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Abstract

This paper presents an improved dynamic analysis for liquid annular seals with arbitrary
profile based on a method, first proposed by Nelson and Nguyen. An improved first order
solution that incorporates a continuous interpolation of perturbed quantities in the circum.

ferential direction, is presented. The original method uses an appro:timation scheme for cir.
cumferential gradients, based on Fast Fourier Transforms (FFT}. A simpler scheme based

on cubic splines is found to be computationally more efficient with better convergence at
higher eccentricities. A new approach of computing dynamic coefficients based on ezternal

specified load is introduced. This improved analysis is eztended to account for arbitrarily
varying seal profile in both azial and circumferential directions. An ezample case of an
elliptical seal with varying degrees of azial curvature is analyzed. A case study based on

actual operating clearances (6 azial planes with 68 clearances/plane) of an interstage seal

of the Space Shuttle Main Engine High Press Ozygen Turbopump (SSME-A TD-HPOTP) is
presented.
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spatially dependent parts of first order solution
coefficients of the variables of first order axial momentum

equation
coefficients of the variables of first order circumferential momentum

equation
nominal clearance (m)

inlet and exit clearances (m)

x, y axis clearances of elliptical seal (m)

direct damping coefficients (N-s/m)

cross coupled damping coefficients (N-s/m)

clearance function

eccentricities along z and y axes (m)

friction coefficients (Moody's or Hits")

x and y components of seal force (N)

unbalance forces (N)

variables of zeroth order (steady state) equations

variables of first order (perturbed) equations

film thickness (m)

direct stiffness coefficients (N/m)

cross coupled stiffness coefficients (N/m)

leng*b of the seal (m)

direct mass coefficients (kg)

cross coupled mass coefficients (kg)

entrance pressure (Pa)
exit pressure (Pa)

pre-swirl ratio
radius of the rotor (m)

time (s)

axial and tangential velocities (m/s)

rotor surface velocity, car (m/s)

preload
axes of the elliptical whirl orbit
axial and circumferential coordinates

density (kg/m 3)

dynamic viscosity (Pa-s)

eUipticity, (c= - cy)/c=

eccentricity ratios

external load angle (rad)

entrance loss coefficient

angular frequency (rad/s)
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INTRODUCTION

Distortions in the interstage seals of the Space Shuttle Main Engine (SSME) High Pres-

sure Oxygen Turbopump (ATD-HPOTP) due to mechanical and thermal loads have been

investigated utilizing finite element models of the entire pump. Annular seals, initially
designed with either straight or tapered clearance profile have been found to be severely
distorted during the course of their operation.

Starting with Black's (1969)analysis of high-pressure seals, followed by Allaire's (1972)
eccentric seal analysis and Childs' (1983) Hirs' bulk-flow model for tapered seals there has

been a steady improvement in the modeling of annular seals and the agreement of their
predicted behavior with experimental results.

The effect of seal distortion on the rotordynamic coefficients was first considered by
Shaxrer and Nunez (1989). They adapted the analysis of a plain seal to the case of a seal

with wavy profile. The distorted seal profile was fitted with a clearance function in the form
of a polynomial. Their analysis confirmed a marked change in rotordynamic coefficients due

to a change in the seal profile. Similar results for this case were reported by San Andres

(1991) using a variable properties model. Scharrer and Nelson (1990), treated a similar
problem using a partially tapered seal model.

All the work reported in the literature is limited to distortion along the length of the
seal. Detailed thermoelastic studies have revealed seal distortion is not limited to axial

direction and a similar distortion occurs along the circumference also. An example of a
distorted seal profile is shown in Fig 1. The clearances for this profile were obtained from
a thermoelastic analysis.

This paper presents an improved dynamic analysis for an annular seal with arbitrary
profile, the arbitrary seal profile may be due to distortion as above, or by design. The

analysis used for this purpose is based on an approach, first proposed by Nelson and Nguyen.
(1989). The original analysis showed good agreement with experimental results. This

analysis is modified by including a more exact first order solution that accounts for the

variation of perturbed variables along the circumference with a continuous interpolation.
Typically, seal coefficients are computed in a minimum film thickness coordinate system

as a function of eccentricity and then transformed into the user defined coordinate system for
actual application. Such a procedure is not valid for an arbitrary profile seal and a method
for computing these coefficients directly in a global coordinate system is presented. In
addition, a new procedure for computing seal coefficients based on external load specificationis also discussed.

An example film thickness analysis for an elliptical seal with varying axial curvature, is
discussed. The above improved analysis is employed to analyze a distorted interstage seal

of a SSME Turbopump and the results are compared to those of a similar seal with averageinlet and exit clearances.

THEORY

Bulk Flow Governing Equations

Mass conservation and force equilibrium considerations in the axial and circumferential
directions for the control volumes in figures 2a and 2b yield the following bulk flow con-
tinuity, axial momentum and circumferential momentum equations for an incompressiblefluid.

10(hv) O(hu) Oh

R 0;3 + c9: + 3t -0 (1)
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Figure 1: Predicted Clearance Profile for _bop_p Annular Seal
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where the friction factors ], and ], are defined for the Hirs and Moody friction factor models

in the appendix.
The boundary conditions at the inlet and exit of the seal are given as,

po_- po(O,3) = (1 ,- _)_pJo(0, J)

vo(O, fl) = psr x ,vR

(4)

(5)

vo(r..e) = p0,, (s)

where poi and po,. are the entrance and exit pressures respectively, _ is the entrance loss

coefficient and psr is the pre-swirl ratio.

Film Thickness

The expression for film thickness h(z,fl) as a function of eccentricity is derived in a

fixed coordinate system, instead of a "minimum film thickness" coordinate svstem. The
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Figure 2: Differential Fluid Volumes, a) Continuity b) Momentum

coordinate system (x,y) shown in Fig. 3, is fixed at the static eccentric position and

is oriented parallel to a user defined-global coordinate system. Typically, for eccentric

operation of a uniform profile seal such as a straight or 'tapered seal, the rotordynamic
coefficients are computed as a function of eccentricity in a coordinate system aligned with
the line of minimum film thickness. The use of these coefficients in an application such as

a stability analysis requires their transformation into the user defined coordinate system.
This procedure, which is valid for a seal with uniform profile is not applicable for seals with

non-uniform profile in the circumferential direction. Such seals require the computation of
thesecoefficientsin the user definedcoordinatesystem directly,as these coefficientsvary
with the angleofminimum filmthickness(angleof eccentricity).

The sealgeometry is,in general,definedby itsclearancefunctionc(z,/3).A constant

c specifiesa straightseal,a linearfunctionin z definesa tapered sealand so on. The
sealprofilewillbe non-uniform ifc varieswith/3. The filmthickness,which varieswith

eccentricity,isderivedas a functionof c(z,/3)and the eccentricityE. The expressionfor

the filmthicknessand itsgradientsare given below with referenceto Fig. 3. Besides

specifyingthe filmthicknessin a fixedcoordinatesystem, thisgeneral expressionismore

accurate,particularlyat high eccentricities,than the more commonly used approximateform, ho = c - E_cos_ - E::in/3.

ho(z,/3) = V_ R + c)_ _ (Exsin/3 - E.cos/3)2 _ (E_cos/3 + Eusind) _ R
(z)

8ho

0/3
(R + c)_ - (E_sind - E_cos/3)(E:osd + E_sina)

viiR+ _---(:.....,/3_E co, )2 , _ (s)

Oho

_/(,_+ c) - (E_i,_ _ E_co_a)_ C0)
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Figure 3: Diagram for Deriving General Clearance Expression

Solution Procedure for Zeroth-Order Equations

The solution for zeroth order equations involves the direct integration of the three cou-

pled nonlinear partial differential equations. Typically, an iterative procedure is used to
solve for the pressure distribution. The original analysis of Nelson and Nguyen (1988) pro-

posed a method by which the coupled partial differential equations are reduced to coupled
ordinary differential equations by approximating the circumferential gradients of the vari-
ables u0, t'0 and p0. At each axial step in the iterative procedure, the gradients with respect
to 3 are computed based on the values of the variables at the previous step. An approxi-

mation scheme based on Fast Fourier Transforms (FFT) was used for this purpose. In the

present analysis, a simpler method based on cubic splines is used. This method is more
accurate as no truncation error is involved as in the FFT method. Also, convergence at

higher eccentricities is achieved with relatively fewer iterations than the FFT method. It is
also computationaUy more efficient as it does not involve the computation of CPU intensive

trigonometric functions. A similar approach based on forward differences was reported by
Simon and Frene (t992). Figure 4 illustrates typical subdivisions in the axial and circum-

ferential directions. Note that the elliptical seal in Figure 5 represents a special case of the

arbitrary profile shown in Figure 4.
The three steady state equations are arranged in the following fashion and integrated

from inlet to the exit.

g,,(uo,vo,po, o,_o.Opo 1g,(u0, v0,P0,°_ o_ oOv Opo

(lO)

The circumference is divided into segments of equal length. The above equations are

integrated starting at each circumferential location in the direction of the corresponding
point at the next axial step. When this step is reached, all the variables i.e., u0, v0 and p0 are
known along the circumference. These values are then used to compute the circumferential

.gradients for the next step. In other words, at the i-th axial step, the circumferential
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Figure 4: Circumferential and Axial Mesh Points for Numerical Integration

gradients are computed using the values of Uo(,_l.j),Vo(i_I.))and I'0_,-l.j).i.e.,tilevalues at

the previous step. In the current analysis,an approximation scheme based on cubic splines

isused to compute these gradients. Nelson and Nguyen used the simple Euler's method for

the above numerical integration. For the current work, integration schemes based on 4th

and 5th order Runge-Kutta method as well as predictor-corrector methods are used.

First Order Equations

The perturbed or firstorder equations are obtained for a small motion of the rotor

about the steady state eccentric position using the following expressions, h = h0 + ehl,
P : P0 + epl, U : U 0 + eU 1 and v : v0 + evl.

Substitution of these expressions into equations 1-3 and neglecting second and higher
order terms yields the following first order equations.

h Oul ho Or1 Oh1 I Ohl Oh1

+ -EYE+ + - at
Oh1

uo O-T

Vo Ohl OUo 10v 0

0---]- + h, (11)

h OUl ho Opl Oul hovo Oul
o---_- + --_ + hou o + + A,,ul + A,,v 1 = Ahhl

p O: _ R 0/3 (12)

ho O,,l ho Op, Ovl hovo by1

_- + _ + houo + + Buul + Bvvl = Bhhl 13)pRO�3 _z R 0/3 (

where A,,, A_, Ah, By, B_ and Bh are functions of steady state variables Uo, vo, Po and
their axial and circumferential gradients. These expressions are given in the appendix for
both the Hir's and Moody's friction factors models.

The boundary conditions for the first order solution are (Nelson and Nguyen, 1988),
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pl(o, 'a)= -(1 + ..)p.o(O.3)u1(O,3)

_,_(o,_) = o

;I(L, 3) = o

(14)

(is)

(16)

Assuming that the rotor whirls about its equilibrium position in an elliptical orbit whose
semi-major and semi.minor axes are X0 and Y0 respectively, then the position of the center
of the rotor relative to its static eccentric position is given by,

X = Xocosa (IT)

Y = Yosina

where a = wt and w is the whirl frequency.
where co is the nominal clearance, and;Let Az= _ andAy= ,'o

_Pl = Ae_.pl, + A%Pl,

_u I : Ae.Ul_ + _t_u1T.I

ev: = A_av:= + A_yv: u

ehx = Ae=hl= + Aeyhl_

hi= = -CoCOSaCOSgt

hlu = -cosinasin/3

Assume a solution of the form:

Pl= = alCz, 3)cosa + a,,(:, f3)sina

vl= = as(:,fl)cosa + a6(:,i3)sinc_

P*u = b,(:, Z)cosa + b=(z, fl)sina

ulu = bs(z, 3)cosa + b4(z, fl)sina

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

06)

(27)

(28)

(29)

(3o)

Using the above substitutions in the set of first order equations yields 12 coupled linear

partial differential equations. The same solution procedure that is used for the zeroth order
solution is used to numerically solve foe variables ai and bi.
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Thefirst orderboundaryconditionsareexpressedin theassumedsolutionvariablesas:

a1(0,3) _-_-(I + _)pa3(0,3) (31)

a2(o,_) = -(i + _)pa4(o,,_) (32)

as(o, _) = o
(33)

_6(o,_) = o
(34)

_(L,Z) = o
(35)

a2(L,3) = 0 (36)

Similar boundary conditions apply to governing equations involving bi's.

The original analysis assumed these variables to be harmonic and separated them intotwo auxiliary functions of the form,

a_ =/_(:)_o_3 + #_(;)si.# (3r)

where fi and gi are assumed not to vary with 3. Nelson and Nguyen 1988a) thereby apply

a second separation of variables substitution to the first order differential equations (eqs.
14-16). While the above form of assumed solution yields results that agree with available

experimental results, an examination of the numerical values of the functions fi(z) and gi(:)
revealed a/3 dependence, particularly at eccentricities above (0.5). The inclusion of these

circumferential gradients should therefore improve the solution at higher eccentricities.

The a i and b i in the current analysis are totally general functions of = and d which

thereby avoids the mathematical contradiction discussed above. Furthermore. in many
cases the results of the current approach show better agreement with experimental resul(sthen the earlier results.

The solution procedure for the 12 linear PDE's is exactly the same as that of the zeroth
order solution. The solution is performed with 4-th and 5-th order Runge-Kutta method
and also with a predictor-corrector method. Both methods almost identical results, the
with Runge-Kutta based method being the fastest.

Dynamic Coefficients

The force components acting on the rotor due to its motion about a static eccentric
position is given by integrating the first order pressure field, i.e.,

_0 L _0 2_r- AF_ = ep, cosdR dd dz (38)

- _xry = fL f2.
.1o ao eplsin/3R d/3 dz (39)

The following linearized force-motion model is used to define the rotordynamic coeffi-

cients. In this equation, X and Y define the relative displacement of the rotor and F_, Fu
are the components of the force due to first order pressure field.
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(4o)

The original analysis discretized the circumference into a number of strips and the

function values (]i,gi) are assumed to be independent of/3 over each strip. The current

method improves this approach by allowing the al and bi to vary over each strip in obtaining

the rotordynamic coefficients.
Substitute eqs. 28"83 into 22-27 and in turn substitute the results into eqs. 43-15. Also

substitute eqs. 20 and 21 into 43-45. This yields:

Kzx 3'[_x w2 1 f0L fO2_r
_ = -- alcos_3R d_ dz

cO

(41)

I _oL_02=c_y_,, - -- blcosl3R dB dz (42)
co

- k_ + mv_ 2 : -- alsin_R d/3 d:
• CO

(43)

I _oL_o2_Cmi,,¢ = -- blsin/3 R d/3 d: (44)
cO

- Czz,z = -- a2cos_R d_ d: (45)
cO

1 _0 L fo27rb2co$[jR d_ dz (46)]¢Y_ -- mzY_g2 ---- co

cuzw = -- a_sin/3 R d13 dz (47)
co

K_ - m_w 2 = -- b2sinl3R d/3 dz (48)
cO

These 8 equations are evaluated for at least two whirl frequencies to obtain solutions
for the 12 dynamic coefficients. A least squares approach is employed for this step. The

2D integration performed numerically are an improvement over the average value approach

employed by the previous researchers.

Dynamic Coefficients based on External Load Specification

In some cases, it is possible to specify the angle at which external load is supported by

the seal during the operation of the turbomachine. This external load is equal and opposite
to the resultant seal force. A new method of computing the rotordynamic coefficients based

on this load angle is described below.
The static operating position of the rotor is located iteratively such that there is equi-

librium between the external specified load and the resultant seai force. The angle at which
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theresultantsealforceactsis forcedto align (180 °) with the specified external load angle.
For example, unit 3-01, an experimental seal under design at NASA (results to be discussed

later) supports the external load at a constant angle of 290 ° in the rotor coordinate system.

Determination of Steady State Force Equilibrium Position

A modified Newton-Raphson approach is used in two dimensions to locate the operatingposition. At the steady state equilibrium position,

f_ = F_ - _Vsinl3 = 0 :_

L, = F,, - Wcos = 0

The modified 2-D Newton-Raphson iteration procedure is described below.

of.

0y "" (49)

The seal forces F_ and Fy are computed using an initial guess of rotor position (xl, Yi),.The gradients
0_,-_u _ , _ and -_y are computed using finite differences about (z,,y,).

This iterative procedure is repeated until the specified external load is balanced by the

resultant seal forces. Once this equilibrium position is attained, the remaining analysisproceeds as before.

Verification Case: Allaire, et. al.

The first illustrative example compares the original and current Nguyen-Nelson ap-
proach results to the "short seal" solution employed by Allaire. All three approaches show
similar direct stiffness, damping and cross- coupled stiffness vs. eccentricity as seen infigures 6, 7 and 8 respectively.

Seal Parameters/or ,41laire et al. case

seal length 40.6 mm (1.60 in)
rotor radius

ci

Ce

CO

fluid

density, p

viscosity, #

Ap

rotor speed

friction factor

relative

roughness,e/2co

pre-swirlratio

inlet loss, ( 0.5

39.9 ram (1.57 in)

0.14 mm (0.0055 in)

0.14 mm (0.0055 in)

0.14 mm (0.0055 in)
LO2

57.657 kg/m a (3.60 lbm/ft s)

7.4396× 10 -8 Pa-s (1.5538x 10 -7 lb.s/ft 2)
7.26 MPa (1050 psi)

23700 rpm

Moody's

0.0 (rotor)

0.000001 (stator)
0.1
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EXAMPLE OF AN ARBITRARY PROFILE SEAL: AN ELLIPTICAL SEAL

The above analysis for an arbitrary profile is applied to the case of an elliptical seal with
axially varying curvature. The results for a similar linearly tapered elliptical seal, were
initially reported by San Andres (1992). The motivation for this study is two fold. The first

is to show the general steps involved in the analysis of arbitrary profile seals and the other
is to show, in qualitative terms, the effect of a change in profile on the dynamic coefficients.

Two cases of curvature are considered for this analysis: one with a linear axial profile and
the other a quadratic axial profile. For this study, the mid-point clearance of the quadratic

profile is made 75% of (ci + c_.)/2, i.e., 0.75 times the mid-point clearance of a linear profile
with similar inlet and exit clearances.

The equation of an ellipse is given by,

•_ ----ClC08_

y = b,_in/3

where a and b are the semi-major and semi-minor axes respectively.

position/3 along the circumference, the radius r of the ellipse is given by,

r = v/(aco_d) 2 + (b_in3) 2

and the clearance c at this location is given by,

(51)

(52)

At any angular

(53)

c = ,- R (54)
where R is the radius of the rotor.

If the semi-major and semi-minor axes of the ellipse vary in some functional form along
the length of the seal, the clearance is given by,

= v/(fl(:)co Z) ' + 2 _ R (55)

where fl(z) and f2(:) are the semi-major and semi-minor axes variations along the
z-axis. The gradients of this clearance function are given in the appendix.

The ellipticity _ is defined as (Fig. 5),

C s -- ('y

Cx

where c= and % are clearances at semi-major and semi-minor axes respectively and,

cz = ci at inlet

!.56)

cz = ce at ezit

and from above,

= c (1 - 6) (57)
When b = 0, the ellipse reduces to a circle and for b = 1, the seal contacts the rotor.

The appendix provides the functions fl(z) and f_(z) for a linear profile and a quadratic
profile, as a function of delta . The results shown are for a centered seal as a function of
eUipticity. The dynamic coefficients are normalized with respect to the coefficients for the

linearprofilecase at _ = 0. The valuesused forthisnormalizationare K== = 44975 kN/m

(256883 Ib/in),C_= = 21.78 kN-s/m (124.4Ib-s/in)and k=u = 15821 kN/m (90364 Ib/in).
The sealparameters for thiscase are given below.
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Seal Parameters for Elliptical Seal

seal length

rotor radius

ci

co

fluid

density, p

viscosity/_

_P

rotor speed

friction factor

relative

roughrtess,e / 2co

pre-swirl ratio

inlet loss,

16.66 mm (0.656 in)

48.39 mm (1.905 in)

0.069 mm (0.00273 in)

0.099 mm (0.00390 in)

0.069 mm (0.00273 in)

LO2

1041.7 kg/m 3 (65.03 lbm/ft a)

129.6x 10 -_ Pa-s (0.188× L0-8 lb-s/ft 2)

25.39 MPa (3681 psi)

22700 rpm

Moody's

0.0 (rotor)

0.03 (stator)

0.2

0.33

The plot for direct stiffness (Fig. 9) shows the effect of a small change in profile on the
direct stiffness. For the linear case, there is a complete loss of stiffness at around 6 = 0.65.

The stiffness for the quadratic profile is almost twice that of the linear profile. Also, it
retains its stiffness over a much wider range than the linear profile. The difference in the

other coefficients (Figs. 10,11) are relatively small.

CASE STUDY OF A DISTORTED SEAL

' Tile distorted clearance profile for an interstage seal of the Space Shuttle Main Engine

High Pressure Ox_'gen Turb_pump (SSME-ATD-HPOTP'_ is shown in Fig. l. The dish_rted
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clearanceprofileof this seal is obtained from a thermoelastic analysis. The clearances are

provided at six axial planes along the length of the seal with 68 clearances at each plane.
The clearances along the circumference are located roughly equidistant.

The rotordvnamic coefficients of the distorted profile are compared with those computed

using average*clearances at inlet and outlet respectively. The geometry and operating
conditions at full power level FPL are given in the following table.

Seal Parameters for Distorted Seal Unit 3-01

seal length

rotor radius

avg. ci

avg. ce

co

fluid

density, p

viscosity p

AP

rotor speed

friction factor

relative

roughness,e / 2co

pre-swirl ratio

inlet loss

16.66 mm (0.656 in)

48.39 mm (1.905 in)

0.149 mm (5.87 mils)

0.148 mm (5.81 mils)

0.149 mm (5.87 mils)

L02

1041.7 kg/m 3 (65.03 lbm/ft 3)

129.6×10 -_ Pa-s (0.188×10 -s lb-s/ft 2)

35.25 MPa (5112 psi)

25000 rpm

Moody's

0.0 (rotor)

0.8518 (stator)

0.2

0.3

The distorted seal profile is fitted with bi-cubic splines. The purpose of this sphne fitting

is two fold; one is to interpolate clearances at any given axial and circumferential location
and the other is to numerically compute axial and circumferential gradients of the seal

profile at any required location.
According to the manufacturer's specifications, the side-load on the seal acts at a con-

stant angle of 290 °. The seal coefficients for this variable profile seal are computed as a
function of side-load acting at this angle.

Figure [2. shows the relation between seal forces and eccentricity. No load operation
requires the seal to be slightly off-centered due to the distortion in the seal. Figs. 13,14
and 15 show how the dynamic coefficients vary with externally applied load and the effects

of distorted clearance profile versus average profile (average of clearances at the inlet and

exit circumferences). The coefficients are seen to be sensitive to high loads and also show

significant changes due to the distorted profile, i.e., see Fig 15.

CONCLUSIONS

The current approach has improved on the original Nelson-Nguyen method (NNM) by;

(a) Employing a continuousinterpolationof the firstorder variablesin
the circumferentialdirection,and

(b) UtilizingcubicsplinesinsteadofFourierseriesforthe circumferential

interpolationofboth zeroethand firstorder variables.

In additionthe currentmethod models sealswith arbitraryclearanceprofilesin the circum-

ferentialand axialdirections.This capabilitywas demonstrated with the operating seal
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profile of a SSME-HPOTP seal. Finally a procedure is presented for locating the operating
equilibrium position of the seal given the preload acting on the seal.
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APPENDIX

The coefficient expressions for the first order equations are defined as

h auo ( F,,, V,oAu = o--_- + + (LU.o +tr,° T_,o) + f,.t%) (s8)

A,, ho 0Uo F.o= R aZ + u°v°u,--_+ uo(vo- w) (59)

Ah = 10po OUo VoOVo _oop a: uo a: R a_ + (h,otSo + h,_._o) (60)

OVo F.o F.o
B,. = ho--_- + Uo,,O_ro+ .o(,,o-w)-- (61)Uro

B,, ho 0Vo _ F.,,= = ' + (vo-w) 2ROd Vo U.,o + f,U,o + .f,U,.o (62)

Bh = , Opo OVo VoOVo _op 0/3 u°"_z - 2 0-_ + voU, o + (Vo- w)U,o (63)

(64)

with furtherdefinitionsfor Moody's and Hirs'frictionmodels given in the followingtable:

M oody' s Model

tr,.o= (uo2+ (,,o- _)_)_/2
U,o = (uJ + voW)l�_

= +(vo-
2phot u 2 _ .. 2XI/2R_ "--_ o _'-'o /

{1_ 4K, in6 I _1/31Lo=_[1+,__+,_j j
-- 0'0055X106/1n4K_ - , IOs _-_12

gro -- 12R,.o I,Lu -_. t _.-d) -'-
_ 0.00SSx 106 4K", , I0 "#,,_2/3

g.o- 12zLo (10 _._7;._) "
hrO : .005..__._5(1N4K,. j_ I0 _1/3

L -- fro
L = [,o
f, =/,o/2
f. = f,o/2

g. = g.o/2

g, = g,o/2

h, = h,.o/2

h. = h.,o/2

F,o= t.-_.
F.o t" 2-_"

= 2

Hits' Model

t:,o = (_o2+ (vo- _)_),/2
U,o= (uo"+ vo_)I/2

n.o= +(,,o-
R.o 2.-e-_(Uo2+ _,o2)_/2
fro .1 [ 2pho D lmr

: "rLT ZtrOj

fso /2 f 2Ph0 D lrn,qst T Lt.01

g,o = -m,.n,[R,o} 'n"

g,,o = -mon,,[R.,o]"'

h,o = -m,.n.[R,o] "n,

h.o = -m, no[ R.o] m.

L = Ao
L = f.o

f, = rio�2

f, = f°o/2

g, = g_o/2

g, = g°0/2

h, = g,o/2

h, = goo/2

F,o=
F,o = 'L_.

The first-order governing equations are expressed in terms of the ai and bi functions as;
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ho `gal

p O"
Oho )a3 ,_oOho ).5 - -_- (A,, -,,o--SV + ho_a4A,, R

OUo i Ovo,, . UoVo ..,

--))cos_ -ff-sm_j- co[(Ah + uo(-ff-=-._ + -_ 03

ho 170 0(13

R a_3

]'lOll o Otl 5
+

R O,A

(65)

ho `9a2

p Oz
ho,,:a3 _ ( A,,, - Uo _hz°)a4 + (A,, uo_)R a6 = CoWUoCOS3

hoUo `9a6
5"-

R ,93

h 0 t' 0 C_CI4

R ,93

,9a3 ,gho 1 ,gho _, ,gUo I ,gVo, _ vo ,n.,_ ho ,gas
-_ )cosJ - -_s, oj R 03ho-bT+ -_-a3 + _-yya5 = CoLt-_-_..

`9a4 _ho t `gho ho ,9a6

h Oas
oUo-_z + B,,a3 + B,,as + howa_ = -coBhcos_3

ho Oal hovo Oas

Rp `93 R `93

h i)a6 ho Oa2 hovo i)a6

o.o-gV + B,,a, - ho_,a_+ B,,_ = -R_ 07 - --fi- 0--_

(66)

(67)

(68)

(69)

(70)

ho Obl

p Oz
--_ + (A,,, - uoO_-_°)bz + howb4 + (A,,

uo Oho
R "ff_ )bs = -Co_Uosin/3 hovoR ,gba,9._

ho uo ,gbs
+

R O3
(71)

ho ,9b2 c.gh,, 11.0 Oho

p Oz ho,.vb3 + (A,, - uoL_i-E)b4z + (A,, R _ )bs

OUo [ Ot'o ..... uOvo ._ hovo Ob4 houo db6

= -¢o[(A,,+ uo(--_-+ -_-b-Sm,,_, + --fi-¢o,_,j R ,9_ + n ,9_

;)b3 _ I Oho. ho i)bshoT;: + . _,_+ -_-_o_ = co_,i,_ - -_ ,9---_

Oh4 _ t Oho , t'o _ Ouo 1 0VO)sinl31 ho ObshoT-;.- + . b, + -R--g-yb_= _ -_-_ R `93cot--ffcoso + ( +

ho Obl hovo `gbs+ B,,b3 + B,,bs + ho_b6 = .......
houo . Rp 03 R 013

0__._6+ howbs B,,bs = -coBhsin/3houo z
B,,b4 +

ho Ob2 hovo Obs

Rp 03 R `9_

The clearance functions for the elliptical seal are given in the next table as;

(72)

(73)

(74)

(75)

(76)
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linear taper

k(:) = a, + a,.:

f2(z) = bt + b2z

-'_z = a2

al = R + ci
1

a 2 = r(ce - ci)

b, = R + (1 - _)ci

quadratic curve

ft(z) = at + a2z + a3:2

f2(:) = b, + b2: + b3z 2

o_ = a2 + 2a3zOz

o_& =b2+2b3z
Oz

at = R+ci

-' 3ci)a 2 = -z-(C,: - 4c m _-

a3 = _(c_ - :c.. + ci)
bt = R+(1-_)cl

b_= =_(t - 6)(c_- 4c.,. ac,)
b, = _(t - _)(c,.- 2¢m+ c_))

Gradients of the clearance function for elliptical seal are given by;

c(., a) = _/(fl(:)¢o_Z)2+ (/2(=)sinZ)_- R

' 2 ' • 2
Oc ftftcos ',3+ f2f2azn /3

o= v/(/_o,,J) ' + (/,,inO)'

OZ v/(/:o_Z)_+(l:inZ)'-

(77)

(78)

(79)
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