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ABSTRACT

The technique of windowing has been often used in the implelnentation of the waveform relax-

ations for solving ODEs or time dependent PDEs. Its efficiency depends upon problem stiffness

and operator splitting. Using model problems, the estimates for window length and convergence

rate are derived. The effectiveness of windowing is then investigated for non-stiff and stiff cases

respectively. It concludes that for the former, windowing is highly recommended when a large

discrepancy exists between the convergence rate on a time interval and the ones on its subintervals.

For the latter, windowing does not provide any computational advantage if machine features are

disregarded. The discussion is supported by experimental results.
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1. Introduction. The waveform relaxation (WR) method was originally proposed

for solving ordinary differential equations arising from very large scale integration

(VLSI) circuit simulation [5] [9]. Unlike conventional timestepping methods, it iter-

atively partitions a big system into mutually decoupled subsystems, and then solves

each subsystem independently. Different discretizations and time steps are allowed for

integrating subsystems. Based on its nature, the method has been proposed as a mul-

tirate method for sequential computing or a parallel method on advanced computers

[2].

Under reasonable assumptions for an ODE, the WR iteration has been shown to

converge superlinearly on finite intervals [1] [5] [8]. The uniform convergence on an

interval of [0, T] is reached in the exponential norm

Ilull¢, := max ¢ > 0,
t_[O,T]

which implies that, for many problems, the WR iteration will converge much faster

on short intervals than on longer ones. In order to accelerate the convergence, the

technique of windowing is recommended, in which the interval of integration is split

into a series of subintervals, called windows, with iteration taking place on each window

successively.

The length of window is of practical important and strongly depends upon problem

and machine involved. The general guidance for its selection and the way for evaluating

its effectiveness are relatively unknown even though windowing has been a common

practice in using the WR method.

The estimates for time windows of the WR iteration were studied by Leimkuhler

and Ruehli for RC circuits arising as simplified models of a VLSI interconnect [4]. Finer

estimates were developed by Leimkuhler for a model linear second-order system [3]. Us-

ing the speed of splitting and weighted spectral radius of iteration operator, Leimkuhler

estimated the abscissa of _a-convergence, which then provided a priori estimate for the

length of a window wherein convergence was approximately geometric with the given

rate w. His approach puts emphasize on the qualitative comparisons between splittings.

In this paper, we focus on the time dependency of the approximation error and

intimate relation between the WR iteration (or dynamic iteration called in [6]) for

time dependent problems and the static iteration for corresponding steady-state (or

static) problems. For certain model problems, it is possible to separate the factor

that represents early sweeps from the one that dominates asymptotic behavior. Simple

convergence estimates are therefore obtained. The estimates and the results observed

in the experiments are compared and shown to have good agreements. Based on these

estimates, the effectiveness of windowing is discussed for non-stiff and stiff problems

respectively. General guidance for the use of windowing is concluded in the end.

2. Waveform relaxation. Using a first-order linear system

du

(1) d--t +iu=f' t>O, u(O)=uo,



with a given splitting L = M - N, the WR iteration can be illustrated by

duO')
+ Mu (_) = Nu (_-l) + f, t>0, u(O(0)=u0.

dt

It is an iterative process on a space of differential functions. The functions u ('), so

called "waveforms," are then discretized for numerical integration. The continuous

approximation error e (') := u(') - u satisfies

(2) e(_)(t) = Se(_-')(t), t > 0,

where S is a linear operator on LP(R +, C '_) (1 < p _< c_) depending upon M and N,

and is called the iteration operator.

Several convergent splittings for an ODE system were proposed and discussed in

[3] and [6]. We shall restrict ourselves to splittings that resemble Jacobi splitting and

Gauss-Seidel splitting on linear systems with time independent coefficients, as described

by Eq.(1). For simplicity, the space considered in this work is C°°([0, T], C"), the space

of continuous Ca-valued functions in [0, T], with [[-[[ denotes I°° norm for space variables:

Ilu(t)[] := max ]ui(t)l,
_<i_<,_

and II1"lilt stands for

lib'lilT:= max Ilu(t)ll.
tetO,Tl

The notation lI" IIwill also be used as l°° induced matrix and operator norm. Tim issue

of time discretization is beyond our consideration, for which the reader may refer to [7].

3. Convergence estimates. For certain type of problems or operator splittings,

the factor representing early phase of iterations and the factor dominating asymptotic

behavior in the approximation error can be separated. Laplace transform is a convenient

tool for doing this. Applying Laplace transform to Eq.(2), the error is expressed as

_(_)(z)= S(z)_("-')(z)= S_(z)_(°)(z), Rez > O,

where

S(z) = (zI + M)-'N

is tile Laplace transform of tile convolution kernel of S. Note, S(0) is the iteration

operator for the steady-state problem Lu = f corresponding to Eq.(1).

Theorem 1. Let L be split as L = M-N with M = dl, d > O.

iterations, the error is bounded by

Ile(_)(t)lI _<g.(dt). IIS_(0)II• Ille(°)lllT, t e [0, T],
2
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where

(3) gv(t) 1-e-t(= i.)--e-ti=,,z!

and Pt(v) is tile incomplete F-function.

Proof. For M = ell, d > O,

SV(z) = ((z + d) -1 N) _ = (z/d + 1)-',q'(O).

Let

].(z) := (z + l) -_.

The inverse Laplace transform of ]. is

1

f.(t)- (v- 1)! _-'tv-'.

Hence the error in the time domain satisfies

,v I'dt

e(')(t) = ,5 (0) ]0 f'(r)e(°)(t - r/d)dv.

Define

For t E [0, T],

_0 t
9"(t):= fv(_)ar r,(v)r-V;' t>O.

Ile(_)(t)ll_ II,S'v(o)ll• max(f_'f.(_)dr, max le!°)(t)l)
1 <i_<n Jo t6[O,T]

= gv(dt)- It,S'_(0)II• III_(°)IIIT.

Equation (3) can be easily verified by induction. []

It is interesting to examine the bounds given by Theorem 1. Note that (11,5'"(0)1[)'/"
is time independent and approximates the asymptotic convergence rate either for ob-

taining the steady-state solution or solutions over long time intervals. Function g,,

represents the time dependency of the error and dominates the convergence behavior

at early phase of iteration or on short intervals. It is a monotone increasing function,

bounded by 0 < g,,(t) < 1 with

gv(O) = O, lira g_(t) = 1-.
t--.+ oo
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These observations on the error bound agrees with computational experiences that

the WR iteration converges faster on short intervals than o,1 longer ones, and the

convergence rates on any time intervals, including infinite interval, are at least as good

as the one for the static iteration•

When operator L has constant diagonal, Theorem 1 actually gives an error bound

for Jacobi WR iteration• The next two theorems will give results for Gauss-Seidel WR

iteration on model problems•

Theorem 2. Let L = M - N. Assume that M and N are simultaneously diago-

nalizable by matrix X, and all eigenvalues of M are positive. Then

II_(V)(t)ll_<gv(dt). IIS_(0)II.cond(X). IIl_(°)lllr, t • [0,T],

where d is the largest eigenvalue of M and cond(X) = IIX-'ll" IlXll.

Proof. From the assumptions, there are diagonal matrices AM and AN, such that

M = X-1AMX, N = X-'ANX,

and

AM = {Ai(M)},

In the Laplace domain,

AI(M) > 0 for all i.

S_(z) = X-'((zI + A_)-'AN)*X = (X-'A_t'A_X)(X-'(zA_ ' + l)-'X),

leading to

],,(z/A,(M))

¢_)(z) = s_(0)x -' ]_(z/;_,(M))
xa(°)(z).

Applying inverse Laplace transform, one obtains

tl_(_)(t)ll< IlSV(0)ll• IIX-'ll • max I[ _'(M)t
-- l<i<n JO

T$

f,(r) _ z,_e_°)(t- rlA,(M))dr[
j=l

n

_<IIS_(0)ll• IIX-'ll •_<_<x(g,,(Ai(M)t) _ Ix,jl)• III_(°)IIIT
- - j=l

< g_(dt). IIS_(0)ll•cond(X). IIId°)lllr.
4
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The lexicographic (or forward point) Gauss-Seidel WR iteration on heat equation

with periodic boundary condition is an example that this theorem can be applied (see

[10]). When operator L has the form

- I , d>O,

a common structure when using a red-black ordering on certain model problems ill

ODEs or in time dependent PDEs, the error in Gauss-Seidel WR has a similar upper
bound.

Theorem 3. For operator L represented by Eq.(4), the error after v Gauss-Seidel

WR iterations, expressed as e(V)(t)T= [e(V)(t) T, e(sV)(t)T], is bounded by

(5) Ile(_)(t)lJ< g__,(dt). IIS_(0)II• Ille_)llIT, t C [0,T].

Proof. For Gauss-Seidel splitting,

[ ]M=d I 0 andN=d 0 0-R I '

Laplace transform of the convolution kernel of S can be expressed as

[ IB]0 z/d+l
S(z) = (zI + M)-l g = 0 a p ,

which yields

and

(z/d+l) 2

P = RB,

o ]2__,(z/d)BP"-' ]S'(z) = o ]2.(z/d)P _

_(_)(z) = [ ]2v-l(z/d)BP'-'_(_)(z)]2.(z/d)p'_(_)(z) ]"

Back to the time domain,

e(°/(t)= [

Using the properties

and

zPv-' fJ' Ao_,(_-)e2)(t-r/,_),_-]
P" fodt f2.(T)e(_)(t- T/d)d7 J"

g_+,(t)< g_(t), t > 0, v > 0,

max{llBPV-'ll,llP'll} <_IlSV(O)ll,
5
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0 BP "-1 ](note, Sv(0) -- O PV ), the inequality (5) follows immediately. []

The discussion above indicates that the error at early stage of the WR iteration is

controlled by function g_. Simple convergence estimates are therefore derived naturally

from this function. Given a convergence rate w and an iteration number v, the length

of a window of w-convergence (see [3]) can be estimated by

(6) := max{t:

where mtd(.) is an integer function, defined by the operator splitting. For instance,

mtd(v) = v and mtd(v)-- 2v - 1 for the cases discussed in Theorem 1 and Theorem 3

respectively. A useful variant of Eq.(6) is the value

(7) :=

which gives an estimated average convergence rate on windows of length T in first v

sweeps.

Example 1. Consider the ODE system

du

d---[+ Lu = O,

where L = [-1,2,-1], a symmetric tridiagonal matrix with 2 and -1 on main and off

diagonal. This system describes the nodal voltage of a linear resistor-capacitor (RC)

network [3] [4]. Jacobi WR iteration was performed with randomly generated starting

function u (°). The trapezoidal rule was used in the integration with conservative time

step At = 0.01 for simulating time-continuous iteration. For a given number of sweeps

v, the observed convergence rates wobs were collected as

u!V)(t__u!V_l) )l/v
max max I ' ' _-7--'-::_-- (t)

Figure 1 depicts the graph of T_ for 5 Jacobi iterations (v = 5) together with

observed data marked by x's. Table 1 shows more detailed comparison between the

observed convergence rate wobs and estimated rate WT on interval [0, T]. The estimates

T_'s and WT'S provided by Eq.(6)-(7) are surprisingly close to the observed data. Al-

though such a good agreement cannot be predicted in general, reasonable match at

early phase of iteration should be expected if similar error bounds, as given by these

theorems, are conjectured.



TABLE 1

Observed and estimated convergence rate on [0, T]

v
_obs /_T

T=0.2 T=0.4 T=0.6 T=0.8 T=I.0

.2271/.1994 .3840/.3620 .4920/.4939 .5682/.6006 .6227/.6864

.1536/.1437 .2793/.2691 .3801/.3783 .4622/.4730 .5295/.5550
.0000/.0927 .1796/.1781 .2555/.2568 .3242/.3292 .3852/.3956

4. Effectiveness of windowing. The theoretical analysis and practical experi-

ments have revealed that the effectiveness of the WR method depends highly on the

stiffness of the ODE solved. Not surprisingly, the effectiveness of using windows in the

WR iteration is also closely related to the stiffness of the system. In this section, we

investigate their relation, and show how to estimate the efficiency of windowing, Which

then results the general guidance for the implementation of the WR iteration.

The effectiveness of windowing is discussed in terms of computational cost or op-

eration counts. Following concepts and notations are needed.

Let/t be average operation counts on unit windows per sweep. For a given error tol-

erance _ > 0, VT(e) denotes the average number of iterations needed for the convergence

on windows of length T. Using Theorem l, VT(e) can be estimated as

9T(C) := min{v : gmtd(,_)(dT) < e}.

The error tolerance ¢ will be dropped whenever the context is clear. The total com-

putations on a window of length T for the convergence is then approximately equal
to

C :: vTT#.

Note that T_ is the average computations on a window of length T per sweep. Let this

window be split into two subwindows of length T1 and T2, 711+ T2 = T, with the WR

iteration taking place on each of them until the tolerance level is reached one after the

other. The total cost then satisfies

vT_T_/_ T vT2T2_ < vT,T#, T'= max{T1, T2}.

Define C_i,_ := uT, T#. C and C_i,, will be referred as the average computations on an

interval of length T without and with windowing respectively. Since VT, < VT, we have

(8) _<c.

This indicates that windowing does not introduce extra computation.

The number of iterations for the convergence on an interval of length T is closely

related to the stiffness of the ODE involved. This can be seen from the behavior of

the function go (see Eq.(3)). For example, an approximation for the case stated in
Theorem 1 is

(dT) _r
g,,( dT) ,._ _ ,._ _,

ST!
7



leading to

dlr'T(_ml2)'l_ < dT ,_ (_fiT!)'/_T < din'fiT.

That is, the estimated number of iterations VT increases proportional to the parameter

d, an indicator of the stiffness of the ODE solved.

4.1. Non-stiff case. Given an interval of length T. Following above arguments,

the number of the WR iterations for convergence is not too large for non-stiff systems. If

the interval is split into k windows of equal length T' = T/k, the gain or the percentage

of the savings of using windows can be measured by

SWin "

C - Cwin

C

VT -- yT j

VT

vTT# -- kvT,T'#

vTT#

If UT _ VT', Swin '_ O, not much computation can be saved by windowing. When

vT > VT,, using windows, VT -- VT, sweeps of WR on this interval of length T are likely

to be reduced.

Table 2 lists the experimental results on Example 1 discussed in Section 3, as well

as corresponding estimated values. The entries are of the form observed/estimated.

The numbers listed inside parenthesis in column 2 are average number of iterations

collected on subintervals of [0, 2] with length T. Windowing was used on intervals

[0, T], T = 0.5, 1.0, and 2.0 with the window length 0.25. The iteration was terminated

when the relative error was in the order of e = 1.e - 7. Again, the estimates were

in good agreement with the observed ones. Windowing reduced the computations by

25-60%. It clearly suggests that windowing is quite efficient in reducing computations

when a large discrepancy exists between the convergence rate on an interval and the

ones on its subintervals.

TABLE 2

EJfietiveness of windowing (observed/estimated)

Interval

[0,T]
No. of Iterations

ave. vr)/
Computations

With Windowing %Without Windowing

[0, 0.251 8 (7) /8 2_ / 2_ 2_ / 2#

[0, 0.50] 10 (9) /10 5# / 5# 3.75# / 4# 25 / 20

[0, 1.00] 13 (12) /13 13Ft / 13# 7.25# / 8# 44 / 38

[0, 2.001 17 (17) /18 34# / 36# 13.5# / 16# 60 / 56

Remark. Eq.(8) and the observed data in Table 2 seem to suggest choosing min-

imum window length, which ironically is equivalent to the step size used in the time

integration of subsystems. In this situation, the WR method is nothing but a time-

stepping method for solving ODEs. However, recall that the method is proposed as

a multirate method in the context of serial computation or a parallel method on ad-

vanced computers. For the former, it is developed for problems in which the coupling
8



of subsystemsis relatively looseand many subsystemsallow large integration steps.
The window length is therefore recommendedasthe largest step sizeusedin the time
integration of subsystems. For the later, machinecharacterssuch as vector length,
communicationoverhead,play important roles. The study in this paper is restricted to
the mathematical concernsonly.

4.2. Stiff case. In this situation, the WR iteration would take large number of
iterations to converge ill an interval. The convergence rate very likely has entered the

asymptotic behavior. Estimating it in terms of function gv alone is no longer adequate.

From the error bounds given by Section 3, the rate of convergence at time t would be

dominated by

(g..d(v)(dt)llS'(O)l[)'/" p(S(O)),

the spectral radius of S(0) or the convergence rate of the related static iteration. Since

p(S(O)) is time independent, the convergence rates on any intervals are almost identical,

so are the numbers of iterations needed for the convergence on those intervals.

Example 2. Consider the heat equation on the unit square f_ = (0, 1) x (0, l) with

Dirichlet boundary conditions

,,,- zxu= 0, (t,x) • (0,T] × a

u = O, (t,x) • [0, T] x 0_2, u(O,x) = Uo(X), x • ft.

The equation was first discretized in space, resulting the semi-discrete problem

(9) dU
d--( + LhU = O,

where Lh is the five point difference approximation operator to the Laplacian

1[ _1jLh:=_- -1 4 -1 ,
-1

and h is the mesh size of space discretization. The red-black Gauss-Seidel WR was then

implemented on the system (9) over time interval [0, T]. The iteration was terminated

when the difference between the vth and v - lth approximation

IIIU( )- UO'-')IIIT

reached the level of truncation error O(h2), a safe stopping criterion proven by Nevan-

linna [8]. Table 3 shows that the numbers of iterations needed on different time intervals

are almost the same, confirming the above arguments. As is discussed, using small win-

dows for this problem virtually has no mathematical advantage.

9



h

1/8

1/16
1/32

TABLE 3

Number of iterations

0,0.1251 [0,0.251 [0,0.51 [0,1.01

16 17 17 17

53 60 60 60

208 239 239 239

5. Conclusions. In this paper, the convergence estimates such as window length

and convergence rate are developed using the qualitative comparison between the WR

iteration and the corresponding static iteration. The effectiveness of windowing tech-

nique for the WR method is discussed. The results proven in this work and observed

in the experiments suggest that, for non-stiff ODEs, substantial computations can be

saved by windowing when a large discrepancy exists between the convergence rate oll

an interval and the ones on its subinterval; while for stiff problems, which are typically

arisen from time dependent PDEs, windowing has no mathematical advantage. Thus

for stiff systems, the selection of the window length should be mainly determined by the

machine features, such as memory capacity, vector length, cache size, communication

cost, etc.

Although only a few model problems are considered in this work, similar approach

could be taken for some generalized problems. The guidance concluded above certainly

provide helpful information in the implementation of the WR method for wide class of

applications.
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