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AN EXPERIMENTAL AND THEORETICAL STUDY OF STRUCTURAL DAMPING

ABSTRACT

IN COMPLIANT FOIL BEARINGS

C.-P. Roger Ku

Mechanical Technology Incorporated
Latham, New York

This paper describes aa experimental investigation into the dynamic characteristics of corrugated
foil (bump foil) strips used in compliant surface foil bearings. This study provided the first

opportunity to quantify the structural damping of bump foil strips. The expedmen_ data were

• . p,,a,_ ca as static loads, d_¢ __m amnlitu,,l_ h,,,,., ,.,,,,_;. --,;..-.

dynamic characteristics of--_" foil st_i";"_' "Y'_ _ ¢v_u.uar_. An un_..mandi_ ofth¢
..h..-__ _ .,__: ., .roump_ P _ from this work offers designers a means for

INTRODUCTION

_ . -.,,-,,-- _ _u rocket propmsion _'tems has mraLEmllv decl;,--a _,._.--
emarmmm_ arc pushing eonv_tional li,_,;a fluid _ '--_--'----'- --S"_ -_-""'. "_ -_-

....... -t--- " u_umgs zo, or pe_llap$ oeyolla, their

_,,_p-m_, ocarm8 aenclencm persist in cryogenic turbopumps. On the other hand,
compliant foil bearings, which can operate ca either gas or liquid, have demonstrated good
pcrfonnanc_ at dm,ated temperatures and high speeds, and are very attractive for use with
cryogenic fluids.

The resilience offered by a compliant foil bearing stems from its construction of a smooth top foil,

which provides the bearing surface, and a flexible, corrugated bump foil strip, which provides a

resilient support to the top foil (see Figure 1). The bump foil strip is welded at one end to the

beating housing and is free at the other end. The advantages offered by the compliant foil bearing
over conventional bearings include its adaptation to shaft misalignment, variations due to tolerance

build-ups, centrifugal shaft growth, and differential thermal expansion. It has king life aad

reliability, higher load capacity, a lower power loss, aad _fior _m_m_c dmn_m_ [1].

/_ m_ of foil bearings ate not as developed, however, as those of conventional-

type fluid-film bearings. Walowit et al. [2] first introduced a theoretical model to _ the

static structural stiffnessof the resilient support. This model assumed that bumps do not interact

with each other, thus neglecting local interactive forces between bumps as well as friction forces

between the top foil and the bumps. According to this na3dd, when the top foil is loaded, each
bump has identical deflection and static stiffness.

Ku and Heshmat [3] recently developed a theoretical model to investigate the mechanism of

deformation of a bump foil strip used in thrust foil bearings. This work was a first step toward
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understandingtherelationshipbetweenfrictionalandlocalinteractingforcesinbumpfoil strips.
Inthismodel,thefrictionforcesbetweentopfoil andbumps,thefrictionforcesbetweenhousing
andbumps,andthelocalinteractive forces between bumps are taken into consideration. These

researcherspredicted that the bumps near the fixed end would have higher static stiffness than the

bumps near the free end, and that the load distribution profile would have a great effect on bump
local static stiflhess. More recently, Ku and Heshmat [4,5] emended their model to predict the

dynamics/rucutml sfifrmss and equivaleat viscous dampingccefftoientsof theresilientsupport,
the bump foil strip, in a journal beating or damper, The _s is calculated based on the

perturbationof thejournalcenterwithrespectto its staticequth'briumposition. The equivalent
viscous dampin8 coefficient is determined based on the area of a closed hysteresis loop of the

journal center motion. With the introduction of this enhanced model, the analytical tools are now

available for the design of compliant foil bearings.

In a follow-up experimental investigation [6,7], the two-dimensional deflections of bump foil strips

were studied via an optical tracking system to verify the feasibility of the theoretic_d model. The

static and dynamic structural stiffness of bump foil strips were measured and compared to

theoretical predictions. The comparisons show very good agreement. The fi-iction coefficients
between the contact surfaces for different surface coatings were also determined empirically by

matching the values of Oynan_c structural stiffness. It was reported that the dynamic structural

stiffness is static load and/or dynamic amplitude dependent.

In this paper, the experimental study has been extended to quantify the equivalent viscous damping
coefficients of bump _il strips. The results are compared to analytical predictions. The effects of

static load, dynamic displacement amplitude, bump confignratious, pivot locations and surface

coatingsare also investigated.

EXPERIMENTAL SETUP

The test apparatus and bump foil assembly are shown in Figures 2 and 3. Each pad is 41.1 mm by
24.6 mm and made of steel. The lower pad acts as a housing and the upper pad is supported by a

bump foil strip. The bump foil strip is welded at one end of the lower pad; a smooth top foil is
welded on the lower surface of the upper pad. As the lower pad moves or vibrates in the vertical

direction, the bumps are deformed in both vertical and horizontal directions. The vertical
deflections of the bumps determine load capacity, or stiffness, and the horizoml motions of the

bumps yield damping.

A horizontal hard dowel, which acts as a pivot, is placed between a circular plate and the upper

pad. The pivot can be located in any one of five grooves that are spaced 3.96 mm apart on the top
surface of the upper pad. A vertical dowel, inserted tightly into the circular plate and loosely into

the upper pad, prevents the horizontal motion of the upper pad. When the pivot location is

changed, the upper and lower pads move as a unit.

The lower pad is mounted on the lower adaptor by two roll pins. The circular plato with a central

groove is fixed on the upper adaptor. The upper and lower adaptors are mounted on an MTS

hydraulic force control system. An extendsometer, which has a sensitivity of 25 lan/V, controls
the relative distance between the adaptors. A force transducer (44.5 N/V) measures the load

capacity of the bump foil strip. The optical tracking system used for the static deformation study

[6] was removed. An Ono-Sokki two-channel analyzer and a plotter record the test data.
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The bump foil strips and smooth top foils were made of Inconel X750; all the other parts were
made of steel. Each bump foil strips is 24.1 nun wide and has six bumps. The surfaces of some of

the foils were coated with either Teflon or copper. For the bump foil strip with one of these

coatings, another smooth foil with the same coating was welded between the bump foil strip and

the upper surface of the lower pad (see Figure 2, Surface 4). In this way, all contact surfaces had

the same coating. For each coating, both dry contact surfaces and surfaces lubricated with light

turbine oil were tested. Table I shows the e_mfigurations and coatings of the tested bump foils.

The detailed _ procedurm used to conduct the static load test were described in

Reference6. ARer a static load was applied, a dynamic force or displacemont was imposed. Inthe

currmt experiments, a dynamic displacement of the vertical deformation of the bump foil strip at

the pivot location was cm_llod by the extendsom_r, and the corresponding dynamic force was

recorded. Dynamic load-deflection curves (hystere_ loops) wore plotted with _ to the static

equilibrium positions. For each bump foil strip specimen listed in Table 1, three most centrally

located pivot pos/tions were ovaluatod (see Figure 2). At each pivot location, two static loads (90

and 135 N) and two dynamic displacement amplitudes (~ 2.5 and 5.0 pal) at 1 Hz frequency were
tested, respecfveJy. Thetest parameters are shown in Table 2.

RESULTS AND DISCUSSIONS

The measured ¢quivalmt viscx_ damping coefficient was calculated based on the area of a

hystcr¢_ loop, A, of the pivot location and the following oquation:

B = A / 0rfh5 _) (1)

The analytical result was calculated by the same oquation but the hysteresis loop of the pivot

location was determined by using the earli_ developed theoretical model [3-5]. The experimental

results are displayed in Figures 4 through 6. The resulting data points arc represented by numbers,
which are identical to the test number shown in the first column of Table 1. The dimensionless
variables shown in the figures are defined as follows:

Dimemionlcssdisplacomeatamplitude, 6"=_52WT(l_v_)_ ( )3 (2)

Dimonsionlms structural damping, B" = D.B 2m(lu'E_)(t_)3 (3)
B

where Ee, vB, tw gr, WT, and m are known parameters (see Table 2 and Nomenclature).

Although it is very difficult to measure the friction coefficients accurately for diffemat surface

coatings, these oo_cionts are required as input par'ametcrs in the thooretical model. Therefore,

the sum ofth0 friction coefficients between Surfaces I and 2 and Surfaces 3 and 4 (Figure 2) was

treated as unknown parmncters, and the co¢_cicnts were detcrminod empirically by matching the

dynamic structural stiffness [7]. It was found that the Ni-Tef (or Tcf-Ni) surface coating has a

total friction coefficient near 0.4; the Ni-Ni surface coating has a total friction coefficient near 0.5;
aad the Ni-Cu (or Cu-Ni) surface coating has a total friction coefficient near 0.6. The results of

structural damping for different total friction ooefBcients were plotted by the solid lines in Figures
4 throngh6.
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Figure4 displaystheeffectof surfacecoatingsand lubricantollstructuraldamping atdifferent

staticloadsand dynamic displacementamplitudes.For eachofthesevencases(I-7),thebump

had a 4.6-ram pitch and a 76-1an thickness, and the pivot was in the center position. In general, the

coating with a higher fi'iction ooefficient provides higher structural damping, however, there are

exceptions when dynamic displacement amplitude is small. In comparing the experimental data

with the theoretical results, the theoretical prvdictioas always overestimate the structural damping,

especially at the small dynamic displacement ampfitudes. In dztailed examination of both

measured and calculated hystereais loops, the measm'ed loop does not followthepredicted one with

a stick-sfip condificm [7]. Therefore, the area ofthe measured hysteresis loop is smaller than the

predicted one.

Figure 5 displays the effect of three bump configurations oa structural damping. For each

configuration, the pivot was located in the center for a Ni-Ni surface coating with (cases 2 and 9)

and without (cases 1, 8, and 10) lubricant. The theoretical results were calculated with total
friction coefficients 0,6. At both staticloads and dynamicdisp_ amplitudes, increasingthe

bump thicknessand/orpitch would increasea small amount of structural damping. Again, the

theoretical predictions overestimate the structural damping for all three bump configurations.

The effect of pivot location on structural damping is shown in Figure 6. For each pivot location,

center or le_ the bump had a 4.6-ram pitch, a 76-pro thickness, and a Ni-Ni surface coating with

(cases C9 and L9) and without (cases C8 and LS) lubricant. The experimental data show that both

pivot locations provide roughly the same amount of structural damping, which does not follow the
trend of theoretical predictions. However, it is interesting to note that the theoretical results do

have much better predictions for the left pivot location.

The effect of lubricant on struc_ral damping is also shown in Figures 4 through 6. The addition

of oil to the surfaces coated with nickel (cases 2 and 9) and copper (case 4) increases the damping,

but not much, for most of the test conditions.

CONCLUSIONS

An cxpcfinumtal study was performed to quantify tlm structural damping of bump foil strips used

in foil bearings. The results were compared to the analytical prexli_ons by using the previously

developed theoretical model. The effects of bump configurations, pivot locations, surface coatings,

lubricant, static load, and dynamic displacement amplitude on the bump foil strip structural

damping were also evaluated.

It was shown that the analytical predictions overestimate the structural damping for most of the test

cases, especially at the small dynamic displacement amplitude. As the static load increases or

dynamic displacement amplitude decreases, the structural damping does not change too much for
all the test conditions. The bearing designer may use the coating with a higher friction coeffici¢_,

add the lubricant to the surfaces, and increase the bump thickness and/or pitch to achieve higher

structural damping.

An understanding of the dynamic characteristics of bump foil strips resulting from this work offers

designers a means for enhancing the design ofhigh-perfommnc_ compliant foil bearings. Recently,
a rotor with 35 mm (1.375 in.) diameter and 15.2 N (3.4 lb) weight has been operated with two air
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foil bearings to 132,000 rpm successfully. These bearings have demoestraled a load capacity to
0.67 MPa (97 psi) [8].
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Hysteresis loop area of the pivot location

Bump foil strip structural damping

Dimensionless bump foil strip structural damping
Bump elastic modulus

Bearingstaticload

dyna cload
Unitloadalongtransversedirection= 175 Nlm (IIb/in.)

Reference bump half length = 1.27 ram (0.050 in.)

Number of bumps in a bump foil strip
Bump pitch

Bump thickness

Reference bump thickness - 76.2 jan (0.003 in.)
Bumptransverselength

Dynamic displacement amplitude w_oration fn:quency

Dynamic displacement amplitude of bearing pivot location

Dimensionless dynamic displacement amplitude of bearing pivot location
Time

Poisson's ratio of bump

__N_
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Table I Configurations and surface coatings of tested bumps

Test Pitch Thickness Height MaterialCombination

# mm [xm nun Surfaces 1 & 2 Surfaces 3 & 4
1 4.572 76.2 0.4953 .... Ni-Ni Ni-Steel

2 4.572 76.2 0.4953 Ni-Ni Ni-Steel
3 4.572 76.2 0.4953

4 4.572 76.2 0.4953
5 4.572 76.2 0.4953

6 4.572 76.2 0.4953
7 4.572 ..... 76.2 0.4953

8 4.572 63.5 0.4890

9 4.572 63.5 0.4890
10 4.191 76.2 0.4699

L Ni-Ni ....... Cu-Cu*
Ni-Ni Cu-Cu*
Cu-Cu*' Ni-Steel

Tef-Tet_ Ni-Steel

Ni-Ni Tef-Tef #

Ni-Ni Ni-Ste¢i

Lubricant

Air

Oil
Air

Oil

Air
Air

Air

Air
Oil

* D4C-X750 Coated with Cu
# INC-X750 Coated with FIFE

Ni-Ni Ni-Stecl

Ni-Ni Ni-Steel Air

,,,, ,,,|

Parameter

Static Load

Perturbation Amplitu__
Pemnbation Frequency

Number of Bumps
Bump ElasticModulus

Table 2 Test parameters

Symbol
W

English Unit

......20, 30 lb
-.0.0001-0.0002 in.

m

SI Unit

90) 145 N

-2.5-5.0 i_m8

G IHz

6

3.0 x 10v psiE B 2.07 x I05 MPa

Bump Poisson's Ratio va 0.25 --

Bump Tran_erse Length ua 0.95 in. 24. I nun
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Load Distribution

...... J f _ r _ Y Y Y TJ _ X

defl_-'ted Foil /-Top Foil

_ r, Y__,_.= ,__ Bump Foil

JPitch (s)--

Bump I Bump 2 Bump 3

Figure I
Bump foil strip with and without applied load

LoO=u_Rt

Ve_k_ I_ _

Ci=l¢

FZ_t'e _ Center Pivot

T_ F_I_ '

E]am,_t (bump)

_ LOI¢I Cell _Honzontal Oowel ,n

Po=tmn

Surll_ 3

Dial/l: Aria "A" g1_1

Figure 2
Bump foil pivot locations and identification of surface contacts

333



V91-227

Figure 3 Close-up of bump foil assembly on test
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Effect of surface coatings on structural damping
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Figure 5 Effectof bumpconfigurationson structuraldamping
(Ni-Ni surfacecoati-g, centerpivot)
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Figure 6 F.J_'cctof pivot locations on structural damping
(s---4.6 ram, ts=76 lint, Ni-Ni surface coating)
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