 20
operatortermination 8
rd mapping 8
inslruct/onrecall 12
_gment recall 8
refexent resolution 770
natural langauge 481
other 46

Figure 2: A hierarchy of operators learned by Instructo-Soar. Primitive operators are shown in light print;
learned operators are in boldface.

o=

1000

I00.

10

Execution Number
I0

Figure 3: Decision cycles vs. learning trial for executing "pick up".

chunks broken down as shown in the figure. It learned four completely new operators (shown in bold), how
to achieve preconditions for a known operator (move above), and the extension of a new operator (extending
"pick up" to work if the robot already is holding a block after initially learning "pick up" when the gripper
was empty). This hierarchy can be taught using many different instruction orderings. For instance, new
operators that appear as sub-operators (e.g., grasp) can be taught either before teaching higher operators
(e.g., pick up), or during teaching of them. If during, the agent recursively requests instruction for the lower

new operator. Thus the instructor need not know whether the agent knows a procedure before commanding
it. This is an important advantage of interactive instruction for autonomous agents, which may have large
amounts of knowledge. Similarly, the instructor may suggest an action that has unmet preconditions (thus
skipping steps in the instruction sequence), assuming the agent knows how to achieve them before performing
the action. If the agent does not, it can request more instruction, and learn how to achieve the preconditions.

Instructo-Soar exhibits a number of interesting learning characteristics:

• Multiple recall strategies. Instructo-Soar has two strategies it can use in recalling past instructions.
After recalling and internally simulating an instructed operator, the agent still may not know how that

operator leads to the goal. At this point, the agent may terminate its internal simulation, and carry
out the recalled operator in the external world. This is a single recallstrategy, which is appropriate
when the agent is under pressure to act quickly. Alternatively, the agent may attempt to recall further
instructions, simulating each in turn, until the higher-level goal is reached. This is a multiple recall

strategy, which leads to faster learning, but is more susceptible to errors in the agent's domain theory
(primitive operator knowledge), as described above.

• Bottom-up learning (single recall strategy). Limiting recall to a single step allows only a single sub-
operator per execution to be generalized. Generalized learning begins at the end of the implementation
sequence and moves towards the beginning. As Figure 3 shows for learning "pick up", the resulting
learning curve closely approximates the power law of practice [Rosenbloom and Newell, 1986] (r = 0.98).



• Effectiveness of hierarchical instruction (single recall strategy). Due to the bottom-up effect, the

system learns more quickly when taught hierarchical organizations than fiat sequences. General learning
for an N step operator takes N executions using a fiat instruction sequence. Taught hierarchically as

v/N sub-operators with _ steps each, only _/_ executions are required for full general learning.
Hierarchical organization has the additional advantage that more operators are learned that can be

used in future instruction.

• Degradation without domain theory. If the agent does not have knowledge of the primitive

operators' effects, learning degrades to rote learning. This appears to be consistent with psychological
research showing that subjects given procedural instructions learn and perform better when they have

a domain model [Kieras and Bovair, 1984].

7 Conclusion

We have described Instructo-Soar, an agent that learns and extends procedures by receiving interactive,
situated natural language instructions. The agent learns completely new operators: preconditions, imple-

mentation, and termination conditions (goal concept), in contrast to learning apprentice systems, which

learn only implementations, and preconditions of those implementations, for known operators. New opera-
tors learned by Instructo-Soar may be specified in later instructions for other operators, leading to learning

of operator hierarchies. From the initial execution of a new operator, the agent learns a rote, overspecific
execution sequence, and induces termination conditions. On later executions, the execution sequence is

generalized by using internal simulation to explain each instruction.
Instructo-Soar can be extended in a number of directions. In addition to positive imperative sentences, we

are currently investigating learning from other types of instructions, such as positive and negative constraints,
conditionals, and actions with monitoring conditions [Huffman and Laird, 1992]. The difference-of-states
method used to induce operator termination conditions is being extended to allow instructor feedback about

the induced conditions. Finally, allowing weaker forms of explanation, such as analogy and heuristic causality

theories (e.g., [Pazzani, 1991; VanLehn et al., 1992; Schank and Leake, 1989]), would lead to more graded

degradation of learning with domain theory incompleteness. These types of explanation might also lead
the agent to alter its basic domain theory, for instance by inferring previously unknown affects of primitive

actions.

Acknowledgments

This research was sponsored by NASA/ONR under contract NCC 2-517. The authors wish to thank Paul

Rosenbloom, Jill Lehman, Rick Lewis, and Randy Jones for valuable comments on earlier drafts.

References

[Alterman et al., 1991] Richard Alterman, Roland Zito-Wolf, and Tamitha Carpenter. Interaction, compre-
hension, and instruction usage. Technical Report CS-91-161, Computer Science Department, Brandeis

University, July 1991.

[Carbonell et al., 1983] Jaime G. Carbonell, R. S. Michalski, and T. M. Mitchell. An overview of machine
learning. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An artificial

intelligence approach. Morgan Kaufmann, 1983.

[Chapman, 1990] David Chapman. Vision, Instruction, and Action. PhD thesis, Massachusetts Institute of

Technology, Artificial Intelligence Laboratory, April 1990.

[DiEugenio and White, 1992] B. DiEugenio and M. White. On the interpretation of natural language in-
structions. In Proceedings COLING 9_, July 1992.

[DiEugenio, 1992] B. DiEugenio. Understanding natural language instructions: The case of purpose clauses.
In Proceedings of Annual Meeting of the ACL, July 1992.

[Golding et al., 1987] A. Golding, P. S. Rosenbloom, and J. E. Laird. Learning search control from outside

guidance. In Proceedings of the Tenth International Joint Conference on Artificial Intelligence, pages

334-337, August 1987.

214



[McCarthy, 1968]

pages 403-410.

[Miller and Laird,
Proceedings of
1991.

[Grosz, 1977] Barabara J. Grosz. The Representation and use of focus in dialogue understanding. PhD
thesis, University of California, Berkeley, 1977.

[Haas and Hendrix, 1983] Norman Haas and Gary G. Hendrix. Learning by being told: Acquiring knowledge
for information management. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine

Learning: An artificial intelligence approach. Morgan Kaufmann, 1983.

[Huffman and Laird, 1992] Scott B. Huffman and John E. Laird. Dimensions of complexity in learning from
interactive instruction. In Jon Erikson, editor, Proceedings of Cooperative Intelligent Robotics in Space
lII, SPIE Volume 18_9, November 1992.

[Huffman, 1992] Scott B. Iluffman. An analysis of instruction sequences. Artificial Intelligence Laboratory,
University of Michigan, 1902.

[Kieras and Bovair, 1984] David E. Kieras and Susan Bovair. The role of a mental model in learning to
operate a device. Cognitive Science, 8:255-273, 1984.

[Kodratoff and Tecuci, 1987] Yves Kodratoff and Gheorghe Tecuei. DISCIPLE-I: Interactive apprentice
system in weak theory fields. In Proceedings of the Tenth International Joint Conference on Artificial

Intelligence, pages 271-273, August 1987.

[Laird et aL, 1987] John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: An architecture for general

intelligence. Artificial Intelligence, 33(1):1-64, 1987.

[Laird et at., 1990] John E. Laird, Michael Hucka, Eric S. Yager, and Christopher M. Tuck. Correcting
and extending domain knowledge using outside guidance. In Proceedings of the Seventh International

Conference on Machine Learning, 1990.

[Lehman et al., 1991] Jill Fain Lehman, Richard L. Lewis, and Allen Newell. Natural language compre-
hension in Soar: Spring 1991. Technical Report CMU-CS-91-117, School of Computer Science, Carnegie

Mellon University, March 1991.

[Lewis et al., 1989] Richard L. Lewis, Allen Newell, and Thad A. Polk. Toward a Soar theory of taking
instructions for immediate reasoning tasks. In Proceedings of the Annual Conference of the Cognitive

Science Society, August 1989.

[Martin and Firby, 1991] Charles E. Martin and R. James Firby. Generating natural language expectations
from a reactive execution system. In Proceedings of the Thirteenth Annual Conference of the Cognitive

Science Society, pages 811-815, August 1991.

J. McCarthy. The advice taker. In M. Minsky, editor, Semantic Information Processing,

MIT Press, 1968.

1991] C. Miller and J. E. Laird. A constraint-motivated lexical acquisition model. In
the 18th Annual Conference on the Cognitive Science Society, pages 827-831, Boston,

[Mitchell et al., 1986] Tom M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli. Explanation-based general-
ization: A unifying view. Machine Learning, 1, 1986.

[Mitchell et al., 1990] T. M. Mitchell, Sridhar Mahadevan, and Louis I. Steinberg. LEAP: A learning ap-
prentice system for VLSI design. In Yves Kodratoff and R. S. Michalski, editors, Machine Learning: An

artificial intelligence approach, Vol. IIL Morgan Kaufmann, 1990.

[Pazzani, 1991] Michael Pazzani. Learning to predict and explain: An integration of similarity-based, theory
driven, and explanation-based learning. Journal of the Learning Sciences, 1(2):153-199, 1991.

[Pearson et al., 1993] Douglas J. Pearson, Scott B. Huffman, Mark B. Willis, John E. Laird, and Ran-
dolph M. Jones. Intelligent multi-level control in a highly reactive domain. In Proceedings of the Interna-

tional Conference on Intelligent Autonomous Systems, Pittsburgh, PA., February 1993.

[Redmond, 1989] Michael Redmond. Combining case-based reasoning, explanation-based learning and learn-

ing from instruction. In Proceedings of the International Workshop on Machine Learning, pages 20-22,
1989.

[Rosenbloom and Aasman, 1990] Paul S. Rosenbloom and Jans Aasman. Knowledge level and inductive

uses of chunking (ebl). In Proceedings of the National Conference on Artificial Intelligence, 1990.

215



[Rosenbloom and Newell, 1986] Paul S. Rosenbloom and Allen Newell. The chunking of goal hierarchies: A
generalized model of practice. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine

Learning: An artificial intelligence approach, Volume II. Morgan Kaufmann, 1986.

[Schank and Leake, 1989] Roger C. Schank and David B. Leake. Creativity and learning in n case-based
explainer. Artificial Intelligence, 40:353-385, 1989.

[Segre, 1987] Alberto Maria Segre. A learning apprentice system for mechanical assembly. In Third IEEE
Conference on Artificial Intelligence for Applications, pages 112-117, 1987.

[VanLehn et al., 1990] K. VanLehn, W. Ball, and B. Kowalski. Explanation-based learning of correctness:
Towards a model of the self-explanation effect. In Proceedings of the l_th Annual Conference of the

Cognitive Science Society, pages 717-724, 1990.

[VanLehn et al., 1992] Kurt VanLehn, Randolph M. Jones, and Michelene T. H. Chi. A model of the self-
explanation effect. Journal of the learning sciences, 2(1):1-59, 1992.

[VanLehn, 1987] Kurt VanLehn. Learning one subproeedure per lesson. Artificial Intelligence, 31(1):1-40,
1987.

[Vere and Bickmore, 1990] Steven Vere and Timothy Bickmore. A basic agent. Computational Intelligence,
6:41-60, 1990.

[Wilkins, 1988] David C. Wilkins. Knowledge base refinement using apprenticeship learning techniques. In
Proceedings of the National Conference on Artificial Intelligence, pages 646-651, 1988.

[Winograd, 1972] Terry Winograd. Understanding Natural Language. Academic Press, New York, 1972.

216


