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Abstract

Over the last several years, we have developed several systems for automatically refining
incomplete and incorrect knowledge bases. These systems are given an imperfect rule base
and a set of training examples and minimally modify the knowledge base to make it consistent
with the examples. One of our most recent systems, FORTE, revises first-order Horn-clause
knowledge bases. This system can be viewed as automatically debugging Prolog programs based
on examples of correct and incorrect I/O pairs. In fact, we have already used the system to
debug simple Prolog programs written by students in a programming languages course. FORTE
has also been used to automatically induce and revise qualitative models of several continuous
dynamic devices from qualitative behavior traces. For example, it has been used to induce and

revise a qualitative model of a portion of the Reaction Control System (RCS) of the NASA Space
Shuttle. By fitting a correct model of this portion of the RCS to simulated qualitative data from
a faulty system, FORTE was also able to correctly diagnose simple faults in this system.

1 Introduction

The problem of revising an imperfect knowledge base (domain theory) to make it consistent with

empirical data is a difficult problem that has important applications in the development of expert

systems (Ginsberg et al., 1988). Knowledge-base construction can be greatly facilitated by using

a set of training cases to automatically refine an imperfect, initial knowledge base obtained from

a text book or by interviewing an expert. The advantage of a refinement approach to knowledge-

acquisition as opposed to a purely empirical learning approach is two-fold. First, by starting with an

approximately-correct theory, a refinement system should be able to achieve high-performance with

significantly fewer training examples. Therefore, in domains in which training examples are scarce

or in which a rough theory is easily available, the refinement approach has a distinct advantage.
Second, theory refinement results in a structured knowledge-base that maintains the intermediate

terms and explanatory structure of the original theory. Empirical learning, on the other hand,
results in a decision tree or disjunctive-normal-form (DNF) expression with no intermediate terms

or explanatory structure. Therefore, a knowledge-base formed by theory refinement is much more

suitable for supplying meaningful explanations for its conclusions, an important aspect of the
usability of an expert system.
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Over the past five years, we have developed a series of machine learning systems that automat-

ically revise incomplete and incorrect domain theories. Section 2 briefly reviews five systems that

we have developed and summarizes results from each of them. Section 3 discusses one of these

systems, FORTE, in a little more detail. FORTE revises first-order Horn-clause theories and can be

viewed as automatically debugging Prolog programs based on examples of correct and incorrect

I/O pairs. We briefly summarize our results with using FORTE to debug simple Prolog programs

written by undergraduate students and to induce, revise, and diagnose a qualitative model of a

portion of the Space Shuttle Reaction Control System.

2 A Series of Knowledge-Base Refinement Systems

By integrating ideas from both explanation-based learning and inductive learning, my students

and I have developed a series of systems for automatically revising imperfect knowledge bases of

increasing representational complexity.

First, we developed a method called IOU (Induction Over the Unexplained) (Mooney, 1993) for

refining overly-general, propositional, Horn-clause domain theories (i.e. if-then rule bases without

variables). IOU uses explanation-based methods to learn part of a concept and uses inductive meth-

ods over unexplained aspects of examples to impose additional constraints on the final definition.

Experiments on real-world data sets for diagnosis of soybean diseases (Michalski and Chilausky,

1980) and human hearing disorders (Porter et al., 1990) demonstrated IOU's ability to use in-

complete theories to learn more accurate concepts from fewer examples than a purely inductive

learning method like ID3 (Quinlan, 1986). Results in learnability theory (Ehrenfeucht et al., 1989)

where used to prove that, under certain conditions, IOU is guaranteed to learn a PAC (proba-

bly approximately correct) concept from fewer examples. Finally, IOU was used to model some

recent psychological data demonstrating the effect of background theories on human concept ac-

quisition (Wisniewski, 1989). Unfortunately, IOU was restricted to repairing only a certain type of

overly-general theory.

Our next system, EITHER (Explanation-based and Inductive Theory Extension and Revision)

(Ourston and Mooney, 1990; Ourston and Mooney, in press; Ourston, 1991) was able to refine

arbitrarily incorrect propositional Horn-clause theories. EITHER used generic components for de-

duction, abduction, and induction (ID3) to learn new rules, delete incorrect rules, add antecedents

to existing rules, and remove existing antecedents. EXTHER was able to successfully refine real

expert rule-bases for recognizing promoters in DNA sequences (ToweU et al., 1990) and diagnosing

soybean diseases, improving the classification accuracy of both theories 30 percentage points using

100 training examples.

Our third system, FORTE (First-Order Revision of Theories from Examples) (Richards and

Mooney, 1991; Richards, 1992) was able to refine first-order Horn-clause theories by incorporating

recently developed methods in inductive logic programming (Muggleton, 1992). FORTE can be

viewed as automatically debugging Prolog programs based on examples of correct and incorrect I/O

pairs. In fact, it was successfully used to debug simple Prolog programs written by students in an

undergraduate course on programming languages. FORTE was also used to automatically induce and

revise qualitative models of several continuous dynamic devices from qualitative behavior traces. In
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particular, the system induced and revised a qualitative model of a portion of the Reaction Control

System (RCS) of the NASA Space Shuttle. FORTE is discussed in more detail in the next section.

Our fourth theory refinement system, RAPTURE (Revising Approximate Probabilistic Theories

Using a Repository of Examples) (Mahoney and Mooney, 1993; Mahoney and Mooney, in press)
combines symbolic and neural-network learning to refine a certainty-factor rule base. Therefore,

this project extended our methods to knowledge bases involving uncertain reasoning. RAPTURE

converts a certainty-factor rule base into a network and uses a modified version of connectionist

backpropagation (Rumelhart et al., 1986) to adjust certainty factors. If adjusting certainty-factors
is insufficient, a symbolic method based on ID3's information gain metric is used to add new rules.

Backpropagation and rule addition continue in a cycle until all of the training examples are classified

correctly. RAPTURE has successfully revised knowledge bases for three real-world problems: DNA

promoter recognition, soybean diagnosis, and the diagnosis of bacterial infections (a version of the

MYCIN rule base from Ma and Wilkins (1991)). On the promoter problem, RAPTURE performs

significantly better than our previous system, EITHER, and produces a simpler and slightly more

accurate rule base than KBANN (Towell et al., 1990), a more standard neural-network theory revisor.

Our most recent system, NEITHER (New EITI_ER) (Baffes and Mooney, 1993) is a much faster,

redesigned version of EITHER that can revise theories with "M of N" rules (rules that fire if any

subset of size at least M of their N antecedents are satisfied). It has been tested on refining
the promoter domain theory, producing an even simpler rule base with accuracy similar to that
produced by RAPTURE and KBANN.

Figure 1 shows learning curves demonstrating the performance of various systems on the DNA

promoter recognition problem. A promoter is a genetic region that initiates the first step in the
expression of an adjacent gene (transcription) by RNA polymerase. The input features are 57

sequential DNA nucleotides (with values A, G, T or C). The data contains 106 examples evenly
split between positive and negative. The expert theory provided with the data set, which has

11 rules with a total of 76 literals, is completely overly-specific (proves none of the examples are
promoters) and therefore has an initial classification accuracy of only 50%.

The learning curves were generated as follows. Each data set was divided into training and test
sets. Training sets were further divided into subsets, so that the algorithms could be evaluated

with varying amounts of training data. After training, each system's accuracy was recorded on

the test set. To reduce statistical fluctuations, the results of this process of dividing the examples,

training, and testing were averaged over 25 runs. Results are shown for the theory revision systems

EITHER, RAPTURE, NEITHER (without "M of N" revisions), NEITItER-M-OF-N (with "M of N"

revisions), and KBANN, and for the purely inductive systems ID3 (Quinlan, 1986) and neural-
network backpropagation (Rumelhart et al., 1986).

All of the revisions systems greatly improve the accuracy of the initial knowledge base and

generally perform better than pure induction. The strict rule-based systems (EITHER, NEITHER,
and ID3) perform relatively poorly since some aspects of the promoter concept are knowm to fit

an M-of-N format. There are severai potential sites where hydrogen bonds can form between the

DNA and a protein and if enough of these bonds form, promoter activity can occur. Connectionist,

probabilistic, and explicit M-of-N systems can represent such concepts more easily than strict

Horn-clause theories, which require "M choose N" separate rules to represent an M-of-N concept.
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Figure 1: Learning Curves for DNA Promoter Data

3 Overview of FORTE

This section provides a little more detail on our first-order theory revision system. FORTE works

by performing a hill-climbing search through a space of specializing and generalizing operators in

an attempt to find a minimal revision to a theory that makes it consistent with a batch of training

examples.

First, FORTE attempts to prove all positive and negative instances in the training set using

the current theory. Positive (negative) instances are tuples of constants that should (should not)

satisfy the goal predicate. When a positive instance is unprovable, some program clause needs to

be generalized. All clauses that failed during the attempted proof are candidates for generalization.

When a negative instance is provable, some program clause needs to be specialized. All clauses

that participated in the successful proof are candidates for spedalization.

When an error is detected, FORTE identifies all clauses that are candidates for revision. The

core of the system consists of a set of operators that generalize or specialize a clause to correctly

classify a set of examples. Based on the error, all relevant operators are applied to each candidate

clause. The best revision, as determined by classification accuracy on the complete training set,

is implemented. This process iterates until the theory is consistent with the training set or until

FORTE is caught in a local maximum, i.e. none of the proposed revisions improve overall accuracy.

FORTE'S specialization operators include deleting rules and adding antecedents. Several meth-
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grogram
directed path
insert after

merge sort

# of Programs
4

9

10

Training Set Size

121 instances

35 instances

60 instances

Mean Revision Time

87 seconds

82 seconds

199 seconds

% Correct

100%

100%

100%

Table 1: Summary of program debugging results.

ods are used to determine appropriate antecedents to add to an overly-general clause. One is a

hill-climbing method based on the FOIL system Quinlan (1990) for inducing first-order, function-

free, Horn-clause rules using an search heuristic based on information gain. Another is called

relational pathfinding (Richards and Mooney, 1992) and adds a sequence of litera]s that form a

relational path linking all of the arguments of the goal predicate. Since it adds multiple literais at
once, relational pathfinding helps overcome local minima problems in FOIL.

FORTE's generalization operators include deleting antecedents and adding rules. Antecedents

are chosen for deletion using a greedy algorithm that attempts to maximize the number of additional

provable positive examples without causing additional provable negatives. New rules are learned

using FOIL and relational pathfinding. FORTE also includes two additional generalization operators

(identification and absorption) based on inverse resolution as introduced in Muggleton and Buntine

(1988). These operators introduce new rules based on repeated patterns of literals found in existing
rules.

3.1 Debugging Student Programs

In order to test FORTE'S logic program debugging capabilities, we asked students in an under-

graduate class on programming languages to hand in their first attempts at writing simple Prolog

programs. They gave us their programs after they had satisfied themselves on paper that the
programs were correct, but before they tried to run them. The student programs were distributed

among three problems: find a path through a directed graph, insert an element into a list, and

merge-sort a list. We collected 23 distinctly different incorrect programs, representing a wide variety

of errors ranging from simple typographical mistakes to complete misunderstandings of recursion.
FORTE was able to debug all of these programs (see Table 1).

3.2 Qualitative Modelling of the Space Shuttle RCS

FORTE has also been used to induce, revise, and diagnosis qualitative models of continuous dynamic

systems. Qualitative models suitable for the QSIM qualitative simulation system (Kuipers, 1986)
can be represented as Prolog rules by including an antecedent for each of the constraints in the

model (such as the flow out of a tank is a monotonically increasing function of the amount in the

tank). FORTE can then use qualitative behaviors of the system as examples to revise such a model.

We have applied this approach to qualitative modelling of the Reaction Control System (RCS)

of the NASA Space Shuttle. The RCS consists of a number of identical, parallel components; our

test domain consisted of one of these components with its valves in fixed positions. Although space
prevents us from giving a complete description of the RCS, a simplified view would contain of three
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interconnected tanks, plus the thruster outlet. The first tank contains Helium, which it provides
at a constant pressure to the fuel tank. The Helium forces fuel out of the fuel tank and into the

manifold. From the manifold, the fuel enters the thruster and ignites to provide thrust.

For the purposes of this section, we assume that the valve leading to the thruster is dosed (i.e.,

the thruster is off), the Helium regulator valve is open and providing a constant-pressure supply of

Helium, and the valve between the fuel tank and the manifold has just been opened. If the initial

pressure in the manifold is lower than the initial pressure in the fuel tank (so that the system is not

immediately at equilibrium), then the fuel flows from the fuel tank into the manifold. Providing

this single behavior to FORTE allowed FORTE to induce a model for the RCS equivalent to that

produced by a QSIM expert (Kay, 1992).

However, since FORTE is a theory refinement system, we can use it in a more sophisticated way.

Suppose that the user has a correct system model, but that the system is behaving incorrectly.

In this case, we can use theory refinement to revise the correct system model to reflect the actual

system behavior. The resulting changes in the model can be viewed as a diagnosis. One of the

failures that can occur in the RCS is a leak in one of the manifolds leading from the fuel tank. In

order to isolate the leak, the astronauts shut the valve leading from the fuel tank into the manifolds.

They then isolate the suspected manifold and reopen the valve connecting the fuel tank and the

manifolds. If the leak has been eliminated, the system will quickly reach equilibrium. If the leak

has not been isolated, the system will not reach a pressure equilibrium (at least, not before all of

the fuel has drained out through the leak).

If FORTE begins with a correct system model along with the system behavior caused by a leak in

the manifold, FORTE revises the model by deleting the constraint minus(DArer_Fuel, D..kmt_Han).

The variable D_._mt_Fuol is the amount of fuel leaving the fuel tank and flowing into the manifold.

Variable D_._t__an is the net change in the amount of fuel in the manifold. Normally, the amount

of fuel flowing out of the fuel tank should be the same, except for sign, as the net amount of fuel

being added to the manifold. Since FORTE deletes this constraint, there must be another influence

on the amount of fuel in the manifold, namely, a leak.

4 Conclusion

We have developed a number of systems for automatically refining imperfect knowledge bases by

integrating various machine-learning methods. These systems have been successfully tested on a

variety of real-world problems, including qualitative modelling of a complex subsystem of the Space

Shuttle. We believe our results and those of other researchers in the area demonstrate the promise
of automated knowledge base refinement. Hopefully, these methods will continue to be refined

and successfully employed to speed the development of knowledge-based systems in additional
application areas.
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