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This paper investigates the stability and the stability degree of a flexible cracked rotor supported on dif-

ferent kinds of Journal bearings. It is found that no matter what kind of bearings is uscd, the unstable zones
- 2 Ak 2

caused by rotor crack locate always within the speed ratio ]_V-( 1- 7—‘—) <1< ¥ when gravity parameter
L 20 AKX 20

W,> 1.0; and locate always within the speed ratio -7v—'(l —T‘) <ﬂ<—N~' when W, < 0.1, where

AKe is the crack stiffness ratio, N= 1, 2, 3,4,5 and ﬂl = (1—;72—“) “2. When 0.1 < W,<1.0, there is a re-
gion, where no unstable zones caused by rotor crack exist,

Outside the crack ridge zones, the rotor crack has almost no influence on system’s stability and stability
degree; while within the crack ridge zones, the stébility and stability degree depend both on the crack and sys-
tem’s parameters, In sdme cases, the system may still be stable even the crack is very large. For small gravity
parameter (W, <0.1), the mass ratio a has large influence on the position of unstable region, but its influence
on the stability degree is small. The influence of fixed Sommerfeld number S, on the crack stability degree is
small although S, has large influence on the stability degree of uncracked rotor,

NOMENCLATURES

[A(®)] = periodic state maltrix
¢a = external damping
¢, = machined clearance of Journal bearing”
cp (hj=x,y) = damping of journal bearing
¢ we

Cp Uj=xy) = dimensionless damping( = 'W ")

c
D, = external damping ratio ( = m :w, )

¢, = unbalance eccentricity
L S, = fluid film forces

F,,F, = dimensionless fluid film forces ( - f“\")
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(1) or g(®) = periodic function, 0<g(t)<1 and it has the form of Eq.5 for small crack.
k. = complex stiffness of cracked shaft

k, = stiffness of the uncracked shaft

k. k, = stiffness of cracked shaft in £ and # directions

Dky Dk, = the largest stiffness change in £ and # dircctions caused by crack

Ak
ALK, = stiffness change ratio in { (the crack) direction | = Ti
, Ak
AK, = stiffness change ratio in # (the cross) direction| = —k—’-
Ak, + Dk
AK, = ——‘—,;——'—
]
Dk, — Dk
ax, = S

k,, (i.j=x.y) = stiffncss of journal bearing
. c k
Ky j=xy) = dimensionless stifl'ncss( - JW.L)

m,, m, = mass Jumped at bearing station and rotor mid—span

¢
m, = preload factor (= 1—- ;'—, where ¢, is the assembled clearance)
[ 4

s = Sommerfeld numbcr( b wDL

R )’ S teonad :
W ( ), where p is the viscosity of lubricant

[
»

D is the bearing diameter, R is the bearing radius and L is the bearing width

S, = fied Sommerfeld numb ( s (w) “w'DL(R)z it is o desigh par
= fixed Sommerfeld number{ =35 { —= = —_
o S > =W \c, , it is a design parameter.
t = time
T = period
eI
U = unbalance parametcr( - ;—)
1
W = bearing load
. 61 mdg
W, = gravity parameter| ==, where § = % /) it represents the elasticity of the
r L4
shaft.
x,y = deflection in Cartesian coordinates
X, Y = dimensionless deflection( - Ex_’ -cl-)
14 ’
z = x+iy, complex deflection = (§ + in)e“ .
Z = X+iY
Z= Xx-iY -

Z, = steady statc response
AZ = perturbation deflection about the steady state response Z (= AX +1 ) )

: m [)
a= mass ratio| =—
m 4
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B= crack angle, it is the angle between crack and unbalance
(T(T))= transition matrix

¢.n = body fixed rotating coordinates, { is in the direction of crack
#y = Floquet eigenvalue

l#s | = modulus of u,

T = @¢, dimensionless time

@ = initia] unbalance angle

O= wt+e+p

@ = rotating speed

k 1/2
@, = rigid pin—pin critical speed( - ( m—'-) )

4
. w
Q1 = speed rano( -a-)—'-)
d

() = Z

yod o4
() = ar o do
[ ] = square matrix

{ } = column matrix

INTRODUCTION

Fatigue cracking of rotor shaft may cause a catastrophic damage to rotating machinerics, an example was
given by Jack and Patterson (1976). So that a detailed investigation into the behavior of a cracked rotor shaft
is very important for diagnosing and preventing rotor cracks.

There are two major research field in cracked rotor analysis, one is the modeling and another is the de-
tecting of the rotor crack. Gasch (1976) considered in body—fixed rotating coordinate the stiffncss change due
to open and closed cracks and solved the equations of motion of a eracked Jeffcott rotor by an analogue com-
puter. Mays et al (1984) gave an approximate mecthod of estimating the reduction of a section diameter re-
quired to model a crack. Nelson and Nataraj ( 1986) analysed the dynamics of a rotor system with a cracked
shaft by the finite element method; Collins et al (1991) considered a rotating Timoshenko shaft with a single
transvers crack and analysed the free vibrations and the responses to a single axial impulse and periodic axial
impulses. Gasch (1988) et al analysed the dynamic behaviour of a Jeffcott rotor with a cracked hollow shaft
and Bernasconi (1986) considered the vibrations of & stepped shafl by using singularity functions. Muszynska
(1982) devcloped a solution for a gaping crack and concluded that the increase in the primary vibration is
more than that in the subharmonic vibrations. Papadopoulos and Dimarogonas (1980) pointed out that the
informations of subharmonic resonances and the frequency shifting are important for crack identification.
Imam et al (1989) presented a very successful on—line crack diagnosis method which can detect cracks of the
order of 1 to 2 percent of the shaft diameter decp. Most of the early research results on cracked rotor have
been summarized in the book by Dimarogonas and Paipetis (1983) and more litcratures on the dynamics of
cracked rotors can be found in a reviewing paper by Wauer (1990).

Although more than 100 papers have becn published in this field, there are still many problems to be
solved. Up till now, only few papers, for example Tamura (1988) and Gasch ( 1992), analysed the stability of a
cracked rotor supported on rigid bearings and it was found that the unstable zones caused by rotor crack are
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near the speed ratio L . 2 ' 2 ) 2’ 2 s and the unstable zone spreading out from L _2is the
o, 1 2 3 4 @, }
broadest, where e, is the first rigid critical speed. Up till now, no papers about the stability of a cracked flexi-
ble rotor supported on fluid film bearings have been published, but the stability and dynamic characteristics of
this kind of system are very important as dangerous cracks were mainly reported in rotors running in fluid film

bearings.

EQUATIONS OF MOTION AND PERIODIC
STATE MATRIX FOR STABILITY ANALYSIS

Considering a simple flexible JefTcott rotor with a cracked shaft supported on journal bearings (see Fig.1),
the equations of motion of the system can be written as:

. . . 2 _Hot+e)
m,?, e, i, +k 2,z (2, —2)=mgtme e

. i n
m,Z, +Ek‘_[(z‘—z.),t] (z,—z)=mg—(f +if)
where m, and m, arc the mass lumped at bearing station and rotor mid—span, z; and z, are the complex
defections of disk and bearing centers; w is the rotating speed; k ‘[(z .2 .),t] ig the stiffness coefTicient which
is a function of z,~z, and changes with time t due to the openning and closing of the rotor crack and, f, and
£ are fluid film forces of journal bearing. There are
{z . = X, iy d
z, = x,+ iy,
(1) Stiffness Forces
Supposing that the vibration deflection is small enough and the influence of deflection difference 2,2, on
shaft stiffness k, can be omitted, then the shaft stiffness k, changes only with time 7 and
k [(z,—z,)hl=k (1) 2)
Supposing further that the weight deflection is dominant, then k (f) changes periodically with time and
can be written in £ and n directions as:
k‘ =k —g(t)Ake
{ ’ (3)
k! =k, — g(t)Ak'
where g(#) is a periodic function of time and o<g(t)<1. Ak, and Ak, are constant and represent the
stiffness change caused by rotor crack. There is

z-x+iy==(£+in)e“
where O = wt+@+p, zis z; or z,. The stiffness force k _(¢) » z can be written as:

k(1) z--;-[(ke-rk') vot(k,—k) 7e™]

~ Ik, — SRONAKk + A )+ 2= SRUNAK — Ak ] -+ € @

For small crack, the openning and closing of the crack can be represented by a rectangular function g{f), and
(1) can be written in a Fourier serics of @ as:

g(1)=g(®) = (%)[% +cos<b—-;-co.93®+%cogsa)_...] 5

where & = wtte+f.
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(2) Lineariscd Fluid Film Forces and Cocfficicnts
The vibration response of the system can be split to

{14 =z, +Az‘

z, =z, +Az.

where z,, and z,, arc the steady state response of the system, Az, and Az, are the perturbation deflections.
For small dynamic perturbation, the nonlinear fluid film forces £, and J, can be linearised about the
steady state response (x,,, y,,) as:

j; ] Fj;. kxx kx; Axb cxx cx; Ax.l
- + + 6
j; J _fr- kn kn Ayb cn L‘" A}.’A

The nondimensional forms of J, and j; can be written as

[r,] r 21 W {l[f,,.]+[x,, K,,][AX,]+[cu C"Mm"]}m
F, |l meo | | mpeo (W], kK, k_||Ary, c,. C, [lAar,

The nondimensional stiffness and damping coefficients X N and C u (1,]= x,y) are

Ku"Wku » Cy= ]

and they can iJe obtained from the book by Someya (1989) and the book by Vance (1988). These coefficients

e
are only functions of Sommerfeld number § or eccentricity ratio e, -c—" for a given set of bearing
I 4
parameters, where the Sommerfeld number is

S = B@DL .Ii) !
2rW \¢ ,

As the rotating speed @ and the bearing parameters are mixed up in the Sommerfeld number S, it is diffi-
cult to seperate in the stability analysis the influences of rotating speed and bearing parameters on the
nondimensional stiffness and damping coefTicients. In order to solve this problem, the fixed Sommerfeld num-
ber S, is introduced and it is defined as

®

w, ko DL r p N3
$,=5 () =" (;j) @

That is, the rotating speed @ in Sommerfeld number S (see Eq.8) is replaced with the rigid pin~pin critical

m,

change with the rotating speed. Now the stifTness and damping coefficients are functions of the fixed

172
speed w ( - ( . ) ) S, is thus the Sommerfeld number in the rigid pin—pin critical speed and does not

Sommerfeld number S, and the rotating speed ratio ﬂ( - a—(;’—)

In this paper, three tapes of journal bearings are used for stability analysis, the 2 Axial Grooved Cylindri-
cal Bearing, the 4 Lobe Bearing and the § Pad Tilting Pad Bearing. Fig.2 shows the diagrams of these journal
bearings and the stiffncss and damping coefficients of these three bearings are taken from Someya’s book
(1989).

For the simple Jeffcott rotor considered here, there is

W=m—2"—g~ tmg=mpg- (-;— +a)
So that
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W 14
7 T 2 (l +“) (10)
mc o 0 2

]
where W --—8—, -:’— is the gravity parameter.
cw ’
1 4

(3) Nondimensional Equations of Motlon of the System
Substituting Eq.4 and Eq.6 into Eq.1, dividing both sides by m¢, o? and then substituting into Eq.7 and

Eq.10, we can get at last the nondimensional forms of Eq.1 as

70+ ey +—1—{[1—l WAK NZ, -2
T 4 Q’ 2% MZ,-2,)-

A1+ 9)

1 > = 20 W,
—-i-x(t)AK2 . (Z,—Z‘)-e }--BT + Ue

1 1 1 S
{20, + {1 - Ja0AKXZ, -2 )~ 1a0AK, - 2, -Z) e b+ an
W (142, 1., ) )
e [(W +E_AX, +K AY,+C_AX, +C AY )+

2002

7, w
_re - ——
| 1( = 4K AX, + K, AY, +C X, +C, A Y',)] -+

AK, + AK Ak, — Dk
where (')sd%- and AK, -—*—sk—*—i , AK:'—_Lk__l'

In the steady state case, there are
Z,=2,,2,=2,,2",=2,=0,2" =2/ ,=0,f =f and f =f
As Z and Z, are also solutions of Eq.(11) and
z, =2,+ 402z, Z
the perturbation equations of motion of the system can be got from Eg.(11) as:

, = 2, + Az,

e 2P, 1 1
827, + 507+ {1 =3 AK 401+ (B2~ BZ,) -

- %AK,g(:)(Az', AY AL e"'} =0

vy 1 1 7 _AZ
AZ", + h—n; {[1 —EAKlg(t)](AZ. —AZ‘)—EAKZg(x)(AZ‘ —AZ‘)e"’} +
w (1 + 2)

-—-‘2——,—-[(K"AX. FE_ OY, +C AX +C_AY )+

¥ / /
| (K AX, 4K, AY,+C AX, +C AY,)]=0
The above cquations can be written in Cartesian coordinates as (g(/) is written in th form of g(®)):

rotor.
2D

l:l o] AXY, . - ¢ Irax, +_1_{[1 o]_
0 1Ay, 20, ||AY, | a* o1
0 =4
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1 AK, + Achos20 AKzsinN) AX‘ —AX‘
— 0 . -0
2g( ) AKzsin2d> AK| —Achos2® AY‘ —AY.

bearing: (12)

1 07 AX*, 1 (f1 o
[o 1][AY', :,+2an’ {[o 1]—
1 AKX, + AK, cos2® AK sin20 AX, -ALX,
25(® [ AK,5in20  AK, -Ax,coszo:[} [A Y, - Ay,

W (1+2 K“ Kx AX Cxx C‘ AX’
_L(fﬂ{l: ’ ] [ ’ -+ i ,‘ - ()
2a02 K,, K” AY. C" C" AY‘

(4) Periodic State Matrix of the System
Taking the notes of

X, =OX,, X, =AY, , X, =AX, , X, =AY,

X, =QX X =AY, , X, =AX, , X, =AY,
supposing that ¢ and § do not change with time, and renoting (")=d / d®, the first order state equations of
motion of the system can be obtained from Eq.12 and then can be written in matrix form as

{XY = [A(@®){x} (14)
where the vector {X} is dcfined as {X}-(X‘, Xz,"-.X.)r

+

and [A(®)] is the periodic state matrix and has a period of 2x.

[0 0 0 0 1 0o o 0
0 0 0 0 01 o 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 o 1
P(®) Q) P (@) QO oy
o> o’ 0’ Q
[A(D) = (15)
Q,(® P,(® Q@) PO w
QZ 02 01 n! Q
P,@) Q,®) K_+P () K_-Q,®) o o c. cC,
220" 2a0° 2a0° 2a0? 20° 2a0?
Q@ P,®) K,-0,@) K40 o C, C
| 20° 2007 2a0° 2a02° 220" 2.0° |

where

P (®)=1- %AK] 2(®) - %AKzg(tb)code)

1
P(®) =1~ AK g(®) + T AK, g(@)cos20 (16)
0,(0) = 3 AK,¢(®) - sin20

The stability of the periodically time—variant system of Eq.14 can be analysed by the well known
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Floquet’s method.

FLOQUET’'S THEORETICAL AND NUMERICAL
METHODS USED FOR STABILITY ANALYSIS

The most straightfoward method for dealing with the stability of a periodic system is perhaps the
Floquet’s method (sce eg., Caesari, 1970), which states that the knowledge of the state transition matrix over
one period is sufTicient for determining the stability of the equilibrium position {X} =0 of a periodic system

{xY =[4(D)){ x} )
where [4(®)] = [A(® + T)] and T is the period. The transition matrix [T(7)] is defined by
{X(T)} = (D x(0)}
When the transition matrix [T'(7)] has been obtained, the Floquet’s eigenvalues of the system can be calculated
from the following eigen—function
(T~ g 0] =0 (18)
where 4, is the Floquet cigenvalue and [} is the unit matrix.

The stability of the equilibrium position {X} =0 of the periodic system (17) can be determined by the val-
ue of the Floquet eigenvalue u, thatis, if all |y, | <1, the {X} =0 position is stable; if one or more |u,|> 1, the
{X} =0 position is unstable and the {X} = 0 position is the critical case if one or more |u}= 1. The physic mean-
ing of the Floquet eigenvalue p, is clear, it shows the factor by which a given initial amplitude increases or de-
creases after one period of motion.

Although the stability of the equlibrium position {X} =0 of system (17) can be determined from the tran-
sition matrix [T(7)] of the system, unfortunately, there is no general analytical method for calculating [T'(1)].
But there are several efficient numerical methods although they take too much computer time (Fridemann,
1977). One of them is the so called Hsu’s method and the essential aspects of this method are given in
Fridemann’s paper (1977), the following is the result of this method.

The period T is divided into K intervals denoted by @, (k=1,2,2+ ,K) with 0=®,<®, <>« <®p=T. The

kth interval (@, _,, &) is denoted by ;. In the kth interval, a constant matrix [B,/ is defined by

s,
[BJ—J‘. [A(D)]dD d’E‘rk (19)

and the final approximation for the transition matrix [I'(7)] at the end of one period can be calculated by

£ r ’ [B']’
(M= Nexp(B 1= ) {m + ———} (20)

I=1 =1

STABILITY AND STABILITY DEGREE OF A CRACKED FLEXIBLE
ROTOR SUPPORTED ON JOURNAL BEARINGS

Rased on the Floquet's theorem and the Hsu’s numerical method, the Floquet eigenvalues of Eq.15 are
calculated numerically for speed ratio 0.2<Q<5.0, crack stiffness ratio 0.0 <A K, <0.8, gravity parameter
0.001 < W, < 10.0, fixed Sommerfeld number 0.1 < §,<2.3 and mass ratio 0.05 <« <0.45. The stability and the
stability degree of a cracked flexible rotor supported on journal bearings arc analysed. At [irst, the following
phrascologies are defincd with Fig.5 as an example.

crack ridge: a protruding ridge of Floquet cigenvalue caused by rotor crack.

gf_a*c_kb_ggge zone: the zonc where the crack ridge locates, for example from A to B in Fig.5. The position
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and extent of the crack ridge zone is given by Eq.(21) and Eq.(22).

crack unstable zone: unstable zone caused by the crack, it is the zone where is>1.0. It locates within the
crack ridge zone.

stability degree: the degree of stability which is determined by the largest Floguet cigenvalue |y, |,, , the
larger the |y, |, is, the smaller the stability degree. When lus lw <1, the equilibrium position of the system is
stable, when |, |, > 1, the equilibrium position of the system is unstable and the equilibrium position of the
system is the critical case when s |, =1.

diagram of stability degree: the 3—D diagram of Floquet cigenvalue. Its Z—axis is the largest Floquet
cigenvalue |u, |, , Y—axis is the speed ratio @ and X—axis is the system parameter (the fixed Sommerfeld
number S, the gravity parameter W,, the mass ratio « or the stiffncss change ratio AK‘).

1.0-Level: The level of the Floquet eigenvalue |u Jw=1, it is the limit of stability. Above this leval,'the 8ys-
tem is unstable,

(1) The Stability and Stabllity Degree of Uncracked Rotor Shaft

It should be noticed that now the periodic system (17) is simplified to a time—invariant one and the
Floquet’s method is also simplified to the normal cigenvalue problem. l

Journal bearings are superior to rolling element bearings in high—speed operation. They have high damp-
ing ability, high load—carrying capacity and low friction. In addition, silent operation and long life can be at-
tained. Therefore, journal bearings of various types are widely used in high—speed rotating machineries. But
an inappropriately designed journal bearing may not only increase the vibration amplitude, but bring also the
oil whirl or oil whip, that is, a self—excited lateral vibration of rotating shaft caused by oil film in journal bear-
ings. Generally, multilobe bearings are more stable than circular bearings. A tilting—pad bearing is always sta-
ble, because it has no cross—coupling terms of oil film coefficients.

The gravity parameter W, is a very heavy parameter in the stability analysis. Fig.3 shows the influences
of gravity parameter on the stability degree. It is found that there is a valley of Floquet eigenvalue for gravity
parameter of mid—value (0.05 < W,<1.0) and small speed ratio Q. As 0 increases, this valley becomes more
narrow and more shallow. The tilting pad bearing has the longest valley and the cylindrical bearing has the
shortest one. The system will be the most stable if the parameters are selected in the bottom of the valley. In
the left side (the small gravity parameter side) of the valley, there is a hill of Floquet eigenvalue for cylindrical
and multilobe bearings. This hill is very important for system'’s stability as it determines the stability limit. Be-
sides, the hill of the cylindrical bearing is much higher and wider than the multilobe i)caring, that is why the cy-
lindrical bearing is more unstable than the multilobe bearing. The tilting pad bearing is always stable as it has
no such a hill.

Although the multilobe bearing is generally more stable than the cylindrical bearing, it may be more
unstable than the cylindrical bearing in the case of small fixed Sommerfeld number S, and small gravity
parameter W,.

Another heavy parameter in the stability analysis is the fixed Sommerfeld number §,. Fig.4 shows the in-
fluences of S,on the stability degree in different gravity parameter W ,. For multilobe bearing and for cylindri-
cal bearing, when §,> 0.4 or W,>0.1, it is found that the threshold speed ratio of stability increascs as W, in.
creases.

The variation of stability degree with fixed Sommerfeld number S, depends largely on the value of gravi-
ty parameter W,. For small W, the stability degree decreases as S, increases; while for large W, the variation
of stability degree with S, is very small.

313



(2) The Stability and Stability Degree of Cracked Rotor Shaft

It is well known that the stability and stability degree of an uncracked flexible rotor supported on journal
bearing change greatly for different types of journal bearings. What will happen if the rotor has a small crack?
Of course, the crack will have influence on the stability of the uncracked system and will cause new unstable
regions, but how large is the influence and where are these new unstable regions? These questions are impor-
tant for detecting the crack and preventing the system from an accident. In order to answer these questions,
the Floquet eigenvalues of Eq.15 are calculated. For the reason of simple, the cross stiffness change caused by
crack is omitted in the following analysis, that is A K, =0 is assumed, because A K, is very small compared
with AK,.

Based on the large quantities of numerical results, it is found that the position of crack ridge zones and
then the position of crack unstable zones have no relation with the type of journal bearings, that is, they do
not depend on the fixed Sommerfeld number §,. The position of crack ridge zones depend only on the speed
ratio and the stiffness change ratio for large gravity parameter (W, > 1.0), and depend also on the mass ratio
for small gravity parameter (W, <0.05).

Fig.5 to Fig.7 show the positions and the extents of the crack ridge zones. When W, > 1.0, the mass ratio

has no influence and the crack ridge zones locate always within the two lines of 0-:2%, and Q

2 AKX, . .
- i( 1-— 2 ), where N=1,2,3,4,5,.»~. The widthes of the crack ridge zones are seperately equal to or less

AK
than Z—NL (see Fig.5). So that the crack unstable zones locate within

2 1 2
ﬁ( 1 —ZAKC) <0<E (N=12345:) @1

When W,<0.05, the crack ridge zones depend largely on mass ratio and they locate always within the two

B ra ——20' nd Q=—" (l—lAK ) where (1 == ( 1 +2a)‘n and N=1,2,3,4,5,++. The width
nes o Na N 3 e ) « % +2,3,4,5,°++, The widthes
: Kc
of the crack ridge zones are seperately equal to or less than N Q_ (sce Fig.6). So that the crack unstable

zones locate within

20. IA 20. 7
—ﬁ-( 1-3 KC) << (N =1,234,57) 22)

In this paper, the shaft stiffness is supposed to change linearly with crack depth, so that the width of the
crack ridge zone increases also linearly with crack stiffness change ratio due to the reduction of shaft stiffness.
Besides, the larger the speed ratio and the stiffness change ratio are, the wider the crack ridge zone is (see
Fig.7). Therefore, the instability caused by crack in larger speed ratio is more dangerous and should be payed
more attention to.

It is known that the gravity parameter W, is a very heavy parameter in the stability analysis of uncracked
rotor shaft and it is found in the above discussions that when W, <0.05, the mass ratio « has large influence on
the crack ridge zone, while when W > 1.0, a has almost no influence on the crack ridge zone. What will hap-
pen if 0,05 < W, < 1.0? Fig.8 shows the influence of gravity parameter W, on the stability and stability degree
{please comparc Fig.8 with Fig.3). Tt is found that in a region of Wg within 0.05< W,<1.0, the crack has al-
most no influence on the stability degree no matter how large the crack is. This is because that in this region,
the diagram of stability degree has either a valley or a hill. The cylindrical bearing and multilobe bearing have
generally a valley at small speed ratio and a hill at large specd ratio, while the tilting pad bearing has always a
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valley although this valley becomes smaller as the speed ratio increases.

Tt is found that the position of crack ridge zones almost do not change with the fixed Sommerfeld number
S.» but the extent of crack ridge zones decrease with the increasing of S, when the gravity parameter is small
(W, <0.05) and has almost no change or increase a little with the increasing of S, when the gravity parameter
is large (W,> 1.0) (sce Fig.9). When comparing with the uncracked rotor case, it is found that the change of
crack ridge zone with S, is not due to the crack itself, but duc mainly to the influence of S, on the stability
degree of uncracked system.

Although the crack ridge zones almost do not change with the fixed Sommerfeld number S, the crack
unstable zones become a little bit larger as §, increases. This is also due to the change of the stability degree of
uncracked system with §,.

Fig.10 shows the influences of crack stiffness change ratio on the stability and stability degree. It is found
again that the position of the crack ridge zones depend not on the types of journal bearings and, the crack
unstable zones locate always within the crack ridge zones, but the stability outside the crack ridge zones de-
pends mainly on the type of bearings used. Although the positions of crack ridge zones do not change with
gravity parameter W, and mass ratio «, the crack unstable zones depend both on the stiffness change ratio
and the system parameters. When W, is small, there is an extra crack unstable zones in high speed ratio due to
the influence of mass ratio. When W, = 0.1, almost no crack ridge zones exist, because the systcm is now in the
valley of the Floquet eigenvalue. So that, as it is mentioned before, the crack has almost no influcnce on sys-
tem’s stablity in some combinations of system parameters. As W, increases, the crack ridge zones appear
again, but the crack ridge zone in high speed ratio is disappearcd because now the mass ratio has no more in-
fluence on the crack ridge zones. ' ’

It is found that for tilting pad bearing, the crack ridge in small gravity parameter case is much higher and
thercfore is more unstable than in large gravity parameter case.

CONCLUSIONS

This paper investigates the stability and the stability degree of a flexible cracked rotor gsupported on dif-
ferent kinds of journal bearings. The influences of the crack stiffness ratio AK,, the fixed Sommerfeld number
S,, the gravity parameter #, and the mass ratio « are analysed. It is found that no matter what kind of jour-
nal bearings is used, the position of crack ridge zones and then the position of crack unstable zones depend on-
ly on the speed ratio and the stiffness change ratio for large gravity parameter (W,>1.0), and depend also on
the mass ratio for small gravity parameter (W, <0.05). The position and extent of the crack ridge zones are
given by Eq.21 for W,>1.0 and by Eq.22 for W,<0.05. When 0.1 < W, <1.0, there is a region, where no
unstable zones caused by rotor crack exist. ' '

The larger the speed ratio and the stiffness change ratio are, the wider the crack ridge zone is. Therefore,
the instability caused by crack in larger speed ratio is more dangerous.

Outside the crack ridge zones, the stability and stability degree of the cracked system arc almost the same
with those of the uncracked system, that is, they have almost no relation with the crack and depend mainly on
system’s parameters; while within the crack ridge zones, they depend mainly on crack stiffness change ratio,
but also on system’s parameters. In some cases, the system may still be stable even the crack is very large.
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