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THIRD-ORDER 2N-STORAGE RUNGE-KUTTA SCHEMES

WITH ERROR CONTROL

Mark H. Carpenter _ Christopher A. Kennedy t

Abstract

A family of four-stage third-order explicit Runge-Kutta schemes is derived that requires only two

storage locations and has desirable stability characteristics. Error control is achieved by embedding

a second-order scheme within the four-stage procedure. Certain schemes are identified that are

as efficient and accurate as conventional embedded schemes of comparable order and require fewer

storage locations.

Section 1: Introduction

Runge-Kutta (RK) embedding techniques are an effective means of solving non-stiff ordinary dif-

ferential equations (ODE's). (See references [1], [2], [3], [4] for examples of high-order aN schemes

that utilize embedding.) Embedding utilizes two formulas of orders p and q (p _ q) to calculate

the evolution of the solution in time. By comparing the two solutions at each time step, an estimate

of the temporal error can be determined and can be used to adjust the time step. For example,

if q = p + 1, then the difference between the pth- and qth-order solutions provides a measure

of the error committed in using formula p. The two solutions cannot be advanced without com-

putational overhead; however, this overhead can be minimized by requiring both formulas to have

similar coefficients and storage requirements. In a best-case scenario, no additional work or storage

is necessary for the implementation of the embedded scheme. To date, most embedded schemes have

been optimized in terms of accuracy and efficiency, with little regard to storage requirements.

For the ODE's that result from the semidiscretization of partial differential equations (PDE_s)

(fluid mechanics, for example), the overriding consideration is often the availability of fast memory.
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A numerical integration technique that minimizes memory storage is essential and can be formulated

with a RK methodology. Williamson [5] showed that all second-order and some third-order explicit

RK schemes can be cast in a 2N-storage format, where N is the dimension of the system of ODE's.

He also showed that the four-stage fourth-order RK schemes cannot be put into 2N-storage format.

Carpenter et al. [6] showed that a fourth-order 2N-storage scheme could be achieved with five

stages (this scheme is abbreviated RK[5,4]-2N). In addition, they showed that tuned four-stage third-

order schemes (RK[4,3]-2N) are significantly more efficient than conventional three-stage third-order

schemes (RK[3,3]-2N) for certain problems.

The principal motivation of this work is to derive a family of schemes that requires 2N storage

and that has the capability to monitor temporal integration error. Specifically, a four-stage third-

order RK scheme that satisfies the 2N-storage constraint is sought (RK[4,3]-2N). To accomplish error

control, a three-stage second-order 2N-storage RK scheme (RK[3,2]-2N) is embedded within the first

three stages. (The resulting scheme is abbreviated RK[4,3(2)]-2N.) The family is then tuned so that

a desirable stability envelope is achieved for the four-stage scheme. In section 2, we describe the

conventional and the 2N-storage RK nomenclature. In section 3, we derive a new family of four-stage

third-order 2N-storage schemes with an embedded formula. We then optimize the family for maximal

stability characteristics. In section 4, the time-step control procedure is described. In section 5, the

efficacy of the new schemes is demonstrated on several test problems, and then conclusions are drawn

in regard to the utility of the new schemes.

Section 2: Run_;e-Kutta Nomenclature

We are concerned with the numerical solution of the initial value problem

dU
_ F[t,V(t)]; V(to) = Go

dt

Assume that the discrete approximation is made with an M-stage explicit RK scheme which includes

an embedded scheme within the M-stage procedure. The implementation over a time step h is

accomplished by

kl = F(to, U °)

i-1
ki = F to + c_h, U ° + h __,ai,jkj

j_-I

M

O' = v ° + hE ,jk 
j----1

M

U 1 -- V ° -4- hEbjkj

j=l

i = 2, ..., M



where U ° = U(to) and _rl and U 1 are the solutions at time level n + 1 of order p and q, respectively.

The fixed scalars ai,i, bj, bj, ci are the coefficients of the RK formula and, for a four-stage third-order

scheme, must satisfy the equations [7]

4 1

Z bi = 1 Z bici = _ Z bicy = "_ ; Z biaijcj -- -_ ; =
(1)2

i----1 i=1 i=1 i,j--1 i----1 i----1

and

c, = _, a,,j i= 1,4 (2)
j=l

The last two constraints in equation (1) ensure second-order accuracy of the three-stage embedded

scheme.

To devise low-storage RK schemes, Williamson [5] exploits the technique of leaving useful in-

formation in the storage register. Each successive stage is written onto the same register without

zeroing the previous value. Thus, the M-stage algorithm becomes

dUj = AjdUj_I + hF(Us)

Us = US_ _ + BsdU j j= 1, M

So that the algorithm is self-starting, A1 = 0. Only the dU and U vectors must be stored, which

results in a 2N-storage algorithm.

The following relations, first presented by Williamson, [5] describe the dependence between the

2N-storage variables A s and B s and the conventional RK variables ai,s, bs, and ci:

B s : aS+l,S
BM = bM

A s = (bs_l- Bj_l)/b s

A s = (aj+l,j-i - cs)/B j

(j # M)

(j # 1, bs # O)

(j :_ 1, bj = O)

(3)

The precise values of A s and B s that are required to yield a higher order scheme remain to be

determined.

In terms of the Butcher array (see reference [7] for details), the relationship between the conven-

tional RK scheme and the 2N-storage RK scheme can be expressed as

0

C2

C3

C4

a2,1

a3,1 a3,2

bl b2 b3 b4



0

B1

BI + B_(A2 + I)
B, + B2(A2 + i)+ B3[A3(A2+ I)+ I]

B1

A_B2 + B1 B2

A2(A3B3 + B2) + B1 A3B3 + B2 B3

A2[A3(A4B4 + B3) + B2] + B1 A3(A4B4 + B3) + B2 A4B4 + B3 B4

Note that this form assumes four explicit stages, with the coefficients a4j, j = 1,4 replaced by

bj, j = 1,4.

Section 3: Four-Stage Third-Order RK Schemes With Embedding

The solution to the four-stage third-order RK scheme is formed by solving eight equations in

fourteen variables and is, in general, a six-parameter family. The variables aid, bj, cj are changed to

As, Bj using the relationships defined in equations (3). Specifically, the values a2,1, a3,2, b3, b4, b3,

b2, and bl are expressed in terms of the values B1, B2, /33, B4, A4, A3, and A2, respectively. By

4 will automatically be satisfied. The only conditions that aredefinition, the conditions cl = Ej=l ai,j

not immediately satisfied involve az,x, bl, and b2. These three conditions provide three additional

constraints on the system, and eliminate three of the six degrees of freedom. If a three-stage second-

order scheme is embedded, then two additional constraints are provided and the number of degrees

of freedom is reduced to one. A solution that involves one free parameter can be written in Butcher

array form as

0

6 ca -3

C8

0

6 c3 -3

6 c3 2-8 c3+3

6 c3-4

_ (2 c3-1)(12 ca2-18ea+7)

Os cs'-12)(Y)

0 0 0

0 0 0

3(2 cs-l? 0 0
6 c3-4

(18 c32-24 e:_ +9)(2 c3-1) 2 0
(6cs-4)(X) x

(3c3--3)(2c3-1) m __ 3c_-2 ca (12 c32-18 ca +7')

(6 c3-4)(Y) (6 c_:6)(Y) (6 ca -6)0 z)

where X = (12 ca 3 - 24 Cs _ + 16 Cs - 3) and Y = (6 cs 2 - 6 Cs + 1). Written in 2N-storage form,

the arrays Aj and Bj become

A1 B1

A2 B2

A3 /33

A4 /34

__ 36 c33 -48 c#2+18 c.,?-1

9(2_s-1) 3
'-" (9 c$ -9)(2 c.,},-1) 3

3 c3--2

1
X

6 c a --3

6 ca --4

_ __L_.
X

ca (12 ca'--18 ca+7 )

(6 ca -6)(Y)

with ca -# ½,},1, v43)_6 , or "-32-_

We now use efficiency and accuracy considerations to isolate specific values of c3 that exhibit

desirable characteristics. The linear stability of the four-stage thlrd-order schemes is governed by
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G 1 2 i 3 4---- _i,j,k=l biaijajkck =I+Z+_Z +_Z +Z_j,k=l biaijajkck z4. (See Butcher [7] for details.) Because 4

(2o -1)0 (120  -lS c +7)
12xY for all values of c3, the linear stability envelope is found by solving ]G[ < 1,

where

G=I+Z+_Z 2+_z 3-(2cs-1) cs (1212XYcs2
- 18 Cs + 7) Z4

Carpenter et al. [6] reported that the four-stage third-order RK schemes (RK[4,3]) have desirable

stability characteristics (for use with hyperbolic PDE's) for 4)_i,j,k=l bialjajkck <_ _4, with optimal

values near _. For values greater than _, the RK[4,3] schemes abruptly become unstable. For

values less than _, a gradual decrease in stability occurs. Figure 1 illustrates this behavior by

showing the stability of the scalar hyperbolic equation ut + u_ = O. The spatial derivative u_ is

approximated with a periodic sixth-order compact spatial operator. The RK[4,3] schemes are used

as the temporal discretization. In this test problem, the spatial eigenvalues are purely imaginary and

are representative of the behavior of many spatial operators used for hyperbolic PDE's.

Note that a linear fourth-order scheme is recovered if _ij,k=14 b_a_jajkck = _.1 Thus, the linear

stability is identical to that encountered with four-stage fourth-order RK schemes. The value of c3

for which 4_'_i,j,k=l biaijajkck = 1 is c3 -- 1+_
-- 3 "

If rational numbers are desirable, then a scheme for which the stability is nearly identical to the

s6
linear fourth-order case is c3 = 1-Tg,or in Butcher form

0
s__

125

1

0 0 0 0

0 0 0
½4_51 _27 0 0

27_25 34_77 609375 0
17364752 17364752 1085297

615391 258453 62500 198961
215952 71984 526383 526383

for which the 2N-storage array becomes

A1

A2

A3

A4

01 s
B1

756391 I 6627B2 934407 200"-"O

B3 36,4 8731 937515625000 1085297
B4

1953125 ] 198_I1085297 526_3

For this scheme, 4 1168695675_i,j,k=l b_aijaj_ck -- 29296507218 _ 251.--L-_.Note that this scheme is very close to the

embedded four-stage third-order RK pair RK[4,3(2)]-3N proposed by Sharp et al. [8] (which is not a
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2N-storagescheme):

5

1

i,
b

0 0 0 0

1_ 0 0 0
A

_sr t62 0 0
"! 3- o

5 5 5

90 15 18 5

for which 4 1143 1_,j,k=l b_aijajkct, - ,,_ --31"_0 27.34"

1+6
For linear problems, the optimal RK[4,3(2)]-2N scheme is the fourth-order case c3 -- 3

The optimization of the accuracy for nonlinear problems is more difficult because the optimization

is problem dependent. We can, however, use heuristic arguments to identify certain schemes as less

desirable. Verner [9] and Prince et al. [4] cite several theoretical considerations that should be used

in determining desirable high-order RK schemes and schemes with embedding. Those theoretical

considerations that are relevant to this work are

I Each intermediate time level (c_, i = 1,4) should be in the interval [0,1] to control the effect of

rapidly changing derivatives.

II To minimize roundoff error, the cl, i = 1, 4 should be reasonably distinct to avoid large bi and

aid values.

III The weights of the bj, j = 1, 4 should be positive.

IV Coefficients should incorporate rational numbers that require a small number of digits.

V The leading-order truncation terms [It q+l[I should be small.

VI The leading-order truncation terms of the embedded scheme [[÷p+l[] should dominate its error.

VII None of the leading-order truncation terms of the embedded scheme [[÷P+I[I should vanish,

which ensures that each will contribute to the local error estimate _,,+I.

The first four conditions are relevant to the accuracy of any RK scheme. The last three pertain to

embedded schemes.

In the RK[4,3(2)]-2N family of schemes, no values of 0 <_ c3 _< 1 exist for which 0 _< bj ___1 for

all values of j = 1,4. Constraint I and IV, therefore, can not be satisfied simultaneously. For reasons

of stability and accuracy, all practical RK[4,3(2)]-2N schemes will have values of c3 _ _+_s . The

coefficient matrices ai.j, bj, and cj are well behaved for these values of c3, and the truncations terms
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r q+l and #p+l havesatisfactoryproperties.The coefficientmatricesbecomeill-conditionednear the

singularvaluesc3 _ ½, 3, 1, vq3)_36 , and _3 . Restrictive stability domains preclude all these values

2 should not be used, in spite of the acceptablefor c3, except the point c3 ---* 3" Values of c3 near

stability domain.

Section 4: Time-Step Control

For many systems of ODE's that result from the semidiscretization of PDE's, the temporal error

does not need to be monitored at each time step because the maximum stable time step yields

reasonable levels of temporal accuracy. Under these circumstances, the prominent concern in choosing

a time-advancement scheme is the efficiency of the scheme. (Efficiency is defined as the absolute size

of the stability envelope relative to the number of stages of the scheme.) Carpenter et al. [6]

demonstrated that the efficiency of the RK[4,3]-2N schemes was as good or better than the RK[3,3]-

2N schemes. The required work per time step is increased by one third, but the increased stability

domain more than offsets the increased computational cost per step. This result is consistent with

those obtained by Sharp et al. [8] for other high-order RK schemes. The embedded RK[4,3(2)]-2N

schemes have the same stability envelope as the RK[4,3]-2N scheme and will, therefore, exhibit the

same stability advantage over the RK[3,3]-2N schemes.

Many nonstiff equations exist for which the time step must be determined by the solution error

and not by stability considerations. Embedded RK schemes provide a means of adjusting the time

step during the calculation to achieve a desired temporal error level. The quantity 8,+x = U 1 _ _rl is

the local error at time n + 1 in the pth- order formula. Given 8,_+1, the widely used formula quoted
e ..l_.

by Hull et al. [10] h,_+l = _¢h,, { _}p+l can be used to adjust the time step to control the

error per step, where e is the solution error tolerance. (For the schemes proposed here, p = 2 and

= 0.95 is a satisfactory constant.)

An advantage of the RK[4,3(2)]-2N schemes is that 8"+1 = U _ - U_ is available without the

additional expense of computing it and it does not require any additional storage. Specifically, the

estimate i_"+1 = U x - _n = BadU4. This results from the fact that the scheme is second- and

third-order accurate after the third and fourth stages, respectively. The difference between the two

solutions must be the leading-order error term in the second-order formula (assuming the scheme

satisfies condition VI listed above).

A disadvantage is that the time step can be adjusted only after the error has been committed

because of the 2N-storage constraint. For conventional embedded RK schemes, if the prescribed error

tolerance is exceeded, then the entire step is repeated with a smaller time step until the specified

tolerance is met. This option is not available for the 2N-storage scheme because the original solution

7



vectorat time level n is overwritten by the intermediate solution vectors. The subsequent time step

can be adjusted, but the error incurred during the "failed" step is accumulated into the solution

vector for all time. In practice, adjustment of the error tolerance to a lower level eliminates this

problem at the expense of more computational cost.

Section 5: Accuracy and Efficiency of RK[4,3(2)] Embedded RK Schemes

Three test problems are used to compare the new embedded RK[4,3(2)]-2N schemes with error

control. The first is a nonlinear ODE used by Dormand et al. [3] to test the accuracy of various RK

schemes. The ODE is defined by y' = y cos(x), y(0) = 1 on the interval 0 < x < 20, with

the exact solution y(x) = exp 'i=(_). Figure 2 shows a convergence study for the following schemes:

the second-order RK[3,2]-2N (the embedded scheme in RK[4,3(2)]-2N), Williamson's [5] RK[3,3]-

( 1+_'_ the embedded RK[4,3(2)]-2N(b) (ca 8s= 1-_),2N, the embedded RK[4,3(2)]-2N(a) c3 = 3 ],

and the classical fourth-order RK[4,4]-3N scheme. All schemes approach the exact solution at their

theoretical rate. Note that the Williamson RK[3,3]:2N scheme is nearly indistinguishable from the

two embedded RK[4,3(2)]-2N(a) and RK[4,3(2)]-2N(b) schemes. (Williamson claims the RK[3,3]-2N

scheme is optimal in terms of error.) This study verifies the nonlinear accuracy of the newly developed

2N-storage schemes for ODE's. Although the third-order scheme exhibits comparable accuracy, the

Williamson RK[3,3]-2N scheme requires one-third fewer function evaluations than the RK[4,3(2)]-2N

schemes but has a considerably smaller stability envelope.

The second problem is from the class D orbit equations used by Hull et al.

accuracy and efficiency of ODE solvers. The problem is defined by

d__ = Y3, yl(0) = l--e,

y,, y2(0) 0

y,(o)

[10] to test the

with r 2 = y_ + y_. The exact solution is

yl = cos(u)- ,
-- sin

Y3 = 1_ '

y2 = V_ _2sin(u)

vq:;rco,(,)
Y4 -- 1-e co,(u)

with u - _ sin(u) - t = 0. The eccentricity of the orbit is governed by c and becomes singular for

values of e ---, 1. A value of e = 0.9 provides a severe test of an embedded scheme's error control

capabilities.

We begin by testing the error control features in the 2N-storage scheme. The conventional RK

schemes reintegrates a rejected time step by using the solution information stored at time level n; the

8



2N-storageschemesdo not havethis capability. The effectsof this error accumulation on the long-

time accurazy of the solution was tested by comparing the RK[4,3(2)]-2N(a) scheme in low-storage

and conventional RK format. In the conventional format, the rejected time steps were reintegrated,

to provide a direct comparison between the two approaches. The results on the orbit problem indicate

that the accumulation of error could be controlled by decreasing the constant x in the error control

expression. For values of x < 0.9, the percentage of rejected steps becomes insignificant, and both

methods give the same accuracy and efficiency.

As a final test on the orbit problem, the new embedded RK[4,3(2)]-2N(a) scheme was compared

with the embedded RK[4,3]-3N scheme reported by Sharp et al. [8] Figure 3 shows a logarithmic

comparison of the error versus the number of time steps for each method. Both schemes have

comparable absolute stability envelopes, and the efficiency for a given accuracy is slightly better for

the new 2N-storage scheme.

The last problem is the solution of the linear hyperbolic equation defined by

ut + u,: = O, O_<z_<l,t>O (4)

u(O,t) = sin2r(-t), t > 0 (5)

u(x,O) = sin2r(x), 0 < x _< 1 (6)

The exact solution is

=(x,t) = sin2 (x-t), 0<x<l,t>0

and is a model for the class of problems that the embedded RK[4,3(2)]-2N schemes were developed

to integrate.

Equations (4) through (6) are solved with four different embedded RK[4,3(2)]-2N schemes; specif-

432 86 62ically, the cases c3 = _ c3 = -- c3 = -- and c3 = m In all cases, the spatial operator used
3 _ 625 ' 125 _ I00"

is the sixth-order compact scheme developed by Carpenter et al. [11] and shown to be formally sixth-

order accurate. The physical boundary condition is imposed by solving the differentiated boundary

condition on the boundary with the RK procedure. This technique was shown by Carpenter et al.

[12] to yield a fourth-order temporally accurate procedure. Specifically, the boundary condition is

d3u(0, t)/dt 3 = g"(t), where g is the physical boundary condition at the inflow plane. The CFL's

that govern the stability of the hyperbolic problem range from v/2 for c3 = _ to 1.16 for c3 - 623 -i-_"

After grid refinement with a vanishingly small CFL, all schemes recover the theoretical spatial

sixth-order accuracy. The leading-order error terms for values of the CFL near the theoretical max-

imum are dominated by the temporal error components. On a specific grid, temporal refinement

showed third-order temporal accuracy. Fourth-order temporal accuracy was obtained for the specific
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value c3 _ Table 1 shows the results from a grid-refinement study performed with a CFL
3

of 1 Only the cases c3 = _ and c3 = 62• 3 1"-_are shown because they bracket the behavior of the

other two schemes.

Table 1. Grid Refinement for Embedded RK[4,3(2)]-2N Schemes with CFL = 1

c3 = 1+_
3

Grid logL2 Rate IogL_

41 -3.695 -3.022

81 -4.888 3.96 -3.931

161 -6.092 4.00 -4.836

321 -7.296 4.00 -5.739

641 -8.501 4.00 -6.642

Rate

3.01

3.00

3.00

3.00

62
C3 -" 1o-"o

logL2 Rate log/_,_ Rate

-2.815 -2.884

-3.745 3.09 -3.786 3.00

-4.660 3.04 -4.689 3.00

-5.567 3.01 -5.592 3.00

-6.472 3.01 -6.495 3.00

The log L2 column represents the logarithm base 10 of the L2 solution error, and the/)oo column

represents the maximal error in the solution as calculated by the embedded scheme. For the value

c3 = _ the embedded scheme overpredicts the solution error on this linear problem. For the
3 _

values ca # _ a direct correlation between the solution error and the predicted error from the
3 _

embedded scheme.

Table 2 shows the results from a temporal refinement study on a grid of 161 points. Two values

of c3 are used to show the trends of the study. Fourth-order temporal accuracy was obtained for the

specific value c3 = _ Third-order temporal accuracy was observed for c3 _
3 " 3 "

Table 2. Temporal Refinement of Embedded RK[4,3(2)]-2N Schemes

c3 =
3

CFL logL2 Rate IogL_ Rate

1 -6.169 -4.836

! -7.353 3.93 -5.739 3.00

-7.733 1.26 -6.642 3.01

-7.731 - -7.546 2.99

-7.730 - -8.448 3.00
16

! -7.730 - -9.352 3.00
R2

6_2.2
C3 "" lOtl

logL2 Rate logLoo Rate

-4.751 -4.689

-5.653 3.00 -5.593 3.00

-6.543 2.96 -6.500 3.00

-7.331 2.62 -7.399 3.00

-7.677 1.15 -8.301 3.00

-7.724 0.16 -9.205 3.00

Note that the solution error asymptotes to a value dictated by the spatial error terms; the embedded

error converges at a rate of at least three (independent of the CFL used). This study shows that for

the cases in which c3 ¢ _ temporal error can be controlled by monitoring the embedded error.3

When the embedded scheme with a value c3 = 1+_ is used on linear problems, the temporal error
3

will be overpredicted.
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Thesethree test problemsdemonstratethe efficacyof the embeddedRK[4,3(2)]-2N schemesfor
linear and nonlinearODE's for whichtime control is important. The behavior of the new schemes

is similar to other embeddedRK schemesof comparableorder that exist in the literature. If the

overridingconcernin the choiceof integrator is the reductionof storageand temporal error control

is necessary,then the newly developedembeddedRK[4,3(2)]-2Nschemesare clearly advantageous

overexisting 2N-storageschemes.

Conclusions

A class of new four-stage third-order RK[4,3(2)]-2N Runge-Kutta (RK) schemes are derived that

require only two storage locations. The class has a three-stage second-order 2N-storage RK scheme

embedded within the first three stages. A comparison of the second- and third-order solutions can

give an estimate of the temporal error at each time step. The subsequent time step can then be

adjusted to achieve a desired error control. A particular scheme is identified that has the desirable

efficiency characteristics for hyperbolic and parabolic initial (boundary) value problems. In the

inviscid and viscous limits, this new RK[4,3(2)]-2N storage scheme has comparable accuracy for a

given step size and has a larger allowable stability domain than the RK[3,3]-2N scheme advocated

by Williamson. The absolute stability of the new schemes is comparable to that achieved with the

classical four-stage fourth-order RK scheme. Numerical tests are presented that verify these results

on nonlinear ordinary differential equations (ODE's) and linear hyperbolic equations.
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1 for RK[4,3] schemes where a = _,j,k=l biaijajkck.FIGURE 1. CFL dependence on parameter ;
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FIGURE 2. Comparison of convergence between RK[4,3(2)]-2N schemes and conventional RK[3,3]-

2N and RK[4,4]-3N schemes. Problem is ODE defined by y' = y cos(x).
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FIGURE 3. Comparison of convergence between RK[4,3(2)]-2N scheme and existing RK[4,3(2)]-

3N scheme on orbit problem.
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