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This paper investigates the stability and the stability degree of a flexible cracked rotor supported on dif-

ferent kinds of journal bearings. It is found that no matter what kind of bearings is used, the unstable zones

caused by rotor crack locate always within the speed ratio 1 - < fl < _ when gravity parameter

20 Ate 2n
Wz> !.0; and locate always within the speed ratio _ ( I - _1 < fl < --_ when W,< 0.1, where

Age is the crack stiffness ratio, N= i, 2, 3, 41 5 .-. and fl == ( 1 + 2a_ 1/2

lion, where no unstable zones caused by rotor crack exist. ' t _/ • When 0.1 < W z < 1.0, there is a re-

Outside the crack ridge zones, the rotor crack has almost no influence on system/s stability and stability

degree; while within the crack ridge zones, the stability and stability degree depend both on the crack and sys.

temrs parameters. In s6me cases, the system may still be stable even the crack is very large. For small gravity

parameter (We< 0.1), the mass ratio = has large influence on the position of unstable reg/on, but its influence

on the stability degree is small. The influence of fixed Sommeffeld number SO on the crack stability degree is
small although $o has large influence on the stability degree of untracked rotor.

NOMENCLATURES

I'A(_)] = periodic state matrix

cd = externaldamping

% = machined clearance of'journal bearing'

e o, (l,J= x,y) = damping of journal bearing

C ls, (i,j- x,y) = dimensionless damping( _- c,¢ac o _

D, = external damping ratio / = c_ '_
2rn dco¢ )

e= - unbalance eccentricity

f_, f_ - fluid film forces

Fx, F_, - dimensionless fluid film forces / " fzj
/_ dCpOJ 2 )
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g(t)or _(_) = periodicfunction,0_g(t)<=1 and ithas theform ofEq.5 forsmallcrack.

kc - complex stiffness of cracked shaR

k, *" stiffness of the uncracked shaft

k¢, k_ =" stiffness ofcracked shaft in _ and _ directions

Ak¢ ,_k_ - the largest stiffness change in _ and q directions caused by crack

AK_-stiffn_schange rati° in _ (the erack)directi°n t "_k_,)

AK. stiffness change ratio in _ (the cr°ss)directi°n t "_, /

AKI _ + Ak" k
J

AK=

klj (l,j= x,y) = stiffness of journal bearing

K,, (i.j= x.y) f dimensionless sfiffness ( " C_)

mb'ma = mass lumped atbearing station and rotor mid-span

c b

m_ = preload factor ( - 1 - _-'-, where cb _ the assembled clearance)

(.,.o,::))S ffi 5ommerfeld number _ \ ,where # isthe viscosity oflubdcant
P

D is the bearing diameter. R is the bearing radius and L is the bearing width

........So = fixed Sommerfeld number - S • _ , it is a design parameter.

t

T =

U=

W-

- time

period

unbalance parameter(, e___,_
c/

bearing load

where 8 - , it represents the elasticity of the
Wr - gravityparamcter "e ' ' , _

shaft.

x, y - deflection in Cartesian coordinates

X, Y - dimensionless deflection - _--,
p

z = x-I-iy, complex deflection - (_ + ir/)e _.

Z = X+iY

_.= X-iT

Zo " steady statc response

/XZ - perturbation dcflcction about the steady state response Z( - Z_X + IY)

(m,)== massratio =

)
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p = crack angle, it is the angle between crack and unbalance

ft'(T)] ffitransitionmatrix

_,_ = body fixed rotating coordinates, _ is in the direction of crack

/_/- Floquet eigenvalue

I_/I - modulus of#/

- _t, dimensionless time

ffi initial unbalance angle

¢o ffi rotating speed

_¢ --rigidpin-pincriticalspeed(. ( k. _t/'_

t'l= speed ratio (-_-)

d
(.)---

dt

d d
(') - _ ord-_

[ ] ffi square matrix

{ } = column matrix

INTRODUCTION

Fatigue cracking ofr0tor shaft may cause a catastrophic damage to rotating machineries, an example was

given by Jack and Patterson (1976). So that a detailed investigation into the behavior of a cracked rotor shaft

is very important for diagnosing and preventing rotor cracks.

There are two major research field in cracked rotor analysis, one is the modeling and another is the de-

tecting of the rotor crack. Gasch (1976) considered in body-fixed rotating coordinate the stiffness change due

to open and closed cracks and solved the equations of motion of a cracked Jeffcott rotor by an analogue com-

puter. Mays et al (1984) gave an approximate method of estimating the reduction of a section diameter re-

quired to model a crack. Nelson and Nataraj (1986) analysed the dynamics of a rotor system with a cracked

shaft by the finite element method; Collins et ai (1991) considered a rotating Timoshenko shaft with a single

transvers crack and analysed the free vibrations and the responses to a single axial impulse and periodic axial

impulses. Gasch (1988) et al analysed the dynamic behaviour of a Jeffcott rotor with a cracked hollow shaft

and Bernasconi (1986) considered the vibrations of a stepped shaft by using singularity functions. Muszynska

(1982) developed a solution for a gaping crack and concluded that the increase in the primary vibration is

more than that in the subharmonic vibrations. Papadopoulos and Dimarogonas (1980) pointed out that the

informations of subharmonic resonances and the frequency shifting are important for crack identification.

Imam et al (! 989) presented a very successful on-line crack diagnosis method which can detect cracks of the

order of ! to 2 percent of the shaft diameter deep. Most of the early research results on cracked rotor have

been summarized in the book by Dimarogunas and Paipetis (1983) and more literatures on the dynamics of

cracked rotors can be found in a reviewing paper by Wauer (1990).

Although more than 100 papers have been published in this field, there are still many problems to be

solved. Up till now, only few papers, for example Tamura (1988) and Gasch (1992), analysed the stability of a

cracked rotor supported on rigid bearings and it was found that the unstable zones caused by rotor crack are
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near the speed ratio coco "/' 2' 3"4""2 2 2 2 and the unstable zone spreading out from co---2 is the
¢

broadest, where ¢oc is the first rigid critical speed. Up till now, no papers about the stability of a cracked flexi-

ble rotor supported on fluid fdm bearings have been published, but the stability and dynamic characteristics of

this kind of system are very important as dangerous cracks were mainly reported in rotors running in fluid fdm

bearings.

EQUATIONS OF MOTION AND PERIODIC

STATE MATRIX FOR STABILITY ANALYSIS

Considering a Simple flexible Jeffcott rotor with a cracked shaft supported on journal bearings (see Fig 1),

the equations of motion of the system can be written as:

m "_ , -t- c .z , -I- '.[(, , -- z,).'] " (s , _ z,)" m.t, + md'. " O_ e
(i)

m,'_, +lk,[(z,-sb),t]" (Zb--z,) m,g--(f s + tf,)

where mb and m_ are the mass lumped at bearing station and rotor mid-span, zd and zb arc the complex

deflections of disk and bearing ccnters_ ¢o is the rotating speed; k¢ [(z_ - z b).t] is the stiffness coefficient which

is a function of zd--z_ and changes with time t due to the openning and closing of the rotor crack and, fx and

are fluid film forces of journal bearing. There are

zd -- x_ + iy d
z b -- x b + iYb

(1) Stlffneu Forces

Supposing that the vibration deflection is small enough and the influence of deflection difference zd--z t on

shaft stiffness/c_ can be omitted, then the shaft stiffness k c changes only with time t and

k [(z,- z,),t]= k (t) (2)

Supposing furtherthattheweight deflectionisdominant, then k (t)changesperiodicallywith timeand

can bewrittenin{ and _ directionsas:

O)
k - R(t)LSk,

where Z(t)isa periodicfunctionof time and 0<g(t)< I.Ak c and Ak, areconstantand representthe

stiffnesschange causedby rotorcrack.There is

/0

z - x + iy ffi (_ + t_)e

where O- oJt+O+_, z is zd or zb The stiffness force k(t) • z can be written as:

k(t). z-l[(k_+k)" z+(k¢-k)" _'e"®]

--[k - g(t)(Ak¢ + Ak )]" z-- g(tXAke--Ak )]" z" e (4)

For small crack, the openning and closing of the crack can be represented by a rectangular function g(t), and

g(t) can be written in a Fourier series of® as:

i 1
=. cos30 + _ cosb_ .... ] (5)

where • ffic0t+_+_ff.
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(2) Linearised Fluid Film Forces and Coefficients

The vibration response of the system can be split to

where z_ and zb are the steady state response of the system, Az d and A: b are the perturbation deflections.

For small dynamic perturbation, the nonlinear fluid film forces f_ and f_ can be linearised about the
steady state response (xb., Ybo) as:

k•y
i_ ,¢,z c IP

The nondimensional forms of f. and f, can be writtenas

,', ",,,:,,,,' f, ",,,:o,' CWL:,. L r, LAr, + :
The nondimensional stiffness and damping coefficients Ktj and C o if,J. x,y) are

C ¢ fO

, CqKq- wku "-_co

(6)

[AX'_ _ (7)C, ] L Ay',

and they can be obtained from the book by Someya (1989) and the book by Vance 0988). These coefficients

e

ate only functions of Sommerfeld number S or eccentricity ratio eo- _ for a given set of bearing
¢

parameters, where the Sommerfeld number is

s - _ __ / (s)
p,

As the rotating speed oJ and the bearing parameters are mixed up in the $ommerfeld number S, it is diffi-

cult to seperate in the stability analysis the influences of rotating speed and bearing parameters on the

nondimensional stiffness and damping coefficients. In order to solve this problem, the fixed Somrnerfeld num-
ber _', is introduced and it is defined as

co . #¢o,DL (• ,,,
X

That is, the rotating speed aJ in Sommeffeld number S (_ IR.q.8) is replaced with the rigid pin-pin critical

speed oJ \m-:-d / /" S° is thus the Sommerfeld number in the rigid pin-pin critical speed and does not

change with the rotating speed. Now the stiffness and damping coefficients are functions of the fixed

 omoor e, n   O  o
In this paper, three tapes of journal bearings arc used for stability analysis, the 2 Axial Grooved Cylindri-

cal Bearing, the 4 Lobe Beating and the 5 Pad Tilting Pad Bearing. Fig.2 shows the diagrams of these journal

bearings and the stiffness and damping coefficients of these three bearings are taken from Someya/s book
(1989).

For thc simple Jeffcott rotor considered here, there is

So that
T +mbgffim,g" -_+a
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where

2 1,12
m dCp_D

6 is the gravity parameter.w,- J-i-,
@ _ p

p •

(10)

O) Nondimensional Equations of Motion of the System

Substituting Eq.4 and Eq.6 into Eq.l, dividing both sides by m_cp oJ2 and then substituting into Eq.7 and

F.q.10, we can get at last the nondimensional forms of Eq.1 as

Z## +'-_-Z'# +-_T [1 - g(t)AK,I(Z#-Z.)-

-½,(,)AK,. (_,- z-,)-e TM} w u,,+. ,-_-+

+ 2_f_= L\ "W + Kz*/kX# + Kx/'_Y# + Cx=_'X/b + CzyAYIb) +

__.J.
4-Kpx_X b + K.AY b + Cy_AX/j + C.'A'Y/b _2

d . _ + Z_Kq Ak¢ -- Ak
where (P)fdxz and AK t k AK:- k.

In the steady state case there are

Z ,=Z,i. ' Z =Zt,, Z" ..Z/ =0, g'bffiZ/,--O , f.,=f.o and /.jr,.

As Z_, and Zb. are also solutions of Eq.(ll) and

Z# - ZA. + AZ# Z) - Z_ + AZ)

the perturbation equations of motion of the system can be got from Eq.(ll) as:

Z_Z'# +-_AZ/, + _2 {[1--1AK.g(t)]" (AZ ,--._XZ,) -

- 1 _K2g(t)(A_ ' _ A_-b) . e _.} -0

W(i
+2a)[(K**AX)+K.._Y)+C AX')+C AY'))+

2af'l: xz x_

t(K. AX_ + K. AY b + C..AX/b + C..AYIb) ] -0

The above equations can be written in Cartesian coordinates as (g(t) is written in th form of g(_)):

rotor:

0jinx]+ 0 o

(11)
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bearing:

1AKasin2_ll AK i-AKicos2®.JJ [.Ai',-AYI "

01rA'i'"l +=__ I

L allsin21 AKI -AKle°s2_ll / AYI - AY#

} } )0'¥."+">sr'<='<-f""' <-"f"""
2,fl' I.Lr,:X,, [AYi + C,,,, c,, LAr',, "

+

(12)

(4) Periodic State Matrix of the System

Taking the notes of

X I -AX d , X 1 -AY_ , X 3 -AX i , X,-AY b

X s-AX' d , X I-AY' d , X1-AX' i , X I.AY' i

mpposing that @ and p do not change with time, and renoting (')-- d / dt, the first order state equations of

motion of the system can be obtained from Eq.12 and then can be written in matrix form as

fX}'- [a(_,)lfX} (14)

where the vector [Xi isdcfincd as IXi.. (X,, Xi.....X,)r

and [A(_)] isthe periodicstatematrix and has a period of 2n.

[A(l)ffi

where

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 i 0

0 0 0 0 0 0 0 i

Pl(_) Q1 (_) P1 (_) Qi (_) 2#

fll fll _-'--F _l _- 0 0 0

Ql(_) Pz(_) QJ(_) Pi (_) 2_

Pi(_) Qi (_) K.+Pi(4_) Kv-Q,(_') C C

2_t.ll 2_t.l--"_ 2at.ll" 2a'q2 0 0 2_f/2n 2_t.12

Qi(q)) P2(q_) Kr_-Q_(q_) Kr_+Pz(_) C C
0 0 7' ..._n_

2=fl 2 2_fi 1 2all z 2_fi 2 2_fl 1 2=fl 1

05)

I P, (t) - 1 - ½AKIl(l) - 1 All IC(l))cos2_.e,,(,I,)_ ! - _A_:(,i>) + ½A_:(®)cos2® (l_
Ql(l) lAllg(l) • sin211)

The stability of the periodically time--variant systcm of Eq.14 can be analysed by the well known
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Floquet_s method.

FLOQUET'S THEORETICAL AND NUMERICAL

METHODS USED FOR STABILITY ANALYSIS

The most straightfoward method for dealing with the stability of a periodic syslem is perhaps the

Floquet_s method (see eg., Caesari, 1970), which states that the knowledge of the state transition matrix over

one period is sufficient for determining the stability of the equilibrium position {X} = 0 of a periodic system

_X}' = [A (¢)]f X} (17)

where [A (4_)] - [A(& + 7")] and T is the period. The transition matrix [['(7")] is defined by

(x(T))- Lr(_l{x(o)/

When the transitionmatrixIV(T)]has been obtained,theFloquettseigenvaluesofthesystemcan be calculated

from the following eigen-function

lJr(T)1- FII- 0 o8)

where _f is the Floquet eigenvalue and [/l is the unit matrix.

The stability of the equilibrium position (X} ffi0 of the periodic system (17) can be determined by the cal-

ue of the Floquet eigenvalue pp that is, if all IF/[ < 1, the (X} _0 position is stable; if one or more [p/[> 1, the

_'X} - 0 position is unstable and the {X} ffi0 position is the critical case if one or more [p_ = 1. The physic mean-

ink of the Floquet eigenvalue Pr is clear, it shows the factor by which a given initial amplitude increases or de-

creases _fter one period of motion.

Although the stability of the equlibrium position {X} = 0 of system (17) can be determined from the tran-

sition matrix [T'(T)] of the system, unfortunately, there is no general analytical method for calculating [I'(T_].

But there are several efficient numerical methods although they take too much computer time (Fridemann,

1977). One of them is the so called Hsu/s method and the essential aspects of this method are given in

Fridemann_s paper 0977), the following is the result of this method.

The period T is divided into K intervals denoted by _k (kffi 1,2,...,£') with 0ffi_e<®l<.-. <@K _- T. The

kth interval (_t-t, ®t) is denoted by ft. In the kth interval, a constant matrix [Bt] is defined by

lB.1-[" [A (4))]d4) _¢T. (19)
-!

and the final approximation for the transition matrix [V(T)] at the end of one period can be calculated by

STABILITY AND STABILITY DEGREE OF A CRACKED FLEXIBLE

ROTOR SUPPORTED ON JOURNAL BEARINGS

Based on the Floquet's theorem and the Hsu's numerical method, the Floquet eigenvalues o1"Eq.15 are

calculated numerically for speed ratio 0.2<t'l < 5.0, crack stiffness ratio 0.0< A K¢ < 0.8, gravity parameter

0.00! < W_< 10.0, fixed Sommcrfeld number 0.1 < So< 2.3 and mass ratio 0.05 < a < 0.45. The stability and the

stability degree of a cracked flexible rotor supported on journal bearings are analysed. At first, the following

phraseologies are defined with Fig.5 as an example.

crack ridge: a protruding ridge of Floquct eigenvaluc caused by rotor crack.

crack ridge zone: the zone where the crack ridge locates, for example from A to B in Fig.5. The position
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and extent of the crack ridge zone is given by Eq.(21) and Eq.(22). ......

crack unstable zone: unstable zone caused by the crack, it is the zone where IP_ > 1.0. It locates within the
crack ridge zone.

stabmty degree: the degree of stability which is determined by the largest Floquet e/genvaluc I/_/I. , the

larger the i/_/[m is, the smaller the stability degree. When [/_/[,, < I, the equilibrium position of the system is

stable, when i/:! 1, > I, the equilibrium position of the system is unstable and the equilibrium position of the

system is the critical case when I/_! I, - 1.

diagram of stability degree: the 3-D diagram of Floquet eigenvalue. Its Z-axis is the largest Floquct

eigenvalue I/J! I, , Y-axis is the speed ratio fl and X-axis is the system parameter (the fixed Sommcrfeld

number So, the gravity parameter W#, the mass ratio _ or the stiffness change ratio AK¢).

L0-Leveh The level of the Floquet eigeavalue I/t_m= 1, it is the limit of stability. Above this leval, the sys.
tern is unstable.

(1) The Stability and Stability Degree of Uncracked Rotor Shaft

It should be noticed that now the periodic system (17) is simplified to a timc-invarlant one and the

Floquetrs method is also simplified to the normal eiganvalue problem.

Journal bearings are superior to rolling element bearings in high-speed operation. They have high damp-

ing ability, high load-earrying capacity and low friction. In addition, silent operation and long life can be at-

tained. Therefore, journal bearings of various types are widely used in high-speed rotating machineries. But

an inappropriately designed journal bearing may not only increase the vibration amplitude, but bring also the

oil whirl or oil whip, that is, a self-excited lateral vibration ofr0tating shaft eaused-by oil film in journal bear.

lags. Generally, multilobe bearings are more stable than circular bearings. A tilting-pad bearing is always sta-

ble, because it has no cross-coupling terms ofoil film coefficients.

The gravity parameter W, is a very heavy parameter in the stability analysis. Fig.3 shows the influences

of gravity parameter on the stability degree. It is found that there is a valley of Floquet eigenvalue for gravity

parameter of mid-value (0.05 < W,< 1.0) and small speed ratio fL As fl increases, this valley becomes more

narrow and more shallow. The tilting pad bearing has the longest valley and the cylindrical hearing has the

shortest one. The system will be the moat stable if the parameters are selected in the bottom of the valley. In

the left side (the small gravity parameter side) of the valley, there is a hill of Floquet eigenvalue for cylindrical

and multilobe bearings. This hill is very important for system's stability as it determines the stability limit. Be.

sides, the hill of the cylindrical bearing is much higher and wider than the multilobe bearing, that is why the cy-

lindrical bearing is more unstable than the multilobe bearing. The tilting pad bearing is always stable as it has
no such a hill.

Although the multilobe bearing is generally more stable than the cylindrical bearing, it may be more

unstable than the cylindrical bearing in the case of small fixed Sommerfeld number So and small gravity

parameter Wz.

Another heavy parameter in the stability analysis is the fixed $ommerfeld number So. Fig.4 shows the in-

fluences of Soon the stability degree in different gravity parameter Wx. For multilobe bearing and for cylindri-

cal beating, when S, > 0.4 or Ws > 0.1, it is found that the threshold speed ratio of stability increases as Wz in-
crca_$.

The variation of stability degree with fixed Sommerfe]d number So depends largely on the value of gravi-

ty parameter Wr For small W_, the stability degree decreases as $, increases; while for large Wz, the variation
of stability degree with So is very small.
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(2) The Stabmty and Stabilfly Degree of Cracked Rotor Shaft

It is well known that the stability and stability degree or an uncracked flexible rowr supported on journal

bearing change greatly for different types of journal bearings. What will happen if the rotor has a small crack?

Of course, the crack will have influence on the stability of the uncracked system and will cause new unstable

regions, but how large is the influence and where are these new unstable regions? These questions are impor-

tant for detecting the crack and preventing the system from an accident. In order to answer these questions,

the Floquet eigenvalues of Eq.15 are calculated. For the reason of simple, the cross stiffness change caused by

crack is omitted in the following analysis, that is AK,=,0 is assumed, because AKq is very smaU compared

with AK¢.

Based on the large quantities of numerical results, it is found that the position of crack ridge zones and

then the position of crack unstable zones have no relation with the type of journal bearings, that is, they do

not depend on the fixed Sommcrfeld number $,. The position of crack ridge zones depend only on the speed

ratio and the stiffness change ratio for large gravity parameter (Wz> 1.0), and depend also on the mass ratio

for smaU gravity parameter (W r < 0.05).

Fig.5 to Fig.7 show the positions and the extents of the crack ridge zones. When W_> i.0, the mass ratio

2
has no influence and the crack ridge zones locate always within the two lines of fl-_ and _2

N

than _ (see Fig.5). So that the crack unstable zones locate within
2aV

I-- AXe < t'l< _ (N- 1,2,3,4,5,.--) (21)

When W_<0.05, the crack ridgezones depend largelyon mass ratioand they locatealways withinthe two

2fl ,._.__.L,(I_1/%K¢), where,,_ _.._a/(I+2a'_ '/' and N= 1,2,3,4.5,---.The widthesTinesof t_---_- and t_

AK c
of the crack ridge zones are seperately equal to or less than --_fl (see Fig.6). So that the crack unstable

zones locate within

( 21"1
2fl I 1AK,)<CI _N\ -- < (N-- 1,2,3,4,5,.'.) (22)

In this paper, the shaft stiffness is supposed to change linearly with crack depth, so that the width of the

crack ridge zone increases also linearly with crack stiffness change ratio due to the reduction of shaft stiffness.

Besides, the larger the speed ratio and the stiffness change ratio are, the wider the crack ridge zone is (see

Fig.'/). Therefore, the instability caused by crack in larger speed ratio is more dangerous and should be payed

more attention to.

It is known that the gravity parameter W_ is a very heavy parameter in the stability analysis of uncracked

rotor shaft and it is found in the above discussions that when Wf < 0.05, the mass ratio a has large influence on

the crack ridge zone, while when Ww> 1.0, a has almost no influence on the crack ridge zone. What will hap-

pen if 0.05 < Wx< 1.07 Fig.8 shows the influence of gravity parameter Wz on the stability and stability degree

(please compare Fig.8 with Fig.3). It is found that in a region of Wg within 0.05< WR< 1.0, the crack has al-

most no influence on the stability degree no matter how large the crack is. This is because that in this region,

the diagram of stability degree has either a valley or a hill. The cylindrical bearing and multilobe bearing have

generally a valley at small speed ratio and a hill at large speed ratio, while the tilting pad bearing has always a
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valley although this valley becomes smaller as the speed ratio increases.

It is found that the position of crack ridge zones almost do not change with the fixed Sommerfeld number

8o, but the extent of crack ridge zones decrease with the increasing of $o when the gravity parameter is small

(Wx< 0.05) and has almost no change or increase a little with the increasing of So when the gravity parameter

is large (Wx> 1.0) (see Fig.9). When comparing with the uncracked rotor case, it is found that the change of

crack ridge zone with S, is not due to the crack itself, but due mainly to the influence of $, on the stability

degree of untracked system.

Although the crack ridge zones almost do not change with the fixed Sommcrfeld number $0, the crack

unstable zones become a little bit larger as ,_o increases. This is also due to the change of the stability degree of

uncracked system with _o.

Fig.10 shows the influences of crack stiffness change ratio on the stability and stability degree. It is found

again that the position of the crack ridge zones depend not on the types of journal bearings and, the crack

unstable zones locate always within the crack ridge zones, but the stability outside the crack ridge zones do-

pends mainly on the tyl_ of bearings used. Although the positions of crack ridge zones do not change with

gravity parameter Wx and mass ratio a, the crack unstable zones depend both on the stiffness change ratio

and the system parameters. When Wf is small, there is an extra crack unstable zones in high speed ratio due to

the influence of mass ratio. When W_-O. 1, almost no crack ridge zones exist, because the system is now in the

valley of"the Floquet eigenvalue. So that, as it is mentioned before, the crack has almost no influence on sys-

tem's stablity in some combinations of system parameters. As Wm increases, the crack ridge zones appear

again, but the crack ridge zone in high speed ratio is disappeared because now the mass ratio has no more in.

fluence on the crack ridge zones.

It is found that for tilting pad bearing, the crack ridge in small gravity parameter case is much higher and

therefore is more unstable than in large gravity parameter ease.

CONCLUSIONS

This paper investigates the stability and the stability degree of a flexible cracked rotor supported on dil'-

ferent kinds of journal bearings. The influences of the crack stiffness ratio AK_, the fixed Sommerfeld number

So, the gravity parameter Wx and the mass ratio _t are analysed. It is found that no matter what kind of jour-

nal bearings is used, the position of crack ridge zones and then the position of crack unstable zones depend on-

ly on the speed ratio and the stiffness change ratio for large gravity parameter (Wz> 1.0), and depend also on

the mass ratio for small gravity parameter (W_<0.05). The position and extent of the crack ridge zones are

given by Eq.21 for Win> 1.0 and by Eq.22 for Wz<0.05. When 0.1 _Wr<l.0 , there is a region, where no

unstable zones caused by rotor crack exist.

The larger the speed ratio and the stiffness change ratio are, the wider the crack ridge zone is. Therefore,

the instability caused by Crack in larger speed ratio is more dangerous.

Outside the crack ridge zones, the stability and stability degree of the cracked system arc almost the same

with those oiethe untracked system, that is, they have almost no relation with the crack and depend mainly on

system's parameters; while within the crack ridge zones, they depend mainly on crack stiffness change ratio,

but also on system's parameters. In some cases, the system may still be stable even the crack is very large.
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Fig.2 Bearing geometry
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Fig.3 Influence o]"gravity parameter on the diagram of stability degree, without

crack case (AK¢ = 0.0. AK_ = 0.0, D, = 0.01, So= 2.0, _,= 0.2)
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FIlI.4 4-Lobes bearing, in/'luenee of" gravity parameter and fixed Sommerl'eld

number on the diagram oi"stability degree, without crack case (AK_ = 0.0,

AK, = 0.0, D,= 0.01, _ = 0.2)
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Ib) crmek ridge zone m_l unmtmble limitn

FIg.5 Position of crack ridge zones, influence of mass ratio for large gravity

parameter (4-1obes bearing, Z_ K_=0.7, _K_=0.0, Do=0.01 , $o=0.1,

W t = 5.0)

|b| crack ridge zone nnd unltmble lim[ti

FiI_.6 Position of crack ridge zones, influcnce of mass ratio for small gravity

parameter (Tilting pad bearing, AKc=0.5" A K_=0.0, De=0.01 , $o=0.I,

Wz= 0.001)
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Fix.7 Position of crack ridge zones, influcnce of stiffness ratio (Tilting pad

bearing, AK¢ = 0.0, D, = 0.01, So= 0. !, a = 0.2, W s = 0.00 !)
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of stability degrcc
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(b) '#,,=0.1

(d) unstable limits

FII_.94-Lobcs bearing, influence
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D e= 0.01,== 0.2)
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(d) unstable li=its

Flg.lO Tilting pad bearing, influence of stilTncss change ratio and gravity

parameter on the diagram of stability degree (/X K,=O.O, D,=O.OI,

So= 2.0, "= 0.2)
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