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ABSTRACT

A theoretical and experimental investigation of the aerodynamic
forces generated by a single gland labyrinth seal executing a
simultaneous spinning/whirling motion has been conducted. A lumped
parameter model for a single gland seal with coupling to an upstream
cavity with leakage is developed along with an appropriate solution
technique. From this theory, it is shown that the presence of the
upstream cavity can, in some cases, augment the cross-stiffness and
direct damping by a factor of four. The parameters that govern the
coupling are presented along with predictions on their influence. A
simple uncoupled model is used to identify the mechanisms responsible
for cross force generation. This reduced system is nondimensionalized
and the physical significance of the reduced parameters is discussed.

Closed form algebraic formulas are given for some simple limiting
cases. It is also shown that the total cross-force predicted by the
uncoupled model can be represented as the sum of an ideal component
due to an inviscid flow with entry swirl and a viscous part due to the

change in swirl created by friction inside the gland. The frequency
dependent ideal part is solely responsible for the rotordynamic direct

damping. The facility designed and built to measure these frequency
dependent forces is described. Experimental data confirm the validity
and usefulness of this ideal/viscous decomposition. A method for

calculating the damping coefficients based on the force decomposition
using only the static measurements is presented. Experimental results
supporting the predicted cross force augmentation due to the effect of
upstream coupling are presented.

* Present address: Naval Postgraduate School, Monterey, CA 93943.
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Definition (units. SI)
Direct damping. (N s/m)

Cross damping. (N s/m)

Non-dimensional direct damping. [1]

Non-dimensional cross damping. [1]

Nondimensional sealing gap. [1]

Force acting on the rotor in the direction of

instantaneous displacement. (N)
Force acting on rotor in the direction tangent

to the instantaneous displacement.(N)
Frictional(viscous) cross force component.(N)

Ideal cross force component. (N)

Nondimensional depth of labyrinth knife. [1]

Depth of seal gland. (m)
Depth of cavity upstream of seal. (m)

Normalized energy carry-over factor.[l|

Direct stiffness. (N/m)

Cross stiffness. (N/m)

Nondimensional direct stiffness. [1]

Nondimensional cross stiffness. [1]

Nondimensional labyrinth sealing pitch. [1]

Sealing pitch. (m)
Axial gap from the vanes to seal inlet. (m)

Static pressure in the labyrinth gland.(Pa)

Total pressure upstream of first knife. (Pa)

Static pressure downstream of seal. (Pa)

Flow rate through first knife/length(kg/m s)

Flow rate through second knife. (kg/m s)

Gas constant for air. 287.15 (J/ kg K)

Radial displacement of whirling shaft. (m)
Magnitude of radial displacement. (m)

"Nondimensional spin rate. [1]

Air temperature. (K)
Time. (s)

Swirl velocity inside the seal gland. (m/s)

Nondimensionai whirling frequency. [1]
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!. INTRODUCTION

Nondimensional divergence. [1]

Kinetic energy carry-over coefficient. [1]

Nondimensional swirl gradient parameter. [1]

Nondimensional seal flow rate. [1]

Sealing gaps for the sealing knives. (m)

Nondimensional whirling eccentricity. [1]

Darcy friction factor for the stator. [1]

Darcy friction factor for the rotor. I1]

Kinetic energy carry-over sensitivity. (l/m)

Flow coefficients for the sealing knives. [1]

Harmonic pressure perturbation. [1]

Harmonic velocity perturbation. [1]

Fluid density. (kg/m 3)

Nondimensional swirl parameter. [1]

Swirl parameter as observed in whirling
reference frame. [1]

Whirling frequency of the shaft. (l/s)
Shaft rotational speed. (l/s)

Steady solution for the case of centered rotor.
Quantities at the first or second knife

respectively.

One of the major sources of rotordynamic instabilities in high
power-density turbomachinery is asymmetric pressure distributions in
the glands of labyrinth seals which generate cross forces. If the net
seal force tangent to the instantaneous whirling displacement is in the
direction of this whirl, instability will be promoted.

The possibility of labyrinth seals creating unstable rotor whirl has

been known since the 1940's as reported by Den Hartog [I]. Alford [21
and Thomas [3] were the first to propose analytical models for the
prediction of labyrinth seal forces. However, neither of these models is
particularly useful, because the influence of the inlet swirl, which is

known to dominate in the generation of cross forces, was neglected by
both authors. A lumped parameter model that couples the axial flow over

the knives to one-dimensional continuity and momentum equations
inside the seal gland was developed by Kostyuk [4]. The gland-depth
variation with rotor eccentricity was neglected and hence no cross
stiffness nor direct damping is predicted from this model for a rotor

whirling with a parallel precession. Subsequently, lwatsubo [5] added

the necessary term to account for this variation. Many other authors,
including Gans [61, Kurahasi and lnoue [71, Fujikawa, Kameoka and Abe
I81, Scharrer and Childs 191, and Martinez and Lee l i01, have used similar

lumped parameter models to predict the cross forces for a great variety
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of geometries and flow conditions. All of these models have assumed
constant upstream and downstream boundary conditions.

Analyses that consider variations within each seal gland, by

using multi-control volumes within each seal gland, have been
conducted [8,11]. However, this approach is cumbersome and the
different control volumes must be coupled with ad-hoc assumptions or

analysis. No advantages have been clearly shown from such models
over the single control volume models.

Computational Fluid Dynamics (CFD) methods have also been used,
most notably by Nordmann and Weiser [12], to predict results similar to
those obtained by the lumped parameter models. These codes may be

very useful in modeling some of the detailed flow fields in the glands,
which can be used for the sub-models to predict carry-over coefficient

variation, friction factors, etc. However, it appears that the simple
lumped parameter models contain the dominant fluid physics, which is

asymmetric injection of swirl momentum, necessary to predict
destabilizing forces, at least for multi-cavity seals.

All of these analyses have assumed uniform upstream and
downstream boundary cond!tions. These assumptions may not be

adequate for the prediction of the rotordynamic forces in short seals,
where the end conditions may greatly affect the perturbations in both

pressure and the swirl component of velocity.
The first experiments to measure the self-exciting forces in

isolated labyrinths were those of Benckert and Wachter [13,14,151, who
measured the static pressure distributions around the casing and

integrated them to find the direct and cross forces due to a statically
offset rotor. Many different geometries were tested over a wide range of
flow conditions. They determined the general pressure/inlet kinetic

energy scaling parameters for statically offset seals. Brown and Leong
[16], Thieleke and Stetter [17], Kanki and Morii [18] and Hisa, Sakakida
and Asatu [19], have all made similar measurements yielding a good data
base on the displacement dependent rotordynamic coefficients.

Experimental investigations on the dynamic characteristics of
labyrinths have been conducted by Wright [20], Kanemitsu and Ohsawa
[21], Scharrer [22], Scharrer and Childs [23] and Millsaps and Martinez

[24].
Kostyuk-type lumped parameter models are capable of predicting

the cross-stiffness coefficients for long labyrinth seals (more than 6

chambers) to within 25% of the experimentally obtained values [10].
However, the situation with respect to short seals, and with the dynamic

coefficients, especially the direct damping, has been far less
satisfactory. The measured cross-stiffness coefficients in two and three
gland seals, as measured by Benckert !12], are more than 100% larger
than those predicted by theory in most cases. Measured dynamic
coefficients for both long and short seals are not well predicted by
theory. Discrepancies between the measured and predicted direct

damping of nearly 500% are shown by Scharrer [211 for some
conditions. While the results from many computations have been

reported using the various lumped parameter models, little physical
understanding on the mechanisms that generate dynamic forces has
been obtained from the models. In particular, no an_ilysis has been

presented that clearly delineates the importance of the various
geometric and flow related parameters and explains, in physical terms,
the origin of the damping forces. The general mechanisms that
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generate the static and dynamic force components in a
spinning/whirling seal has not been adequately explained.

The purpose of this paper is to introduce a new analytical model
which includes the effect of upstream coupling, which is believed to be
responsible for the much higher than expected cross stiffness and
direct damping obtained experimentally, and to describe the nature and
mechanisms of the damping forces in labyrinth seals.

In Section 2, an analytical model is presented that allows for non-

uniform flow in the volume upstream of the whirling seal. Coupled

continuity and momentum equations are given for both the whirling,
single gland seal with the added terms due to the non-uniform inlet, and
for the non-whirling, finite volume upstream cavity which has a

leakage path to a large center cavity. The addition of the extra leakage
flow significantly complicates the solution of this system because it
introduces an essential non-linearity. An approximate solution method

is presented, based on harmonic averaging, to deal with this difficulty.
The parameters that control the augmentation in cross forces are

identified. Results from this new model are presented that show a large
impact due to the non-uniform upstream flow field due to the couplingwith the seal perturbations.

In Section 3 the general nature of cross forces in labyrinth seals
is discussed. The mechanisms for the generation of rotordynamic
damping will be delineated. All the physical arguments will be

developed with uniform inlet conditions to avoid unnecessary algebraic
complexity. However, all of the arguments to be re
readily generalized to accoun, r^..I._ . . p. sented can be

.... vJ t,,_ upstream non-unttormities. These
recluceo equations are nondimensionalized, and formulas for the
frequency-dependent direct and cross forces are iven
significance of the vario ................ g. . The physical

, . . ,..o b,a_a,l_.tcrs IS olscussecl, and the scaling
oenawor provided. The rotordynamically destabilizin
be shown to ,h ..... ,- ...... g cross force will

. be ,.,. _u,_ ot two aistmct components. An "ideal" one due to
an mviscid flow, and a "viscous" part due to frictional shear. The

damping will be shown to originate entirely from the ideal component.

From this decomposition, a method for extracting the damping
coefficients from purely static measurements are shown.

In Section 4, the experimental apparatus and measurement
methods used to determine these dynamic forces are described. The
instrumentation and data analysis procedures are given.

In Section 5, comparisons of the theory to the experimental data
will be provided. Although no precise comparison of the coupled model
to the experimental data is possible due to the lack of control or

measurement of the axial gap of the face seal which vents the upstream
pressure perturbations to the center hub plenum. The experimental
data support the use of the ideal/viscous decomposition for the
determination of direct damping coefficients from purely static
stiffness data. Also the theory is compared to the experimental results of
Benckert for statically offset two and three chamber seals.

2. MODEL FOR UPSTREAM COUPLING

The experimental and analytical research proceeded initially on
the assumption that the boundary conditions for the single gland
labyrinth seal were uniform. That is, the whirling eccentric seal is fed

by an upstream reservoir where the pressure and tangential velocity is

183



spatially and temporally uniform, and discharges to a downstream
volume at a constant static pressure.

Indications that substantial upstream non-uniformity may exist

and be of importance were provided from time resolved pressure
measurements in the MIT Labyrinth Seal Test Facility (LSTF) with a

whirling seal, just upstream of the first knife, and from steady pressure
measurements in the MIT Alford Force Test Facility (AFTF) upstream and
downstream of a statically off-set seal, that was attached to a shrouded

turbine rotor.
The experimental values of cross stiffness and direct damping

measured in the LSTF were consistently 2 to 4 times the values predicted

by the lumped parameter model. Several attempts were made to
reconcile the simple model with the experiments by parameterically

varying the sub-model coefficients such as friction factors, discharge
coefficients, kinetic energy carry-over coefficients, etc. It was found

that, within reasonable ranges of variation, no combination of these
coefficients would yield results in agreement with the experimental
data. Therefore, the basic assumptions of the model were investigated.
This reassessment led to an extended model where variations in the

upstream flow, induced by the flow perturbations in the gland itself are
included. This extended theory is capable of predicting the high force

levels that were measured.
Before embarking upon algebraic manipulations, it is useful to

provide a qualitative description of the coupling mechanisms involved.
When the shaft is offset and the sealing gap varies around the seal

perimeter, a low pressure area will develop upstream of the seal in the
vicinity of the widest gap: Because of this, the velocity magnitude will
be higher there, and, in particular, the all-important tangential
velocity will have a relative maximum near the widest gap. When the
fluid carrying this excess tangential momentum enters the seal cavity
and mixes with the swirling seal flow, it will preferentially energize it
in this area. The result will be a positive pressure gradient, (3P/30), in

this area, and hence a maximum P in the seal about 90 ° ahead of this

maximum gap. This will then produce a forward whirling force. For a
concrete formulation of these effects, consider the geometry of Figure

1. This geometry reflects that of the LSTF and most other test section

configurations that have been used to measure rotordynamic forces.

The swirl vanes, which are located liupstream from the first knife, have

an effective radial gap of By" There is some reduction of the effective

flow area due the vane metal and boundary layer blockage. These vanes

deliver air into the first cavity with an effective swirl angle of otv,

which is the metal angle minus some small turning deviation. The

cavity is hi deep and is sealed from a large center volume by an axial

face labyrinth seal with a gap of 6°" Since there is no net flow into this

center cavity, the pressure here is uniform and the same as in the swirl

cavity, namely P_'. The one-dimensional continuity equation for the

upstream cavity (swirl chamber) is

a_-_(pilihi)+ _ _)_)0(PilihiVi)+ qi- q_ + q¢,out- q¢.i_ =0
(1)
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where Vi is no longer constant, qv is the flow rate per unit length
issuing from the swirl vanes and the qc's are the radial flows in and out

of the center cavity, respectively. Incompressible relations are

sufficient for treating these flows since the transfer velocities are very
low. These flows can be written as

qo=":o-,/2:0',-)';) <2>

This relation is fundamentally different from those for q,, q_ and q2 in

that there is no flow to or from the center volume when the seal is

centered in the casing because Pi=pi'. This introduces an essential

nonlinearity into the analysis and hence must be dealt with in a
different manner. Likewise the momentum equation in this cavity is

(9 1 (9 2
"_'(PilihiVi) +'_'s _(PilihiV i )+q,V,- q,,Vv

+qc.outVi - qc,inV¢ + '_s(21 i + hi)-'lTrh i + lihi 0Pi = 0
R, (90

(3)

where V, is the swirl velocity inside the center volume. In this cavity

the cross sectional area, iih i, and the vane gap, 8_,, are constant.

However, the inlet swirl component of velocity, Vv, is not. The angle of

the fluid leaving the vanes, ct,, is constant. Therefore, a drop in the

pressure at one location in this cavity will induce a greater mass influx
and hence a higher swirl velocity at that location. This is the essence of
the mechanism that augments the forces.

The usual I-D continuity and momentum equations for the seal
gland as presented by many Authors [5,6,8,9,10] are still valid within the

constraints of the model, except that their linearization will yield
additional terms from the upstream pressure and velocity non-
uniformities. The continuity equation is

a[pl(h+8,)]+ I (9 [,q: h+8 _VI
0t - _"_'_'_ v, I, '+qz-ql =0 (4)

and the momentum equation is

a[pl(h +Si)V ] w..1._.0[pl(h+Sl)V2]+qzV_q2Vi+%,i_._r(l+2h)+m__= 0 (5)at + lh aP
_, au R, (90

and the q's, other than those to and from the center cavity, are given by

p,8, 2 I
: = "v_v 2 1q, .R_,T (p i _ p2)ff q2 = -_8 (P2 '

4R,T - P°2)_ q,, R_,T (P= - F_2)_ (6)

The same linear perturbation solution procedure used for the
single gland seal with no upstream coupling can be used when there is
no flow into the center cavity. However, as previously stated the nature
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of the oscillating flow between the two upstream volumes requires some
modifications and careful treatment. This is because these oscillating

leakage flows vary as _, where ['i is the upstream pressure

perturbation, rather than linearly with ['i (first order) or Pi (zeroth

order) like the others. Thus, their effect can be disproportionally great

at small offset amplitudes.
First the zeroth order solutions are obtained for the centered

rotor. The velocity, pressure and density in the upstream swirl cavity

will be denoted by Vi*, Pi* and p_ respectively and similarly in the seal

gland, V', P'and p'. The pressure and velocity in the swirl cavity are

expressed as

vi=V'(l+ (7)

and in the seal gland by

P =P'(I+_ ei(°-nt)) V =V'(I+_ e i(°-n_)) (8)

Where it is understood that the real part of all expressions are to be

used. The perturbation expressions for _i, Th, _ and _ are substituted

into the continuity and momentum equations for both the upstream
swirl cavity and the seal gland. The nondimensional perturbation
leakage flow into the center cavity is

= --"-:'g'_, _,'2'g--"_T_ i ei(0-t_lt ) J]q I.t151_Pi - P " Re
(9)

The first harmonic component of this function will be extracted by

averaging over one period. The first harmonic of the perturbation
reduces, after some manipulation, to

I I IIlRe_,_i._= cos VdV= 4_ <_,g)
0

(10)

Where B is the beta function. From this the first harmonic of qe,o.t-q¢,i.

is found to be

p_8 P." " -tt2 " •: 1.57377 _.l_.-ru-cj"%,l "_i el(o-')

q iriS,_Pi -P
(11)

Similarly the first harmonic of q¢,_,V_-qo,_,V¢ is

1.57377 B_---_./_._.l_i I-'n I(V:+ Vi')_ie i(e-_)
I/to, _Pi - P 2'

(12)
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The first harmonic of the perturbation continuity equation
swirl cavity, after dividing by q" is

I'.'_"_:_of: l_r _.-'_ : l+l
- • . -_- ,_i +/_+

LP- -Pi

-W-LE-_'j'j'c,+! R---ffT_-,j'ni-..._.2 {,:
{n_ -n

and the swirl cavity momentum equation after dividing by q'V_" is

0.786881a:SJl+ _V.._lr ,2 "_L P Pf ] i
t v_)/ n_ /_

,;8;,_,, L:_-iJ +[":'-P'2J+I

_)t i>.__+ +-Pi J 4')1:1 IL-_-L:,-"J+_J"# ,

1+ _'siPi (it + hi)Vi

2T

The nondimensional continuity equation for the seal gland,
includes the effect of the upstream cavity coupling is

{ It- - +0.,,rv./}-Pi A

__'+""'--_--_+., -_ -_c_I,tP -P_ _ -i'li_

{:v'm....i}_:{_+/,:-,_+o.,_v.oi'}'8:T)_t R--T-

and the coupled momentum equation for the seal gland is

{" }S¢_l .;_i._ +_ _,+_ tv'),>,.2__._ (_,,v'_{tv';p_ _p _ v" + +

{ .....,r,>.,,,rv..I+_l,I_-k,(l+2h)(a)R,-. s J'_/"'i" _
L_1LR,- ; R. ]j

1+ _',I-_,(I+2h)(V*-_R,) 2 +p'lh -11 i

{_, 4+,_:,_v_ol,l,
= +_'2- q tR, ) J

for the

(13)

(14)

which

(15)

(16)
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This can be written compactly in matrix form as

izzz13z Ii t__
z3.1 z3.2 z .3
z,.1 z,,_ z,.s z,.,)[_ [R,J

(17)

This is nora linear system. The elements Z_._ and Z2.1 contain I_i1-1/2. Of

course if _i =_'li =0 the system decouples and the original 2x2 system for

the isolated seal with no upstream coupling is recovered. To solve this
system a simple iteration scheme was employed. Equation (17) is first

solved with 8 c=0 then from this solution, _I, is used on the left hand

side to calculate an updated solution. This iteration procedure continues
until a predetermined convergence criterion is satisfied

(18)

Now this model shall be used for predicting the influence of this

coupling mechanism. In addition to the parameters that control the
generation of rotordynamic forces for an isolated seal, the parameters
that characterize the influence of the upstream coupling are

1. The ratio of the swirl cavity area to the seal gland area, (lihi)/(lh).

2. The relative size of the axial sealing gap compared to the radial gap,

3. The swirl velocity inside the center cavity, Vc. This is strongly

influenced by rotation of the seal disk.

° The relative whirl eccentricity, f/8_. This is a purely non-linear

effect. For the linear system all of the forces are directly

proportional to the whirl eccentricity.

The effects of the cross force augmentation of each parameter

will now be considered separately. According to the model, if there is no

leakage into the center cavity, the effect of the upstream coupling
always acts to increase the magnitude of both the cross stiffness and
direct damping, and in the same proportions. Figure 2 shows the ratio
of the direct damping from the coupled model, with 8c=0, to that of the

uncoupled one for various swirl chamber to seal area ratios. As the
swirl cavity area approaches zero the predicted force augmentation does
not vanish but, approaches a value of 1.62. This residual effect in the
absence of the first cavity is due to the condition imposed at the swirl
vanes. In the simple model Vi is constant. If instead the vanes are close

coupled a reduction in the gland pressure will still bring in more flow
and hence will induce a higher swirl component locally. The maximum
increase in the cross stiffness and direct damping over the uncoupled
model is about 4.42 and occurs at an area ratio, (lihi)/(lh)of 1.35. Even at
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an area ratio of 10 the forces are increased by a factor of two. The force

predicted by the coupled model asymptotically approaches the
uncoupled one as (lihi)/(Ih)--+oo. The coupled and uncoupled models match

to within 1% for an area ratio of about 80. Well before this value the

assumptions of the model probably break down. In particular,
significant variations in the perturbation quantities are likely to occur
in the axial direction within the swirl cavity.

The presence of the axial clearance between the swirl cavity and
the large center volume permits for a "'venting" that reduces the

magnitude of _i. This effect tends to mitigate the large augmentation of

the forces that the upstream cavity may induce. Figure 3 shows the

direct and cross force vs. the relative leakage area _5c/8 _. It is assumed

that Vc=Vi* for simplicity. As 8c goes from 0 to oo both force components

go from the fully coupled values to those predicted by the uncoupled

model. However, this does not occur when Vc,V_'. The forces are very

sensitive to small changes in the axial gap when it is less than 8_.

However, when 8c/,5_>1 , there is a greatly reduced sensitivity to small
changes in axial gap.

The model predicts that the swirl velocity inside the center
volume can have a minor impact, on the order of 10-20%, on the seal
pressure perturbations. For cases where there is no seal rotation it is

probably safe to assume that V_=0. This is because the tangential

momentum feed into the seal is of perturbation order and the shear
stresses acting to retard the flow are of order unity. For cases with seal

rotation, it would be very difficult to estimate the swirl velocity inside
the center cavity. Figure 4 shows the effect that changes in the center
cavity swirl velocity have on the forces.

In the absence of the leakage flow non-linearity, the theory
predicts that the forces should scale with whirl eccentricity and hence
the rotordynamic coefficients, and should be independent of the whirl

amplitude. The nonlinearity due to axial leakage is shown in Figure 5,

which shows K,_ and K_y the relative eccentricity _/8_. The behavior of

C,, is the same as for Kxy. The direct force is much more sensitive to the

whirl amplitude than is the cross force. At large whirl amplitudes, the
predicted forces approach those obtained for 8c=0 (i.e. the fully coupled

case). However, as r-->0 the center leakage flow is able to "'kill" the swirl

cavity pressure perturbation completely. This effectively decouples the
whirling seal from the upstream cavity.

3. IDEAL - VISCOUS FORCE DECOMPOSITION

It will now be shown that within the constraints of the lumped
parameter model, the total cross force can be separated into two additive
components. One of these is the ideal pan, due to an inviscid inlet flow

with entry swirl, and the other is the viscous part, due to the change in
swirl brought about by frictional shear stresses in the gland.

The following development shall be done without consideration

of upstream coupling. However, all of the arguments can be readily
generalized to account for such coupling.

In order to isolate these two contributions it is useful to
nondimensionalize the continuity and momentum equations for the seal
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gland. Equations (15) and (16) can be written in terms of the following
non-dimensional parameters as

1 . (___,_2 oL . W)i}_:A--'£"-LA_t: J +[_(1-W)]i}_ +{---_-i}_ = {(1-1)+K+(rL(1-
(19)

and

2H 2 F L

{1+ aL (_" -krIl+'_X1-S))+"_(l-W)i}_l=V_:4--D_' (20)

All of these non-dimensional parameters may be categorized as
geometric, kinematic or flow related. The geometric ones are

_ D= _-_-_ H= h K_B_r _ L 1 (21)

Note that K has been considered along with the geometric parameters
because it is analogous to a convergent/divergent gap (Alford effect) in
the effect that it has on the direct and cross forces. The kinematic

parameters that specify the motion of the seal are

(oR = _ (22)S=_ W DR,v.

and the dynamic parameters that indicate the axial flow rate or pressure
gradient, the inlet swirl and the change in swirl respectively are

q" p'B;V" - -- (23)
q V°

There are two combinations of these parameters, oF and c0-W), which

will be shown to be very important.
Cramer's rule can be used to write an explicit expression for the

nondimensional pressure perturbation which, upon integration, yields

the forces acting on the rotor. The forces are proportional to P'_. In

general the shear stresses may also contribute to the forces. However,
from the equation solutions it has been shown that the shear forces due
to velocity perturbations are small when compared to the forces arising
from pressure perturbations [24]. For moderate whirl relative inlet
swirl angles, which occurs providing the following condition is
satisfied

1+ _21_2 oIL "1
>> -_( - W) (24)
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the full expression may be simplified to yield the following real and
imaginary parts for the pressure perturbation normalized by both the
flow and eccentricity

K_ (1_1__ o_L_ (1_ W)2

A___e= \ a/ D (25)

1+ a2_ z + D2L_2

A._e = -_[F + (1- W)(-D- K + I- 1)]iL2 (26)

i + a2_2 + D21a_------_

The first of these is real and therefore is in the direction of the

minimum gap and hence is proportional to the direct force. The
imaginary part is proportional to the destabilizing cross force. Both

forces are proportional to P'A 2. For low inlet-lo'exit pressure ratios, this
reduces approximately to a simple pressure difference scaling, Pi-Po, as

one would expect for an incompressible flow. For this to hold, all of the
other nondimensional parameters must be kept Constant. In particular,
the inlet swirl flow angle as observed from the whirling rotor must be
fixed as the pressure difference is changed. As an example, if the axial
pressure difference is increased the inlet swirl velocity and whirl speed
must also be increased to maintain constant, O and W, if this scaling is to
be used. This is a generalization of the relationship used by Benckert
[12] for statically offset seals.

The direct force is mainly due to the kinetic energy carry-over
variations and differences in the nominal sealing clearances as seen in
Equation (25). These effects generate a direct stiffness. The smaller

terms, that are proportional to o2(1-W) 2, generate direct inertia

coefficients, it is possible that this direct force may alter the natural
frequency of the rotor slightly. Therefore, no further discussion of the

direct force will be given due to the small impact it has on rotordynamic
stability.

The cross force can be seen from Equaiion (26) to be the
summation of two terms, one proportional to o(l-W) and the other
proportional to oF. The nature of these two contributions and their

crucial differences are very important and will lead directly to the cross
force decomposition to be given. The kinetic energy carry-over term, K,
and the "Alford" [2] term due to seal convergence/divergence, (l-l/a),
do not generate cross force in the absence of swirl. But do alter this

force in the presence of swirl. A convergent seal and/or kinetic energy
carry-over will tend to increase the cross force magnitude. This is
destabilizing when W<I or equivalently when the whirl frequency is

less than V'/R0. However, this will enhance stability, in the forward

direction, when _ is greater than V'/R,.

The total cross force, Fh., will now be split into "ideal" and

"viscous" contributions. The ideai or inviscid part, Fo, is the cross force

that would be generated in a purely inviscid fluid with inlet swirl. It is
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proportional to o(1-W). The viscous contribution, Fr, which is

proportional to oF, is due to the frictional forces changing the swirl
velocity inside the seal gland. The two forces tend to be of the same

magnitude but, the nature of these two contributions is quite different.
The ideal component is dependent on the rotor whirl frequency and
hence will contribute to the direct damping. The viscous component is
independent of the whirl speed and hence can not contribute to the

direct damping. The frequency dependent behavior of a seal in an

inviscid fluid can be readily explained by considering a simple change

of reference frame. Let the relative inlet swirl, denoted by Vi=Vi-f_R,,

be the inlet swirl velocity as measured by an observer rotating in the
whirling frame. The non-dimensional swirl parameter in the whirling
frame will be similarly denoted by _ and is

= o(1- w) = (27)
q"

The cross force generated by an inviscid flow at an inlet swirl of Vi at a
frequency of f_ is identically the same as the cross force that would be

generated for a static offset with the associated relative inlet swirl of Vi.

This equivalence can be seen by noting that the governing continuity
and momentum equations are invariant under Galilean transformation.

As a particuiar case of this argument, consider a rotor whirling so that
the minimum gap is traveling at the same speed as the inlet swirl. Then
there is no swirl relative to the rotating frame observer. Therefore the

inviscid cross force must be zero when f_=VitR,, or equivalently when

W=I. This behavior is very similar to the quasi-static oscillation of an

airfoil. The damping force there is related to the induced angle of attack
due to the vertical motion. For the case of the whirling rotor, it is the
"induced" inlet swirl angle change, due to the whirling motion, that
creates the rotordynamic damping. Figure 6 shows the analogy between
these two phenOmena.

This simple behavior for both the airfoil and the rotor is limited
to the quasi static case. For the rotor, this condition of low reduced
frequency, is satisfied when the fluid residence time in the seal is short
when compared to the period of oscillation of the rotor. This can be
expressed as

<< 1 (28)
Vx

where Vx is the axial velocity through the seal. An interesting and

useful consequence of this relationship between the static and dynamic
forces, is that in the absence of viscosity the direct damping, Cx,, can be

calculated from purely static measurements of the cross stiffness , Kxy,

versus the inlet swirl by

dKxy(Vi)

C,=R, d(V,) (29)
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If the stiffness is a linear function of the inlet swirl, then a single

measurement of the cross stiffness is needed to find the dampingbehavior.

Vi (30)

A similar argument can be used to extract the direct damping
coefficient from the static coefficient measurements in the presence of
viscosity. However, a discussion of this will be reserved until later.

The viscous contribution, Fr, which is proportional to oF and

hence the swirl velocity difference Vi-V', contributes to the cross

stiffness only. The physical reason that this force is independent of the
whirling frequency is that it depends on a velocity difference which is
necessarily independent of any change of reference frame due to the
whirl. The mechanism that produces this force is shown Figure 7. The
flow enters the offset seal with a higher swirl velocity than exists inside

the seal. Less excess momentum enters through the narrow gap on the
right than the wider gap to the left. As the flow mixes out, it energizes
the fluid inside the gland increasing the static pressure like an ejector
pump. The place with the highest pressure will be at the bottom
yielding a positive cross force as shown. A simple analysis of this is
done by using the following simplified momentum equation

_(v- v,)+lh av = 0
R, _0 (31)

this expression can be integrated to yield the viscous cross force

• " 2

Fr = mq R, (Vi - V')_
hS_ (32)

From Equation (26) the relative magnitudes of the ideal and viscous
contributions are found, Two limiting cases are possible

y 4,

IFI=II--_-I<<IDI=I-__I friction is unimportant (33)

IFI=II--_I>>IDI=I-_-I frictionisdominant (34)

However, in real hardware it is more common to have IFI__IDI_=0.05 and
hence, both contributions must be accurately modeled.

Figure 8 shows the cross force vs. the non-dimensional whirling
frequency, W for an ideal and real flow. Here increasing viscosity

means that the swirl change is becoming more negative through
viscous action either through higher friction factors or lower
rotational speeds (in the direction of inlet swirl). As stated, the cross

force vanishes for an inviscid flow when W=I. That is, when the gap
travels at the swirl velocity. When the presence of viscosity is
considered the cross force increases the same at all whirl frequencies.
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If the swirl speed decreases through the seal, as is typical, then the
frequency at which the force becomes negative shifts to a higher W, as
shown.

4. EXPERIMENTAL APPARATUS

The Labyrinth Seal Test Facility (LSTF) was designed and built to
measure the dynamic forces in a spinning/whirling labyrinth seal.
Figure 9 shows a cross section of the hardware. Air from a compressor
enters the first plenum and is turned radially outward through eight 1
and 1/2 inch holes having honeycomb plugs. Next the air turns axially
and accelerates through a set of replaceable swirl vanes into the swirl

plenum. The air flows through the test seals and discharges to the
atmosphere. The spinning/whirling motion of the seal is produced by
the nested bearing arrangement. Different whirl amplitudes are
obtained by adjusting the inner spindle bearing seat eccentricity. The
spin motion (+6700rpm to -6700 rpm) is driven by an in-line flexible
coupling driven by an electric motor. The speed of the whirling motion,
which can be controlled independently, (+3400 rpm to -3400 rpm) is
driven by a V-belt attached to another motor. Four equally spaced, flush

mounted, high response, Kulitc XCS190 differential pressure transducers
were placed on the seal land to measure the time resolved gland
pressure oscillations created by the seal whirling motion. The back
pressure ports were referenced to the gland average pressure to obtain
higher sensitivity. Proximeters were used to precisely measure the
whirling motion. Measurements of the swirl angle leaving the second
knife were made with a hot wire anemometer. The data acquisition

system was triggered and clocked with a chopper wheel attached to the
whirl producing spindle. Thirty-two phase locked points were taken for
each whirl revolution. Records of 64 revolutions were taken. The

pressures were composite phase-locked ensemble averaged to find the
forces acting on the rotor for each operating condition. A total of five
different seal geometries, shown in Table 1, were tested under various

operating conditions. The inlet pressure, swirl vane angle, spin
velocity, whirl eccentricity and frequency were varied parametrically.

Figure 10 shows a typical output trace from one of the Kulites versus
data point number. Note the periodicity of 32 data points per cycle as
expected. Spectral analysis of these signals showed that virtually all of
the energy of the signal is concentrated at the whirl frequency for
cases with no seal rotallon [24]. For cases including rotation, a small

harmonic component, with amplitude of about 5% of the primary
component due to whirl, at the spin frequency was present. This was
due to very small deviations from circularity of the seal.

5. COMPARISON OF EXPERIMENTS TO THEORY

A strict comparison of the preceding theory with coupling to the
LSFT test results is not possible because of the lack of control over the

axial leakage gap, 8¢, the importance of which was shown in Section 2.
What can be shown, however, is that for the range of likely values of 8¢,

the upstream coupling effects increase the cross forces the required
amount to explain the very large deviations between experimental data

and the simple, uncoupled theory.

194



The general character of the comparison can be seen from
Figure 11, which shows the nondimensional cross stiffness versus the

nondimensionai inlet swirl. The trends and comparisons for C_ are the

same as for K_, due to the relationships shown in Section 3. The

theoretical lines were calculated using the cavity parameters for Build
#3. The volume ratio (upstream to seal cavity) was in that case 3.01,
whereas it was 4.64 for Build #2. The amplification factors calculated
from the coupled theory (for 8°= 10 mil) are 3.7 for Build #3 and 2.8 for
Build #2.

Looking first at the Build #3 data only, we notice a general
grouping about the theoretical line for 8c between 5 and 10 mil. The

design value of this gap was I0 mil. We also see that the points appear
in groups, each of which is aligned with a somewhat different 8c line.

These groups in fact correspond to the different swirl vane assemblies,
and 8, can be expected to have remained constant within each of them,

but perhaps not with exactly the same value from assembly to assembly.
The data for the two outer groups of points for Build #2 are

roughly on a line with a slope lower by 1/1.3 than those for Build #3, in
accordance with the noted difference between the volume ratios of both
cases. The group for the smaller dimensionless inlet swirl is
anomalously high, however. In general, for all builds, the data are

indeed bracketed between the limits of the uncoupled (5c_0.) theory
and the fully coupled (8_ =0) models.

As a related test of the theory, equations were derived for multi-

cavity seals with upstream coupling [9]. This coupled theory for a 2-
gland seal, plus the upstream cavity was compared to some 2-gland static
seal data of Benckert and Wachter [5], whose facility had the same
general upstream configuration as the LSTF. These researchers also
failed to keep a careful control of their face seal, for which no value is
reported. As noted before, no theoretical calculation had been able to

match the higher than expected cross-forces in these short seals. Using
the coupled model, the cross forces obtained in all three 2 gland seals

that Benckert tested can be matched by the theory wilh appropriate
choices of the axial sealing gap, (8_ =0) (a slightly different one for each

build). Not only can the total force be predicted, but the relative
contributions from each gland can be matched for the one case for
which this was reported. The model predicts that the effects of the

upstream coupling die exponentially. After a few glands the upstream
influence cannot be seen. The data of Benckert support this conclusion.

Table 2 gives the data of Benckert along with several cases from

the model. The cross force as predicted with uniform upstream
conditions is given. Finally, the value of the axial gap that matches
Benckert's data is given for each case. These values are reasonable and

show that the strong upstream coupling is the most likely cause for the
high cross forces generated in the first gland of a seal.

Figure 12 shows a typical plot of the cross force vs. whirl
frequency for five different pressure ratios from Build #4. There is no

rotation and the nominal inlet swirl angle is 8.6 degrees. The general
frequency dependent behavior of the experimental data is well

predicted by the analytical model. In particular, the cross force is a
linear function of the whirl speed and the frequency at which the force
changes sign matches the theoretically predicted value within
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experimental uncertainty. Of course the absolute force levels are much
higher as predicted by the coupled theory. Figure 13 shows the cross
force vs. whirl frequency for five different spin rates for the same
build. It can clearly be seen that the data at different spin rates fall on
parallel lines. Similar results were found for all builds at all flow
conditions. The narrow implication of this is that changesin rotational
speed do not affect the damping. More generally, these data strongly
support the general validity of the cross force decomposition into ideal
and viscous contributions as presentedabove.

The method presented above for predicting the dynamic
coefficients from inviscid static values can be readily extended to cases
with "viscosity" if the frictional component is isolated properly.
Probably the best method for removing this frictional "contamination"
is to handle it directly in the experiment. If the inlet and exit swirl
velocities are measuredthen for every value of the inlet swirl the seal
spin speed should be adjusted to maintain a constant swirl difference,
Vi-V'. Hence, the additive frictional component is fixed. For Vi=V', the

viscous component is totally eliminated. For typical designs the spin
speed needs to be maintained at about 125% of the inlet swirl velocity to

keep F=0. If this procedure is not followed the measurements of a
statically offset seal can still be used to obtain damping data. If static
data is taken with no rotation, a correlation of the cross stiffness

coefficient, K,y, versus swirl parameter, o, can be obtained. The

problem is that as the inlet swirl velocity is increased the total cross
force increases due to a higher inlet swirl (inviscid contribution) as

well as the frictionally induced change in swirl. The change in the ideal
component with inlet swirl, which is equal to the direct damping must
be separated. One procedure is to use the static correlation to calculate a
total force, F.r(fldR,), at an inlet swirl velocity corresponding to a whirl

frequency f_d. The viscous force, found from theory or correlation, is

subtracted form the total force to yield the ideal component. The
damping is the rate of change of this force with frequency.

fld fla
(35)

The values of the direct damping, Cu, calculated from the static

measurement correlations employing this method agree with the

values that were directly measured in the dynamic mode to within 13%,
8% and 15% for builds 2,3 and 4 respectively as shown in Table 3. This
demonstrates that it is possible to predict the dynamic coefficients with
the use of static measurements only. Another method for extracting the

dynamic coefficients from static data, based on extrapolation, is
presented by Millsaps and Martinez-Sanchez [26].

6. CONCLUSIONS

A new theory was developed that contains the effect of flow
coupling. It was shown that this theory is capable of predicting the

larger than expected forces found experimentally.
This finding has several important implications for design and

analysis of short labyrinth seals, and, by extension, probably for other
seal types as well. Data on cross forces from such seals should bc
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supplemented by a description of the upstream (and also the
downstream) configuration of the test device, unless it can be
ascertainedby auxiliary tests that no coupling exists. As an exampleof
the latter situation, it was verified that the rotordynamic force data
were insensitive to the downstream configuration. This was found by

blocking parts of the exhaust holes from the downstream chamber. The
remaining holes were large enough to equilibrate this chamber with
the atmosphere, hence making coupling negligible.

Calculation of seal rotordynamic coefficients, either for design or
for rotordynamic diagnostic purposes, should always account for these
possible coupling to the external flowfield. Ignoring them may make
other refinements, such as more precise 2 or 3-D cavity flow modeling
or CFD calculations irrelevant by comparison. Including the upstream
and downstream coupling is relatively straightforward for simple
geometries, such as the LSTF rig, but no theory currently exists that can
be used to predict the non-uniformities ahead of, for example, the seal
on a turbine tip shroud, where the tip area interacts strongly with the
main turbine through flow. Development of such a theory would seem
important. Similar considerations should apply for other seal
environments.

In future designs of rotordynamic lesting devices, consideration
should be given to either minimizing the coupling mechanisms or
matching the expected coupling levels that may occur in a real
turbomachine. In any case measurements of the flow field upstream and
downstream should be done to asses the degree of non-uniformity
induced from the offset seal.

The following conclusions on the nature of rotordynamic
damping have been drawn from consideration of the analytical model
and the supporting experimental data.

1. The total cross force acting on a labyrinth seal at a given whirl
frequency can be decomposed into "ideal" and "viscous" components.

2. The ideal component, which is due to an inviscid swirling flow, is a
unique function of the inlet swirl relative to the gap variation phase

speed. This force component vanishes when the velocity of the
traveling gap is equal to the swirl velocity inside the gland. This
component is solely responsible for damping.

3. The viscous component does not create nor alter the direct damping.
It adds to (if the swirl velocity decreases in the gland) or subtracts from
(if the swirl increases) the cross stiffness only.

4. The direct damping can be calculated from measurements of cross

stiffness. The importance of this is that difficult and expensive dynamic
measurements are not necessary in order to obtain damping
coefficients.
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Figure 1. Schematic of Labyrinth Seal Test Facility test section showing
upstream swirl cavity and the flows into and out of the center hub

plenum.
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Figure 13. Experimentally obtained cross force versus whirl frequency
for five different seal spin rates. These data are from build#4 with 8.6

degrees of inlet swirl and the pressure ratio is 1.47.

Table I. Geometry for the five seal builds.

BUILD

#I

#3

#4

#s

MMerlal

4140
oteel

¢m

in.

R. : 9" l a Io.
i_.1oe 1.o,e o._,o, 0
$.071 0.400 0.1'00 0 20"

4140 I$.I#B 1.0118 O.S019 O

Ilqtel 5.971 0.400 0.200 0 20"

304 SS IS.177 1,717 0,$08 0,043

S.gTS 0.880 0.200 0.017 17 °

304 S$ IS.IT7 I._27 0.S08 0.043
5.975 0.680 0.200 0.017 17 °

4i40 16.166 1.0111 0.508 0

|ted S.gTO 0,400 0.200 0 I 7"

LAND DiMBNSION_ (,tetor)

cm
In.

M,t.l-I I ÷. I h, 1, I 6r
1117 1s.14o o o 0.0737
.reel 0.000 0 0 0.029

!111 i_.145 o o o.o78_

Jleel 0.001 0 0 0.031

1117 iS,145 0 0 0,01886

ettel 6.002 0 0 0.027

304 $S |S.145 0.483 1.905 0._,_,_

|[attoll_,X 11.001 0.190 O.TSO 0.027
304 SS 15.145 0.483 ! ._05 0.787

llutollyX 0.002 O.IgO O.TiiO 0.031
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Table 2. Comparison of the static data of and Wachtcr to the coupled
model. The first column shows the experimental value. The second
column gives the value predicted with full coupling. The third gives
predictions for constant upstream conditions (i.e. no coupling). The last
column gives the value of the axial scaling gap nccdcd for the model to
match the experimentally obtained value.

I CONFIG. i Fr(rneas')

t 10.21(N)

2 8.28(N)

3 11.01(N)

16.28(N)

16.15(N)

t5.sl(N)

Fr(6_ -- oo)

4.99(N)

4.25(N)

4.09(1'4)

0.008"

0.011"

0.010"

Table 3. The first column gives the cross stiffness correlation
coefficient obtained from static measurements. The next two columns

give the total, and frictional force, respectively calculated at a whirl
speed of 300 (rads/scc). The last two columns give the calculated and
measured direct damping coefficients.

BUILD#

From Static Measured

_ _ C*: Correlation Directly

°.. (-_) °.. (_1

0.372

0.416

0.283

0.338

7763 953 0.289

27821 3162 0.371

20001 3162 0.247

7053 953 0.231

22.70 19.95

82.19 75.80

56.13 48.54

20.33 15.81
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