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Abstract

The capability of the HL-20 liftiT_g body to perform an abort ma-

neuver from the launch pad to a horizolttal laTtding was studied. The

study involved both, piloted and bateh simulation models of the vehi-

cle. A point-mass model of the vehicle was used for trajectory opti-

mization studies. The piloted simulation was performed in the Langley

Visual/Motion Simulator in the fixed-base mode. A candidate maneu-
ver was developed and refined for" the worst-case launch-pad-to-landing-

site geometry with art iterative procedure of off-line maneuver analy-

,sis followed by piloted evaluations and heuristic improvemerLts to the
candidate maneuver. The resultinq maneuver demonstrates the launch-

site abort capability of the HL-2O and dictates requiremer_ts for nominal

abort-motor performance. The sensitirity of the maneuver to variations

in several design parameters wa,s doeumeT_ted.

Introduction

The HL-20 has t)ecn prot)osed as a crew transport

vehicle for the personnel launch system. The, current

baseline design is a 20 000-1b lifting body with a nmx-
imum subsonic lift-drag ratio of 4.3 that. is capable

of being launched vertically into low Earth orbit by
an expendable launch vehicle and can be landed hor-

izontally following reentry. Figure 1 is a three-view

drawing of the concept. The vehicle is designed to

carry a crew of two and up to eight passengers to
attd from low Earth orbit. Both manual aim auto-

matic landing capabilities are planned (ref. 1).

A 6700-1b adapter module will be used to connect

the HL-20 to the launch vehicle. (See fig. 2.) This

adapter design will include a launch escape system
that is intended to thrust the HL-20 away fi'om the

booster in case of a ma.lflmction either during the
actual launch or on the pad prior to lmmch (on-pad

abort). Acceleration levels on tile order of 8g's (lg =

32.2 ft/sec 2) wouht be required to propel the vehicle

a safe distance away from a malflmctioning booster.
After a specified time, the abort-motor thrust would

drop to approximately lg for an additional specified
amount of time to avoid excessive velocities and

associated drag. The adapter module wouM be

jettisoned following abort-motor tmrnout.

The lift-drag ratio of the initial HL-20 configura-

tion precluded a glide to a nearby runway. Thus, the

original on-pad abort scenarios were similar to those

for previous manned capsules, that. is, an abort to
ocean landing with a recovery parachute (ref. 2). Ad-

ditional aerodynamic refinements of the HL-20 con-

figuration led to increased subsonic lift-drag ratios,
and a higher performance abort, motor was specifed

for the launch escape system (ref. 3). These improve-

ments raised the possibility of performing a conven-

tional horizontal landing following an on-pad abort

(pad abort to runway).

A previous manned space project, the X-20 Dyna-
Soar, was designed to have a pad abort-to-runway

capability. To verify the feasibility of this abort con-

tingency, an in-flight simulation study was conducted
in a delta-wing interceptor aircraft (ref. 4). The tra-

jectory flown in the aircraft consisted of a low-level,

high-speed entry into a vertical pull-up at a pre-
determined location to sinmlate abort, initiation.

This maneuver was followed by a pullover to the

horizon, a roll maneuver to an upright wings-lew'.l
attitude, and a 180 ° turn to landing. The relation-

ship between the pad and the skid strip in the X-20
launch scenario was different than that proposed for
the HL-20.

A study was initiated to determine whether the
HL-20 vehicle could successfully be maneuvered to a

runway landing in the event of an on-pad abort and

to determine what design parameters would improve

the feasibility of such a maneuw_r. The results of the

study are presented herein.

Symbols and Abbreviations

KEAS

L/D

OMS

SRM

V

0

knots equivalent airspeed

lift-drag ratio

orbital maneuvering subsystem

solid rocket motor

velocity, ft/sec

angle of attack, deg

pitch angle, deg

bank angle, deg



Simulation Models

To evaluatethe pad-abort-to-runwayscenario,a
candidatemaneuverwas developedand analyzed
withoff-lineandreal-timesimulationtools.Thereal-
timepilotedsimulationwasusedto explorepossible
abortmaneuvers;tile off-linesimulationwasusedto
arriveat a numericallyoptimaltrajectory.Thepi-
lotedsinmlationwasthenusedto validatetheopti-
mal trajectoryandto suggestsimplificationsto the
maneuverthat wouldmakeit easierto perform.The
pilotedsimulationtestswereperformedin ageneric
transport-typecockpit(fig.3) with a left-handside
stick, a hydrauliccontrolloader,forwardandleft-
sideout-the-windowdisplays,head-downinstrumen-
tation and displays,and a simulatedwide-field-of-
viewhead-updisplay.Themotioncueingsystemwas
notemployedfor thesetestsbecauseof motionper-
formancelimitations.

The mathmodelusedin the pilotedsimulation
wasderivedfroman existingHL-20approach-and-
landingsimulationmodel(refs.5 and6). Modifica-
tionsincludedaddingamodelof thesteerableabort
motorwith thrustandpitch-rolltorquesspecifiedas
a functionof time, modelingthe orbitalmaneuver-
ingsubsystem(OMS)rocketmotors,andincreasing
thevehiclemasspropertiesappropriately.Modifica-
tionsto theflight-directorandautopilotcontrollaws,
thecontrol-lawmode-switchinglogic,andsimulation
initializationlogicwererequired.Head-upandhead-
downflightdisplaysweremodifiedto assistin pilot
orientationduringthemaneuver.

The off-line simulationemployeda point-mass
modelthat usedoptimaltrajectorysimulationsoft-
ware(ref. 7). The simplified aerodynamics of this
model consisted of lift and drag coefficients as a func-

tion of Maeh number and angle of attack. Control

deflection, landing gear, and ground effects were not
modeled. Some performance differences between the

off-line and piloted simulations are apparent; how-

ever, the optimal maneuvers developed with the off-

line simulation provided insight into a practical and
efficient abort maneuver for manual or automatic

flight control.

Abort Trajectory Design

A set of probable launch-pad/runway geometries,
vehicle orientations, and abort maneuvers was ini-

tially considered. The set included simulated aborts

from Kennedy Space Center launch pads 39A, 40,

and 41 with simulated landings at both the Shuttle
Landing Facility and the Cape Canaveral Air Force

Station skid strip. The orientations of the launch

pads and landing facilities are shown in figure 4. Can-
didate abort scenarios included various orientations

of the launch stack in which the vertical fin of the

HL-20 was pointed due east, slightly south of east,
slightly north of west, or in an optimal direction.

Some of these vehicle orientations were dictated by

launch-pad constraints,

Nominal touchdown speed for the abort cases
was increased from 200 knots equivalent airspeed

(KEAS), the nominal end-of-mission value to

230 KEAS as a result of the heavier weight of the

vehicle with all consumables still aboard (25800 lb

versus 19 100 lb). This difference mandated a higher
minimum speed at the beginning of the preflare ma-

neuver (275 KEAS versus 250 KEAS).

Trial Trajectory

As a starting point in this investigation, an opti-

mized trajectory was generated for one of the abort

situations (pad 40 to skid-strip runway 13) using an-
gle of attack and bank angle as the control vari-

ables. The starting point for the maneuver was
100 ft above launch pad 40 with an initial veloc-

ity of 50 ft/sec (to avoid numerical problems). Fi-

nal conditions were specified to be a trimmed glide

at 450 if/see (266 knots) over the approach end of

runway 13 and alig}md with the runway heading.
Bank angle was constrained to +30 ° and roll rate to

+28.6°/sec (+0.5 tad/see). Angle of attack was con-

strained to 0 ° to 30 °, and angle-of-attack rate was
constrained to +5.7°/see (+0.1 rad/see). The op-

timization program was free to pick an initial flight-

path angle and heading, as well as angle of attack and

bank-angle control trajectories. A 3-see, 8g abort-
motor thrust pulse at the start of the maneuver, fol-

lowed by a constant 1500-1b thrust from the simu-

lated OMS engines, was modeled as the only energy
addition to the problem. The optimizer was asked

to maximize the altitude over the runway threshold

(threshold crossing height).

The resulting optimal trajectory (fig. 5) indicated
an initial flight-path angle of approximately 45 ° was

preferred; this angle corresponds with the launch

angle of ballistic projectiles to achieve theoretical
maxinmm range in a vacuum. The optimal turn

to final approach was a gradual roll to intercept

the final-approach course at approximately the same

time the roll-angle limit was reached. The altitude
predicted over the runway threshold was 1193 ft.

This trial trajectory showed the benefit of steerable

abort motors that would allow rapid modification

of the vehicle orientation at the beginning of the

maneuver to obtain optimal heading and flight-path
angles ms soon as possible. It also indicated that an

optimal trajectory would be difficult for a pilot to

follow, because of the continuous variation in flight



conditions,andthattheinevitabledeviationfromthe
preplannedtrajectorywouldrequirereconlputation
of a newoptimal trajectoryfrom tile newvehicle
state.

Other CandidateTrajectories
In additionto theabortto runway13for pad40,

a candidatetrajectoryfor eachof tile othersitua-
tionswasdevelopedin thepilotedsimulation.Early-
abortmaneuvercandidAteSincludeda pulloverfol-
lowedbyahalf-roll(forhead-downaborts),pushover
(for head-upaborts),anda modified"sliceback"or
wingovermaneuverfor abort orientationsthat re-
quirea headingchange.(In this context,the term
head-upor head-downrefersto the attitudeof the
crewduringthe initial portionof the abort.) The
improvementinmaneuverperformancegainedbyim-
mediatelyrollingandpitchingthevehMeto anop-
timal headingand attitude led to the adoptionof
steerableabort,motors.Abortsbothwith andwith-
out firing the OMSandwith modifiedabort-motor
thrustprofileswerestudied.

Worst-CaseTrajectory
Fromthesepreliminaryinvestigations,theworst.-

caselaunch-pad-to-runwaygeometrywasselectedfor
further study. This worst-casegeometryinvolved
anabortfromthesouthernmostShuttlelmmehpad,
pad39A,to theskid-striprunway13,astraight-line
distanceof8.3n.mi.,comparedwith5.3n.mi.forthe
trial trajectory. This worst-casescenarioassumed
a prinlaryabort-motordurationof 3.5sec,a setof
sustainermotorsthat provided33000lb thrust for
11.5sec,andnoOMSthrust,comparedwith a3-see
primaryabort-motorthrust duration,nosustainer
motorthrust,andaconstant1500lb thrustprovided
bytheOMSenginesthroughoutthetrial trajectory.
The primary abort-motorthrust wasconstantat
248800lb in both cases.The verticalfin of the
HL-20onthelaunchpadwasassumedto bepointed
100° (clockwisefrom true north). This alignment
wouldcorrespondto aneastwardhead-downlaunch
configurationandwouldrequirean immediateright
roll to orientthevehiclefor ahead-upabort. Winds
wereassumedto be steadyat 22knotsand were
assumedto becomingdirectlyfrom the runwayto
tile lmmchpad.

The focusof the researchthen shifted to the
developmentof a simplifiedabort maneuverthat
wasasefficientaspossiblebut that couldbe flown
repeatedlyby a pilot. It is anticipatedthat, given
thesuddennessof theabortmaneuverandtherapid
rotation of the vehicle,automaticcontrolof the
vehicleis requiredfor at leastthe initial part of

themaneuver;however,thesimplifiednmneuverwas
developedwithapilotandwasdemonstratedbyboth
the pilot and an automaticflight-controlsystem.
Thisautomaticflight-controlsystemallowedmanual
takeoverat anypoint.

Initial steering. The worst-case abort, maneu-

ver from pad 39A was begun with a 3.5-scc, 248 800-
lb burn of the abort motors. The abort motors were

assumed to be steerable and were used to rapidly roll

the vehicle to a 182 ° heading to begin a head-up ma-

neuver to the runway. The motors then pitched the
vehicle down t.o a 45 ° pitch attitude. These maneu-

vers were completed in approximately the first second

of tile abort. Figure 6 shows the abort-motor thrust

and torque time histories used in the sinmlation. Af-

ter 3.5 sec, the abort-motor thrust was decreased to
aa 000 lb; this reduction provided a sustainer thrust

level of nearly lg h_r the next 11.5 sec. (This va.tue
for the duration of the sustainer motor burn was {le-

t.ermined after several trials.) The pilot was asked

to hold a 45 ° flight-path angle by using the head-

up-display (HUD) pitch ladder and velocity vector
(fig. 7) until abort-motor burnout, at which time the

adapter module was jettisoned.

Pushover maneuver. Folhlwing abort-motor

burnout, a zero-alpha pushover maneuver was exe-
cuted. Tile pilot performed this maneuver by mov-

ing the boresight marker to coincide with the velocity
vector on the HUD. Nonfinal apogee conditions were

10633 ft at 228 KEAS and at a distance of 13240 ft

downrange from the launch pad at 28 sec after ini-
tiation of the abort. The zero-alpha flight condition

was maintained until a specified negative flight-path

angle was reached.

Pullout maneuver. A pullout maneuver was

then performed to achieve the nominal glide condi-

tion (300 KEAS at -14 ° flight-path angle), which
was maintained until beginning the turn to final

approach. The details of the nlaneu.ver were tte-
veloped heuristically in the piloted simulation and
consisted of following the zero-all)ha flight condition

until a flight-path condition of approximately -28 °

was reached at, approximately 240 KEAS. Angle
of attack was then increased over tile next 25 sec

to simultaneously achieve tile nolninal glide speed

(300 KEAS) and flight-path angle (-14°); these con-
ditions were maintained until starting the final turn

nmneuver. The rate at which the velocity vector was

raised was limited by the requirement not to exceed

the maximum lift-drag angle of attack (13°). Angles
of attack above 13 ° resulted in rapid energy dissipa-

tion. This portion of the maneuver seemed to require

3



practiceonthepartofthepilot;aguidancealgorithm
wouldhavebeenofsomebenefitbutwasnotutilized.

Steady glide. To (ietermine tile best glide con-
ditions, a set of trim cases was generated using the

full nonlinear model for steady straight-ahead glide

conditions at constant equivalent airspeed for various
levels of OMS thrust. These trim curves arc shown

in figure 8. The nominal glide speed used in the sin>
ulation for the zero OMS thrust worst-case situation

(300 KEAS and -14 ° flight path) was slightly faster

than the best glide speed for the vehicle (265 KEAS)

at the heavy-abort weight of 25 800 lb. This higher
speed was chosen to improve penetration into the

headwind and to match the entry speed of the final-
turn maneuver.

Final-turn maneuver. The initial optimal

point-mass solution (fig. 5) included a constantly

varying bank angle in tile turn to final. This ma-
neuver was difficult for the pilot to perform consis-

tently, and a nonoptimal, constant-bank-angle turn

was more acceptable. A set of steep gliding turn
trim cases was generated off-line for the flfll non-

linear vehicle model. This analysis generated a set

of curves that showed that a bank angle of 49 ° could
be sustained at 300 KEAS and with a load factor of

1.4. (Sec fig. 9.) During the 8000-ft-radius turn, the

HL-20 lost approximately 65 ft of altitude per degree

of heading change and maintained sufficient speed to
complete the flare and landing maneuver. Turns per-

formed at slower speeds could yield a slight improve-

ment in turn efficiency (a 42 ° bank turn at 250 knots,

for example, loses only 50 ft per deg), but insuffi-
cient altitude remains after the turn to accelerate for

the landing flare and landing nmneuver. Thus, the

model with the 300-knot airspeed, 49 ° bank angle,
and 8000-ft-radius turn was chosen for the final-turn

maneuver.

Following the turn to final approach, an ilnmedi-

ate flare and landing maneuver followed. Touchdown
occurred at a nominal distance of 1931 ft down the

runway.

Worst-case maneuver comparisons. A typ-
ical heuristic abort trajectory is shown in figure 10.
This condition includes 22 knots of wind from 181 °

(clockwise from true north) and the abort-motor per-

formance history shown in figure 4. This trajectory
was flown manually following the method described

previously. The threshold crossing height was 25.3 ft.

A fully autonmtic abort trajectory is shown in

figure 11 for the same conditions as the manual tra-

jectory. This control strategy employed the same
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heuristic rules as the manual strategy, with the ex-

ception of holding a constant angle of attack from

apogee to extended glide-slope intercept, which ac-
counts for the differences in steady glide trajectory.

Threshold crossing height is nearly the same as the
manual case (24.8 if).

Following the development of the heuristic tra-

jectory in the piloted sinmlation, an optimal trajec-

tory for the worst-case geometry was generated for

comparison. The optimal trajectory is plotted in fig-

ure 12 and is replotted with the manual and auto-

matic abort trajectories in figure 13. It is apparent
that the optimal trajectory outperforms the heuristic

trajectory, as would, be expected. However, the op-
timal trajectory is generated with a simplified math
model of the aircraft without control-surface deflec-

tion or pitch dynamics; therefore, there is a some-

what more optimistic prediction of vehicle perfor-

mance. Also, the goal of the optimization algorithm
was to achieve the highest possible threshold cross-

ing height, subject to the constraints described pre-
viously. Threshold crossing height for the optimal

trajectory is 3794 ft. This is an optimistic, outconm,

however, because of the simplified vehicle model.

Estimated Parametric Sensitivities

Modifications to the launch escape system and ve-

hicle design parameters were explored to determine

the sensitivity of the abort maneuver to changes in
design parameters. Parametric variations in vehi-

cle weight, steady winds, maximum lift-drag ratio,

abort-motor thrust levels, and the effect of firing the
OMS thrusters were studied and benefits were cal-

culated. Threshohl crossing height was estimated

from the energy state of the vehicle at the begin-

ning of the turn to final approach. This estimation
was used to counter the large dispersion in landing

conditions introduced by the difficult turn to final

approach. This estimation method also allowed the
use of several simulation runs that were made with-

out any computer-generated imagery. Five runs were

performed manually for each perturbation amount

studied. Numerical results of the parametric study
are given in table 1.

As shown in the table, the estimation method in-

dicates that successful landings were possible, and

indeed were accomplished, in all five trials of the
baseline configuration (same as the worst-case sce-

nario in the previous section, but without any winds);

however, the headwind cases (the last two entries)
indicate a small negative estimated threshold cross-

ing height. During the actual runs with the 22-knot

headwind, however, five successful landings (out of

five attempts) were accomplished by landing slower



than the 230-knot target speed used in the estima-

tion method. The 22-knot case clearly represented

an absolute worst-case abort condition.

Concluding Remarks

As a result of this study, it was concluded that a

successful launch pad-abort-to-runway landing could

be performed both manually and automatically for

worst-case conditions. A candidate abort maneuver

was developed through analysis and pilot experimen-

tation, and sensitivity of the maneuver to design pa-

rameter variation was determined. A guidance and

control law to automatically perform the abort was

developed that was successful in providing a safe

landing in the case of crew incapacitation. Compar-

isons of the candidate maneuver with an optimal ma-

neuver indicated that additional performance gains

might be realized with additional refinement of the

maneuver.

NASA Langley Research Center

Hampton, VA 23681-0001

March 2, 1994
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Table 1. Estimated Parametric Sensitivities for Launch-Pad 39A Abort to Runway 13

Averaged for 5 manual aborts; Baseline 3.5-sec abort motor,]ll.5-sec sustainer motor, thrust-vector control calm winds

Varied parameter
Baseline

Sustainer duration

Vehicle weight

Lift-drag ratio

Abort motor duration

Abort motor thrust

OMS thrust

Headwind from 181 °

Variat ion

Estimated

threshoM crossing

height, ft

-1.5 sec

+ 1.5 sec

+3000 lb
3000 lb

-0.5

+0.5

+0.2 sec

- 15 000 lb

+15 000 lb

+1000 lb

+ 11 knots

+22 knots

104

-1035
1321

-2451

2799

-1340

1787

1415

-1283
1411

2027

-141

-207

Threshold

crossing-height
difference, ff

-1139
1217

-2555

2696

-1444

1684

Threshoht

crossing-height

sensitivity

759 ft/sec

811 ft/sec

-0.85 ft/lb

-0.9(} ft/lb

289 ft/0.1 L/D"

337 ft/O.1 LID

1311

-1386
1307

1923

-245

-311

656 ft/0.1 sec

92.4 ft/10t)O lb
87.1 ft/1000 lb

1.9 ft/lb

22.3 ft/knot
14.1 ft./knot

aChange in baseline L/D by 0.1.
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Orbital maneuvering subsystem

(OMS) motors

Figure 1. HL-20 lifting body.

f Primary ab°rt _R:rt SRM

_r

i /////_,//_\\\\\_\\1_ \ {l _" It- HL-20 interface

interface -_ _

_- Abort separation plane

Figure 2. HL-20 launch escape system adapter with abort motors.
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3_Kennedy Shuttle

Landing Facility

15 000 ft by 300 ft
28 36.9 N

80 ° 41.7' W

33_\ _q" z

&
\

// ",\
i ',

Pad 39A

Pad 41

Pad 40
\

Cape Canaveral
Air Force Station

10 000 ft by 300 ft
28 ° 28.0' N
80 ° 34.0' W

"., .................. Runway

 13o o

Figure 4. Possible launch pad-abort-to-runway geometries. Linear dimensions are in feet.
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o 0
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Figure 6. Abort-nlotor thrust and moment profiles for pad 39A to runway-13 abort.
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Figure 7. Schematic of head-up display.
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Figure 8. Steady glide trim conditions for abort configuration at altitude of 10 000 ft.
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Figure 9. Most efficient steady turn performance versus airspeed.
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