
N94- 34050

TWO FRAMEWORKS FOR INTEGRATING KNOWLEDGE IN INDUCTION

Paul S. Rosenbloom
Information Sciences Institute &
Department of Computer Science
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292

William W. Cohen
AT&T Bell Laboratories

600 Mountain Avenue
Room 3C-412A

Murray Hill, NJ 07974

Haym Hirsh
Department of Computer Science

Hill Center, Busch Campus
Rutgers University

New Brunswick, NJ 08903

Benjamin D. Smith
Information Sciences Institute &
Department of Computer Science
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292

ABSTRACT

The use of knowledge in inductive learning is critical for improving the quality of the concept definitions
generated, reducing the number of examples required in order to learn effective concept definitions, and

reducing the computation needed to find good concept definitions. Relevant knowledge may come in

many forms (such as examples, descriptions, advice, and constraints) and from many sources (such as

books, teachers, databases, and scientific instruments). How to extract the relevant knowledge from this

plethora of possibilities, and then to integrate it together so as to appropriately affect the induction process
is perhaps the key issue at this point in inductive learning. Here we focus on the integration part of this

problem; that is, how induction algorithms can, and do, utilize a range of extracted knowledge.
Preliminary work on a transformational framework for defining knowledge-intensive inductive algorithms
out of relatively knowledge-free algorithms is described, as is a more tentative problem-space framework

that attempts to cover all induction algorithms within a single general approach. These frameworks help
to organize what is known about current knowledge-intensive induction algorithms, and to point towards
new algorithms.

INTRODUCTION

Inductive learning is a process whereby a definition of a concept is derived from a set of positive, and

sometimes negative, examples of the concept. Key issues in inductive learning are the accuracy of the
resulting definition - that is, the error rate it yields in classifying new examples - and the resources
required to generate the definition (in terms of the number of examples and/or the amount of time and
space needed).

The single most promising route towards reducing both the error rate and resource usage of inductive
learning is to utilize whatever additional knowledge is available beyond the examples; that is, to convert

induction from a weak to a strong method. However, to do this, the relevant knowledge must first be
extracted from the sources in which it exists, such as books, teachers, databases, and scientific

instruments. This extracted knowledge must then be integrated together for use by the induction process,
in whatever form is appropriate - examples, descriptions, advice, constraints, or anything else. Here we

focus on the integration task (extraction involves potentially everything from vision to natural language
understanding, and more). Our goal is to begin the process of deriving principles for how knowledge-

intensive induction algorithms both do now, and can in the future, provide such integration. The hope is
that this will lead to both a useful descriptive framework for organizing existing approaches, as well as a
prescriptive framework for generating new approaches that go beyond the existing ones.

226



We'll makethisbeginningby presentingtwopartialframeworksfor knowledgeintegrationin induction,
alongwith implicationsdrawnsofar by applyingthemto four recentlyproposedknowledge-intensive
inductionalgorithms.Thefocushereis specificallyonknowledgeintegrationfor induction,ratherthan
onthebroaderissueof knowledgeintegrationin general,in thehopethattheextrastructureprovidedby
theinductionproblemwill leadto morepowerfulintegrationstrategiesthanhavebeenproposedfor the
generalcase. Themoredevelopedof thetwo knowledge-integrationframeworks- andthustheone
emphasizedin thispaper- is the transformational framework. It describes how knowledge-intensive

induction algorithms are, and can be, derived by transforming traditional learning methods. The more

tentative problem-space framework attempts to go beyond the transformational framework to the more
difficult task of characterizing the fundamental components of all induction algorithms, whether

knowledge-intensive or not. This framework is covered only briefly here as an intriguing possibility for
the future.

THE TRANSFORMATIONAL FRAMEWORK

An induction algorithm can be viewed abstractly as a black box with one output port for the concept

description and one or more input ports. A minimal induction algorithm has just one input port, for

training data, with all other information being hardwired into the algorithm as a fixed bias [6]. The only
way such an algorithm can use additional knowledge - other than by reprogramming - is to find some

way of receding the knowledge as pseudo-examples. For example, Quinlan describes how knowledge

about type restrictions on the arguments of predicates could conceivably be used indirectly by the FOIL

algorithm through the generation of pseudo-negative examples that cause FOIL to eliminate candidate

hypotheses that would violate the type restrictions [8].

Most induction algorithms actually do provide some additional input ports that allow explicit provision of

other types of information; that is, of knowledge beyond what is embodied in the examples. For example:

the candidate elimination algorithm provides an input port for information concerning the partial ordering

that defines the initial hypothesis space [4]; FOIL provides an input port for the set of relations that can be

used in candidate hypotheses [8]; backpropagation provides input ports for learning-rule parameters, the
network structure, and the initial connection weights [11]; and Bayesian learning algorithms provide an

input port for prior probabilities [1]. Such ports expand the types of information that can be utilized at

induction time, but still provide a very limited means for incorporating the full range of knowledge that

may be available.

The transformational framework starts with the basic notion of black boxes and ports, as described above,

and views knowledge-intensive induction algorithms as the composition of a core, usually knowledge-

lean, algorithm plus a set of transformations. Although not all knowledge-intensive algorithms can be
viewed in this fashion, when they can, the results can be quite informative. The four knowledge-intensive

algorithms covered in the next section do all fit this framework, and are based on three distinct core

algorithms - candidate elimination, FOIL, and backpropagation - and on two general types of

transformations to these core algorithms:

• A reformulation transformation modifies the core algorithm so that its ports can handle a
wider range of inputs, either by generalizing its existing ports or by adding new ones. A
simple example of a reformulation is the modification of a decision-tree learner to allow it to
accept a task-specific split criterion from an input port, rather than always using the same
built-in criterion. A more sophisticated example of a reformulation is IVSM's derivation
from the candidate elimination algorithm by converting its examples input port to take a
more expressive class of inputs (i.e., version spaces) [3].

• A preprocessor transformation adds to the core algorithm a preprocessor that takes a form of
input beyond what can be fed directly into the core algorithm's input ports, and translates this
broader input into something that one or more of the core input ports can understand.

227



Quinlan's suggestion of using type constraints to create pseudo-negative examples is exactly
a proposal for a preprocessor transformation. The preprocessor would have an input port that
can accept type constraints, and would produce negative examples that can be fed into
FOIL's existing input port. The combination of FOIL and this preprocessor thus defines a

new learning algorithm that can take as input not only examples and relations, but also typeconstraints.

EXAMPLES

Much recent work on induction algorithms has focused on enhancing their ability to utilize additional

knowledge during induction, and thus there are many learning systems we could consider. A full survey
of such algorithms is beyond the scope of this paper, so we will focus here on just four recent knowledge-

intensive algorithms, each of which provides the ability to utilize EBL-like domain theories, plus possibly
some other forms of knowledge:

• IVSM has the ability to utilize EBL-like domain theories plus models of bounded
inconsistency [3].

• FOCL has the ability to utilize (possibly partial) EBL-like domain theories plus constraints
on predicate arguments [7].

• GRENDEL has the ability to specify the hypothesis space via a formal grammar - which can
include an EBL-like domain theory - plus some simple ordering information [2].

• KBANN is a neural network algorithm that has the ability to utilize an EBL-like domain
theory [13].

The remainder of this section considers these four systems in more detail.

IVSM is based on the candidate-elimination algorithm (CEA). It is derived by a reformulation of the

CEA so that instead of basing its inner loop on the process of updating a version space with respect to a

single example, it now updates the version space with respect to a second version space (by intersecting
the two version spaces). This reformulation generalizes the CEA's examples input port so that it now

accepts version spaces. In addition to this core reformulation transformation, IVSM also uses three

distinct preprocessor transformations that are enabled by this reformulated input port. One preprocessor
allows IVSM to emulate the CEA by taking examples and converting them into version spaces. A second

preprocessor creates version spaces from combinations of examples and EBL-style domain theories. A
third preprocessor creates version spaces from combinations of examples and a model of bounded

inconsistency. When IVSM is combined with any one of these preprocessors, it actually yields a new
induction algorithm: IVSM-CEA, IVSM-EBL, or IVSM-BI.

FOCL is based on FOIL. FOIL uses the information provided on its relations input port to determine
what modifications to consider making to the current candidate hypothesis. Essentially, it considers
adding the various relations - as instantiated with a mixture of old and new variables - to the current

clause of the hypothesis, and uses an information-theoretic measure to determine which possibility is
(locally) best. FOCL reformulates this possibility-generation strategy in two ways. First, it increases the

set of possibilities by considering adding combinations of relations in a single step, rather than just
individual relations. Second, it decreases the set of possibilities by eliminating those that violate

constraints on the arguments of the relations (such as type and uniqueness restrictions). The first

reformulation supports the addition of an input port for (possibly partial) EBL-like domain theories; the
combinations of relations that occur in the condition sides of these rules form the basis for the relation

combinations proposed in the reformulated algorithm. The second reformulation supports the addition of

an input port for type and uniqueness constraints on the arguments of the relations that are proposed. This
new port directly supports knowledge that FOIL would have needed a preprocessor to use.

228



GRENDEL is also based on FOIL. The core transformation made in developing GRENDEL is also a

reformulation of FOIL's generation strategy for possible modifications to the current candidate

hypothesis. However, GRENDEL's reformulation is both more radical and more general. GRENDEL

generates possibilities by consulting generation rules specified in a context-free grammar. This supports
broadening FOIL's input port from one that can take a list of relations to one that can handle a list of

context-free grammar rules. A second smaller reformulation allows the processing of possibilities to be

selectively deferred, and supports the addition of a second input port to specify this simple ordering
information. The remainder of the GRENDEL story is much like IVSM. The generalized input port

facilitates the creation of a number of preprocessors that can accept a variety of types of input. This input

is then translated into grammar rules that can be fed to this new port. These preprocessors allow

GRENDEL to accept the kinds of input utilized by (among others) EBL, FOIL, and FOCL, and thus to
emulate these other algorithms. As with IVSM, there is a base GRENDEL algorithm which takes

grammars as inputs, and then there are a number of other induction algorithms that are based on
GRENDEL, such as GRENDEL-EBL and GRENDEL-FOIL, which are derived from it by adding

specific preprocessors.

Finally, KBANN is based on backpropagation. It adds a preprocessor that takes as input an EBL-like
domain theory, plus a list of environmental features not covered by the theory, and translates this

knowledge into a form that can be fed into backpropagation's initial network topology and initial network

weights ports. It leaves backpropagation's remaining input ports - such as its learning-rule parameters -
intact.

ANALYZING INPUT PORTS IN THE TRANSFORMATIONAL FRAMEWORK

The transformational framework makes it possible to examine knowledge-intensive learners in more

detail, by studying the set of input ports provided by the resulting algorithms, what kind of knowledge

they can accept, and what key properties they possess (or fail to possess). Although we are still in the

process of identifying what the key properties are for input ports, the list already includes at least two that
seem critical.

• The additivity of an input port is determined by its ability to accept multiple independent
fragments of knowledge at that port. Additivity is important because additive ports can serve
directly as integrators for arbitrary amounts of knowledge of the types that they can accept.
The prototypical example of an additive input port is the example port in standard induction
algorithms. It can accept arbitrary amounts of new information, and combine it
straightforwardly with whatever else the system knows. A classical example of a non-
additive port is the learning-rate parameter in backpropagation. If more information is
available, how should it be combined with what is already known? Must the old information

simply be eliminated, and replaced by the new, or should the two values be averaged, or
should something else happen?

For additive ports, the way in which inputs are combined usually depends on their
interpretation. Examples can be viewed as constraints on the behavior of the concept being
learned, so they are usually combined via an intersection operator. Other types of

information might be combined via different operators, such as union or average.

• The ease of use of an input port is determined by how easy it is to express knowledge in the
language provided by the port. Bayesian priors are a classic case of a difficult-to-use input
port, with this difficulty most likely being the single biggest stumbling block in using
Bayesian approaches to learning. Sometimes preprocessors can be added to make a port
easier to use; however, the port's basic ease of use will still affect how easy it is to write the

preprocessors. A good example of such a preprocessor for Bayesian priors is the use of the
minimum description length principle, which, while it can be viewed as a Bayesian approach,

replaces the task of assigning a prior probability to every concept with the arguably simpler

229



task of choosing an encoding scheme [9].

To illustrate these two properties of knowledge-intensive induction methods, as viewed from the
transformational framework, we return to the four algorithms discussed above.

The core IVSM algorithm has two input ports, one for the partial-order information on which the version

spaces are based and one for a collection of version spaces. The partial-order port is additive because it

can handle an arbitrary number of elements plus ordering relations among them. It is also easy to use, but

only for the narrow purpose of identifying (possibly parts of) candidate hypotheses and generality
relationships among them. The version-space port is also an additive port - as with the traditional

example input port, it can accept an unbounded set of inputs, and combine them (via version-space
intersection) with what is already known. Its ease of use is intermediate between that provided by

example ports at the low end (at least if they are being used for anything other than just examples) and

languages like GRENDEL's grammars at the high end. When IVSM's preprocessors are considered,
there are three new input ports, all of which are additive and relatively easy to use (for the restricted uses
for which they are intended).

One idea that is directly suggested by this analysis of IVSM is that there is no reason its three distinct

preprocessors couldn't all be used simultaneously. Because they all output version spaces, and the

version-space port is additive, it should be possible to intermingle information based on examples,
domain theories, and bounded inconsistency (thus effectively creating a new algorithm that subsumes the
three existing ones).

FOCL's three input ports - for examples, (possibly partial) domain theories, and argument constraints -

are all additive, as they can all accept arbitrary amounts of knowledge of their chosen input types. They
are also all easy to use for their intended purposes, but difficult to use for other purposes.

GRENDEL's three input ports accept examples, grammars, and ordering information (information about

what portions of the hypothesis space should be tried first). Regarding ease of use, the example port has
the standard properties; the ordering port is similar to a Bayesian-priors port but likely to be somewhat

easier to use because it is much less demanding; and the grammar port is relatively easy to use for most

purposes. The example and ordering ports are both additive; however the grammar port is only semi-
additive, in that the grammars are closed under union, but not under intersection. Thus the additivity of

the grammar port depends on the way in which grammars are used. If a grammar is used as a suggestion

as to which hypotheses are most likely - as when grammars are used to encode a domain theory - then
grammars can be easily combined with a union operator. However, when grammars are used as
constraints on the hypothesis space, it is impossible to generate a separate grammar for each constraint

and then integrate the constraints by intersecting the grammars (as IVSM would intersect its version
spaces).

KBANN's three input ports accept examples, domain theories, and environmental features. The examples

port is much like any other examples port - it is additive and easy to use for its intended purpose (but
difficult to use for other purposes). The domain theory port is additive and easy to use. The

environmental-features port is like the examples port, being additive and easy to use for very limited
purposes.

IMPLICATIONS OF THE TRANSFORMATIONAL FRAMEWORK

Pulling back up now from these detailed analyses to look at the picture more globally, several general
implications can be discerned. The first implication is that multiple pieces of knowledge can be

combined in three distinct fashions. The first approach feeds the knowledge into multiple of the core

algorithm's input ports, and depends on the structure of the core algorithm to perform the integration. For

example, KBANN integrates a domain theory with examples by feeding the domain theory to the core

230



networktopologyandweightports,whilefeedingexamplesdirectlyto thecoreexamplesport. Thecore
algorithm- thatis,backpropagation- thencombinesthisknowledgeduringitsnormalprocessing.The
secondapproachutilizesa multi-portedpreprocessorthatintegratestheknowledgeprovidedto its input
portsin the processof generatinginputfor thecorealgorithm. Oneexampleis GRENDEL-FOCL's
emulationof FOCLviaapreprocessorthatcombinesknowledgefromall of FOCL'sinputports(except
for theexamplesport) in theprocessof convertingthis knowledgeintoa singlegrammarfor useby
GRENDEL.A secondexampleis IVSM-EBL'suseof a preprocessorto integrateknowledgefrom its
examplesand domain-theoryports in the processof generatingversionspacesfor the core IVSM
algorithm.Thethird integrationapproachis to utilizeanadditiveportthatcanintegrateacrossmultiple
piecesof knowledgesentto asingleport. IVSMisagoodexampleof this,asitsversion-spaceportisan
effectiveadditiveinputport.

Thesecondimplicationis thattheinsightsunderlyingdifferentknowledge-intensivealgorithmscanoften
betransferredorcombinedinusefulways.Incaseswheretwoknowledge-intensivealgorithmsarebased
on thesamecorealgorithm,andwheretheyhavetransformedthecorealgorithmin differentways,it
shouldbe possibleto combinemanyof the transformationswithouta greatdealof difficulty. For
example,GRENDEL'sgeneralizationof FOIL's relationsport to acceptgrammarscouldbecombined
with FOCL'stechniquesfor pruninghypothesesusingtypingconstraints.It wouldbean interesting
questionto seewhetherthis approachwould haveany advantagesoverusing a preprocessorto
incorporateall ofFOCL'sknowledgeintoaGRENDELgrammar,asinGRENDEL-FOCL.

In caseswherethe core algorithms are different, transfer of a more abstract sort can still occur. For

example, IVSM's additivity based on version-space intersection leads to asking whether GRENDEL's

grammars could support a comparable operation: the answer is no, since context-free grammars are not

closed under intersection. This also suggests the new research topic of modifying GRENDEL so that it is

more additive. For example, since the intersection of a context-free language and a regular language is a

context-free language, it might be possible to create a new version of GRENDEL that has an additive port
for regular languages in addition to the existing (non-additive) port for context-free languages.

The third implication is that additional effort would be usefully spent looking at how the two general

classes of transformations could be applied to further aspects of existing algorithms, both those
considered here as well as others.

BEYOND THE TRANSFORMATIONAL FRAMEWORK

The transformational framework is somewhat unsatisfying for several reasons: it does not apply to all

knowledge-intensive learners; it does not apply to knowledge-weak learners (which actually do achieve

some forms of knowledge-integration even in simply being able to accept varying numbers of examples
and learn from them); and it doesn't say much about how to merge the insights across knowledge-

intensive algorithms that have different core algorithms. Our continuing work attempts to go beyond the

transformational framework by developing a problem space framework that attempts to identify the core
functionalities that underly all induction algorithms, and then to understand how all of the knowledge

utilized by a learner - examples, domain theories, etc. - is integrated together via its mapping on to

these functionalities. In terms of the transformational framework, the goal here can be expressed as

finding a single black box and set of input ports that conceptually lie at the heart of all induction
algorithms.

The problem-space framework is organized around the concept of the space of candidate hypotheses,

thereby continuing the existing line of analyses that have viewed induction as search [12; 5; 10]. In this

framework the role of knowledge is first off to specify, constrain, and order the elements - that is, the
states - of this space. In the four algorithms we have focused on here, specification of the states in the

space occurs rather directly via GRENDEL's grammar port, FOCL's relations port, and IVSM's partial-

231



order port. Constraints on the set of states considered are provided by IVSM's version spaces and
FOCL's argument constraints. Ordering information about the states is provided by GRENDEL's

ordering port and GRENDEL's and FOCL's examples ports (though rather indirectly, through their
information-theoretic measures). However, none of the four systems allows direct statement of all three

types of knowledge. GRENDEL comes the closest, though it requires all constraints to be stated

indirectly in terms of what can be generated via the grammar. KBANN is the furthest away, as it cannot

accept direct statement of any of these types of knowledge. It does however accept some such
information indirectly; for example, its domain theory (plus information about additional domain

features) indirectly determines what can and cannot be in the hypothesis space, by determining the
network topology.

The remaining use of knowledge in this framework is to provide method-specific knowledge about how

to search the space of hypotheses. IVSM is at one extreme, in that it makes no use of such knowledge -

it always maintains a representation of all hypotheses that are consistent with all of the knowledge
available so far. FOCL, GRENDEL, and KBANN all utilize greedy search algorithms. FOCL uses its

relation and domain-theory ports to generate candidate changes at each step, its argument-constraint port
to eliminate candidates, and its examples port to order the candidates (via its information-theoretic

measure). GRENDEL uses the detailed structure of its grammar rules to generate the candidates at each

step - two grammars that generate the same terminal language could lead to different greedy searches if

they are specified in terms of different sets of rules. It also uses the information from its ordering port as

a first cut at ordering the candidates, and then its examples port to complete the ordering (again via its
information-theoretic measure). KBANN uses its examples port to determine the direction in which to

descend the gradient in its greedy search (via backpropagation) and its learning-rate port to determine the
size of the steps taken in that direction.

Although the problem-space framework is still in a very preliminary stage of development, one insight
already revealed by this analysis is that, though all four of the knowledge-intensive algorithms studied

here use EBL-like domain theories, they use them in three qualitatively different ways. Two of the

algorithms - KBANN and IVSM - trust their domain theories enough to use them to directly affect the

space of candidate hypotheses, though they do this in different fashions. KBANN uses the domain theory
to specify the initial space of candidate hypotheses (that is, the network structure). In contrast, IVSM uses
the domain theory (along with examples) to constrain the space of candidate hypotheses that was earlier

generated from information provided to its partial-order port. FOCL distrusts its domain theory
sufficiently to allow it to affect only the search strategy; that is, the domain theory is used only to order
the search for a hypothesis, and never to prune the space. It thus gets less constraint from its domain

theory, but is also able to recover more gracefully if the theory is wrong. GRENDEL's treatment of the
domain theory depends on how the domain theory has been converted into a grammar; GRENDEL can

employ either a KBANN-Iike strategy, in which the theory determines the search space, or a FOCL-like

strategy, in which the theory orders the search space. In GRENDEL-FOCL, the variant of GRENDEL
discussed above, the domain theory orders the search space.

As work continues on the problem-space framework, the insights derived from it should (hopefully) get
both broader and deeper.

CONCLUSION

We have begun the process of understanding knowledge-intensive induction algorithms by presenting a
transformational framework for creating knowledge-intensive methods from knowledge-weak methods,

using the framework to analyze four recent algorithms, and deriving from these analyses general

implications about the integration of knowledge in induction. We also described a more preliminary
problem-space framework that attempts to identify the core functionalities of any learning method and

232



how various learning methods are created by mapping out how knowledge sources can be used to define
these functionalities.

Beyond what has already been described, one fundamental insight revealed by these two frameworks, and

the analyses they yield of existing knowledge-intensive learners, is a path towards simple yet powerful
knowledge-intensive induction algorithms. First, additive ports need to be developed that provide broad

languages for the basic functionalities of specifying, constraining and ordering hypothesis spaces.

Ideally, such ports and languages should combine, for example, the best aspects of IVSM's version spaces

and GRENDEL's grammars, yet still cover all of these basic functionalities. Second, comparable ports
need to be developed to allow knowledge to be used in whatever search method is chosen. For greedy

methods, this tends to be knowledge about proposing, constraining, and ordering the options at each step.

Third, a range of preprocessors need to be created that can translate a wide variety of forms of knowledge
into these ports. Ultimately this leads to a direct concern about knowledge extraction, as the

preprocessors get closer and closer to the prime sources of knowledge (such as books), and thus raises a
variety of additional issues about how and when knowledge is extracted. Ultimately the hope is to

complete these two frameworks, fuse them into a single more comprehensive framework, analyze the full

space of existing knowledge-intensive induction algorithms, and use the resulting insights to build one or

more new algorithms that go significantly beyond the existing ones.

ACKNOWLEDGMENTS

This project is partially supported by the National Aeronautics and Space Administration (NASA) under
cooperative agreement number NCC 2-538.

REFERENCES

1. Buntine, W. Classifiers: A theoretical and empirical study. 12th International Joint Conference on
Artificial Intelligence, Sydney, 1991, pp. 638-644.
2. Cohen, W. W. Compiling prior knowledge into an explicit bias. Machine Learning: Proceedings of
the Ninth International Workshop, Aberdeen, 1992, pp. 102-110.
3. Hirsh, H.. Incremental Version Space Merging: A General Framework for Concept Learning. Kluwer
Academic Publishers, Boston, MA, 1990.
4. Mitchell, T. M. Version spaces: A candidate elimination approach to rule learning. Proceedings of the
5th International Joint Conference on Artificial Intelligence, IJCAII, Cambridge, MA, 1977, pp. 305-310.
5. Mitchell, T.M. An Analysis of Generalization as a Search Problem. Proceedings of IJCAI-79, 1979.
6. Mitchell, T. M. The Need for Biases in Learning Generalizations. Tech. Rept. CBM-TR-117,
Department of Computer Science, Rutgers University, 1980. (Reproduced in Shavlik, J. W. & Dietterich,
T. G. (1990). Readings in Machine Learning. San Mateo, CA: Morgan Kaufmann.)
7. Pazzani, M. J., & Kibler, D. "The utility of knowledge in inductive learning." Machine Learning 9
(1992), 57-94.
8. Quinlan, J. R. "Learning logical definitions from relations." Machine Learning 5 (1990), 239-266.
9. Quinlan, J. R. & Rivest, R. L. "Inferring decision trees using the minimum description length
principle." Information and Computation 80 (1989), 227-248.
10. Rosenbloom, P. S. Beyond generalization as search: Towards a unified framework for the acquisition
of new knowledge. Proceedings of the AAAI Symposium on Explanation-Based Learning, AAAI,
Stanford, CA, 1988, pp. 17-21.
11. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. Learning internal representations by error
propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Volume 1: Foundations, D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Eds., Bradford
Books/MIT Press, Cambridge, MA, 1986, pp. 318-362.
12. Simon, H. A., & Lea, G. Problem solving and rule induction: A unified view. In Knowledge and
Cognition, L. W. Gregg, Ed.,Erlbaum, Potomac, MD, 1974, pp. 105-127.
13. Towell, G. G., Shavlik, J. W., & Noordewier, M. O. Refinement of approximate domain theories by
knowledge-based neural networks. Proceedings of the Eighth National Conference on Artificial
Intelligence, AAAI, Boston, MA, 1990, pp. 861-866.

233


