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ABSTRACT

In dynamic environments, optimal deliberation about what actions to perform is impossible. In-

stead, it is sometimes necessary to trade potential decision quality for decision timeliness. One

approach to achieving this trade-off is to endow intelligent agents with meta-level strategies that
provide them guidance about when to reason (and what to reason about) and when to act. We

describe our investigations of a particular meta-level reasoning strategy, filtering, in which an agent

commits to the goals it has already adopted, and then filters from consideration new options that

would conflict with the successful completion of existing goals [1]. To investigate the utility of

filtering, we conducted a series of experiments using the Tileworld testbed [12]. Previous experi-

ments conducted by Kinny and Georgeffused an earlier version of the Tileworld to demonstrate the

feasibility of filtering [5]. We present results that replicate and extend those of Kinny and Georgeff,
and demonstrate some significant environmental influences on the value of filtering.

INTRODUCTION

Many existingand potentialAI applicationsinvolvesystems that are situatedin dynamic environ-

ments: Laffeyet al.listexamples from aerospace,communications, medical,processcontrol,and

roboticsapplications[6].Optimal deliberationabout what actionstoperform isimpossiblein such

environments. This isbecause allsystems have computational resource-limits:theirdeliberations

taketime. During the time in which a system in a dynamic environment isdeliberatingabout what

actionsto perform, the environment may change--and itmay change in ways thatundermine the

assumptions underlyingthe deliberation.A system may begin a deliberationprocesswith a par-

ticularsetof availableoptionsforaction,but new optionsmay ariseand formerlyexistingoptions

may disappear during the courseof the deliberation.Moreover, the utilitiesassociatedwith each

optionare subjectto change during the deliberation.A system that blindlypushes forward with

itsoriginaldeliberationprocess,without regardto the amount of time itistakingor the changes

meanwhile going on, isnot likelyto make rationaldecisionsabout what to do. Itisthus sometimes

necessaryto tradepotentialdecisionqualityfordecisiontimeliness[14,10, 13].
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One approach isto endow intelligentsystems,or agents,with meta-levelstrategiesthatprovide

them guidance about when to reason (and what to reason about) and when to act. In previous

work, we have proposed two such strategies: filtering [1], and overloading [9]. In the present paper,
we focus on filtering, a strategy in which an agent commits to the goals it has already adopted, and

tends to bypass, or filter from consideration, new options that would conflict with the successful

completion of existing goals.
To investigate the utility of filtering, we conducted a series of experiments using a simple,

abstract testbed: the Tileworld. Our use of the Tileworld is part of an experimental research

methodology that we discuss in detail elsewhere [3, especially Section 5.2]. We first described the

Tileworld several years ago [12]. Since then, we have made a number of enhancements to the

original system, so that it can support a wider range of experiments. A simplified version of the

original Tileworld was used by Kinny and Georgeff [5] in a series of experiments that demonstrated

the utility of filtering. The experiments we report on in this paper replicate and extend those of

Kinny and Georgeff, and demonstrate some significant environmental influences on the value of

filtering.

THE TILEWORLD TESTBED

The Tileworld testbed is a tool that we developed to support controlled experimentation with

agents in dynamic environments. It is designed to run under Unix, using Lucid Common Lisp and

CLX (the Common Lisp X Interface). We first described the Tileworld several years ago [12]; since

then, we have made a number of enhancements to the system, so that it now supports a wider range

of experiments. We briefly describe the current state of the system, focusing on those aspects of

it that are most pertinent to our experimental investigations of filtering. Details about the system

implementation, along with information about how to obtain a copy of it, can be found in the

Tileworld User's Guide [4].
The Tileworld consists of an abstract, dynamic, simulated environment with an embedded

agent. It is built around the idea of an agent carrying "tiles" around a two-dimensional grid, deliv-

ering them to "holes", and avoiding obstacles. The environment is dynamic; during the course of
a simulation, objects appear and disappear at rates specified by the researcher. The Tileworld is

obviously, and intentionally, a highly artificial environment. In keeping the environment divorced

from any particular application, our goal has been to provide a tool that allows researchers con-

cerned with any application to focus on what they consider to be key features of that application's

environment, without the confounding effects of the actual, complex environment itself. We have,

in other words, traded realism--in the short run, at least--for sufficient control to allow for system-

atic experimentation. This methodological decision is one that has also been made in several other

testbeds for studying AI planning, for example, the independently developed NASA Tileworld [8]

and the MICE system [2, 7], both of which are also organized around the theme of agents situated
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on two-dimensional grids, pushing tiles. See Hanks, Pollack, and Cohen [3] for a discussion of the
methodological issues surrounding the use of simplified testbeds.

A researcher using the Tileworld can manipulate and monitor characteristics of the simulated

environment (such as how quickly it changes) and of the embedded agent (such as what kind of

meta-level reasoning principles it employs). These characteristics can be defined either interactively
using a menu-based interface, or by storing parameter settings in files that are then used to control
batch-style experiments.

In originally developing the Tileworld, we adopted a minimalist philosophy: our policy was

to keep the environment as abstract and simple as possible, in order to provide the experimenter

with maximal control over the environment and to ensure that the system's performance is not

tied to the particulars of any given domain. Each of the parameters in the original Tileworld was

introduced because it represented an abstraction of what we believed to be a potentially important

and interesting environmental characteristic. Thus, the original Tileworld allowed us to manipulate

a number of environmental characteristics, including the degree of dynamism in the environment,
the degree of uniformity of task difficulty, and the degree of uniformity of task reward.

Our early experiences with the Tileworld led us to conclude that, while this was a good set of

parameters with which to begin, some extensions were necessary to support the range of experiments

we hoped to conduct. In particular, in the original system, agents had only a single type of top-
level goal, hole-filllng, and no matter how they achieved such a goal, they were always awarded the

same score (i.e., the score associated with the hole in question). This made the original Tileworld

environment one in which there was very little about which to deliberate, and it was thus difficult

to study the trade-offs involved in extra deliberation. We thus extended the system in several ways:

• We added the requirement that agents maintain fuel level: we can thus now study goals of
maintenance.

To enable agents to maintain their fuel levels, we added a "gas station" where they can go to

get more fuel. We also added a top-level goal of building stockpiles of tiles having particular

shapes at strategic locations on the grid. Thus, where for the original Tileworld agent all
top-level goals were of the same type (fill a hole), in the new version there are several different
top-level goals.

We assigned "shapes" to tiles and holes, and changed the reward structure associated with

successfully filling a hole. The agent may fill a hole with any tiles, but it gets more points ff

it uses tiles whose shapes match the shape associated with the hole. As a result, there is now

the possibility of investigating trade-offs between the value of alternative plans to achieve

a goal. An additional complication is that the agent can carry more than one tile--in the

original version it only pushed a tile--but the more tiles it carries, the more rapidly it burns

fuel. Again, this means that the quality of alternative alternative solutions to some goal may
vary.
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In implementing these extensions,we adhered to our originalminimalist philosophy: we only

introducedthoseextensionsthatwere needed tosupport theexperimentsofinteresttous. However,

we think thatone ofthe strengthsofthe Tileworldisitsconceptualflexibility:we have found that

itisrelativelyeasy to designTileworldmodificationsthat support experiments that investigate

environmental and agent-designissuesother than thoseforwhich itwas originallydesigned.

EXPERIMENTAL RESULTS

We now present the experiments that we conducted using the Tileworld system, to investigate the

properties of filtering as a strategy for controlling reasoning in dynamic environments. Due to

space limitations, we do not describe either the motivation or details of the mechanism for filtering

here, but see [1, 10, 11]. Our central hypothesis, predicated on the earlier work on IRMA, was
that that, in a dynamic environment, a tendency to commit to one's plans can result in overall

improved performance, despite the fact that the resulting behavior will sometimes be suboptimal.

This hypothesis had previously been explored by Kinny and Georgeff, using a simplified version of

the original Tileworld system, along with a somewhat modified notion of filtering [5]. Our first goal

was to attempt to replicate the Kinny/Georgeff results in the more-complex environment provided

by the enhanced Tileworld system, using the original, better-motivated notion of filtering. We were
successful in this: like Kinny and Georgeff, we showed that filtering is an effective control strategy.

In addition, we generalized their results: we found that the influence of commitment is bounded,

i.e., beyond a certain point, additional commitment does not lead to improved behavior, nor does

increased lack of commitment lead to poorer performance. We also observed a relation between

the rate of change in the environment and the value of commitment. Here we focus on this final

observation.
Our primary experiment used a factorial design with two factors: degree of commitment, for

which we had 14 levels, and degree of dynamism, for which we had 11 levels. "Degree of commit-

ment" refers to the strength of the filtering strategy: the most committed agent seldom reconsidered

its options until it had completed its current plan, while the least committed agent always inter-

rupted its actions to weigh the significance of perceived changes in the environment. "Degree of

dynamism" refers to the average rate of change in the environment: how frequently, on average,

do exogenous events occur? The independent parameter was effectiveness, which is a normalized
measure of the agent's score. There were a total of 51 trials conducted per experimental condition,

where the length of each trial was 80,000 clock ticks. (A clock tick is the amount of time it takes

the agent to move one unit of distance in the simulated environment.) Pre-tests were performed
to establish the duration of a trial needed to ensure quiescence of effectiveness and to establish the

number of trials needed to ensure quiescence of the mean effectiveness across trials.

The data we collected showed that there was a strong tendency for agents that committed more

strongly to their plans to achieve higher degrees of effectiveness. This is most strongly evidenced
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by a comparison of the effectivenessof the most and leastcommitted agents,shown in Figure I.

(When allfourteenlevelsofcomrnittment areplotted,thereare some linecrossing,but the trend

relatingeffectivenessand degreeof commitment isstillclear;see [11].)

Table 1 summarizes the significanceof the differencein performance between the most com-

mitted agent we ran and the leastcommitted one. It shows that the differencebetween theirper-

forrnance,although not enormous, isstatisticallysignificanteverywhere except at the endpoints.

Further analysisrevealsthe reason forthe collapseat the endpoints. In the slowestenvironment

we studied,therewas a great dealof variationin the agent'sperformance,because itwas possible

forthe environment sometimes to evolvein a way thatenabled the agent to succeedat allthe tasks

itwas presented. Because of the high degree of variationin the scores,there was no statistical

significancebetween the agents'performance in theseslowlychanging environments. At the other

endpoint--the most quicklychanging environment--the situationisdifferent.In thisenvironment

there was very littlevariationin the scores:both agents scoredvery poorly,because they were

unable to succeed at allbut a few ofthe tasksthey were presented.This bottoming effectresulted
in a lackof significancebetween the agents'scoresin thisenvironment.

Figure2 plotsthe differenceinthesetwo agents'performance. The graph shows thatthe value

of commitment, whilealways positive,isa functionofdegreeofdynamism in the environment. As

dynamism increases,the marginalvalueofcommitment firstincreases,then peaks,and subsequently
drops off,although itdoes not become negativewithinthe bounds of the experiment. This result

can be explained as follows. In slowerworlds, there are fewer optionspresented to the agent,

and, hence,fewer opportunitiesforfilteringto resultin a savingsin reasoningcost.Moreover, the

advantages of reducing reasoningare minimal, sincethereisgenerallyenough time to deal with
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T-Test Results:

Significance of Difference between Mean Effectiveness
of Most and Least Committed Agents

Dynamism t Significance
1 1.121692 P < .15

3 3.129425 P < .0025

5 3.148238 P < .0025

7 4.130018 P < .0005

10 5.727610 P < .0005

15 6.686329 P < .0005

20 7.000076 P < .0005

30 4.909135 P < .0005

40 3.164884 P < .0005

50 2.260098 P < .02

60 0.709967 P < .25

Table 1: Analysis of Value of Commitment

options. As the world becomes more dynamic, there are more options for consideration, and the

penalty for extra reasoning increases, because there is less time to respond to those options. This

explains why filtering increasingly pays as dynamism increases. However, another influence comes

into play as the rate of change in the environment increases: the missed-opportunity cost grows.
As the world changes more rapidly, it becomes increasingly important for the agent to succeed at

each individual task, since it will fail to complete a larger proportion of the potential tasks. The

shape of the graph in Figure 2 is thus explained by the tension between the increased benefits of
reduced reasoning and the increased penalties of missed opportunity, both of which vary directly

with rate of change in the world. We expect to see a similar pattern of competing influences on the

usefulness of filtering in other domains, and we will pay particular attention to the shape and peak

of of the filtering-value curve in other domains, as it reveals useful information about the relative

significance of reasoning overhead and missed-opportunity costs.

CONCLUSION

We provided a brief description of a set of experiments aimed at assessing the value of a strategy that

may be incorporated in intelligent agents to help focus their reasoning in dynamic environments.
The strategy, filtering, involves screening from consideration options for action that are incompatible

258



Y x 10 "a

110.00

105.0(J

100.00

95.00 --

90.00

85.00

80.00

75.00 ....

70.00 ---

65.00

60.00

55.00 --

50.00 --

45.O0 --

40.00

35.00 --

30.00 --

25.00 -

20.00 - -

15.00

_0.00

5.00

0,00

!
' t

i i

E

i

....... I

i

• -÷ ...........

A i..........

i

xg6s6m,data

le+00 2 5 le+01 2

Figure 2: Difference in Effectiveness between Most and Least Committed Agents

with already established plans, except where those options are prima facie important enough to

trigger a pre-defined override. We relied on a testbed system, the Tileworld, to conduct our

experiments. We have made a number of enhancements to the Tileworld since the time it was

originally developed, and we described some of the more important of those here. Our experiments

demonstrate filtering is a feasible strategy, at least within the Tileworld, a result that suggests to

us that it is worth investigating this strategy in more-complex systems. Additionally, our results

showed an interesting relationship between the rate of change in the environment and the amount

of benefit that one can derive from using a filtering strategy.
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