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FOREWORD

During the past decade, significant effort has been applied to analysis and understanding of various

aspects of dynamic flow field behavior. The inability to control the effects of dynamic stall has

proven to be the limiting factor that has precluded use of dynamic lift on helicopters or aircraft.

Even though significant effort has been expended on attempts to control the dynamic stall vortex

that occurs on rapidly pitching aerodynamic surfaces, progress has been slow, and results have

been limited. However, control and use of dynamic lift offers much potential for dramatic

improvement of aircraft and helicopter performance, and has been identified as a critical research

topic by both the Air force Office of Scientific Research (AFOSR) and the Army Research Office

(ARO), which have supported major research efforts in this area.

During discussions of this topic with Capt. Hank Helin, USAF, program manager for Unsteady and

Separated Flows for AFOSR, and Dr. Tom Doligalski, Chief, Fluid Dynamics Branch, Engineering

Sciences Division of the ARO, we came to the conclusion that dynamic stall control was ONLY

possible if the physics of the forced unsteady separation event itself was better understood. We felt

that it was time that emphasis be shifted from modeling of the dynamic stall vortex movement

down the airfoil; it should be placed on the need for better understanding of the forced unsteady

separation process itself. The title of the workshop was then chosen to emphasize this area.

It became clear that there was a need for the research community to become more aware of the

work being performed by the various scientists supported by the research offices. It was also clear

that there was a need for greater interaction between the various researchers in an environment

where discussion focused on the subject of unsteady separation could be sustained. This became

the theme of the workshop and governed the scheduling of the meetings, as well as the guidance

given to the various scientists who were invited to attend.

The workshop was a success, mostly due to the enthusiastic participation of the attendees. The ses-

sions became forums for discussion and analysis of research findings, rather than the usual

sequence of presentation without time for discussion prevalent at national meetings in the recent

past.

The speakers were asked to submit abstracts for publication, and responded with written versions

that range from abstract to full paper; these have all been included. In some cases, selected view-

graphs from the authors' presentations also have been included, where these add to the message of

the written text. Unfortunately, publication page-number limits have precluded the inclusion of a

full set of viewgraphs, but every effort has been made to include all those viewgraphs that signifi-

cantly supplement the written text.

Lawrence W. Carr

Editor and Workshop Coordinator
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UNSTEADY SEPARATION EXPERIMENTS ON 2-D AIRFOILS, 3-D WINGS,

AND MODEL HELICOPTER ROTORS

Peter F. Lorber and Franklin O. Carta

United Technologies Research Center

East Hartford, CT 06108

ABSTRACT FOR NASA/AFOSR/ARO WORKSHOP ON

PHYSICS OF FORCED UNSTEADY SEPARATION

APRIL 17-19, 1990

Information on unsteady separation and dynamic stall is being obtained from

two experimental programs that have been underway at United Technologies
Research Center since 1984. The first program is designed to obtain detailed

surface pressure and boundary layer condition information during high amplitude

pitching oscillations of a large (17.3 in chord) model wing in a wind tunnel.

The second program involves the construction and testing of a pressure-

instrumented model helicopter rotor. This presentation describes some of the

results of these experiments, and in particular compares the detailed dynamic

stall inception information obtained from the oscillating wing with the unsteady

separation and reverse flow results measured on the retreating blade side of the

model rotor during wind tunnel testing.

An inital, two-dimensional oscillating wing experiment was performed in

1986 under AFOSR sponsorship, and has been documented in Refs. 1 and 2. Surface

pressure and hot film data were acquired for constant pitch rate ramps and

sinusoidal oscillations in the range of _ = 0 to 30 deg, for M = 0.2, 0.3, and

0.4, and Re = 2,000,000 to 4,000,000. Figure 1 shows typical results for an

M = 0.2, A = _c/2U = 0.01 ramp. This figure is similar to those in Refs. 1 and

2, and shows time histories of the ensemble-averaged pressures at each of the 18

transducers on the airfoil surface. A negative pressure spike (caused by the

dynaic stall vortex) forms near • = 0.47, and moves back along the airfoil.

Figure 2 (not previously published) shows chordwise pressure distributions at

several values of • during this process. The passage of the vortex is shown by

the pressure bulge on the upper surface. The references discuss the effects of

pitch rate, pitching waveform, and Mach number on the stall process. Compres-

sibility effects were very significant, as a small supersonic bubble forms near

the leading edge at M = 0.4, and the peak suction pressures and the unsteady

increments to the airlods are much weaker. Reference 3 describes a Navier-

Stokes simulation of the 2-D experiments. Good agreement was obtained up

through the formation of the dynamic stall vortex, while many of the

quantitative aspects of the periodic vortex shedding after stall were missed.

This study is now being extended under ARO and AFOSR sponsorship to include

three-dimensional measurements on a finite tip model. In addition to obtaining

information on how the presence of the wing tip affects the dynamic stall

process, this experiment is intended to study sweep and compressibility effects.

The model, shown in Fig. 3, consists of a square wing with the same (17.3 in)

chord and airfoil section (SSC-A09) as the 2-D wing. The instrumentation

consists of chordwise arrays of pressure transducers at 5 spanwise stations (112



transducers) and arrays of surface hot film gages at 3 spanwise stations (16
total gages) to determine transistion and separation information. The model
will be tested at 3 sweepangles: A = 0, 15, and 30 deg, and at Machnumbers
between 0.2 and (structural loads permitting) 0.6. The experiment is scheduled
to be completed in 1990.

In addition to large amplitude ramps and sinusoids, information will be
obtained on small amplitude (±0.5 to 2 deg) oscillations near the static stall
angle. This program will be sponsored by NASALewis and ARO,and is designed to
study the incipient stages of stall flutter, with particular application to
aircraft propellors. Results of an earlier, smaller scale experiment were
reported in Ref. 4. The aerodynamic damping was found to be substantially more
negative for very small amplitude oscillations, allowing a rapid growth to a
limit cycle motion.

The helicopter rotor program involves the construction and testing of a
heavily instrumented, 9.5 ft diameter scale model of a current-technology main
rotor (Fig. 4). The model contains 176 miniature pressure transducers, as well
as strain gages, temperature sensors, and surface hot film gages. Hover testing
was described in Ref. 5, and aerodynamic results from a 1989 wind tunnel test
are given in Ref. 6. A great deal of information has been obtained using this
model rotor. Of current interest is the behavior Of the inboard portion of the
retreating blade at moderately high advance ratios (_ = UJgR ~ 0.28-0.36).
This region is subject to rapid increases in angle of attack and rapid
reductions in relative velocity. Figure 5 shows chordwise pressure
distributions for r/R = 0.4 at four azimuths on the retreating side. The flow
appears highly loaded but attached at _ = 190, shows leading edge separation at
at _ = 220, has a very large aft loading at _ = 270, and is beginning to
reattach at _ = 320. Time histories of the ensemble averaged pressures at
r/R = 0.225 and 0.4 are shownin Fig. 6. Sharp negative pressure spikes are
present (on the upper surface only) near @= 175 at r/R = 0.225 and near _ = 210
at r/R = 0.4. The flow appears to separate after the spikes have passed, as
shownby flat ensemble averaged pressures between _ = 180 and 315. This
phenomenonis similar to the shedding of the dynamic stall vortex on the
oscillating 2-D airfoil (Fig. I). The non-dimensional convection speed of the
spike (0.25 times the local relative velocity) is also similar.

The rotor flow field has manycomplexities not present with the 2-D
airfoil. The sequence observed on the retreating blade side at a particular
radial station mayinclude: forming and shedding a leading edge vortex, entering
the region of reverse relative velocity, shifting from positive to negative
lift, shedding a vortex from the trailing edge that moves towards the leading
edge, resuming positive relative velocity and lift, and interacting with the
wake of the rotor hub. Additional complications include radial velocity and
twist gradients and aeroelastic deflections. With all of these factors present,
it is encouraging to see somesimilarities to the simpler, oscillating 2-D
results, but one must not forget how complex the rotor flow field actually is.
This observation is lent particular weight by the many references to the
helicopter stall problem in the introductory sections of oscillating airfoil
papers.
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COMPARISON OF PITCH RATE HISTORY EFFECTS ON

DYNAMIC STALL

M.S.Chandrasekhara

Navy-NASA Joint Institute of Aeronautics

Department of Aeronautics and Astronautics

Naval Postgraduate School, Monterey, CA

L.W.Carr

Aeroflightdynamics Directorate

U.S.Army ARTA and Fluid Dynamics Research Branch

NASA Ames Research Center, Moffett Field, CA

and

S.Ahmed *

MCAT Institute, San Jose, CA

Presented at the NASA/AFOSR/ARO Workshop on Physics of Forced Unsteady Separation

April 17-19, 1990

NASA Ames Research Center, Moffett Field, CA 94035

1. INTRODUCTION

Dynamic stall of an airfoil is a classic case of forced unsteady separated flow. Flow

separation is brought about by large incidences introduced by the large amplitude unsteady

pitching motion of an airfoil. One of the parameters that affects the dynamic stall process is

the history of the unsteady motion, (McCroskey 1). In addition, the problem is complicated

by the effects of compressibility that rapidly appear over the airfoil even at low Mach

numbers at moderately high angles of attack. Consequently, it is of interest to know the

effects of pitch rate history on the dynamic stall process. This abstract compares the results

of a flow visualization study of the problem with two different pitch rate histories, namely,

oscillating airfoil motion and a linear change in the angle of attack due to a transient

pitching motion.

2. DESCRIPTION OF THE RESEARCH

Stroboscopic schlieren studies were conducted while a 3 in. chord, NACA 0012 airfoil

was executing unsteady motion. Two separate motion histories were considered. The first

was a sinusoidal variation of the angle of attack and the second was a rapid ramp motion

of the airfoil. Two independent drives were designed to produce the necessary pitch rate
histories ancl are described in Carr and Chandrasekhara 2 and Chandrasekhara and Cart 3

respectively. A large body of data enveloping a Mach number M = 0.2 - 0.45 was collected.

Since the pitch rate continuously changes for an oscillating airfoil, the angles of attack at

* On Leave from National Aeronau_.ical Laboratory, Bangalore, India
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which the pitch ratesmatch were obtained by comparing them with thoseavailablefor the
ramp type motionexperiment. The angle of attack wasvaried from 0 - 600 in the ramp
motion. The correspondingvariation for the oscillatory motion was

c_,= _o + a,nsin(wt)= 100 + 10 °sin(a-'t)

Data was also obtained at other values of the amplitude of oscillation (20 and 50).

However, to achieve a proper comparison, only the case of 10 degree amplitude that results

in a total angle of attack range of 0 - 20 o will be used.

3. RESULTS AND DISCUSSION

Fig. 1 shows the schlieren pictures at M = 0.2 at an instantaneous angle of attack of

approximately 170 for the two pitch rate histories at a non-dimensional pitch rate defined

as _3'+ &c _= _ - 0.025. As can be seen fi'om the figure, the flow over the airfoil in ramp
motion has already reached deep stall conditions, whereas that over the oscillating airfoil

shows a clearly defined dynamic stall vortex at 60% chord location, indicating that the

airfoil is still producing dynamic lift. At a higher c_+ value of 0.03, the two flows are nearly

identical even at an angle of attack of _ 15 °.

Similar results were obtained at M = 0.25, 0.3 and 0.35. In all cases, at low pitch

rates, deep stall occured over the airfoil in ramp type motion at the angles of attack

for which the flow over the oscillating airfoil was dominated by a strong, tightly wound

dynamic stall vortex which was still located over the upper surface. This result was true,

despite the fact that at lower angles of attack, the two flows appeared nearly identical.

In addition, in instances where the dynamic stall vortex could still be identified for the

transient pitching case, it was significantly diffused, indicating that it was in a disorganised

state as opposed to the oscillating case, where it was well organised. This trend persisted

in the Math number range that extended into the compressible regime, namely beyond

M = 0.3. A table of tile results for the different conditions is included to summarise the

results discussed.

It is somewhat surprising to note the trends obtained in this comparison. An expla-

nation of this effect could be offered for this as follows: A sinusoidal motion produces pitch

rates that increase from 0 to 0.035 during the pitch-up phase for k = 0.1 and an amplitude

of 10 degrees. Its maximum occurs at the mean angle of attack. Beyond this, the pitch

rate decreases, but at the angle at which the comparions were made (17.07 °) in Fig. 1 , the

pitch rate is still significant (0.025). For the ramp motion, the pitch rate reaches a constant

value by (_ ,_ 6 °. Chandrasekhara and Carr 4 have shown that stall can be delayed to higher

angles of attack by increasing the pitch rate. It appears from the pitch rate variation with

angle of attack that an oscillating motion can produce higher amounts of vorticity which

will cause the dynamic stall vortex to be more organised and coherent. This leads to the

conclusion that motion with continuously changing acceleration can support larger flow

gradients and thus is more desirable.
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4. CONCLUSIONS

The study shows that pitch rate history is a very important parameter in the analysis

of dynamic stall. Pitch rate history plays a dominant role by controlling the strength and

behavior of the dynamic stall vortex. Vorticity created by repetitive motion appears to

have the energy to sustain higher pressure gradients in the flow.

5. REFERENCES

1. McCroskey, W.J., "The Phenomenon of Dynamic Stall", NASA TM 81264, March 1981.

2. Cart, L.W. and Chandrasekhara, M.S., "Design and Development of a Compressible

Dynamic Stall Facility", AIAA Paper No. 89-06_7, Jan. 1989.

3. Chandrasekhara, M.S. and Carr, L.W., "Design and Development of a Facility for

Compressible Dynamic Stall Studies of a Rapidly Pitching Airfoil", Proc. 13 th ICIASF,

Goettinegen, W.Germany, September 1989.

4. Chandrasekhara, M.S. and Cart, L.W., "Flow Visualization Studies of the Mach Number

Effects on the Dynamic Stall of an Oscillating Airfoil", AIAA Paper No. 89-0023, Jan.

1989.

Table 1. Comparison of Pitch Rate History Effects through
Flow Visualization

M "-- 0.2, k ---- 0.1

No. Ramp Type Motion Oscillatory Motion a +

1. a = 17 ° a = 17.07 ° 0.025

Nearly deep stall Tightly wound vortex

Transverse scales large at _60% chord
a = 150 a = 15.230 0.03

Flow nearly identical in both cases

,

M -- 0.2, k -- 0.075

1. a = 130 c_ = 13.820 0.025

Very nearly identical flow in both cases
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M = 0.25, k -- 0.1

1. a' = 18 ° ct = 1S.1 ° 0.02

Deep stall, trailing Vortex at 75% chord

vortex, large transverse and well organised

flow scales

= 170 0.025

Vortex present, but

disorganised at 55%chord
Indications of flow breakdown

3. o_ = 150 o . = 15.23 o 0.03

,
c_ = 17.070

Well organised vortex

at, 50% chord

Flow very nearly similar in the two cases

M = 0.25, k = 0.075

1. a = 16.50 c_ = 16.50 0.02

Deep stall. Shear layer \Vell organised at vortex

vortex at mid-chord, _ 60%

large transverse scales
= 130 0.025

Beginnings of a vortex

,
a = 13.5 °

Imprint of a vortex

26



M = 0.3, k = 0.1

lo

.

.

o_ = 180

Vortex well above the

surface, near deep stall

large transverse disturbance

Disorganised flow
o = 17 o

Vortex at 65% chord

flow getting disorganised,

large vortex
a = 150

Vortex at 15% chord

Other features of flow nearly alike

o = 18.10

Vortex near 90% chord

transverse disturbance

getting larger

o = 17.10

Vortex at _55-60% chord

Well organised flow

o_ = 15.230

vortex at 15% chord

0.02

0.025

0.03

M = 0.3, k -- 0.075

.

2.

o = 16.50 a = 16.50 0.02

Total flow breakdown organised vortex at 55% chord

a = 13 o a = 130 0.025

Flow nearly identical in the two cases

M -- 0.35, k = 0.1

.

.

a = 170

Large vortex, but not

organised
a = 150

Vortex at 30% chord

Otherwise nearly identical flow

a = 17.07.10

Organised large vortex
at the same location

ol = 150

votrex at 25% chord

0.025

0.03
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Ramp motion Oscillatory motion

(_+ = 0.025

(X= 17 ° k = 0.10, o_ = 17.07 °

(x+ = 0.03

OL= 15° k = 0.10, oL= 15.23 °

OL+ = 0.025

OL= 13 ° k = 0.075, oL= 13.82 °

Figure 1. Comparison of Pitch Rate History Effects
(M = 0.20)
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Abstract

The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching

up motion is investigated experimentally by the PIDV technique in a water towing tank.

The Reynolds number is 5000, baaed upon the airfoil's chord and the free-stream velocity.

The airfoil is pitching impulsively from 0 to 30 ° with a dimensionless pitch rate & of 0.131.

Insta.ntaneous velocity and associated vorticity data have been acquired over the entire flow

field. The primary vortex dominates the flow behavior after it separates from the leading

edge of the Mrfoil. Complete stall emerges after this vortex detaches from the airfoil

and triggers the shedding of a counter-rotating vortex nea.r the trailing edge. A parallel

computational study using the discrete vortex, random wMk approximation has also been

conducted. In general, the computational results agree very well with the experiment.

1. Introduction

Due to the recent interestin developing a supermaneuverable fighteraircraft,a com-

plete knowledge of the unsteady flow behavior over a wing isnecessary in order to improve

the post stallacrodynRmic performance. Although much progress has been made both

experimentally and numerically throughout the years,1,u a f_mdamental understanding of

the problem isstilllacking. The difficultymainly arisesfrom the fact that these flows are

extremely complex and are not amenable to standard experimental and numerical tech-

niques. For example, one of the most important feature about the flow past an unsteady

airfoil is the emergency of one or several large scale vortical eddies M'ter the flow separates

from the upper surface. Later evolution of these vortica.} structures dominate the behavior

of the flow past the airfoil's surface. They either induce considerably lift increase as they

move along the surface, or trigger a catastrophic flow breakdown when taking off from the

airfoil's surface, a'4 In order to Imderstand the mutual influence between these vortices and

their interactions with the lifting surface, it is necessary to study not only their develop-

ment in time but also their spatial correlation _t each instant. In other words, quantitative

information about the entire flow field is essential. This immediately excludes the use of

traditional tingle-point measurement techniques, such as hot-wire anemometry or LDA.

In view of this, a new experimental technique, Particle Image Displacement Velocimetry,

herein abbreviated as PIDV, has been developed in our laboratory, which is capable of pro-

viding with great detail and accuracy about the instantaneous two-dimensional velocity

and associated vorticity fields, s

The second part of this research involves a computational simulation of the Navier-

Stokes equations using 8. discrete vortex, random walk scheme., s In general, the global

flow features predicted by the computational scheme compare extremely well with the

experiment,
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2. Particle Image Displacement Velocimetry

PIDV technique can be regarded as a modified flow visualization method that is capable

of providing quantitative data of the entire flow field. The operation of this technique in-

volves the illumination of the flow field of interest, seeded with small tracer particles, with

a thin laser Light sheet as shown in figure I. The light scattered by the seeding particles,

which follow the local fluid motion, provided they are small enough, generates a moving

particle-image pattern. This pattern is )¢eorded using a multiple exposure photographic

technique. The distance between the corresponding particle images being proportional to

the local flow velocity. An optical Fourier transform is used to convert this spatial informs.

tion into local velocity data. This process uses a focused lmser beam to interrogate a small

area of the multiple exposed photographic film. The diffraction pattern produced by the

coherent illumination of the multiple images in the photographic transparency generates

Young's fringes, in the Fourier plane of a lens, provided that the particle image-pairs inside

the interrogating volume correlate, see figure 2. These fringes have an orientation that is

perpendicular to the direction of the local displacement and a spacing inversely propor-

tional to the displacement. A fully-automated process ha_ been devised to acquire and

analyze the fringe images at the Fluid Mechanics Research Laboratory of the Florida State

University. The system consists of the following hardwaxe components: a DEC MicroVax

workstation II computer, Gould IP-8500 digital image processor, a frame digitizer, and a

pipeline processor. For automatically scanning of the f-tim transparency, a two-dimensional

Klinger traversing mechanism with controller is used, see figure 3.

One important limitation of this method is that it is not possible to discriminate against
the directional ambiguity introduced by the possible reversing motion in the flow field. To

reso]ve this problem, a "velocity bias technique" has been proposed.7, s A uniform reference

motion is added to the flow, thus superposing a velocity shift to the real flow field. A

properly chosen shift can insure that all image displacements occur in the same direction,

thereby diminating the ambiguity. The true flow field can be recovered later by removing

this a_tificial slfift from the raw velocity data. The shift effect can be achieved by several

methods; it can be done actively by using a rotating mirror, or passively by the use of a

Calcite crystal? In this work, a rotating mirror, General Scanning model # 6325D, with

a scanner control, model # CX-660, is used to provide the image shift.

A dual pulsed laser system, consisting of two Spectral-Physics DCR-11 Nd-Yag pulsed

laser systems, is used to provide the double pulses. As shown in figure 4, the light beams

emitted from the two lasers are n_de collinear using a system of prisms trod polarizing

cube beam combiners. The second laser is triggered by the first laser via a Systron Donner

100C pulse generator. Separation between the pulses can be varied from a fraction of one

/_sec. to a few seconds by adjusting the pulse generator. A cylindrical lens is used to

project the combined beam into a laser sheet to illuminate the mid-span section of the

airfoil. Metallic coated particles (TSI model 10087), with an average diameter of 4 _m,

we.re used as the flow tracers. A 35 mm camera (Nikon F-3) was used to record the flow
field.

The pulsed lasers were triggered continuously at a frequency about 10 hertz in order

to utilize their full power. That means the scanning motion of the mirror and the camera
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shutter release should also be pha_e-locked to that frequency. Due to this restraint, the

time in_._.rv,1 between pictures had to be daosen to be a multiple of the laser pulsing period,

and it w,s set at 0.3 second for this experiment. Synchronization between components was

accomplished l:_t using the Tektronix modular electronics system as shown in figure 5. On

the other hand, this system also provided the phase-reference between the motion of the

airfoil and the PIDV photographic timing sequence , see figure 6.

3. Experimental Facility

The experiments were performed in a towing water tank facility, which is 1.8 meter long

and 43 by 55 em in cross-sectional area. Tile towing carriage was driven by a DC servo

motor with a towing speed varying from 0.3 to 30 cm/sec. A NACA 0012 airfoil with a

chord length of 6 cm and an mpect ratio of 6.67, is used. This corresponds to a Reynolds

number be,t,ween 200 and 7,1)000, based upon the to_iring ,pQed and the airfoil'o ehot.d. The

towing speed was controlled by a motor speed control system, Electro-Craft model # E-

652, via digital-to-analog converter. Acceleration and deceleration ramps were included for

smooth traverse. The airfoil's pitching motion was provided by a Klinger stepping motor

with a progr_.mmable controller, Klinger model CC-1.2, which was pre-programmed and

activated by the host computer, The eirtoil's eagle changed linearly from 0 to 30 ° after

the airfoil had been towed for more than one chord length and presumably had established

a steady-state travel. All motions were monitored by a DEC, Vaxstation II computer, see

figure 6.

4, Numerical Simulation Scheme

Random-walk vortex slmulations of the full Navier-Stokes equations were performed for

a comparison with the P[DV data. In the computations, the flow field was represented

by discrete vortex blobs. The diffusion processes were simulated by adding a random

component of magnitude v_,At to the vortex motion.

In the method, no accuracy is lost in describing the strong convection process typical of

unsteady separated flows. Additionally, the computational domain is truly infinite; there

are no artificial boundary conditions. But most importantly, since computational dements

are only _tsed in the limited regions containing appreciable vorticity, the resolution, (the

smallest scales the computation can distinguish), is very Irish.

The fast _olution-adaptive Laurent series technique 1° was used to allow a large number

of vortex blobs to be included without using a mesh-based fast solver to find the velocity.

The normal wall boundary condition was satisfied by mirror vortices, after a mapping of

the airfoil onto a circle. The mapping used was a generalized Von Mises transform which

exactly reproduces the slightly blunted trailing edge of the NACA 0012.

The no-slip boundary condition was satisfied by the addition d vortices at the wall dur-
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ing each time-step. First all vortices within a distance of 1.27_ were removed. Then

a rinR of new vortiee_ ,#as ael,'led ,,t ._ ,l;,,t_,_- 0.0'/$vr2_-_ to correct tile wail slip to zero,

(The distance for adding vortices equals the diffusion distance of the vorticity generated

by the wall during the time-step for the true Navier-Stokes equations; the removal distance

was chosen based on a statistical study requiring that the scheme handles locally uniform

vorticity distributions accurately, not unlike discretization techniques in finite difference

procedures). The vortex diameter was rather arbitrarily chosen to be 0.675x/_; testing

showed tha.t results depended little on the actual value used.

In order to allow pitching motion, the equations of vortex motion were developed in

an inertial reference frame and subsequently converted to an airfoil based system. This is

required since Kelvin's theorem cannot be used in a rotating coordinate system. The _orce

on the Birfoil is found from differentiating integrals of the vorticlty distribution, rather

than directly from the wall shear and pressure.

The CYBER 205 results were post-processed on a MicroVax II computer, using a fast

Fourier transform to find the stre_ines. The vorticity was represented in bit-mapped

graphics as half-tones. The dimensionless pitch rate and the Reynolds number are chosen

to be exactly the same as those in the experiments for readily comparison.
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5. Results and Discussion

5.1 PIDV Data

Reynolds number calculated with the chord length and the free-stream velocity is 5000

for all the results presented. The airfoil is pitching up from art angle of attack of 0 to

30 degrees with a dimensionless pitch rate &, normalized by the airfoil's chord and free-

stream velocity, of 0.13i. The unsteady flow development over the airfoil after the pitch-up

is presented sequentially from figures 7-(a) to 7-(d). The velocity field data in these figures

is acquired in a Cartesian mesh by digitally processing the fringes, produced by point-by-

point scanning of the film transparency. The length of each vector is proportional to the

local velocity at that point. Also shown is the vorticity level superimposed on the velocity

field by using the color code.t The magnitude of the vorticity is given by the color bar at

the left lower corner of the figures. The red and purple colors represent the peak levels of

the positive (clockwise) and negative (counterclockwise) vorticity.

In figure 7-(a), the airfoil has travelled about 1.27 chord length after the initial pitch up

and reaches an angle of attack of 7 o , which is below the 12 o static stall angle for the NAOA

0012 airfoil within this Reynolds number range. There is no noticeable flow development

oa both the upper and lower surfaces of the airfoil. On the upper surface, boundary layer

is slightly thickening with no distinguishable separation. Near the trailing edge, strong

negative vorticity has been stied from the lower surface as a result of the drfoil's pitching

up motion.

As the airfoil continues to move to about 2.98 chords downstream and at an angle of. 20 _,

which is well beyond the static stall angle, separation start to develop on the upper surface,

as shown in figure 7-(b). Near the leading edge, flow separates and reattaches downstream

forming a recirculatlng eddy, which occupies approximately a quarter of the chord. Near

the mid-chord of the _rfoil, the reattached boundary layer separates e_ain, forming another

recirculation eddy that almost covers the entire downstream section. Strong flow reversal

can be seen from the trailing edge all the way to about the mid-chord region. On the other

side of the airfoil, flow appears to behave smoothly. There is no significant flow breakdown

at this stage although the airfoil has already gone beyond the static stall condition.

Not until further downstream, after the airfoil has moved 5.13 chords and reaches its

maximum angle of 30 ° , massive flow _paration starts to develop, see figure 7-(c). The

le_ding edge separation bubble grows into a large scale vortex and moves downstream. It

induces very strong reverse flows along the airfoil_s surface, which can be of the same order

of magnitude compared to the free-stream. Interestingly, the reversing flows carry very

low level of vorticity as shown by the color code for the vorticity level.

The vortical structtlre simply rides on this upstream-moving stream. An important

consequence is the slowdown of the convection process of the vortex. Following the primary

vortex is a series of smaller vortices, which form as a result of the vorticity accumulation

of the st_ear layer that is separating from the leading e.dge. Under the shear layer vortices

and very dose to the surface of the airfoil, there are two secondary vortices which have

Vorticity coatour plot will be used for the final mat
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the opposite sign of rotation as the vortices right above them. Downstream of the primary

vortex, local flows have be_,n propelled to attach onto the airfoil's surface immediately

before tile trailing edge. This guggests the existence of a stagnation point immediate

before the trailing edge. Away from the airfoil, outer flow stream still shows an overall

convex curvature, suggesting that the global circulation is preserved sa_d the lift of the

airfoil can be maintained or increased o-yen alter massive flow separation.

In figure 7-(d), the primary vortex eventually takes off from the tra_iling edge, at a

location of 7,27 chord length after the initial pitch-up, triggering the entire flow into

complete breakdown. The primary vortex can be barely observed at the right upper corner

in figure 7-(d) as it ia gradually leaving the scene. A strong counter-rotating vortex is shed

from the lower surface and starts to roll up near the trailing edge and penetrates into

the upper surface. Flows separate from the leading edge forming a shear layer without

reattaching downstream. An open wake is formed, accompanied by the plunge of the

circulation around the airfoil, which characterizes the final stage of the stall of the airfoil.
A concave overal curvature suggests a loss of the airfoil's llft.

5.2 Computational Results

Typical two-dimensional computational results from random-walk vortex simulations of

the full Navier-Stokes equations are shown in figures 8-(a) to (i). The Reynlods number,

the dimensionless pitch rate and the maximum angle of attack are the same as those in the

experiment. The only difference is the way the airfoil is pitched. Since _ linear pitch-up

profile, as adopted in the experiment, will lead to an infinite loading on the airfoil in the

computational scheme, consequently, a smooth profile with continuous curvature, which

is fitted by _ fifth-order polynomial, is chosen instead. Therefore, comparison between

the experiment and computational simulation can be considered only qualitatively rather

than quantitatively. The instantaneo_js streamline pattern, along with vorticity field that

is represented in bit-mapped graphics as half tones, are shown. In general, the simulated
patterns agree well with the experimental data.

In figures 8-(c) and 8-(d), corresponding to a = 21.7 ° and 26.9 °, respectively, the

existence of two vortical eddies agrees with the experiment, see figure 7-(b). The leading
edge eddy ends as the separating leading edge shear layer reattaches downstream and re-

separates again a.t mid-chord to form a larger size bubble occupying the downstream half

of the airfoil. As this vortex approaches the trailing edge, a counter-rotating vortex is shed

from the lower surface. This exactly matches the experimental observation as shown in
figure 7-(5).

The leading edge vortex grows and moves downstream in exactly the same manner as

revealed from the experiment, compare figures 8-(e) and (f) to figure 7-(c). The size of the

primary vortex also compares favorably to the experiment. Other distinct features, such as

the formation of the shear la.yer vortices following the primary vortex and the development
of a counter-rotating vortex near the surface, have also been faithfully simulated, As

demonstrated in fig_Jres 8-(e) and (f), Vortex dynamics appears to play an'important role as

the primary vortex interacts strongly with the shear layer vortex that immediately follows

it _ they begine to evolve downstream. By associating the discrete vortex simulation with
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the whole-field PIDV measurement, for the firsttime, this very complex process can be

carefully analyzed.

The breakdown process appears to begin with the shedding of a counter-rotating vortex

near the trailing edge as the primary vortex is moving away from the airfoil, see figure

8-(g). The situation nggrava.tes as the flow completely separates from the airfoil as shown

in figures 8-(h) and 8-(i). The emergence _ff a concave curvature can be seen as a sign that

indicat:es a total los_ of circulation and, consequently, i.he lift.

Summary

PIDV is capable of providing the velocity and associated vorticity fields with good

spatial resolution and accuracy of a very complex unsteady flow field, that is the unsteady

flow pa.st an impulsively pitching-up airfoil. Noticeable flow separation develops when

a > 20 °, which is weI1 beyond the static stall angle, with one separation bubble near the

leading edgc a.nd another eddy presides over the trniling edge region. The development of

ttle leading edge vortex dominates the later flow behaviors. This vortex grows, to a size

that is comparable to the airfoiI's dlord, and moves downstream. Outer flow maintains its

convex curva, ture while the vortex is accumulating its strength; the lift is still increasing,

A counter-rotating vortex is released from the trailing edge as soon as the primary vortex

detttches from the surface, triggering thc airfoil into stall. Strong flow separation prevails

and flow separates from the leading edge without downstream reattachment. Surrounding

flow has a concave curvature a.nd the airfoil's circulation, along with its lift, drop.

A discrete vortex, random walk computation was undertaken to augment the experi-

mental st_tdles. In general, the simulation results agree extremely well with the experiment.
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Final Remarks

As you may have already _lown, data analysis for the PIDV is quite different from the

traditional experimental technique: data collection is undertaken after the completion of

the experiment. For now, we have already finished our experiment but our analysis system

has been occupied by other project, therefore, we can only provide a small portion of the

data we collected. The complete data, which should include data sets with much finer time

sequence for a Reynolds number of 1400 and 5000.
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ABSTRACT

Low momentum fluid erupts at the unsteady separation region and forms a local shear

layer at the viscous-inviscld interface. At the shear layer, the vorticity lumps into a vortex

and protrudes into the inviscid region. This process initiates the separation process. The

response of airfoils in unsteady free stream was investigated based on this vortex generation

and convection concept. This approach enabled us to understand the complicated unsteady

aerodynamics from a fundamental point of view.

INTRODUCTION

Unsteady separation is an important feature of many flows. For example, when an airfoil

undergoes maneuvering, the lift and drag experience very large variations from the steady

state values. The unsteady separation from the leading edge produces coherent vortical

structures which can greatly alter the surface loading on the wing (McCrosky, 1982). The

separation process and the formation of the vortices can be very different for various operating

conditions. On a 2D airfoil, there is no effective vorticity convection mechanism. The

separating vortices therefore can not hold on to the chord and are convected by the mean flow.

Shih (1988) found that the time needed for the vortex moving along the chord is an important

time scale in determining the aerodynamic properties. On a small aspect ratio delta wing,

vorticity can be transported along the cores of the leading edge separation vortices. The

vortices can be stationary on the wing. Therefore, there is no vortex convection time scale.

In this paper, the measured lift of airfoils in an unsteady free stream will be presented and

will be interpreted by the vorticity balance concept (Reynolds and Cart, 1985).

1. UNSTEADY SEPARATION MECHANISM

It has been experimentally shown that shear stress vanishes at an interior point away

from the wall for both upstream moving separation (Shih, 1988) and downstream moving

*Present Address: Department of Mechanical Engineering, Florida State University, Tallahassee, Florida
32306.
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separation (Didden and Ho, 1985). These cases were illustrated in figures la and lb. The
data validated the MRS criterion and showed many important aspects of unsteady separation

pointed out by Van Dommelen and Shen (1982). Erruption of the boundary layer fluid and

the formation of a local shear layer with an inflection point (figure 2) was found to be generic

to unsteady separation.
When an external disturbance induces an unsteady adverse pressure gradient (figure 3),

the fluid particles near the wall decelerates. Low momentum fluid errupts from the wall

region. A local shear layer forms at the boundary of the inviscid and viscous zones. Velocity

profile of the local shear layer has an infiectional point between the point Ou/Oy = 0 near

the wall and Ou/Oy = 0 at free stream. This shear layer is inviscidly unstable and extracts

energy from the mean flow.

2. UNSTEADY WATER CHANNEL

Experiments on unsteady airfoils were performed in an unsteady water tunnel (figure

4). The tunnel was operated under constant head. Therefore, the free stream speed was

determinedby the resistance provided by the exit gate. This arrangement made the tunnel

extremely versatile and simple to operate. The opening area of the exit gate was controlled

by a computer-driven stepping motor. The free stream velocity was varied as a function of

time in many different types of waveforms. The lift was measured by load cells while the

velocity field was measured by laser Doppler velocimetry.

3. ATTACHED UNSTEADY FLOW AROUND 2D AIRFOIL

When the flow on the 2D airfoil was attached, the vorticity convection was balanced by

a part of" the vorticity diffusion. Hence, the convected vorticity did not play a role in the

dynamics. The lift was determined by the rest of the vorticity diffused from the surface.

Since there was no intrinsic time scale of the vorticity balance, the lift curves of the attached

flow was only scaled by the free stream velocity time scale. Based upon the vorticity balance

we cart show that the local circulation is scaled with the velocity at the edge of the boundary

layer.

4. SEPARATED UNSTEADY FLOW AROUND 2D AIRFOIL

During the separated phase, the vorticity measurement indicated that the vorticity dif-

fused from the surface is negligible compared with that shed from the leading edge. In other

words, the flow was controlled by the vorticity convection instead of the vorticity diffusion.

The vorticity originating from the leading edge roiled up into a _ortex which produced high

suction on the wing. When this lift generating vortex moved from leading edge to trailing

edge, the lift of the unsteady airfoil was much higher than that of the steady one. The

lift dropped significantly after the lift generating vortex left the chord. Therefore, the ratio

between the vortex convection time scale and external perturbation time scale dictates the

lift curve of the airfoil.
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5. AN AIRFOIL WITH CL > 10

How to obtain high llft coemcient in the post stall region is the goal of supermaneuver-

ability; research. The fundamental understanding of the time scale and the vorticity balance

on the separated airfoil mentioned in the above section enabled us to achieve this purpose.

We placed a NACA 0012 airfoil at an angle of attack of 20* which is in the static stall region.

The reduced frequency was chosen such that a large coherent vortex can be trapped on the

chord for an appreciable portion, say 40%, of the cycle. We then obtained a lift coefficient

larger than ten. This is shown in figure 5.
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Regional Balance of Phase-Averaged Vorticity
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CONTROL OF LEADING-EDGE VORTICES ON A DELTA WING 1

by

C. Magness, O. Robinson, and D. Rockwell

I. INTRODUCTION

The unsteady flow structure of leading-edge vortices on a delta wing has been

investigated using new types of experimental techniques, in order to provide insight into the

consequences of various forms of active control. These investigations involve global control of
the entire wing and local control applied at crucial locations on or adjacent to the wing.
Transient control having long and short time-scales, relative to the convective time-scale

C/Uoo, allows substantial modification of the unsteady and time-mean flow structure.

Global control at long time-scale involves pitching the wing at rates an order of

magnitude lower than the convective time-scale C/Uoo, but at large amplitudes. The

functional form of the pitching maneuver exerts a predominant influence on the trajectory of
the feeding sheet, the instantaneous vorticity distribution, and the instantaneous location of
vortex breakdown.

Global control at short time-scales of the order of the inherent frequency of the shear
layer separating from the leading-edge and the natural frequency of vortex breakdown shows

that "resonant" response of the excited shear layer-vortex breakdown system is attainable.
The spectral content of the induced disturbance is preserved not only across the entire core of

the vortex, but also along the axis of the vortex into the region of vortex breakdown. This

unsteady modification results in time-mean alteration of the axial and swirl velocity fields and
the location of vortex breakdown.

Localized control at long and short time-scales involves application of various transient
forms of suction and blowing using small probes upstream and downstream of the location of

vortex breakdown, as well as distributed suction and blowing along the leading-edge of the

wing applied in a direction tangential to the feeding sheet. These local control techniques can

result in substantial alteration of the location of vortex breakdown; in some cases, it is possible
to accomplish this without net mass addition to the flow field.

II. EXPERIMENTAL TECHNIQUES

The unsteady flow structure from the leading-edge of a delta wing subjected to various

forms of active control has been characterized using new types of laser-diagnostic systems and

image-processing techniques. These methods are integrated with active control systems, driven
by central microcomputers. Using these approaches, it is possible to impose active control of
arbitrary functional form and examine the response of the instantaneous flow structure. The

two- and three-dimensional flow structure is interpreted with the aid of newly-released graphics
supercomputers.

III. GLOBAL CONTROL AT LONG TIME SCALES

The concept of a phase shift between the unsteady motion of the wing and the

development of the leading-edge vortex is well known. In qualitative visualization studies,

Lambourne et al. (1969), Gad-el-Hak and Ho (1985a,b, 1986), and Atta and Rockwell (1989)

reveal various features of the visualized cross-section of the vortex during its unsteady

1Submitted for presentation at the NASA/AFOSR/ARO Workshop on Physics of
Forced Separation, April 17-19, 1990.



development. There also occurs a phase shift of the location of vortex breakdown relative to
the wing motion; it has been characterized from various perspectives by Woffelt (1986),
Rockwell et al. (1987), Atta and Rockwell (1987), Reynolds and Abtahi (1987), Gilliam,
Robinson, Walker, Wisser (1987), and Lemay, Batill, and Nelson (1988).

The following unresolved issues are the focus of this investigation: the effect of

arbitrary forms of pitching maneuver on the instantaneous structure of the leadlng-edge vortex
including trajectories of feeding sheets and distributions of vorticity; the influence of vortex
breakdown over a portion of the cross-section of the vortex; and the response of the axial
location of vortex breakdown in relation to all of these features.

Concerning the nature of the instantaneous structure of the leading-edge vortices,
obtained from particle tracking techniques, the following represent the major findings:

(i) For locations upsteam of vortex breakdown, the shape, degree of concentration,
and the location of the maxima of the instantaneous vorticity distribution across
the vortex core are quite different for the up- and downstrokes of the continuous

pitch-up-down maneuvers of the wing. This finding emphasizes the importance of
accounting for the instantaneous cross-sectional structure of the vortex, and not
simply the instantaneous location of vortex breakdown, in determining the overall

loading on the wing.

(ii) Comparison of the vorticity distribution of the leading-edge vortex with the
trajectory of the feeding sheet from the edge of the wing shows the relationship
between the possible trajectories of the feeding sheet and the corresponding
vorticity field. A major factor is the occurrence or non-occurrence of vortex
breakdown within the core of the vortex.

Figure i shows an excerpt from the current investigation. Contours of constant
vorticity were obtained by direct particle tracking and image processing techniques. The

experimental parameters correspond to a pitching motion of 15" < a < 40" for a continuous
pitch-up-down motion at a pitching rate &C/2Uoo ---- 0.15. The surface of the wing is
indicated by the bold horizontal llne. The contours of constant vorticity on the left side
correspond to the pitch-up portion of the maneuver, and those on the right side to the pitch-
down portion. The differences in elevation, orientation, and scale of the vorticity distributions
are evident. They are dependent upon the history of the wing motion and appear to be most

pronounced at the smallest angle of attack a = 20".

The importance of accounting for vortex breakdown within the core of the vortex is
illustrated in Figure 2. Instantaneous positions of the feeding sheets and contours of constant
vorticity are shown for the same parameters as in Figure 2, but at a = 40" for two different
types of maneuvers. The shaded black region represents the extent of breakdown within the
vortex. For the simple pitch-down motion, a = 40" represents the static condition

immediately preceding the onset of the maneuver, while the pltch-up-down case at a = 40"
includes the integrated history of the upstroke portion of the maneuver. It is evident that the

positions of the feeding sheet and the contours of vorticity are substantially different for these

two cases.

The structure of the leading-edge vortex at a given cross-section must, of course, be
considered in conjunction with the axial movements of the location of vortex breakdown.

Magness, Robinson, and Rockwell (1989) preliminarily addressed the effect of the type of
pitching maneuver on the general response of the vortex breakdown location as a function of

angle of attack. Recent studies have focussed on the vortex response to different classes of
maneuver, and the detailed structure of the leading-edge vortices. Regarding the response of
the location of the vortex breakdown, the major findings are:
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(i) Continuous pitch up-down motions of the wing can preclude occurrence of vortex

breakdown on the upstream portion of the wing, relative to that occurring for

simple pitch-up and pitch-down motion where relaxation processes having long
time scales are allowed to occur.

(ii) For the continuous pitch-up-down maneuver of the wing, the consequence of not

allowing the vortex breakdown to relax to its equilibrium state is to produce

upstream movements of the vortex breakdown location towards the apex for
initial decreases in angle of attack c_.

(iii) Combinations of simple ramp-type motions to form a hybrid pitching motion
produce overshoots of the static characteristic of vortex breakdown location versus

angle of attack, beyond that attainable with any of the simple ramp motions
alone.

Figure 3 shows plots characterizing the first two of these three principal findings at two
extreme values of reduced frequency. This sort of characterization of the breakdown location

serves as a basis for detailed investigations of the flow structure of the leading-edge vortices.

IV. GLOBAL CONTROL AT SHORT TIME SCALES

Perturbation of a delta wing in the pitching mode at sufficientlyhigh frequency and

very low amplitude allows control of the detailed flow structure of the leading-edge vortex. In

essence, the vortex development and breakdown on a delta wing involves two classes of

characteristic frequencies: the inherent instabilityfrequency of the shear layer from the

leading-edge; and the frequency at which vortex breakdown occurs. The major issues here are:

the structure of the perturbed feeding sheet; the nature of the perturbed onset of vortex

breakdown; and the corresponding alterationof the time-mean vortex flow.

Simple considerations of hydrodynamic instability show that the processes of

disturbance amplification in the shear layer and in the vortex core during the breakdown

process are receptive to a wide range of excitation frequencies. As a consequence, itis possible

to attain "resonant" excitation, leading to large alteration of the separating shear layer from

the edge of the wing and the breakdown of the vortex core. The preliminary phase of this

investigation was reported by Rockwell et al. (1987). This work is described in its completed

form by Kuo, Magness, and Rockwell (1989).

The principal findings of this investigation are, in short:

(i) Small amplitude perturbations of the leading-edge lead to substantial alteration of

the structure of the shear layer separating from it without occurrence of the
classical mechanism of small-scale vortex coalescence.

(ii) The spectral content of the disturbance induced in the shear layer separating from

the leading-edge is preserved not only across the core of the vortex, but also along
the streamwise extent of the core into the region of vortex breakdown.

(iii) Substantial alteration of the time-mean characteristics of the leading-edge vortex
include changes in the axial and swirl velocity fields and modification of the
location of vortex breakdown.

Selected excerpts describing certain of the foregoing phenomena are given in Figures 4
through 6. Figure 4 shows the visualization obtained by locating a vertical hydrogen bubble

wire along the leading-edge of the wing. The laser sheet that illuminated the marker bubbles

was translated to the downstream locations x/C indicated in the photos. Excitation frequency
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fe is normalized with respect to the inherent instability frequency f. of the shear layer
separating from the leading-edge. Large-scale vortical structures are induced over the cross-

section of the vortex in the presence of excitation at the inherent instability frequency of the
feeding sheet. No small-scale vortex coalescence occurs.

Figure 5 shows spectra of the streamwise component fi, i.e. Sfi, taken at various
locations upstream and downstream of the onset of vortex breakdown. The edge excitation

frequency fe is normalized by the inherent vortex breakdown frequency fb" For excitation at

the first harmonic of the vortex breakdown frequency, i.e. at fe/fb _ 2, the spectral content
shows predominance of the excitation frequency and its associated higher harmonics in regions

before and after occurrence of vortex breakdown. In this case, the higher harmonic content

persists well downstream of the onset of breakdown. For excitation at fe/fb _ 1, there also
occur a large number of higher harmonics due to the strong nonlinearity of the shear layer
response. This spectral content is maintained over the entire cross-section of the vortex core

prior to the occurence of breakdown, emphasizing the nonoccurence of vortex-vortex

interactions (i.e. coalescence) in the shear layer as it is wrapped inwards toward the center of

the core. Downstream of vortex breakdown, the predominant excitation peak at fe/f b -- 1
persists, but the coherent higher harmonic components are attenuated.

Figure 6 shows contours of constant mean axial velocity U and constant fluctuating
velocity fi over the entire cross-section of the lea_ling-edge vortex at values of excitation

frequency fe, relative to the inherent vortex breakdown frequency fb' i.e. fe/lf _ -- I (left
column) and 2 (right column). The effect of the matched excitation at fe/f b --_.s to induce
large amplitude fluctuations in the separating shear layer surrounding the core of the vortex,
located at the peak of the contours of constant U and designated by the symbol -{-. At

fe/f b = 2, the location of the core of the vortex moves downward towards the surface of the
wing and outward towards the leading-edge. The maximum amplitude of the fluctuation fi is
coincident with the location of the core of the vortex. This coincidence of the maxima of fi

and fi corresponds to the early onset of vortex breakdown at the higher excitation frequency

f /fh = 2.

V. LOCAL CONTROL AT MODERJtTE AND LONG TIME SCALES

Local control involves localized injection or suction of the flow at defined locations in

the flow field and/or the surface of the wing. In a practical sense, this can be achieved by use

of small probes, whose tips are located at crucial locations in the vortex core, or slits along the

leading-edge of the wing. In essence, these techniques simulate localized point sources/sinks or
distributions of them. The major issues here are: determination of the most sensitive location

of the applied control; and optimization of the functional form of the unsteady control in the

form of blowing/suction.

For the case of localized blowing along the leading-edge of the wing, Wisser, Iwanski,

Nie!son, and Ng (1988) most recently have revealed an increase in length of the vortex core

prior to breakdown and an increase in lift acting on the wing. Not until this past year has the

case of localized suction been explored; such simulations of a localized sink are described by
Parmenter and Rockwell (1989). Location of a probe in the region downstream of vortex

breakdown allows efficient restabilization of the vortex core. Among the principal findings are:

(i) Locations of the simulated point sink downstream of the occurrence of vortex

breakdown produces stabilization of the core; such stabilization is attainable at

relatively low values of dimensionless suction coefficient Cp. The transient
response time of the stabilization process due to an imposed transient (unsteady

sink flow) scales as the magnitude of the imposed transient suction.

(ii) Hysteresis effects occur due to relaxation of the vortex breakdown (on a

stationary wing) after abrupt onset or cessation of suction. These hysteresis
effects simulate those on a pitching delta wing.
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Localizedcontrol involving simulationsof distributedsources/sinksin the form of a
blowing/suction slit along the leading-edge have received little attention except for the steady

blowing experiments of Wood and Roberts (1987), Wood, Roberts and Lee (1987) and
Roberts, Hesselink, Kroo, and Woods (1987), and the (high frequency) sinusoidal

perturbations employed in the investigation of Gad-el-Hak and Blackwelder (1987). The
consequences of this type of control on the structure of the large-scale vortex have remained
unexplored. Moreover, the possible modification of the nature and location of onset of vortex

breakdown has not been pursued. Important considerations in our recent investigations

include not only the case of steady blowing, but also the corresponding case of steady suction
and, most significantly, the case of cyclic blowing and suction. The major findings of this
investigation are:

(i) Both steady suction and steady blowing are effective at low values of Cp, i.e. both
result in lengthening of the vortex core prior to the onset of breakdown.

(ii) The most effective and robust control involves cyclic suction and blowing at an
appropriate frequency. This approac h involves no net mass addition to or from
the flow.

The use of cyclic blowing and suction applied tangentially in the form of a jet V.(t) at
the rounded leading-edge is represented in Figure 7; it is compared with the case Jof no

blowing/suction, i.e.V.(t) "- 0. (These data were acquired by Professor W. Gu, a member of
our research group.) _omparison of these velocity fields of Figure 7 suggests that application

of the control results in restabilization of the vortex from a stalled condition to a well-defined,
large-scale vortical structure and downward deflection of the separation streamline from its
approximately horizontal position. These trends are associated with downstream movement of
the location of vortex breakdown.
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= 25°

= 20°

Figure 1: Instantaneous contours of constant vorticity at midchord for continuous pitch-up-

down maneuver of delta wing. Sweep angle -- 75"; pitch rate &C/2U = 0.15; pitching axis at
midchord.

Pitch-up-down

: 40°

Pitch-down

Figure 2: Instantaneous contours of constant vorticity and positions of feeding sheet at

a = 40" for continuous pitch-up-down and pitch-down maneuvers. Sweep angle = 75"; pitch
rate &C/2U = 0.5; pitching axis at midchord.
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Figure 3: Instantaneous location of vortex breakdown as function of angle of attack for three

basic types of delta wing maneuvers and two extreme values of dimensionless pitching rate.
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Figure 4: Visualization of flow structure of separating shear layer at several cross-sections

along leading-edge of delta wing. Ratio of excitation frequency fe to inherent instability

frequency fi of separating shear layer is: 0 (left column); 0.5 (middle column); and 1.0 (right

column). Angle of attack a = _ q- a 0 sin 2_rfet; _ = 20", _0 = 1".
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OVERVIEW

Concepts of Control: Time-Scales and
Vorticity Budgets

• Experimental Approaches

Global Control at Small Time-Scales

tu/c << t

Global Control at Large Time-Scales
tu/c >> 1

Local Control at Moderate Time-Scales
tu/c -1
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EXPERIMENTAL APPROACHES

• • Quantitative Flow Visualization:
Measurements

v Bubble Marker Tracking

j Particle Tracking

Particle Imaging

• Quantitative Flow Visualization:
Two- and Three-Dimensional Images

• Local Velocity Measurement: Laser-Doppler
Anemometry

• Force and Pressure Measurements

Global Velocity

Construction of
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EXPERIMENTAL APPROACHES

Integrated Active Control

Centralized Computer Control of

o Wing Motion (Global);
Blowing/Suction (Local)

o Laser Firing

4

o Image Shifting System

u Camera(s)

[] Data Acquisition Systems

Arbitrary Functional Forms of Global and
Active Control
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GLOBALCONTROLAT SMALLTIME SCALES
tU/C << 1

• Forced Instability and Concentration of Vorticity in
Feeding Sheet

Resonant Interaction of Instabilities of Feeding Sheet
and Vortex Breakdown

Preservation of Spectral Content Throughout Leading-
Edge Vortex

Modification of Time-Mean Axial and Swirl Velocity
Components
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GLOBAL CONTROL AT MODERATE
AND LARGE TIME SCALES

tU/C-1 or >> 1

Response of Leading-Edge Vortex in Absence of
Vortex Breakdown: Sensitivity to Integrated History
of Motion

Response of Leading-Edge Vortex in Presence of
Vortex Breakdown: Nonlinear Coupling of Feeding
Sheet-Vortex Breakdown-Stall Zone

Response of Vortex Breakdown: Sensitivity to Class
of Forcing

Response of Feeding Sheets and Vorticity Distributions
with and without Vortex Breakdown: Sensitivity to
Class of Forcing
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LOCAL CONTROL AT MODERATE TIME SCALES
tu/c - 1

Response of Leading-Edge Vortex to Time-Dependent
Variations of Leading-Edge Separation: Restabilization
of Vortex Core

Response of Leading-Edge Vortex: Structure in Cross-
Flow Plane During Restabilization in Relation to
Separation Conditions

Response of Leading-Edge Vortex: Variations of
Feeding Sheet and Vorticity Distributions of
Restabilized Vortex
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Abstract of Paper for presentation at the

NASA/AFOSR/ARO Wotlcshop on Physics of Forced Unsteady Separation
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Background The objective of this work is to develop techniques for the control and management of

separated flows over airfoils, particularly under unsteady operating conditions. The results are expected

to help achieve the ultimate goal, which is flow management for highly maneuverable aircraft.

The key requirements for successful management of unsteady separation over airfoils are: an

understanding of the vortlclty production and transport over the airfoil surface, the ability to identify

the flow state reliably in real time, and the availability of optimal flow controllers that can be activated,

when needed, to modify the flow state in the desired manner. In addition, there are issues that need to

be resolved in order to achieve the successful integration of these components into an active feedback

control system.

In an investigation of a generic, unsteady, separating flow, Ramiz and Acharya (1989a,b) examined the

dynamics of formation of a separation zone, and showed that relatively simple techniques involving

measurements of the wall static pressure may be used to obtain reliable indicators of flow state. In

these experiments, an unsteady separation was introduced in a boundary layer by the motion of a

separation generator (a spanwise flap) into the flow. The development of the flow was shown to be

governed by a balance between two mechanisms; one responsible for the accumulation of vortidty at

the flap, and the other for the detachment and downstream convection of the vortidty. Phase-

*Associate Professor

**Graduate Research Assistant
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conditioned measurements of the time-varying flow direction at various locations downstream of the

flap, and corresponding wall pressure data were used to track the separation as it developed. A number

of possible criteria for flow-state identification, based on the unsteady wall-pressure measurements,

were investigated, and two techniques were shown to have good promise. One of these is based on a

comparison of the wall pressure signature with a preset threshold, while the other involves an

examination of the time derivative of the pressure signal.

Unsteady flow over two-dimensional pitching airfoils The present paper addresses the issue of flow

development over a pitching symmetric airfoil. An extensive body of work has been reported in recent

years, describing experiments that examine the flow over airfoils undergoing prescribed pitching

motions; in most cases these were sinusoidal oscillations about a mean angle of attack. The studies

were largely motivated by the need to understand helicopter blade aerodynamics and, more recently, by

interest in aircraft supermaneuverability. The bulk of these investigations focused their attention on

obtaining an understanding of dynamic stall and the influence of parameters such as airfoil geometry,

Reynolds number, oscillation amplitudes and rates. Although knowledge of this phenomenon has

improved, (McCroskey (1982), Walker ¢t al. (1985), Reynolds and Can" (1985), Robinson (1988)),

some of the underlying mechanisms are not yet understood clearly. In addition, much needs to be done

in order to develop effective means to control the unsteady separation. Specifically, one needs a clear

understanding of the unsteady production of vorticity, its accumulation and detachment from the near-

wall region. The establishment of a vorticity balance and a knowledge of the time scales of the

evolutionary process are needed for an understanding of the process, and will be a prerequisite for the

development of suitable control techniques.

E:cperiments and results We are carrying out experiments to understand this process in the flow over a

NACA 0012 two-dimensional, symmetric airfoil undergoing a controlled pitching motion. The airfoil

has a chord of 12 inches and a thickness 12% of chord. Measurements have been made over a

Reynolds number range (based on chord) between 28,000 and 120,000. In the unsteady experiments,

the airfoil was pitched up from an angle of 0 degrees to 40 degrees at constant velocity; that is, with a

ramp-type time motion history. It was then held at this final angle. The non-dimensional pitch rate

based on chord length was varied between 0.03 and 0.77.

A flow visualization study was first carried out to map the sequence of events that occur in the region

around the leading edge and the suction surface during the pitch-up motion, from the initial fully

attached flow condition to the occurrence of dynamic stall. Fig. 1 shows a sample of photographs from

a sequence of smoke-wire flow visualivation pictures, for a Reynolds number of 28,000 and a pitch rate

of 0.154, taken at different instants during the motion of the airfoil. For reference, it is useful to know
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thatthe static stall angle for these conditions is around 13 degrees. It is possible to identify a number of

events in the unsteady process that culminates in the shedding of the dynamic stall vortex. During the

initial stages of the pitch up, a zone of streakline distortion or reversal is seen close to the surface in the

leading edge region. This zone grows along the chord, as seen in the photograph at 11 degrees, and

emends all the way to the trailing edge as the airfoil motion progresses (at an angle of around 15

degrees in this instance). Simultaneously, fluid from the trailing edge region flows upstream along the

surface of the airfoil, as seen in the photograph at 25 degrees. The behavior of the flow in these zones,

the growth and interaction of the two zones, as well as a number of other events (which will be

described in the full paper), were systematically examined over the range of parameters to produce

maps such as the one shown in Fig. 2. Here, for example, Region I is bounded by two lines. The lower

line is the locus of points at which the streakline reversal zone has extended over 12 % of the chord.

Along the upper line, this zone has just reached the trailing edge. The upper edge of Region III is the

locus of conditions at which the leading edge vortex is shed from the airfoil.

In another phase of the experiments, these events were examined for the signature that they imposed

on the wall pressure distribution over the suction surface. The unsteady pressure variation was

recorded at 22 locations along the surface during the pitch-up motion, for the same range of

parameters. These data were then used to obtain chordwise pressure distributions over the suction

surface at different instants during the motion. Fig. 3 shows a sample of these data, for three different

pitch rates (0.036, 0.074 and 0.182), at an instant when the airfoil was at an angle of attack of 20

degrees; that is, halfway through its motion. The significantly different states of development of the

flow in these cases is reflected in the difference in the pressure distributions. The pressure distribution

at static conditions, for which the airfoil is fully stalled, is also shown for reference. The chordwise

variation of pressure over the suction surface during the pitch-up motion is shown in Fig. 4 for two sets

of conditions. Fig 4(a) shows the evolution of surface pressure for a pitch rate of 0.074 and a Reynolds

number of 120,000; the data of Fig. 4(b) are for a pitch rate of 0.49 and a Reynolds number of 88,000.

A detailed examination of data such as these yielded several interesting results. The two fgures are

representative of two classes of behavior, distinguished by low and high pitch rates. In each instance, a

suction peak begins to form in a region near the leading edge. As the pitch-up motion continues, the

magnitude of the peak increases and it moves much closer to the leading edge. At a later instant, a

zone or 'plateau' of constant pressure is seen to develop at a location which is the position along the

suction surface where the leading edge vortex ultimately forms and develops. Beynon d this stage, the

sequence of events is different for the two cases. At low pitch rates, the leading edge vortex remains

bound to the surface only until such time as the pressure levels of the suction peak and the constant

pressure 'plateau' are the same. It then grows in size and moves down the surface. At higher pitch

rates, the vorticity is bound to the airfoil for a longer period. The constant pressure 'plateau' deforms
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into a suction peak that characterizes the low pressure core of the leading edge vortex. Vorticity

accumulates in this region for a longer period before the vortex grows and moves over the suction

surface. The imprint of these events on the pressure evolution is seen dearly in the two figures.

The motion of the surface and the flow events within the viscous region over the suction surface are

strongly coupled. The unsteady separation process and the related sequence of events discussed earlier

are affected by the vorticity generated at the wall. The accompanying acceleration effects and change in

the convective scales result in what Ericsson (1989) refers to as the moving-wall effect. It can be shown

that for both steady and unsteady flows, the flux of vorticity from the surface is proportional to the

instantaneous free-stream pressure gradient. Figs. 5(a) and 5(0) show the variation of wall vorticity flux

from the suction surface during the pitch-up motion for the conditions of Figs 4(a) and 4(0)

respectively. It is seen that the vorticity flux is confined primarily to the forward portions of the suction

surface, and that during the initial phase of the motion this flux is negative in a region very dose to the

leading edge. The progression of certain significant events such as these, seen in the evolution of both

the pressure and the wall vorticiy flux, were tracked for a range of pitch rates and summarized in

composite plots such as those shown in Figs. 6(a) and 6(0). A detailed description of these plots and

their significance will be described in the presentation, and the correlation between this information

and the sequence of events that make up the dynamic stall phenomenon will be discussed. Finally, the

implications of these results on the requirements for successful control of the unsteady separation will

be examined.
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EXPERIMENTAL ARRANGEMENT

NACA 0012 AIRFOIL, 0.3 m chord

PITCH-UP AT CONSTANT RATE; 0 o _< 0 < 40 °
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SEQUENTIAL EVENTS IN UNSTEADY SEPARATION PROCESS
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Generalization of Lighthill's discussion

of boundary layers shows that

The flux of vorticity from the wall

is proportional to the instantaneous pressure gradient

S = 10p S 2c
pax = SU®2
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- Combination of flow visualization, wall pressure and wall vorticity flux

provide better understanding of the evolution of unsteady separation

over a pitching airfoil

- The flux of vorticity at the wall is confined primarily to a region very

close to the leading edge

- Trends in 'significant' events in wall pressure and vorticity flux have

been mapped for a range of values of the dimensionless pitch rate

- Results point to alternatives for real-time identification of the state of

flow development over the airfoil in unsteady situations
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AND FLOW SEPARATION ON BODIES IN UNSTEADY MOTION
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ABSTRACT

Described in this work is an attempt to identify and examine the

mechanisms responsible for the generation/shedding of vorticities and the

separation of flow from bodies in forced unsteady motions through a viscous

fluid. To gain insight into the basic physics of unsteady fluid dynamics, pos-

sible mechanisms are isolated and examined separately by assuming different

simplified flow arrangements. Even without depending on the availability of

the supercomputers, it might be possible to explain or predict some complex

unsteady flow phenomena based on the fundamental understanding of the

individual mechanisms.

OBSERVED UNSTEADY FLOW PHENOMENA

A numerical study has been made of the flow around an abruptly

started elliptic cylinder through an incompressible viscous fluid at a constant

angle of attack. The following special features have been observed in the

results of that study:

• The zero streamline on the upper surface moves quickly to the

trailing edge so that the Kutta condition is automatically satisfied on a body

whose trailing edge is not sharp. See Fig. 1. The same phenomenon is also

found even on an ellipse of a very small eccentricity as shown in Fig. 2.

• Vorticities are generated from the leading edge and are convected

downstream along body surfaces while being diffused sideways. Parts of the

vorticities are shed from the trailing edge. See vorticity contour plots in Figs.
1 and 2.

• At a high angle of attack, leading edge separation may occur as
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shown in later stages of Fig. 1.

• In contradiction to the inviscid analysis, a body without a sharp

trailing edge, such as the elliptic cylinder considered here, can generate a lift in

a viscous fluid. Figure 3 reveals that the computed steady-state lift increases

with increasing slenderness of the ellipse.

QUESTIONS AND APPROACHES TO FIND ANSWERS

Based on the aforementioned observations, some questions arise con-

cernlng the fundamental physics of the unsteady fluid dynamics. In most

experimental and numerical studies of unsteady flows, a large number of pa-

rameters are involved, such as the body geometry, time dependent body mo-

tion, viscous and inertial forces of the fluid, etc. The nonlinear coupling of

those parameters makes the flow phenomena too complex to fully compre-

hend. In searching for answers to those questions, an approach is followed in

which the influential parameters are separated and examined individually by

choosing various appropriate simplified flow configurations. After the effect

of each parameter is throughly understood, even without intensive numeri-

cal computations, the overall behavior of a given unsteady flow might become

predictable based on a synthesis of the influences from all parameters involved

in that particular problem.

Question I. What are the mechanisms that cause the production of

vorticity on a body in forced unsteady motion?

To answer this question several classical unsteady flow problems with

exact solutions are reviewed. For a flat plate of infinite extension started

impulsively into a constant motion U in its own plane, vorticity is generated

instantaneously at the surface and diffuses away into the fluid in the normal

direction. At a later time the shear stress at the plate is finite, but it cannot

generate additional vorticity. The total vorticity contained in the fluid per

unit projected area of the plate is a constant, which is proportional to U but

independent of the viscosity of the fluid. Examined also are the unsteady plane

and cylindrical Couette flows. The conclusion is that vorticity is generated by

tangential acceleration of a solid surface, but not by the shear force exerted
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by the surface on the fluid.

In the case of the Blasius boundary layer flow, all vorticity is gener-

ated at the leading edge. The total amount of vorticity, which is proportional

to the relative velocity of the plate through the fluid, is convected downstream

without changing its total magnitude despite the presence of wall shear forces

along the boundary layer.

The generation of vorticity by tangential pressure gradients along a

surface and the consideration for bodies of finite dimensions are omitted in

this abstract.

Question II. What are the mechanisms that cause the zero stream-

line to move toward the rounded trailing edge of a body, and what are those

that cause leading edge separation?

The possible influential parameters are many, including for example

the body curvature, local vorticity distribution, pressure gradient, and the

surface velocity relative to the external flow. The flow structure near the

trailing edge of an impulsively started elliptic cylinder was studied previously

by us using the method of matched asymptotic expansions. The representative

result shown in Fig. 4 describes the process by which a region of concentrated

vorticity is lifted off the trailing edge and shed into the wake. The present

work examines why such a phenomenon should occur near the trailing edge

and how the flow there differs from that near the leading edge.

At an early stage after the impulsive start of the ellipse, as shown

in Fig. 1, the flow near the leading edge resembles that around a stagnation

point and that near the trailing edge is approximately one with flow directions

reversed. Using a simplified model, the leading edge flow is approximated by

a stagnation-point flow on an infinite plate facing a stream, whose solution

under boundary layer approximations is known. However, by reversing the

stream direction to simulate the flow near the trailing edge, the behavior of the

boundary layer there is radically changed. Effects of various parameters on the

boundary layer structure are then studied by modifying this standard model.

For example the orientation of the body surface is simulated by allowing the

far flow to incline at an angle, and the unsteady translational and rotational
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motions of the surface are approximated by giving the plate certain prescribed

normal and tangential velocities. To simulate the effect of body curvature,

the fiat plate may be replaced by a circular cylinder. In this way a set of

geometrically simple yet physically meaningful problems is formulated; most of

the problems can be solved using classical boundary layer solution techniques.

This study may shed some light on the explanation of many unsteady flow

phenomena, such as the differential lift generation abilities of an ellipse with

different eccentricities as shown in Fig. 3. The basic solutions may also be used

for the prediction of the occurrence of leading edge separation, its suppression

and control.

Question III. This question is concerned with the classical Kutta-

Joukowski theorem that L'=pUF, in which F is the circulation computed

along a closed path around a lifting body according to the inviscid theory. In

a realistic fluid with viscosity, then, how should P be computed?

When the no-slip condition is applied on a body without rotation,

the circulation around a path coinciding with the body surface is zero. By

choosing closed paths further and further away from the body, the computed

circulation will first increase but will decrease later, and finally will approach

zero again because the total vorticity generated by a translational body van-

ishes. It appears quite difficult to find an appropriate closed path that contains

all the vorticities responsible for the lift, even if the wake vorticities are far

from the body. Despite the fact that a satisfactory solution has not yet been

found, various attempts to find an answer will be described.
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FIGURE 3: CL vs. time for elliptic cylinders.
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Factors affecting movement of zero

in stagnation-point flow:

streamline

Direction of flow

Unbalanced vorticity

Orientation of far flow

Body curvature

Motion of body surface
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Conclusion

Position of the zero streamline changes in an unsteady

stagnation-point flow; it moves from a low into a

high vorticity region.
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w
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_ontrlbutlons of thls Study

Among the new significant aspects of the present work are (1) the

treatment of the far-field boundary, (ii) the use of C-grld topology, with

the branch-cut singularity treated analytically, (ill) evaluation of the

effect of the envelope of prevailing initial states and, finally," (iv) the

ability to employ streakllne/pathline 'visualization' to probe the unsteady

features prevailing in vortex-dominated flows. The far-field boundary is

placed at infinity, using appropriate grid stretching. This contributes to

the accuracy of the solutions, but raised a number of important issues which

needed to be resolved; this includes determining the equivalent

time-dependent circulation for the pitching airfoil. A secondary counter-

clockwise vortex erupts from within the boundary layer and immediately

pinches off the energetic leading-edge shear layer which then, through

hydrodynamic instability, rolls up into the dynamic stall vortex. The

streakllne/pathline visualization serves to provide information for insight

into the physics of the unsteady separated flow.

This research is supported, in part, by AFOSR Grants (Nos. 87-0074 and

90-0249), with supercomputer resources being provided by the Ohio

Supercomputer Center.
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Physlcal. Cha_acterlstlcs and Background

Specifically, the large amptitude rapid pitching motion associated with

the initiation of a high angle-of-attack maneuver typically leads to the

generation of a dynamic stall vortex whose evolution results in large

transient lift, drag and moment that can, for short periods of time, produce

loadings significantly larger than those expected during either steady, or

quasl-steady flight. Indeed, the successful completion of an abrupt,

drastic maneuver can depend upon the ability of holding the dynamic stall

vortices in place, at least for the duration of the maneuver, and

subsequently bleeding the excess accumulated vortlclty in a controlled

manner into the wake. Abrupt shedding of large amounts of locally

concentrated vorticity can so rapidly alter the llft distribution on a body

that a tumbling loss-of-control incident can occur, as the associated rapid

changes in moment distribution cannot be tolerated.

Recently, Carr (1988) has comprehensively reviewed the literature on

the dynamic stall phenomenon and has also articulated the effect of key

parameters on this phenomenon. Helin (1989) has also highlighted recent

advances in the field, while stressing the importance of unsteady

aerodynamics for highly maneuverable and agile aircraft. In addition, he

has raised the important issue of the effect of flow separation on the

formation of the energetic dynamic-stall vortex. These two reviews

adequately point out some of the unresolved issues associated with the

problem of dynamic stall.

On the Analysis of Dynamic Stall

The unsteady Navier-Stokes analysis of K. Ghia, Osswald and Ghia (1985)

and Osswald, K. Ghia and U. Ghia (1986) is modified to permit arbitrary

three degree-of-freedom maneuvers, using body-fixed coordinates and a C-grid
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topology. This formulation not 0nly permits pitching motions, but also

plunging and in-plane accelerating or decelerating motions; typically, the

airfoil is pitched about the quarter-chord axis. The problem is formulated

using vorticity and stream function as dependent variables in a non-using

body-fixed reference frame in generalized coordinates. This formulation

offers the important advantage over the primitive-variable formulation that

the form of the governing equations in inertial and non-inertial reference

frames is identical. The far-field boundaries are located at true infinity

for this subsonic flow with its fully elliptic nature. The conformal

mapping techniques used lead to analytical determination of the

corresponding inviscid flow; this inviscid flow constitutes the true far-

field boundary condition; by contrast, the studies of Visbal and Shang

(1988) and Ekaterinaris (1989) place the far-field boundary at a finite

distance from the airfoil, and employ free-stream conditions on the upstream

boundary and zero streamwise gradients downstream. The present study uses

an analytically determined clustered conformal grid, thereby avoiding

numerical error in the computation of the metrics. The C-grid topology

employed introduces a singularity at the trailing edge (TE) and all along

the branch cut. For the latter, this singularity is treated using the

method of analytic continuation, as developed by Osswald, K. Ghia and U.

Ghia (1985). The conditions of zero slip and zero normal velocity at the

surface of the airfoil are implemented appropriately in terms of the stream

function and vorticity. At the TE, the singularity in the grid does play a

role in determination of the stream function, which is obtained by

satisfying the Kutta condition. The vorticity at the TE is determined using

the analysis of Osswald, K. Ghia and U. Ghia (1989). The direct numerical

simulation (DNS) methodology developed by the authors is used to solve the
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vorticity transport and stream function equations. Central differences are

used for all spatial derivatives and no artificial dissipation is added

explicitly.

Results and Discussion

In the present study, simulations are carried out for a NACA 0015

airfoil undergoing constant O-pitch-up motion. Two flow configurations are

attempted and they are for Re = 103 and 104 . Configuration I, with the

lower Re - 103 , is used in the development phase, since it permits the use

of a smaller grid (274, 76) of which 114 grid points are placed on the body.

On the other hand, configuration II, with Re = 104 , is used to compare the

results of the experiments of Walker, Helin and Strickland (1985) who

considered Re - 45000. This latter configuration was run using a (444,101)

grid with 204 grid points on the body; the size of the grid was selected

based on the results of Visbal and Shang (1988) who had carried out a grid

study and selected this size. In addition, the same constant O-pitch-up

motion as used by them is also implemented here and corresponds to

nondimensional pitch rate _0= 0.2 with nondimensional acceleration time

to = 0.5, and pivot axis location measured from airfoil leading edge

x 0. 0.25.

Results of configuration I, in Fig. i, show that the dynamic stall

vortex with its clockwise spinning fluid evolves as the shear layer from the

leading edge is pushed away by the counterclockwise spinning vortex close to

the body surface and subsequently the shear layer rolls up and forms a

dynamic stall vortex. It appears that the eruption of counterclockwise

spinning vortex from within the boundary layer is important to formation of

the dynamic stall vortex near the leading edge.
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o
Results for configuration II, in Fig. 2, show that O - 0 run exhibits

unsteady results as opposed to the steady-state results obtained by Visbal

and Shang. Their steady-state solutions could strictly be a consequence of

the use of both explicit as well as implicit smoothing, i.e., artificial

viscosity, to maintain stability in their numerical calculations, which

employed the method of Beam and Warming. Present results for configuration

II, although not depicted here, show that there are grid related

oscillations near the leading edge in the vorticity contours and grid

structure and perhaps its density needs to be altered before generating new

results and analyzing them. Still, in this case, also the secondary

counterclockwise vortex erupts from within the boundary layer on the surface

to form the dynamic stall vortex. Unlike wind-tunnel tests, the numerical,

experiment in the present study computes the vorticity field directly. By

evaluating various individual terms in the vorticity- transport equation, it

is possible to examine vorticity accumulation and generation at the body

surface as well as in the flux from the boundary to reveal the underlying

mechanism and the role of unsteady separation on the evolution of the stall

vortex. This is possible once a comprehensive set of results are obtained.

In summarizing, the constant O-pitch-up experiment of Walker et al.

(1985) is simulated using direct numerical simulation and an unsteady NS

analysis. The preliminary results obtained so far provide the flow

structure and the evidence that eruption of secondary counterclockwise

vortex near the quarter chord point triggers the formation of the dynamic

stall vortex. However, sclditional results are essential to obtain the

budget of vorticity dynamics _nd to shed further insight into this mechanism

underlying the evolution of dynamic stall vortex just stated and its

relation to unsteady separation. Based on the existing results of a video

presentation of the numerically simulated evolution, convection and shedding
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of the dynamic stall vortex is created, but for quantitative information

comprehensive data is needed. It should be added that, in the earlier

results for flow past a static Joukowski airfoil at 53 °, the authors have

seen the formation of a secondary counterclockwise vortex before the leading

edge shear layer forms a large clockwise spinning vortex.

REFERENCES

,

,

.

.

°

.

,

.

,

Blodgett, G.A. Osswald, K.N. Ghia, U. Ghia, (1990), "Bubbles - An

Unsteady Numerical Particle Trace Technique," to be presented at

Sixteenth Annual AIAA Mini-Symposium on Aerospace Science and

Technology, March, Dayton, Ohio°

Carr, L.W., (1988), "Progress in Analysis and Prediction of Dynamic

Stall," Journal of Aircraft, Vol. 25, No. i, pp. 6-17.

Ekaterinaris, J A , (1989), "Compressible Studies on Dynamic Stall,"

AIAA Paper 89-0024, 27th Aerospace Sciences Meeting, Reno, Nevada,

January 912

Ghia, K,N., Osswald, G.A., and Ghia, U., (1985), "Analysis of Two-

Dimensional Incompressible Flow Past Airfoils Using Unsteady Navier-

Stokes Equations," Chapter in Numerical and Physical Aspects o_

Aerodynamic Flows, Vol. III, Editor: T. Cebeci, Springer-Verlag, New

York, January.

Helin, H E , (1989), "The Relevance of Unsteady Aerodynamics for Highly

Maneuverable and Agile Aircraft," Proceedings of fourth symposium on

Numerical and Physical Aspects of Aerodynamic Flows, Long Beach,

California, January

Osswald, G.A., Ghia, K.N. and Chia, U., (1985), "An Implicit Time-

Marching Method for Studying Unsteady Flow with Massive Separation,"

AIAA CP 854, pp, 25-37.

Osswald, G.A., Ghia, K.N., aIld Ghia, U., (1989), "Analysis of Potential

and Viscous Flows Past Arbitrsry Two-Dimensional Bodies with Sharp

Trailing Edges," ATAA CP 895. pp. 668-677.

Visbal, M.R., and Shang, J.S., (1988), "Numerical Investigation of the

Flow Structure Around a Rapidly Pitching Airfoil," "Proceedings of

AFOSR/FJSRL/DFAM/UC Workshop II on Unsteady Separated Flows, FJSRL-TR-

88-0004, pp. 91-108, September.

Walker, J.M., Helin, H.E., and Strickland, J.H., (1985), "An

Experimental Investigation of an Airfoil Undergoing Large Amplitude

Pitching Motions," AIAA Journal, Vol. 23, No. 8, pp. 1141-1142,

August.

134



¢4

i_ u u

OUG, t-
Z
LU

Lid
IT

0

135

OUO Z

I

N
_N

n n

l_l I- I-

I-- F.- I-- >-,-4-

F-- 113

o_ oN

0

o



• _ 9 0
_ m _ 0
0 _' _D _1

• . , 0

m_? d

Jg_
Z

I[
L0
IX

_) 0 0

O0 o
.rio

o , ,
_" 0 o

n"
! | 0 Ill

Z >

U m

b h F u_ _,1
_ 1.4

U/ E

O _ Z
L_ 0 (0 I_ H
Z • •

2 _ U

O
In

d

JL_____

0 • 0
o _# In

O
O

1-
I

O

0

I_ x

0

0
0

0

d
I

O

v

-- _ 0 . 0
_iO h 0

• , . r_

It tII It >_
JO _E _]

U U U Z
Z

#
PI O

r_oo _ 6

i_ . . X
_ 0 0 E 0

| ! !

I_ O C}

8

H
U _

tO 0 _ > H

H 0 h
E 0 _ El

v

00-- 0
_ 0 0
_ 0 r_
• , , o

, d
l I I II
JO Z

UU LI _,

_r
_J

ID
(_ 00
_00

m 00
E

H I I _J

O 0 Mtd

_ H

N E

_1 I'- Z

0_ m H
HO K

E 0 _ U_ _

> _ i 0

A i i ,

o m mo

0

0

0

b_ x

0

0
0

0

d
I

o

J

[-.t

O

<

C_

E

r_

0

C_

:z •
oN

O_

_ •

[-4

r._ _"

O

O _
[..-i II

O

0
o

6

136



0.75

0.50

0.25

Y 0.00

-0.25

-0.50

-0.75J L

,_/-0.50 -0.25

FIG. 2

MANEUVERING THETA = 0.000 DEG CL ,, 0.3732

RE : 10000.0 THTADOT =, 0.000 CO,, 0.0459

TIME = 8000 THTADD = 1.840 CM- -0.1474

NACA0015 VORTICITY MAX = 474.34 MIN : -47454

ROUND TE INC BY 8.00 TO 80.00 THEN BY 200.00

I I i I I ! I I >

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

X

VORTICITY CONTOURS FOR FLOW PAST A NACA0015 AIRFOIL,

Re = 10,000, _ = 0 ° t = 8.00

MANEUVERING

RE = 10000.0

TIME = 9,300

THETA = 13.651

THTADOT = 0.200

THTADD = 0,000

NACA0015 VORTICITY MAX = 729.22

ROUND TE INC BY 8.00 TO 80.00

DEG CL = 3.1485

CD= 0,3413

CM= -0,4151

MIN = -2263.13

THEN BY 200.00

FIG. 2 CONT.

[]

ENLARGED VIEW OF LEADING EDGE DEPICTING EVOLUTION OF

DYNAMIC STALL, Re = 10,000, _ = 13.651 °.
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INERTIAL VS BODY FIXED OBSERVER

,_ Inertial Observer

Body Fixed

Generalized

Position of Fluid Particle:

Velocity of Fluid Particle:

Acceleration:

Vorticity:

Inertial Observer

½
_x
_ =V x fzi

Body Fixed Observer

(Apparent)

r

KINEMATICS

ri = rB/i(t) -t- F

al = aB/1(t) + a + 2f/s(t) X fV"+ c_s(t) X _ + fts(t) X fiB(t) X

_ = v x {%/_(t)+ _' + fie(t) x ,_}
= 0+V x ?+2FiB(t)

= _ + 2:ts(t)

Arbitrary Maneuver Defined by: _s/,(t)
_'_/,(t) =
as/x(t) = _d,_
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UNSTEADY INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS

INERTIAL OBSERVER

PRIMITIVE VARIABLES

Continuity

V.£I =0

Linear Momentum (Bernoulli's Form)

1 (VxVxlPz) -V(0--7+ x =

VELOCITY-VORTICITY

Continuity

V-IPr = 0

Kinematic Definition of Vorticity

Vx gx=_r

Vorticity Transport

0&, 1
+ v x (_r x (v x v x _,_)= o--k-
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UNSTEADY INCOMPRESSIBLE

NAViER-STOKES EQUATIONS

BODY FIXED (APPARENT) OBSERVER

PRIMITIVE VARIABLES

Continuity
V.ff=0

Linear Momentum (Bernoulli's Form)

,o--T+_B(t)× + Vxf')×f'+2flB(t)×v+__ x =

+ aa/l(t). _ - 2

VELOCITY-VORTICITY

Continuity
V.17l = 0

Kinematic Definition of Vorticity

Vx91=@

Vorticity Transport

Ocot 1

r/) +v x (_r x (v x v x_,)=0--._--+

Kinematic Relationship Between Apparent and Inertial Velocity

f" = % - f,'B/_(t)- fis(t) x _

Solve For Inertial Velocity and Inertial Vorticity

Directly in Body Fixed Frame

Form of Governing Eqs. Unaltered
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Inertial Velocity Boundary Conditions RemainUnaltered

Only DifferencesAre

Inertial Vorticity Advectswith Apparent Velocity

Additional Vorticity is Createdat Body SurfaceDue
to Acceleration of Body
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For Two-Dimensional Flow, use

DISTURBANCE STREAM FUNCTION-VORTICITY

FORMULATION IN GENERALIZED BODY FIXED

COORDINATES

Definition of Disturbance Stream Function (Deviation from Uniform

Flow)

Where _o is at yet an Unknown Integration Constant Representing

a Displacement of the ZERO STREAMLINE at INFINITY

Arbitrarily Maneuvering

CrNERTIAL -- [x2 COS0(t)- X 1 sin 8(t) + _o] -t- _bDrS(_l,_2,t)
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ELLIPTIC STREAM FUNCTION PROBLEM

Subject to the Boundary Conditions

cOrn = 0 at INFINITY

_/,D,S = {x2[V_H(t)_cosO(t)]_x,[V_H(t)_sin 0(t)]

Along Body Surface

2

_t. --y

O

_o
$

¢/D.r3 = 0

J

at INFINITY

STRICTLY AN INVISCID EFFECT (ALL VISCOUS

DISTURBANCES DISSIPATE WELL BEFORE INFINITY)

DIRECTLY REPRESENTS UNDERLYING INVISCID

CIRCULATION SET BY AN INVISCID KUTTA CONDITION AT
TRAILING EDGE
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KUTTA CONDITION FOR _o

(WEDGE TRAILING EDGE)

_O

_aOOto _

4

?,

Branch
___'_'_"_ Cut

_hDIS

lim { 1 WINVISCIDBRA,7_.cuT_ gfr }=

[{cos O(t)- V_/,(t)+ z2_B(t)}_}, + {sin O(t)- V_lt(t ) -x'gtB(t)}_]. i
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VORTICITY TRANSPORT

0 0

+_ (_E,_v,3)+_ (_v_j) -

n-g{b-_r k_ o_,] + b-_ -- 0_2]

where

v_V 1 = [{cosO(t) - V_/t(t ) + x_nn(t)}_l + {sinO(t) - V_/t(t ) - zlf_B(t)}_2]. _10Cf ts

g_/v/ff + 0_---7-

v/'ffV 2 [{cosO(t) - VJ/z(t) + z2an(t)}i_ + {sinO(t) - VJ/;(t) - ztfla(t)}_2], g20¢1Ors
= g22/,/Y + 0_1

Subject to the Boundary Condition

w_ = 0 at Infinity

and Along the Body

Subject to the Constraint

..on 0¢ °;s

v_ o¢_ -[{c°s°(t)-v_/;(t)+:_aa(t)}a'+{sin°(t)-v$/;(t)-x'aB(t)}a_le_
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THE PITCH UP MANEUVER OF

VISBAL AND SHANG

!

/

_s/,(t) = o

_,/_(t) = o

aB/t(t) = 0

OB(t) = Fto [t to _(4@)0]- (_-.-._)(1 -exp

ftB(t) = --fto (1-- exp--(_)t)

4.6)t_(t) =-(4t@)ao exp- ( to

Where

Fro - Nondimensional Pitch Rate; 0.2

to - Nondimensional Acceleration Time; 0.5

zo - Pivot Axis Location Measured from Airfoil LE; 0.25
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Computed Unsteady Flows of Airfoils

at High Incidence

K.-Y. Fung, Jeffrey Currier, and S. O. Man
University of Arizona

Tucson, AZ 85721

The flow over an airfoil at an angle of attack above the static stall

angle would ordinarily be massively separated. Under dynamic

conditions, the onset of stall can be delayed to an angle, depending
on the type of unsteadiness, the freestream Mach number and the

transition process, much higher than that for static stall. The stall

onset mechanisms under dynamic conditions are unclear. Due to

extreme difficulties involved, experimental investigations, so far,

have provided insufficient information about the flow field for the

identification of the onset mechanisms. A course of classical

boundary layer analysis augmented with numerical experiments and

measured data is chosen here instead, with the hope that the

identification of onset mechanisms can be more systematic and
quantitative.

To avoid confusion in terminology, the onset of stall, for the cases

studied here, is defined as the conditions at which the peak suction
on the airfoil attains the maximum value before the airfoil reaches

the maximum angle of attack in a course of upward pitching motions.

It is found that the onset of stall is delayed with increased frequency

of oscillation as long as the flow remains subsonic. Once the flow is

locally supercritical, the onset of stall becomes much less sensitive to

increased frequency but has a strong dependency on the freestream

Mach number. The dependency of the onset on the Mach number is

not affected by the airfoil geometry as much as its dependency on

the reduced frequency is. Before the onset of stall, the instantaneous

pressure distributions over the airfoil can be considered quasi-

steady, and are predictable using inviscid theory.

Two airfoils, the NACA 0012 and the Vr7, which have different

dynamic stall characteristics are chosen for our study here. An

analysis of the boundary layers on these two airfoils at various

conditions suggests that separation bubble bursting, or the failure of

reattachment of the separating boundary layer, deserves more

investigations and attention as a key onset mechanism than it has

been given. This analysis, which is based on computed inviscid flows

PIt_-IK_& PAGE BLANK NOT FILMED
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and classical theories for static stall, suggests that once the flow

becomes locally supersonic, the onset of stall is a result of the

interaction between the forming shock and the steepening laminar

boundary layer. It also gives an explanation to the differences

between the onset characteristics of the two airfoils.

The sensitivity of stall onset on transition is studied by computing

the flow over an airfoil at conditions near stall and varying the

switch-on location of the turbulence model for the Reynolds

averaged Navier-Stokes code used for this study. Figure la shows a
computed lift history of the NACA 0012 airfoil for the a freestream

Mach number of 0.301 and at a stationary incidence angle of 11.5
degree. A turbulence model is turned on at 2% chord. The flow is

subsonic everywhere throughout the history for this lower angle of

attack. Notice that a steady state is reached after roughly 1500

iterations. However, when the turbulence model is turned on at 5%

chord, Figure lb, the lift history fluctuates wildly (solid line) if

nonuniform time steps are used, and periodically if a time accurate

marching method (dotted line) is used. A leading edge separation

bubble is observed in the boundary layer of these flows. The size of

the separation bubble is directly related to the turn-on location of

the turbulence model, which causes the separating boundary layer to
reattach if conditions allow. A move of this location from 2% to 5%

changes the stability of the flow. The fluctuations in the latter case

are due to unsteady separation and subsequent reattachment of the

bubble. A change of incidence angle from 11.5 to 12.5 has a drastic

effect on the lift history. With the turbulence model turned on at 2%,

not only does the lift not reach a steady value as for the lower

incidence case, it fluctuates periodically with large amplitudes, Figure

lc. As the lift reaches a high value, a local supersonic region is form

near the leading edge. The separation bubble beneath this region

interact strongly with the supersonic flow. A separation vortex is

formed when the supersonic region reaches a certain size. The

vortex then interacts as it moves with the boundary layer, causing

the lift to drop to a value below zero, where another cycle of lift

fluctuation begins. For 12.5 degrees, a stable solution can be found if

the turbulence model is turned on before 1% chord. For an even

higher angle of attack close to the static stall value, at 13.25 degrees,

a mere change of transition locations from 1.25 to 1.35%, which differ

by one grid point and are before and after the computed shock

location respectively, causes the flow from reattachment to massive

separation. For a lower freestream Mach number, 0.185, separation

is less sensitive to the transition location as the angle of attack is
increased.
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Figure la, M=0.301 Alpha=ll.5 T.P.@ 2%

2_

1.5

:

i ................... i ......................... i........... :

0 1000 2000 3000 4000

No. of Iterations

Figure 1 b, M--0.301 Alpha=l 1.5 T.P.@ 5%

I

:

2000 4000

Nol of Iterations

6000 8000

Figure lc, M=0.301 Alpha=12.5 T.P.@ 2%
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Figure 1, Lift history computed using a Navier-Stoke solver with the
turbulence turned on at different locations.
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THE SUCTION PEAK ANALYSIS

THE ONSET OF STALL IS THE CONDITION AT WHICH THE PEAK
SUCTION ON THE AIRFOIL ATTAINS THE MAXIMUM VALUE

BEFORE THE AIRFOIL REACHES THE MAXIMUM ANGLE OF
ATTACK IN A COURSE OF UPWARD PITCHING MOTIONS PAST
THE STATIC STALL ANGLE

OBSERVATIONS

• MAXIMUM SUCTION PEAK INCREASES WITH k
FOR MACH-SUBCRITICAL FLOW

• DECREASES _ MACH NUMBER FOR
MACH-SUPERCRITICAL FLOW

• QUASI-STEADY FLOW BEFORE STALL ONSET

WHAT ARE THE SEPARATION MECHANISMS?

• SHOCK INDUCED SEPARATION

• SEPARATION BUBBLE BURSTING

• TURBULENT SEPARATION
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MOMENTUM THICKNESS AT SEPARATION

_s, = 3.710"_41 [_1-6._S' I U/5dIS'lL_I L_J

CURLE AND SKAN'S BURSTING PARAMETER K

K_ R_ss, Us,5 s ,
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CONCLUSIONS

• The maximum suction peak is limited by shock formation

• The shape of the leading edge determines the effect of
unsteadiness on stall onset

• Before onset of stall the flow can be predicted by quasi-
steady theory

• Transition point placement is not sensitive when the
angle of attack is below the static stall value

• Transition point placement in supercritical flows is

sensitive to movements of only one grid line
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Will the Real Dynamic Instability

Mechanism Please Be Recognized!

L. E. Ericsson

Lockheed Missiles & Space Company, Inc.

Sunnyvale, Californla

N94- 34976

There is a richness of flow mechanisms that can cause dynamic

instability. Only after asking the right questions and carefully considering

the answers can the fluid dynamic source of the observed dynamic instability

be recognized. This will be illustrated by two carefully chosen examples.

In an aeroelastlc test of a 25 ° swept wing with a symmetric airfoil

section I (Fig. 1), violent oscillations in the first bending mode occurred

if the location of boundary layer transition was not fixed (Fig. 2). The

oscillations were of the limit cycle type, the typical result of nonlinear,

negative aerodynamic damping (Fig. 3). What is the source of this dynamic
instability?

The authors 1 propose a quasi-steady flow mechanism, which would

require 2 that the transitlon-induced effect produces a net negative lift

slope over at least the outboard wing sections. That is

c_ = (C_)FT _ (&iC_)TR _ 0 (i)

where (C_)FT is the lift slope with fixed transition and

(AiC_)TR is the lift loss due to free transition, which acts

similarly to trailing edge stall (Fig. 4). The correct question to ask now

is: "Can the resulting slope C_s become negative and reach the magnitude

needed to cancel the structural damping present in the test?" The

experimental results for trailing edge stall 3 (Fig. 5) show that negative

llft slope results only at very high angles of attack, s ) 12 ° in Fig. 5.

Even if the plunging-lnduced sectional angle of attack, z/Um exceeds the

static stall angle, it is varying from s = 0 to this maximum value beyond

s = 12 °, and positive damping is produced at s < 12 ° . As a matter of

fact, even in the case of the much larger lift loss associated with leading

edge stall (midgraph in Fig. 5), negative damping in plunge is only measured

when the time average trim angle of attack s 0 is close to the static

stall angle 4 (Fig. 6), i.e., s o _ s s, not s o = 0 as for the
results in Figs. 2 and 3.

In order to find the real dynamic instability mechanism causing the

divergent oscillations in Fig. 3 one needs to follow-up on the dynamic

stall/dynamic transition analogy. Starting with the conceptually simpler case

of pitch oscillations, accounting for the circulation lag and the effect on

flow separation of the unsteady boundary layer edge conditions makes it

possible tp predict the measured negative damping at stall 4 (Fig.Ta).

However, the results 6 in Fig. Tb show that this dynamic flow mechanism is

incomplete. It cannot explain how a 6 ° pitch oscillation at s o = 22 °

can cause the flow to attach to generate time-average lift high above static

lift maximum, obtained at _ _ I0 °. A dynamic flow mechanism is needed that can
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energize the boundary layer developed between flow stagnation and separation

points to the extent needed to prevent flow separation. The "leadlng-edge-Jet"
effect 7 illustrated in Fig. 8 provides such a flow mechanism. As the

airfoil leading edge moves upward during the "upstroke", the boundary layer is

strengthened by the wall-jet-llke moving wall effect and is more difficult to

separate. The "rolllng leading edge," used in Fig. 8 to illustrate the

"leading edge jet" effect, has been investigated in detall 8.

The moving wall effect is of significant magnitude only in the region

near the stagnation point, where the boundary layer As thin and, therefore,

very sensitive to this wall-jet-like action. A similar moving wall effect on

boundary layer transition has been observed on airfoils. Figure 8 illustrates

how the plunging and pitching airfoils will have opposite moving wall effects

for increasing effective angle of attack, i/U_ and e. respectively.

Carta's hot film response data 9 (Fig. 9)* show how the adverse (upstream)

moving wall effect i(t) promotes transition and causes the plunging airfoil to

have a longer run of attached turbulent flow prior to stall. As a result, the

flow stays attached past 7.5% chord, whereas flow separation occurs forward of

5% chord on the pitching airfoil, which has a shorter turbulent run before

stall due to the opposite, transition-delaying, moving wall effect. In

addition to showing the opposite moving wall effects for pitching and plunging

oscillations, Fig. 9 also demonstrates that the moving wall effect completely

dominates over the accelerated flow effect, i.e., the effect of the lessened

leeside pressure gradient adversity 8, which is the same for pitching and

plunging oscillations. This dominance is found in numerous flow situations

both in two-dimensional and three-dimensional flow I0.

The plunging airfoil section of the wing in Figs. 1-3 will experience a

transitlon-promoting moving wall effect on the top side during the "down

stroke" of the bending oscillation. On the bottom side, the moving wall

effect is the opposite, delaying transition. As a result,a negative lift

component is generated which drives the oscillation (Fig. I0). The question

one now must ask is: "How can the transition asymmetry generated by the

moving wall effect produce a negative load that dominates over the attached

flow load, C_x _ z/Um, when it could not in the quasi-steady case

discussed earlier, (Eq. (I)?" In the latter case, transition reacts to the

change of the pressure gradient at the boundary layer edge due to z/Um.

The test results 9 in Fig. 9 show that the (viscous) moving wall effect

completely dominates over this inviscid pressure gradient effect, providing
the answer to the question raised.

Wing bending oscillations of the limit cycle type, similar to those for

the 25 ° swept wing (Figs. 1-3), have also been observed on a highly swept

wing II (Fig. Ii). The measured damping shows that the dominant dynamic flow

mechanism changed when decreasing the wing sweep to A = 55 ° or less

(Fig. 12). The characteristics shown in Fig. 13 rule out shock-induced flow

separation as a source of the self-excited oscillation, as was also concluded

in Ref. ii, where it was suggested that one or both of the following

vortex-induced effects was the source (see Fig. 14). In one case (left

diagram), the suggested source is the changing strength of the leading-edge

vortex with increasing angle of attack, which due to the associated phase lag

can generate a dynamically destabilizing lift component. The mechanism would

*The amplitudes of z(t)/U_ and 8(t) are of the same magnitude.
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be similar to that for the "spilled" leadlng-edge vortex in dynamic airfoil

stall 7"12. In the other case (right diagram), the suggested flow mechanism
is the breakdown of the leading-edge vortex.

The obvious question that must be answered affirmatively before

suggesting candidate flow mechanisms, such as those shown in Fig. 14, is if

they can produce the observed data trends (Figs. 12 and 13). In the present

case they cannot. The "spilled" leading edge vortex(left diagram in Fig. 14)

should cause a dynamically destabilizing effect that increases with Increasing

angle of attack, as the vortex strength Increases. The start of cross flow

separation occurs much earlier than at _ = 7 e, where the dynamic instability

occurs. That is, the proposed flow mechanism could not produce the observed

critical dependence upon angle of attack,llmitlng the dynamic instability to

7" < _ ( 10 ° (Fig. 12). The vortex breakdown mechanism (right diagram in

Fig. 14) will have a critical angle of attack associated with it; the angle

at which breakdown starts occurring on the wing. However, this angle is well

beyond _ = 10 ° for A _ 65 °, according to the results obtained by

Lambourne and Bryer 13 for a swept wing (Fig. 15). One additional

requirement would have been that the phase lag is 180 ° larger than in the

first case (left diagram), as vortex burst causes a loss of lift. Thus, none

of the suggested flow mechanisms can have caused the observed self-excited

bending oscillations of the highly swept wing.

The photograph of the model 11 (Fig. 16) shows that the variable-

sweep, thin outboard wing is preceded by a fixed sweep (67.5 °) thick inboard

wing or glove. The difference in leading edge radii is illustrated further by

the cross-sectional diagram in Fig. 17. Even for the same leading edge sweep

angle, the inner and outer wings will start generating leading edge vortices

at different angles of attack because of the difference in their leading edge

roundness 14. Using the stall angles for 12 and 9% thick airfoils 3 to

represent the inner and outer wings, respectively, one finds that for 67.5 °

L.E. sweep the respective wings should start developing leading edge vortices

at 6.3 and 4.5 ° Compressibility-induced apparent sharpening of the leading

edge could probably make the very thick inner wing glove (Fig. 17) act as a

12% thick airfoil in incompressible flow, whereas the leading edge of the

outer wing becomes practically sharp, causing vortex development to start at

> 0. Thus, considering that the inner vortex must gain some strength

before it can interact with the outer wing vortex, one can see how the

critical _-value shown in Fig. 13 can result. That leading edge roundness

does delay the generation of a leading edge vortex, in the manner described in

Ref. 14, was shown by comparison with experimental results15.

When the inner wing starts developing a leading edge vortex, it will

trail inboard of the already existing leading edge vortex on the outer wing.

That is, the situation is similar to the one existing for a double-delta

wing 16 (Fig. 18). The figure shows how the oll flow visualization results

are correlated with the position of the (primary) leading edge vortices from

outer and inner delta wing leading edges. The measured suction peaks indicate

the locations of the vortices. When the angle of attack is increased above a

certain critical value, the outer and inner leading edge vortices start to

interact with each other, as is illustrated by the oii flow pictures17 in

Fig. 19. At _ = 5 ° , the two vortices are separate, as in Fig. 18. At

= 7", however, the two vortices have started to interact (Fig. 19b), and at
= 10" (Fig. 19c) they have combined into one vortex.
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When one compares the flow visualization pictures for the double-delta

wing planform (Fig. 19) with the oil flow visualization for the swept wlng 11

one can see certain similarities. However, a more direct comparison,

quantitative rather than qualitatlve, can be made by comparing the

experimental pressure distributions for the double-delta plan form 19

(Fig. 20) and the swept wing 17 (Fig. 21). Figure 20 shows that the inner

delta wing vortex, when it interacts with the vortex on the outer wing, causes

the sectional loading to increase and shift its center inboard. Noticing that

to the spanwise inboard movement for the delta wing 17 (Fig. 20) corresponds

a chordwise aft movement on the swept wing I (Fig. 21), one can conclude that

the inner-outer vortex interactions do indeed cause very similar changes in

the load distributions. The oscillation occurred when the load distribution

in Fig. 21 changed from that typical for a single leading edge vortex (_ =

6.9 °) to that typical for the interaction discussed earlier ( _ = 8 °)

The interaction between inner and outer wing vortices, described above,

fits the experimental facts in regard to the observed bending oscillation of

the swept wing 11 (Fig. 12). Thus, it produces a critical _ - range in

which the single vortex loading is being transformed to that resulting from

the two interacting vortices. At higher angles of attack, the two vortices

are merged into one vortex, and no self-excited bending oscillation will

result. Furthermore, the large amplitude pressure oscillations are localized

to the wing reqion where one expects the interaction between the two

corotating vortices to take place 11 (Fig. 22).

Figure 23 shows the measured I spanwise variation of the local,

streamwlse angle of attack for A = 67.5 ° and a fuselage angle of attack of

= 7.38 _. The solid line shows the variation due to static loads, and the

dash-dot lines shows the extreme values _o + _wx

and _o - _ during the down- and up-stroke portions of the bending

oscillations. The inner, thick wing-glove is at the constant angle of attack

_o" Consequently, the effective apex of the outer wing does not move, and

the only effect of the leading edge vortex is the entrainment-enhancement of

the attached flow loads. 18 If one approximates the _o - curve in

Fig. 23 with a straight llne, one could apply the analysis method of Ref. 18

directly. In any case, the single leading edge vortex will increase the

damping in pitch for the rigid delta wing and the damping in bending for the

present swept wingat a rate proportional to sin _ . This is essentially

the single vortex data trend exhibited in Fig. 12. The deviation is the

interaction at 7 ° < _ < 9 ° between inner and outer vortices, It is also

likely to be minor variations due to shock-b0undary layer interactlonlg.

Thus, what remains is to describe how the vortex interaction at 7 < _ < 9 °

can cause negative aerodynamic damping. Although the interaction is likely to

generate a forcing function (buffet) due to general flow unsteadiness, the

large amplitude response is caused by negative aerodynamic damping.

Whereas the single vortex effect is almost exclusively due to changing

vortex strength, at least in re_ard to longitudinal aerodynamics, such as the

pitch damping for a delta wing I° or the damping in bending for the present

swept wing, in the case of the outer-lnner vortex interaction the spanwise

movement of the leading edge vortex on the outer wing becomes important. It

has been shown by Randa!! 2u that the leading edge vortex describes spanwise

oscillations around its static position (Fig. 24). Thus, during the

- increasing part of the pitch oscillation, the vortex is outboard of its
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static position, and during the =-decreaslng part it is inboard. The

spanwise location of the leading edge vortex for stepwise changing angle of

attack is shown in Fig. 25 for a very slender delta wlng. 21 The figure

shows that for the moderate angle of attack range of interest in the present

case> the spanwlse location of the vortex is very sensitive to angle of

attack. This explains the narrow _-range for outer-lnner vortex interaction
of the present swept wing.

With the aid of Figs. 21, 23 and 24 one can see how, when the wing

angle of attack is increasing, the load distribution will change toward the

front-loaded one for the undisturbed wing leading edge vortex. Conversely,

the change will be towards the aft-loaded one, generated by the interaction

from the glove vortex, when the angle of attack is decreasing. Figure 23

shows that the streamwlse angle of attack of the swept wing is decreasing

during the bending upstroke, 0 ( _t > _ , and increasing during the

bending downstroke, _ ( _t > 2_ , with the extreme values reached at

_t = _/2 and _t = 3_/2, respectively. Because the apex of the outer

wing leading edge is not moving, the phase lags involved will be small.

Consequently, the load distribution extremes will occur close to _t = _/2

and _t = 3_/2, and can be illustrated by the results in Fig. 26. Thus,

during the bending upstroke, the lift is increased and thereby the bending

moment, whereas during the downstroke llft and bending moment are decreased by

the vortex interaction. In both cases the dynamic effect is destabilizing,

driving the bending oscillations, in agreement with the experimental
results 11 .

It is essential that the designer recognize and understand the flow

mechanism(s) causing dynamic instability for his particular vehicle. In the

case of the transition-induced wing bending oscillations I (Figs. 1-3) it was

suggested that this was a problem relegated to low Reynolds number flows, as

on small high-performance gliders, or large transport aircraft with suction to

achieve laminar flow. Quite to the contrary, the results I are in complete

agreement with the general experience in regard to moving wall effects in both

two- and three-dimenslonal flows I0, showing that the closer the flow

conditions are to the critical one, the higher the potential of the moving

wall effect is. Consequently, the laminar flow extent was not extensive when

the divergent oscillations occurred. Instead, transition to turbulent flow

took place around mld-chord or earlier, and the problem becomes especially

acute for high performance fighter-type aircraft with "flat-top" pressure
distributions.

In the case of the bending wing oscillations caused by the interaction

between two leading-edge vortices II (Figs. 11-13), not recognizing and

understanding the flow mechanism causing the oscillation, the investigators

focused all efforts on the outer, variable-sweep wing, trying numerous

modifications (Fig. 27) without any success whatsoever. If the leading-edge

stall strip had been applied to the inner wing glove and not the outer wing,

chances are that the wing bending problem would have been eliminated, avoiding

the present red-llnlng of the performance envelope of the aircraft.

When pondering the fact that the misinterpretation of the test results

was in both cases made by people with impeccable technical qualifications, one

realizes how great the need is for informal meetings of the work-shop-type,

such as the present meeting.
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SUMMARY

Two methods are described for calculating unsteady flows over rapidly pitching air-

foils. The first method is based on an interactive scheme in which the inviscid flow is ob-

tained by a panel method. The boundary layer flow is computed by an interactive method

that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow

equations. The second method is based on the solution of the compressible Navier-Stokes

equations. The solution of these equations is obtained with an approximately factorized

numerical algorithm, and with single block or multiple grids which enable grid embedding

to enhance the resolution at isolated flow regions. In addition, the attached flow region

can be computed by the numerical solution of compressible boundary layer equations.

Unsteady pressure distributions obtained with both methods are compared with available
experimental data.

ABSTRACT

The present paper addresses the prediction of unsteady airfoil boundary layer flows

by two methods. These two methods are briefly described in the following section. The

first is based on the extension of the steady interactive boundary-layer method of [1] and

the second on the Navier-Stokes method of [2].
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1.1 Viscous-Inviscid Interaction Method: The interactive method for steady high

Reynolds number incompressible flows is described in [1] and [3], respectively, and makes

use of an inverse boundary-layer method coupled to a panel method with an interactive

formula suggested by Veldman [4]. The extension of this method to unsteady incompress-

ible flows, again makes use of a panel method [5], which is similar to that of Hess and

Smith [6]. This method utilizes the procedure of Basu and Hancock [7] to model the wake.

The wake is represented by a series of free vortices shed from the trailing edge in response

to incidence changes so that the total vorticity in the field is conserved. The airfoil's

lift response then is obtained by subdividing the incidence history into sufficiently small

time steps and computing the source and vorticity distributions for each time step. The

unsteady interactive method is described in full detail in Refs. 5 and 8.

The unsteady boundary-layer equations are expressed in terms of an eddy viscosity,

era, so that continuity and momentum equations

Ou Ov
+ _=o (1)

O----z oy

Ou Ou Ou OUe Ue OUt 0 Ouo--i+ _ + v_ = 0-7+ _+_[(.+_m)_] (2)

are solved subject to the boundary conditions

y = 0, = = v = 0; y _ _, _ --_ u_(_,t) (3)

on the airfoil and with y = 0 denoting the dividing streamline that separates the upper

and lower parts of the inviscid flow in the wake, subject to the following conditions

y ---+ :t:co, u ---+ U_(x,t); y = 0, v = 0 (4)

with U_(z, t) given by U_ = U_° + _U¢(z, t). The eddy viscosity formuIatlon of Cebeci and

Smith [9] is used with special emphasis on the transitional region.

1.2 Navier-Stokes Methods : The Navier -Stokes method is briefly described in this

paragraph. The full, unsteady, two-dimensional, compressible Navler-Stokes equations

were solved. In a curvilinear coordinate system _, 71 the governing equations are:

o-7+ _ + 07 - Re(_- + _) (5)
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where_1is the conservativevariable vector q = (p, pu, pv, e) T, and _', (_ are the nonlinear

inviscid terms, and 1_, S are the viscous terms.

The integration is performed with the finite difference factored Beam-Warming algo-

rithm [10]. The approximately factorized form of the algorithm is:

where

[I + (At/2)(8_Aj_ k + (Dim#)_)]×

[I + (At/2)(SnBj_,k + (D,m#),)] Aqj_k = (RHS) '_
(6)

(7)

Solutions with embedded grid which provide enhanced grid resolution at isolated flow

regions are possible. Thus, high grid resolution can be provited at critical flow regions, such

as the leading edge region, where supersonic flow conditions and possible shock formation

may occur even at moderate free str.eam subsonic speeds (M = 0.45 - 0.50) as the angle

of attack increases. The option of solving the attached flow region with the compressible

boundary-layer equations on an embedded grid is also provided. The boundary-layer

equations for a generalized coordinates system [11] are:

continuity
0 0P pu Lrpv_ =(7) + 0 (8)b-/(7)+ _ 07' s '

momentum

normal momentum

energy
OH O,

POt Ot

0

op
--0 (10)

07

OH OH

+ pu-_ + pv 071 --

Oa2 , Oa2. ]" +
+ _-_v+ g(-_-)]+_p_u + _._ + g(-_v )

Oa2 K'Oa2" ]"+ _._ + g(_)]+_p._u + .._ + (--C)

(11)
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Here H = _ is the enthalpy per unit volume, and the other quantities have thep
same definitions as before. Eqs. 8-11 are supplemented by the equation of state,

p pTc¢
-- - (12)
p oo T p oo

or

T (3' - 1) [H u2 + v2
Too- a_ 2 ] (13)

Viscous or inviscid solutions can be obtained for the global grid by marching in time

from an initial condition. Steady solutions are obtained by marching in time from free

stream initial conditions until convergence to the steady-state. Similarly, unsteady flows

are computed by marching in time from a steady flow initial condition. After the global

grid solution is computed the boundary layer equations can be solved in the secondary

grid using as initial condition at the inflow the velocity profile obtained by the viscous flow

solution. Boundary conditions at the edge of the boundary layer domain are provided by

the pressure and velocity distribution of a viscous or inviscid global flow solution for the

outer region. Grid refinement is applied for the boundary-layer calculation and the values

of the flow parameters at the extra boundary points are obtained by simple interpolation

of the flow variables obtained from the viscous solution. For unsteady calculations the

boundary layer equations are solved at each time step.

2.0 RESULTS AND DISCUSSION

The unsteady flow calculations for the NACA-0012 airfoil subject to ramp-type mo-

tion, as described in detail in [12], were performed by using both interactive and Navier-

Stokes methods for a Reynolds number of 2.7 × l0 s and for a non-dimensional pitch rate

k defined by k = &c/2U,_ = 0.0127. The airfoil chord was 10.16 cm, the pitch rate 1280

degrees/sec, pitching from 0 ° to 15.54°_ at a free-stream Mach number of M = 0.3. The ex-

perimental data include upper and lower surface pressure distributions for incidence angles

of 2.9, 5.8, 8.9, 11.7 and 15.5 degrees.

Figures 1 and 2 compare measured and calculated distributions of pressure coefficients

for incidence angles of 2.9, 5.8, 8.9, 11.7 and 15.5 degrees, with F_gure 1 showing the

predictions of the interactive method and Figure 2 those of the Navier-Stokes method. In

both methods, the flow was assumed to be fully turbulent due to the lack of experimental

data about the location of transition_ and the ramp change in the angle of attack was

assumed to be given by

30trnaz t22amaz t3 + (14)a(t) - T3 T2
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where T is the nondimensional time required to complete the ramp motion from 0 ° to ama_.

It is useful to point out that while the interactive method is based on the assumption of

incompressible flow, the Navler-Stokes method is for a compressible flow. Calculations

performed with the Navier-Stokes equations for a Mach number of 0.2 and 0.3, however,

showed no effect of compressibility on the results.

Figures 1 and 2 show that the predictions of both methods are in good agreement

with the experimental data,although the Navier-Stokes computations slightly underpredict

the suction peaks at the lower incidence. Figures 3 and 4 present a comparison between

the velocity profiles computed by both methods at two Chordwise locations corresponding

to x/c -- 0.5 and x/c -- 0.9 at several angles of incidence. While there is reasonably

good agreement at low incidences, the two profiles begin to deviate significantly at higher

incidences. Figure 4e shows, however, that both procedures predict the onset of flow

reversal at a -- 15.5 ° for x/c = 0.9. Unfortunately, there is no experimental data available

to verify this prediction and to assess the accuracy of the two methods.

3.0 CONCLUSIONS

Two methods are described and applied to study the effects of low Reynolds number

and flow unsteadiness on blade boundary layers. The first is based on an interactive

boundary layer scheme in which the inviscid flow is computed by a panel method and

the boundary layer flow by an inverse method that makes use of the Hilbert integral to

couple the solutions of the inviscid and viscous flow equations. The second method is based

on the solution of the compressible Navier-Stokes equations which employs an embedded

grid technique for accurate boundary layer calculations with small computational cost.

Calculated results obtained with both methods for a NACA-0012 airfoil subject to a

ramp type motion at relatively high Reynolds number also indicate good agreement with

experimental data. These results suggest that unsteady blade boundary layers can be

computed accurately with either method provided the location of transition is computed

interactively with the e'_-method and the transitional region is modelled properly. Future

work will be directed at the systematic study of the effect of Reynolds number, transition

modeling, reduced frequency and the effect of the airfoil leading edge geometry. In addition

upwinding and TVD schemes will be used to enable accurate capturing of possible shock

formation at the leading edge.

AcknowIedgment: This work was supported by the Naval Air Systems Command, and
NASA Ames Research Center.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Pressure Coefficient at a = 2.9°,5.8°,8.9°,11.7°,15.5 ° predicted by the viscous-

inviscid interaction method. (Re = 2.7 x 106,k = 0.0127)

Pressure Coefficient at a = 2.9 °, 5.8 °, 8.9 °, 11.7 °, 15.5 ° predicted by the Navier-Stokes

solution. (Re = 2.7 x 108, k = 0.0127)

Comparison of the boundary-layer profiles computed with both methods, at o_ =

2.9°,5.8°,8.9°,11.7°,15.5 ° for the 50% chord. (Re = 2.7 x 106,k = 0.0127)

Comparison of the boundary-layer profiles computed with both methods, at a =

2.9 °, 5.8 °, 8.9 °, 11.7 °, 15.5 ° for the 90% chord. (Re = 2.7 x 106 , k = 0.0127)
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PREDICTION OF UNSTEADY AIRFOIL FLOWS AT LARGE ANGLES OF INCIDENCE

by

Tuncer Cebecl* and H. M. Jang** and H. H. Chent

Aerospace Engineering Department

California State University, Long Beach

Abstract

The effect of unsteady motion of an airfoil on Its stall behavior is of

considerable interest to many practical applications including the blades of

helicopter rotors and of axial compressors and turbines. Experiments with

oscillating airfoils, for example, have shown that the flow can remain attached

for angles of attack greater than those which would cause stall to occur In a

stationary system. This result appears to stem from the formation of a vortex

close to the surface of the airfoil which continues to provide llft. It is

also evident that the onset of dynamic stall depends strongly on the airfoil

section and as a result great care is required in the development of a

calculation method which will accurately predict this behavior.

In principle, the prediction of dynamic stall can be accomplished by

solving the Reynolds-averaged Navler-Stokes equations or their reduced forms.

A turbulence model is required and is presumed, with reasonable supporting

evidence to be uninfluenced by the imposed unsteadiness. Several papers have

been prepared with calculations of this type and involve the solution of

equations with two diffusion terms as well as parabollzed forms and thln-layer

approximations. An alternative is to make use of interactive boundary-layer

*Professor and Chairman.

**Research Associate.

tAsslstant Professor.
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theory whereby Invlscld and boundary-layer equations are solved and allowed to

!nf]uence each other by an Iteratlve scheme.

Extensive investigations wlth an interactive approach have been reported

l
by Cebecl et al. and show that the incompressible flow and performance

characteristics of airfoils can be predicted accurately and efficiently for

high and low Reynolds numbers and for a range of angles of attack up to and

including stall, At incidence angles higher than stall, however, this

procedure, was unable to predict the airfoil performance due to relatively

large regions of flow separation on the surface and in the wake. Near stall,

the value of the trailing edge displacement thickness approached I0% of the

chord and the numerical method could not provide converged solutions. The

predictions of this interactive boundary-layer are similar to those obtained

from solutions of thln-layer Navler-Stokes by the ARC-2D method for angles of

attack up to and including stall. It has been shown in Ref. l that the

interactive flow calculations without the wake effect and for angles of attack

greater than that of stall, yielded llft coefficients which increased with

incidence angle almost in the same way as those computed with the thln-layer

Navler-Stokes approach with the wake effect included. When the wake effect

was included in the interactive boundary-layer calculations, the results

agreed more closely with measurements but could not be extended beyond the

stall angle.

More recently, the interactive method has been improved to permit

calculatlons for angles of attack greater than that of stall and the results

have been shown to have the correct behavior. To achieve this, modifications

were made to the Iteratlve procedure and to the method of calculating the

wake. These improvements are described in Ref, 2 and are necessary where

results are required at angles of attack correspondlng to stall and post stall.
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The interactive boundary-layer method for steady flows has also been

extended to study the laminar separation and reattachment near the leading

edge of a thin oscillating alrfoll 3, but the calculation of flow over

practical airfoils involves laminar and turbulent flows and the inclusion of

the upstream influence of the wake requires careful step-by-step development

and evaluation, as has been done for steady flows. The use of a quasl-steady

approach to unsteady flows represents an essential building block In a

progression towards an interactive calculation method which solves unsteady

equations even though the latter is likely to represent a much wider range of

oscillation frequencies. The extent of the differences can be quantified only

by comparing results from both.

Our presentation wlll describe the extension of the steady interactive

l
boundary-layer method of Cebecl et al. to unsteady flows over practical

airfoils subject to a ramp-type motion. The method makes use of the unsteady

panel method developed by Platzer and hls student, Teng 4, and Is able to'

compute flows wlth large regions of flow separation. By solving the

quasl-steady and unsteady boundary-layer equations In an interactive method,

the quasl-steady method will be assessed over a range of angles of attack and

frequency in terms of convenience, accuracy, and the computational cost. The

calculations will encompass alrfol] and wake flows at angles of attack close

to the start of the dynamic stall and will provide insight Into the

development of dynamic stall as a result of the trailing edge separation.
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SOME ASPECTS OF UNSTEADY SEPARATION

by

C. R. Smith and J. D. A. Walker

Department of Mechanical Engineering and Mechanics

Lehigh University
Bethlehem, Pennsylvania 18015

Unsteady separation can be forced in a variety of ways and in this presentation two

fundamental means will be considered, namely (1) the introduction of convected vorticular

disturbances into the flow and (2) the influence of a specific type of three-dimensional

geometry. In both situations a response of the viscous flow near the wall is provoked wherein

the fluid near the surface abruptly focusses into a narrow region that erupts from the surface

into the mainstream. In two-dimensional flows the eruption takes the form of narrow

explosively-growing spike, while in three-dimensional situations, examples are presented which

indicate that the eruption is along a narrow zone in the shape of a crescent-shaped plume.

The nature of the three-dimensional flow near a circular cylinder, which is mounted normal to

a flat plate, is also examined in this study. Here the three-dimensional geometry induces

complex three-dimensional separations periodically. The dynamics of the generation process is

studied experimentally in a water channel, using hydrogen bubble wires and a laser sheet, and

the main features of the laminar regime through to transition are documented.

Discussion

Unsteady viscous-inviscid interactions between an effectively inviscid outer flow and a

viscous region near a surface occur in a variety of important applications such as the flows

occurring in turbomachinery and on moving airfoil surfaces. Many examples occur in quite

different physical environments but nevertheless exhibit a common type of behavior. At a

certain stage, a viscous layer near a wall, which has been hitherto passive and which to this

point is well described by conventional boundary-layer theory, begins to develop strong

outflows over a zone which is very narrow in the streamwise direction. As this eruptive

behavior develops, it culminates in the ejection of boundary-layer fluid away from the wall into

the outer inviscid flow. The process is known as an unsteady viscous-inviscid interaction; it is

generally distinguished by the eruptive nature of the phenomenon as well as the fact that

discrete "chunks" of vorticity are torn from the region near the surface and abruptly

introduced into the outer flow.
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Such unsteady interactions can be induced in a number of ways, one of which occurs

whenever a vortex is convected close to a solid surface. A vortex near a solid wall induces a

moving region of adverse pressure gradient on the viscous flow near the surface and, provided

the vortex is near the wall for a sufficient period of time, all moving vortices will ultimately

provoke a boundary-layer eruption. Well-documented examples include the flow induced near

a ground-plane by aircraft-trailing vortices (Harvey and Perry, 1971), the boundary layer

induced by a vortex ring moving toward a plane wall (Walker et al., 1987) and the so-called

"secondary instability" of Goertler vortices that develop in the boundary layer on a concave

wall (Ersoy and Walker, 1985). In all of these situations, recirculating eddies develop in the

boundary layer near the wall as a consequence of the pressure distribution induced by the

parent vortex. With the evolution of these secondary vortices, strong updrafts begin to

develop and the boundary layer evolves rapidly toward interaction with the outer flow, The

nature of the interaction is such that a boundary-layer eruption occurs in a focussed band

which is narrow in the streamwise direction, with the result that the secondary eddies are

ejected from the boundary layer into the external flow (Walker et al., 1987).

Similar processes occur within the turbulent boundary layer (Walker et al., 1989;

Walker, 1989) wherein the flow in the region near the wall breaks down violently and

intermittently. The breakdown process always initiates near a low-speed streak and results in

a strong, unsteady viscous-inviscid interaction with the outer layer motion. Recent studies

(Haji-ttaidari, 1990; Smith et al., 1990, and Walker, 1990) show that the streaks and the

eruptive behavior are due to moving hairpin vortices which are convected near the surface.

This represents the fundamental regenerative process in a turbulent boundary layer where new

vorticlty from the wall region is continually introduced into the outer part of the boundary

layer through intermittent eruptions of the wall layer.

One objective of the present work was to develop algorithms to compute the evolution

of strongly interacting boundary-layer flows and to this end a model problem w_s considered,

namely the unsteady boundary layer induced by a two-dimensional vortex above a plane wall

in an otherwise stagnant fluid. A zone of recirculation in the boundary layer is soon produced

due to the pressure field associated with the vortex (Walker, 1989), and strong updrafts then

evolve on one side of the recirculating eddy. As the boundary-layer flow starts to focus toward

an eruption, it is not possible to track the phenomenon using conventional numerical methods

based on the Eulerian formulation of the flow problem and in this study Lagrangian m.ethods

were used. In the latter approach, the trajectories of a large number of individual fluid

particles are evaluated and, as the boundary-layer focusses toward an eruption, the fluid
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particles move naturally into the erupting region, which is consequently well-resolved. Some

calculated results for displacement thickness are shown in Figure 1, which is taken from

Peridier and Walker (1989). Initially, the displacement thickness grows progressively after the

motion is initiated (from an impulsive start), with the greatest growth occurring near x = 0.5

near the recirculating secondary eddy, that develops in the boundary layer for t > 0.28.

However, at around t = 0.85 a corner starts to appear in /5* and very rapidly the boundary

layer focusses into a "needle-like" eruption. The dynamics of this process, which are believed

to be generic for all two-dimensional flows, will be discussed.

For moving three-dimensional vortices, the induced flow patterns near the wall are

much more complex but a narrow, focussed eruption is also produced. Experimental studies of

the flow provoked by a moving hairpin vortex will be presented. The hairpin vortex is created

in an otherwise laminar boundary layer and the nature of the flow induced downstream is

documented. It is found that a discrete eruption of fluid from the wall region is produced. In

three-dimensions, the erupting boundary layer first appears in the shape of a crescent-like ridge

and then rolls over into a secondary hairpin vortex.

the general three-dimensional theory of unsteady

Dommelen and Cowley (1990).

This behavior is essentially predicted by

separation recently described by Van

Lastly, the nature of the flow near a three-dimensional corner is investigated

experimentally using the configuration depicted schematically in Figure 2. In this situation,

horseshoe vortices are observed to form periodically upstream of the cylinder; as they are

swept outboard of the cylinder, sharp eruptive responses from the flow near the wall are seen.

The flow regime is investigated thoroughly using hydrogen bubble wire flow visualization as

well as a laser sheet. The separation processes are very complex but can be understood in

terms of the basic influence of a vortex on a viscous flow.
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Abstract

The development of a thorough understanding of the mechanisms for vortex eruptions from viscous layers,

which are believed to be associated with phenomena such as dynamic stall onset and transition, is crucial

if accurate models of such phenomena are to be formulated. The development of such models may, in turn,

allow for the possibility that such effects could be accounted for during the design of various aerodynamic

devices such as wings, helicopter rotors and turbomachinery blading and thus lead to designs which are
stall free or stall resistant and which have better stall-recovery properties. The present investigation is

being conducted as part of an effort to develop analytical and numerical tools which can be used to help

improve our understanding of the vortex-eruption mechanism at high Reynolds numbers. The addition of

the normal-nlomentum equation to the classical unsteady boundary-layer equations is crucial, according

to recent asymptotic analyses of the vortex-eruption problem, and is a key feature of the analyses being
developed by the present authors. Tile purpose of this paper is, first, to describe departure solution behavior

observed when using unsteady, streamline-curvature based solution procedures in which nontrivial transverse

pressure gradient effects are included and, second, to show that special treatment of the time-derivative of
tile normal velocity is needed to eliminate the ill-posed solution behavior, which is observed when small

spatial and temporal step sizes are used.

Introduction

A number of recent analytical studies have been directed towards understanding the fundamental physics

associated with the development and subsequent eruption of concentrated regions of vorticity from the

boundary layer (e.g., van Dommelen and Shen (1980), Elliott, ef al (1983), Peridier, et at (1988) and Smith

(1988)). This event is believed to be associated with well-known physical phenomena, such as the onset of
airfoil dynamic stall mad transition from laminar to turbulent flow. The cumulative observation of the above-

mentioned and other studies seems to indicate that the classical boundary-layer equations are insufficient to

completely describe the vortex eruption phenomenon. Even if strong viscous-inviscid interaction is allowed,

it appears likely that normal pressure gradient effects must be accounted for in some form. The present

paper describes part of an overall effort directed towards the development of unsteady analyses capable of
addressing high Reynolds number flows in which normal pressure gradients are important and ultimately, it

is hoped, where vortex eruptions occur, as well.

The important work of van Dommelen and Shen (1980) first documented the existence of a finite-time

singularity in the solution of the non-interacting, classical, unsteady boundary-layer equations for flow past

an impulsively started circular cylinder. Later work (e.g., Peridier, et al (1988)) showed that, if the boundary-

layer equations are allowed to interact with the inviscid flow, the van Dommelen and Shen singularity can

be bypassed. However, another finite-time singularity, which cannot be removed through interaction alone,

arises shortly thereafter. The recent asymptotic study of Smith (1988) indicates that normal pressure gradient

effects must be included in order to avoid the latter (interactive) finite-time singularity. This provides the
motivation for the present work, which addresses the issue of how various terms in the unsteady normal-

momentum equation must be numerically treated within the framework of a globally iterated space- and time-

marching solution algorithm, in order to avoid ill-posed behavior of the solutions. Globally iterated solution

algorithms for steady and unsteady flows have been employed extensively in both asymptotic (i.e., infinite

Reynolds number) and finite Reynolds number investigations, where they have proven to be comput ationally
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efficient.Streamlinecurvaturetechniqueshavebeendemonstratedinanumberofstudies,for example,see
Smithel al (1984), Presz (1985), Rothinayer (1989, 1990) and Power (1990) - many other examples can be

found in the literature. Thus, this approach is being pursued here in the hope that the use of a boundary-

layer like numerical approach will lead to a computationally efficient technique to solve the vortex-eruption

problem.

External Flow Analysis - Flow Past a Flat Plate

The particular concern of this paper is an issue which arose while the first author was developing a
numerical solution scheme for the equation set consisting of the classical, unsteady, incompressible boundary-

layer equations supplemented with the inviscid form of the normal-momentum equation. Note that these

equations are essentially identical to the leading-order terms in the Incompressible form of the "Ihin-Layer"

Navier-Stokes equations, and will therefore be referred to here as the ITLNS equations, for convenience. For

two-dimensional flows these equations are given by

Ou Ov

0-7+ = o, (i)

Ou Ou Ou OP O_u

0-7+ + vN = --- + -- (2)y Ox Oy 2

an d

av Ov Ov Re 0t='
0-7 0y' (3)

where u and v are the velocity components in the z- and y-directions, respectively, with x oriented tangent

to the body surface and y normal to it, and P is the static pressure. In this section, the body is assumed to

be a semi-infinite flat plate, so that x and y are Cartesian coordinates. Standard low-speed, external flow

nondimensionalizations have been used and the y-coordinate and v-velocity component have been scaled with

the square root of the Reynolds number as follows: u u /u_, v = v v/-_/u_, P = (P* - P_)/p*Ug,

x = z'/L:el, y = y*v/-_/L;_! and t = /(L_I/U2o ). Asterisks denote dimensional quantities, the subscript
_c denotes a quantity evaluated in the uniform far field upstream flow and Re is the Reynolds number defined

as Re = U_L;_I/u', where _,* is the upstream value of the kinematic viscosity which, along with the density
p', is assumed to be constant.

The ITLNS equations can be solved in the primitive variable form given above, or they can be solved after
transforming to Ggrtler variables - the latter approach has been used in this study. However, to simplify the

present discussion, the primitive variable form of these equations will be considered, after using the stream

function ¢, defined by the relations u = OO/Oy and v = -O¢/Oz, to replace v. Substituting for v in Eq. (3)
yields

O_g , 0_¢ 0¢ 0_'¢ ReOP
OxOt u'_Tz_ + Ox OxOy -- Oy " (4)

The boundary conditions on the surface (y = 0) are the no-slip, zero injection conditions: u(x, O) = 0

and g,(x, 0) = 0 for t _> 0. At the outer edge of the boundary layer (y --, co) the edge condition on u is
liln u(x,y;t) --* Ue(x,t) and the pressure P satisfies the unsteady Bernoulli relation. The equations can

y_Oa

either be solved in direct mode (edge conditions specified) or inverse mode (displacement thickness specified).

The additional boundary condition needed for the latter is given by the following relationship between the

edge value of ¢ and the displacement thickness 6*,

¢(_,y_;0 = u_(_,0(y_ - _'(_, 0), (5)

where y, is the value of y at the boundary-layer edge and U_ is treated as an unknown. In addition, both
upstream and downstream boundary conditions are needed - the latter is required because the introduction

of the inviscid normal-momentum equation makes the inviseid form of the governing equations equivalent

to the unsteady incompressible Euler equations, which are elliptic-like in space at any time t, as explicitly

evidenced by the presence of the f'_x term in Eq. (4), which represents the streamline curvature. For the

simple problem to be considered here, the upstream and downstream profiles for u and ¢ are assumed to
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correspondto theBlasius(flat-plate)profile.Finally,theinitial conditionwhichisneededat timet = 0 is
assumed to correspond to the Blasius solution along the entire plate surface.

The ITLNS equations are numerically solved using fully implicit discretizations which are first-order

accurate for the x- and t-derivatives and second-order accurate for the y-derivatives. All y-derivatives are

central differenced and all x- and t-derivatives are backward differenced with respect to the solution point

(at (xi, yj, tn)) with the exception of the ¢_x term in the normal-momentum equation, which is central
differenced, thus introducing unknown information from the upstream point at xi+l. This information
is obtained by initially guessing ¢i+1, using the value from the previous time step, and then performing

multiple, global spatial sweeps at each time level until the C-field converges. An acceleration scheme has

been used to improve the convergence properties of this procedure but will not be discussed here, however,

as it is not relevant to the present focus. Initially the authors believed that central differencing of the Cxx

term would properly (and fully) account for the elliptic-like nature of the governing equations at each time

step, as demonstrated in applications of similar approaches to steady flows (e.g., see Presz (1985)). However,
this was not found to be the case, as will be discussed below.

The issue which is of concern here arises when attempting to solve the above system of equations for

a specified time-dependent displacement-thickness distribution (i.e., the inverse method). Consider the
simplest possible case, where the displacement thickness is assumed to be that for a steady flat-plate flow for

all time t >_ 0. Thus, the inverse solution procedure should yield the Blasius solution at all values of x and t,

with a small perturbation (depending on the specified value of the Reynolds number) due to normal pressure

gradient effects. This has been found to be the case here when the spatial and temporal step sizes Ax and At,
respectively, are not chosen to be "too small." However, as Ax and At are decreased, it has been observed

that, during the first time step, the solution departs from its anticipated behavior in a manner reminiscint

of that observed when attempting to solve a boundary-value problem using an initial-value technique. This

occurs despite the use of central differencing for the ¢,= term. That is, for a fixed, constant spatial stepsize

Ax below some minimum value, there appears to be a minimum temporal step size At, below which the
space-marching solution behaves as if it is ill-posed with respect to z.

Examples of the departure solutions are shown in Figs. 1A and 1B, where the skin-friction coefficient,

= U_, and wall pressure P_, respectively, are plotted as functions of distance along the plate

for a Reynolds number of 1 x 106 based on a reference length L_¢/ = 1. This case was calculated starting

at x = 1.0 with a fixed value of Az = 0.001 and three different values of At, namely 0.0010, 0.0009 and

0.0001. This value of Ax is below the minimum for which departures have been observed, and the three

values of At are near the boundary between departure-free solutions and departing solutions. Note that the
solution goes from being well-behaved at the largest value of At to growing in an oscillatory exponential

manner for the middle value to monotonic exponential growth for the smallest value. Similar departure

behavior was subsequently observed in the solutions obtained from a different numerical code which uses a

similar streamline-curvature based technique to solve the full Navier-Stokes equations, for internal flows, as
discussed in the next section.

Before continuing, it should be noted that a consistency check on the finite-difference form of Eq. (4) was
carried out. The equations were found to be consistent in the sense that as Ax and At are independently

reduced to zero, Eq. (4) is identically recovered. Thus, the possibility that truncation errors associated with

the discretized equations have changed the mathematical character of the governing differential equations

has been eliminated as a possible source for the branching behavior.

Calculations to establish the "departure boundary" for three different Reynolds numbers were performed,
namely Re = 1 x 106, 1 x 107 and 1 x l0 s . The results are consistent, and indicate that the value of At

for which the solution crosses over from "departure-free" to "departing" is a function of Reynolds number,

as might be anticipated. The fact that there is a minimum Ax above which solutions remain departure-free

for any value of At is not surprising - once Az becomes large enough, the solution probably oversteps the
streamwise length scale of the physical mechanism governing the behavior.

The branching behavior of the small step size solutions of the ITLNS equations obtained using the present
numerical solution procedure has been examined in detail by the authors in an effort to understand its source.

As a result of this investigation, the term responsible for the departure solutions has been found to be the vt

term appearing in the normal-momentum equation. That is, it has been found that, regardless of the values

used for Ax and At, if the vt term is neglected, then the solution will never exhibit the departure behavior

described above, so long as the ¢_x term is not backward differenced, but is instead central differenced.
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Further,thisbehavioris foundto beindependentof thenumericaltreatmentusedfor theconvectiveterms
in thenormal-momentumequation.

Recallthat in thepresentstudy,thet't termhasbeenwrittenusingthestreamfunctiondefinition,i.e.,
vt = -¢,t. in the numerical algoritlirn described above, this term Was discretized using a backward difference

for the z-derivative, leading to the following form at all y-locations, where tile subscript i and superscript

n denote the z-index and tile t-index, respectively, with (i, n) at the current station in both space and time
and Az assumed to be uniform:

1
-eL,) - (¢n-, _ ¢?--1')] • (6)

The apparent ill-posedness exhibited by the numerical solutions, and the fact that the t't term has been

found to be responsible, suggests an alternative discretization for the _/'zt term wherein a forward difference

in z with respect to the solution station is used. That is, _]',t is discretized in the form

1
¢_, _ _ [(¢n+, _ _/,_) _ (¢7+1, _ Cn-,)] . (7)

With this modification, the ill-posed behavior which is observed when a backward difference is used no

longer arises, regardless of tile values of Az and At that are specified. A case for which violent branching
occurs when using a backward difference for the x-derivative in ¢',t, which was presented in Fig. 1, has been

recalculated using a forward difference with the same spatial and temporal stepsizes, i.e., Az = 0.001 and

At = 0.0001. The resultant solution is departure free and virtually identical to the backward-difference
solution for At = 0.001, which did not branch because the value of Ax was too large.

The precise reason that forward-differencing of the z-derivative in the ¢,t term is needed to prevent

the ill-posed behavior of the small step-size solutions of these equations is unknown at the present time.

One possiblity is that the responsible mechanism is somehow related to physical boundary-layer instability
mechanisms. Another possibility is that the mechanism is purely inviscid in nature, as is the case leading

to the requirement for central differencing of the ¢** term. Both of these possiblities are currently under

investigation, and it is hoped that this issue will be resolved in the near future.

Internal Flow Analysis - Pulsatile Flow Through a Channel

Here the governing equations are taken to be the unsteady Navier-Stokes equations. This set of equations

is non-dimensionalized by the method of Smith (1976). The final equations are: conservation of mass,

conservation of x-momentum,

u_ + b = 0 ; (8)

ut + Re(uu_ + vuy) = -P_ + Ee.e. + uyy ; (9)

and conservation of y-momentum,

v__! + ne[u(v_ - VT) + v._.] = -P_ + v_....z._+ vy__. (10)

The VT term is a pseudo-time derivative introduced to accelerate convergence of the global-iteration scheme

at each tmae-level t. The Reynolds number, Re, m defined here by Re = L g /p v , where L is the

dimensional channel width, p* is the density, v* is the kinematic viscosity and -g* is the local applied

pressure gradient driving the basic flow. This set of equations is solved in a two-dimensional channel where
the upstream flo_' is a pulsatile Poiseuille flow driven by the pressure gradient

0z Y) = - I + 70 cos fit .

The corresponding velocity profile is

u(-o_,y) = u_ + u_ ,

where
1 ./_ 4 y '70

, u = clev_e_Y + c2ev_e 2iflu_ = iy(1 - y) u0

(ii)

(12)

(13)
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with

el= [ ] c2= [ ] (14)
2i3 l+eV _ ' 2i_ 1+ev _'

and v(-cv, y) = 0. No-slip boundary conditions are applied along the upper and lower walls and the

downstream boundary conditions are ux = 0 and vx = 0.

For the case where the streamwise length scale is the same order as the channel width, the minimal system

of equations needed to reproduce the unsteady asymptotic structure of Smith (1976) is the parabolized
Navier-Stokes (PNS) equations (Eqs. (8)-(10) with all underlined terms neglected). Bearing this in mind,

a Navier-Stokes algorithm is formulated by first developing a PNS algorithm and then iterating on the

additional (underlined) terms. It is well-known that, when solving tile steady PNS equations, departure

solutions can be suppressed either by neglecting the streamwise pressure-gradient term P_, or the streamline-

curvature term (the uv._ term, see Rothmayer (1989, 1990)). In this study, the streamline-curvature term
u% is used to suppress departure solutions in the steady single-pass version of the algorithm, and also to

provide a mechanism for upstream propagation of information in the steady and unsteady global-iteration

algorithms.

The streamline-curvature term uv_: is treated as a known source term and is forward-differenced in space

relative to the current solution point. Tile pseudo-unsteady term UVT (introduced to accelerate convergence
as in Davis (1984) and Barnett mad Davis (1986)) is included implicitly using a standard backward difference

in time (see Rothmayer (1989, 1990)). Note that two unsteady effects are present - the real unsteady terms

ut and vt and the pseudo-unsteady term VT. The latter is driven to zero during multiple sweeps through the
solution domain at each real time level t.

The algorithm described above, without the addition of the Navier-Stokes terms (i.e., underlined terms

in Eqs. (8)-(10)) is similar to that described in the section on external flows, where the ITLNS equations
are solved. As with that algorithm, a number of implicit/explicit PNS-like algorithms were tested. The

full Navier-Stokes version of the internal-flow solution technique treats the underlined terms as source terms

calculated from the solution at the previous iteration, although algorithms with implicit treatment of vt were

also tested. The reader is referred to Rothmayer (1990) for further details.

The above-described Navier-Stokes solution algorithm has been used to solve for the flow through a

flat channel with the pulsatile pressure gradient given by Eq. (11) and the upstreana boundary conditions

given by Eqs. (12-14). Fig. 2A shows a comparison between the wall shear stress computed using the

present analysis at a downstream location along with that given by the analytical Poiseuille solution - the
agreement is excellent. The departure solutions, to be discussed next, were triggered by introducing a very

small indentation in the channel wall (typical height h = 1 x 10-6).

As with the previously described external-flow analysis, it has been found that the present solution

algorithm experiences departure-solution behavior when a minimum spatial/temporal step-size restriction is

violated, with solutions like that shown in Fig. 1. Figure 2B shows how the mininmm allowable time step,

At,, changes with varying streamwise step size, Ax, for a Reynolds number of 10 million. For a streamwise

step size above a critical value (Az .._ 0.207) the numerical scheme is free of departure solutions for all values

of At examined. As found with the external-flow analysis, neglecting the vt term leads to departure-free
solutions for all values of A j: and At.

A similar departure-solution behavior was also observed when solving the PNS equations numerically. As

with the Navier-Stokes algorithm, the unsteady PNS method displayed the spatlal/temporal step-size con-
straints. These departure solutions could again be eliminated by neglecting the vt term. These observations

hold even if the normal-momentum equation is reduced to the very simple form vt = -Py.
In the external-flow analysis, branching of the numerical solution was suppressed by spatially forward-

differencing the vt term, after re-expressing in terms of the stream function. A similar approach was at-

tempted in the internal-flow analysis. The -¢zt term was forward and backward differenced in space, and

treated both implicitly and explicitly in both cases, in an attempt to elinfinate the departure solutions. Of

the four methods, the backward-differenced explicit method had the least severe time-step restriction for a

given value of Ax. However, for sufficiently small time steps, all four algorithms exhibited the departure-

solution behavior previously discussed. This is in contrast with the external-flow analysis, where branching
could be completely eliminated by spatial forward-differencing of the -¢,t term. It is not clear at this time
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why thisdifferencebetweentheinternal-andexternal:flowanalysesexists.Fortunately,thepseudotime
stepAT can be optimized so that the time scales for the observed depai-tu-re solutions faJl'below the scales of

the Navier-Stokes regime (which constitute a likely absolute lower bound on "the terh_iz_ra] ti-ttte sldp needed
for practical calculations). However, if a judicious choice of AT is ff6tmade, then de_p_/fture _olut_0ns may

be encountered even at the-large values Of _t associated with the interactive bounc]ary:layer Fe_ime o_f'_;mith

(1976) (see Fig. 2C).

Another interesting, and _urr_ritly unexplained, phenomeha 6bserved in both ihe intentlY/1- and extei-nal-

flow analyses is that departure solutions_can be elimin_/t_d-by treg]eeting the 'vt _ei:ha in :_tt ain local transverse
regions, while retaining this term outside Of those regions. The five-points ]abelecl _'1, X-2 ancl ]31 through

B3 on Fig. 2B are points at which the solution has -been stabilized 'by neglec[ing vt :i-n t'he various regio_ns
indicated. Fig. 2D shows the location of fl_ese regions i'or each point. -it i:an "be seen _'rom -this "gou]5 of

figures that the size and location of these regions are _ensifive]y 8ependent :6h'b6t'h t'he 'gpat'ia] anal temporal

stepsizes. For all values of Ax there appears to exist a 2St below which vt m/_sl be heg]ected ac-voss'the entire

channel to ensure departure-free solutions.

Concluding Remarks

The objective of this paper has been, first, to describe depaftui_esblution'behavior dbserved _/hen using

streanfiine-curvature based solution procedures _;hich are being develdp_ to study high "Reynolds number
vortex-eruption phenomena, second, to indicate the responsible term inthe governing'e_uations und, finally,

to show how the departure solutions can be eliminated. We have shown that the time-derivative of the

normal velocity, vt = -g'_t, appearing in the normal-momentum equations, is responsible for the branching

behavior, which only occurs for small spatial and temporal step gizes. The ill-posed behavior has been

eliminated in the external-flow analysis by forward differencing the spat!al-derivat!ve appearing in the -¢_t
term. It should be noted that the step sizes for Which the observed ill-posed behavior arises turn out to

be within the range needed to capture 'many imp6i_taiit ttnffteady viacous-inviscid iht_r-a_fion phenomena,

such as dynamic stall onset. Therefore, this mecharfism'shou]d ff0-t _be ignored if accurate solutions are tobe

obtained. The implication is that special differencing proCe¢lures may-be needed tb p_'rt_perqy accouritforthe

mechanisms responsible for the elliptic:like character offhe governing equations a-t Gach time level of a time-

marching algorithm, possibly even for non-s-tri_in/line-curvature _techniques. A more-c_mplete description

of the responsible mechanism is currently being pursued by the authors, and will be reported when it is
available.
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Experiments on an Unsteady, Three-dimensional Separation

R.W. Henk*, W.C. Reynolds t , and H.L. Reed*

Stanford University, Stanford, California

Unsteady, three-dimensional flow separation occurs in a variety of technical situations,
including turbomachinery and low-speed aircraft. An experimental program at Stanford
in unsteady, three-dimensional, pressure-driven laminar separation has investigated the
structure and time-scaling of these flows; of particular interest is the development,
washout, and control of flow separation. Results reveal that a two-dimensional, laminar

boundary layer passes through several stages on its way to a quasi-steady three-

dimensional separation. The quasi-steady state of the separation embodies a complex,
unsteady, vortical structure.

This talk will describe the experimental facility, the means of generating separation,
and the stages of the development of an unsteady, three-dimensional separation.

Background

A working definition for three-dimensional separation has been adopted according to
Legendre (1982) and Tobak and Peake (1982). Legendre (1982) succinctly states that a

"line of separation ... has no local property. Its only characteristic is to pass through a
saddle point." The definition stipulates that the reference frame is that of the surface and

that the saddle point of the flow is on the surface. The three-dimensional separation
generated in our experiment evolves into the type Owl face of the first kind according to
the classification scheme by Perry and Hornung (1984). This separation has a clearly
identifiable saddle point which was seen in visualizations of our flowfield. In this

experiment the separation is seen to develop and decay in the reference frame of a fixed
flat plate.

This experiment differs markedly from those by Didden and Ho (1985) and Koromilas
and Telionis (1980). Didden and Ho report on an axisymmetric vortex traveling close to

a wall. The MRS condition calls the contortions that the wall-jet boundary layer assume
a downstream-moving separation (see Didden and Ho, 1985). In our experiment,
downstream-moving separation refers to the decay of the separation as the sluggish fluid

is sheared back into an unseparated velocity profile. The most important physics during
this process is the diffusion of vorticity in the separated shear layer back to the surface.

Koromilas and Telionis (1980) documented the development of a two-dimensional
separation. In their experiment, separation developed at the Howarth-flow section, where

the test surface underwent deformation over time. A time-variation of the leading-edge
vorticity and the test boundary layer accompanied this deformation. In our experiment,
upstream conditions and the contours of the test surface remained constant. Our well-

documented initial conditions and boundary conditions aid comparison with direct
numerical simulations such as Pauley, et al. (1988).

* Graduate Student, Department of Mechanical Engineering, Stanford University.

t Professor, Department of Mechanical Engineering, Stanford University.

* Associate Professor, Department of Aeronautical and Mechanical Engineering, Arizona State University.
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Experimental Facility and Experimental Conditions

The experimental facility is a closed-circuit water tunnel, figure 1, in which water
flows from an overhead tank through the test section and then to a sump tank. Turbulence
attenuation by honeycomb, screens, and acceleration through a nozzle provides a low
turbulence freestream to the test section. A fresh boundary layer then develops under a
zero pressure gradient until it reaches the unsteady portion of the test section. At this
point, the boundary layer encounters either (1) a steady, zero or adverse pressure
gradient, or (2) a computer-controlled, time-varying pressure gradient, as determined by
the valves draining flow through the wall opposite the test surface. The water is
continually pumped from the sump to the overhead tank to close the circuit.

The freestream flow is controlled by a bank of manual and computer-controlled valves
located on the wall opposite the test surface. Typically the flow sees a zero pressure
gradient. When instructed by the computer, some valves may be opened proportionately
to create a local, adverse pressure gradient. The flowrate drained through each valve, and
hence the imposed freestream flow, can be steady or unsteady. Any waveform may be
imposed on the freestream flow. A square wave was chosen for these experiments.

For these experiments one upstream valve and one downstream valve are commanded

to operate 180 degrees out of phase, producing a steady, zero pressure gradient flow in
the upstream portion of the test section while the downstream flow sees an unsteady
adverse pressure gradient. This ensures constant initial conditions for the test boundary
layer; for example, leading-edge vorticity does not vary.

The test surface, a flat plate 2.7m long, forms the top wall of the test section. On the
lower surface of the test surface, a fresh boundary layer is grown for investigation.

Laminar and turbulent boundary-layer experiments are performed in this tunnel. These
laminar studies took place over the first meter of the test surface. The range of chord
Reynolds numbers for the separation experiments extends from lxl05 through 2x105.
Table 1 lists some of the flow parameters and geometry for this particular experiment.

Two laser doppler anemometer (LDA) systems measure velocities through the water
tunnel. At the entrance to the test section, a single-component Helium-Neon LDA

monitors the inlet flow. Downstream, the second LDA measures the velocity of the
separated flow. This two-component Argon-Ion LDA is mounted on a traverse that
permits movement of the measuring volume in all spatial directions. Motion normal to
the test surface is automated for velocity surveys, which can continue for days without
intervention.

Results: Stages in the development of a three-dimensional separation

The developing three-dimensional separation evolved through four distinct stages on
its way to steady shedding. The four stages are the initial inviscid response, the
breakaway of the shear layer, initiation of large-scale unsteadiness, and the quasi-steady
state. Some zones of the separation structure experienced all of the stages as the
separation develops under an impulsively imposed adverse pressure gradient.

Nomenclature for this section will use these special symbols: (???) refers to a phase-
averaged quantity, where ??? is either a phase-mean velocity or double product term;
LP:# refers to a measurement station along the centerline of the tunnel. Measurement

220



stationsareshownin figure 2 with respectto tunnelgeometryandthe three-dimensional
separation.Flow parametersanddimensionsfor tunnelgeometryarelisted in table1.

The extentof eachstagecanbe seenin a plot of the momentum-thicknesshistoriesat
various locations along the centerline, figure 3. In the following subsections, the
importantfeaturesof eachstagewill bedescribedmorethoroughly.

Initial inviscid response. As is expected for an elliptic incompressible flow, flow

through the entire tunnel responds instantaneously to the changes in the pressure gradient.
Significant influence of the nonstationary, adverse pressure gradient is confined to
downstream ofx = 0.55m.

Breakaway of shear layer from the surface. The breakaway of the shear layer is part of
the viscous response to the newly imposed adverse pressure gradient. It also contains

aspects of an inviscid response as the near-wall flow is accelerated in the upstream
direction. This can be modeled by taking the base case of a Blasius boundary layer and
superimposing the potential flow correction.

It takes about 0.25s for the viscosity to catch up with the initial inviscid response. This
stage at LP: 1 lasts until t -- 4.5s. The entire flow is remarkably quiescent throughout this
stage of development. Figures 4a and 4b show phase-averaged (U)-velocity profile
histories at stations LP: 1 and LP:2 respectively. The process that is taking place during
this time is the displacement of the wall-bounded shear layer away from the surface as

downstream and spanwise fluid is convected underneath, that is, into the separation wake.
The separation wake extends from station LP:A through LP:2, as is shown in the
separation cross-section, figure 2b.

Initiation of large-scale unsteadiness. At t-- 4.5s, the shear-layer instability catches up

with the viscous response. The shear layer rol!s up and sheds in a dramatic and vigorous
fashion (figures 4a and 4b). Accordingly, (u u )-profile histories exhibit a pronounced
alteration at this time.

Arrival at quasi-steady state. The (U)-velocity profile histories, figures 4a and 4b,
reveal an almost unchanging profile from t = 7.5s until the end of the cycle, when suction
is released. Although these profiles appears steady, they conceal perpetual unsteadiness

in the steady-state structure of three-dimensional separation. Details of the physics and
structure of the separation are better understood by considering profile histories of double
product terms.

After t -- 7.5s, the broad (u'u')-profile at LP:I (figure 5a) has collapsed to a narrow
peak. The narrow peak could be indicative of regular vortex roll-up or of flapping of the
shear layer in the y-direction. The (v'v')- and (u'v')-profile plots (figures 6a and 7a,

respectively) convince us of the la_er explanation. For example, were vortex roll-up the
dominant mechanism, then the (v v )-profiles at LP: 1 should show a peak similar to (u u )

during the quasi-steady state. A low-frequency flapping of the shear layer at this location
would result in the observed peak in (u u )-profiles and flat (v v )- and (u v )-profiles.

In contrast, downstream at the location at LP:2, the broad peak in the (u'u')-profile
persists throughout the quasi-steady state (figure 5b). This broad peak also appears in
(v'v')- and (u'v')-profiles (figures 6b and 7b). The consistent peak throughout the double
product profiles confirms that at this streamwise location, vigorous activity in the x- and
y-directions trades high-velocity fluid in the outer flow with low-velocity fluid that was
near the wall. In other words, spanwise vortices are passing through this streamwise
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location. Evidently, the locationof vortex roll-up has traveled downstream of LP: 1 to a
final position upstream of LP:2.

Thus the quasi-steady state includes a regular roll-up and shedding of vorticity from
the separated shear layer that occurs between LP:I and LP:2. Flow visualization
confirmed that well-defined vortices began to roll up near LP: 1 and shed through LP:2.

Conclusions

This experimental study on the fluid dynamics of unsteady, three-dimensional flow
separation has broadened the understanding of the time behavior of these flows.

A definition for unsteady and three-dimensional separation has been adopted that is
consistent for all such flows. This definition follows the suggestions of Legendre, Tobak
and Peake. Although a controversy has arisen because of the differing definitions, it is
found that all phenomena are adequately addressed by all.

The dominant processes of the development of a three-dimensional separation can be
divided into four stages for various zones of the flow structure. Some of these zones
experience all of the stages as the separation develops under an impulsively imposed
adverse pressure gradient.

The four stages in the development of three-dimensional separation are the initial
inviscid response, the breakaway of the shear layer, initiation of large-scale unsteadiness,
and the quasi-steady state.
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TunnelGeometry
Dimension Value Comments
L, x-Length (total) 3.66 m

x to LP:B, chord 0.575 m

x to LP:D 0.613 m Suction port begins

x to LP: 1 0.651 m Suction port ends
x to LP:2 0.689 m

H, y-Depth (total) 0.129 m

W, z-Span (total) 0.356 m

width of suction port 38.1 mm Port centered in span

Flow Conditions

Quantity Value Comments

U 0 0.217 m/s
Q, (total) 0.0100 m3/s

for Zero Pressure Gradient

0 at LP:B 0.00125 m

0 atLP:l 0.00139 m

0 at LP:2 0.00143 m

for Suction

Q 0.00156 m3/s

dU 0.0334 m/s

max. dCJdx 2.52 1/m
max. dCUdz 0.266 llm

i-"

Inlet flow velocity
Volume flowrate

Momentum thickness

-16%

Volume flowrate

Least-squares fit
Gradients of Press. Coeff.

from potential flow est.

Table 1. Tunnel geometry and flow conditions.

Figure 1" The Stanford unsteady boundary-layer research water tunnel.
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Abstract

The properties of incompressible, unsteady, interactive, boundary layers are examined for the model hyper-

sonic boundary layer of Brown et al (1974,1975) and internal flow past humps or, equivalently, external flow

past short-scaled humps. Using a linear high frequency analysis, it is shown that the domains of dependence

within the viscous sublayer may be a strong function of position within the sublayer and may be strongly in-

fluenced by the pressure displacement interaction, or the prescribed displacement condition. Detailed calcula-

tions are presented for the hypersonic boundary layer. This effect is found to carry over directly to the fully

viscous problem as well as the nonlinear problem. In the fully viscous problem, the non-local character of

the domains of dependence manifests itself in the sub-characteristics. Potential implications of the domain

of dependence structure on finite difference computations of unsteady boundary layers are briefly discussed.

1. Introduction

The phenomena of unsteady separation and vortex eruption appear to involve a number of possible high

Reynolds number structures, including: classical boundary layers and singularities (Van-Dommelen & Shen

(1980), Smith & Burggraf (1985)), interactive boundary layers and interactive singularities (Brotherton-Rat-

cliffe & Smith (1987), Smith (1988)), and the introduction of inviscid effects and normal pressure gradients

(Elliott et al (1983)). As noted above, at some point the vortex eruption may pass through a stage in which

viscous-inviscid interaction becomes important, although it is now generally accepted that viscous-inviscid inter-

action does not suppress the ultimate boundary-layer singularity leading to vortex eruption. However, the inter-

active stage may certainly be one segment of the vortex eruption and could be used as a means of controlling the

development of the singularity. This, of course, assumes that marginal states could be found and that some form

of artificially induced interaction could be used to control those marginal states (a suggestion which seems

reasonable given recent computations). It seems clear that computational methods may have to accommodate

the viscous-inviscid interaction at some point in the vortex eruption and such interactions may include artificially

induced interactions if an attempt is made to control the development of the unsteady flow. It is important,

therefore, to understand any factors which may complicate the theory and computation of these interactive

structures - which brings us to the crux of the present study.

In 1985, Smith & Burggraf showed that two-dimensional Tollmien-Schlichting waves can pass into a high

frequency regime with elevated amplitudes in which the wave is predominantly inviscid. Viscous effects are

confined to a sublayer which is governed by classical unsteady boundary layer equations and is driven by the slip

velocity of the inviscid sublayer. As such, the viscous sublayer could admit the Van-Dommelen & Shen (1980)

singularity and burst into the outer layers (see also Elliott et al (1983)). However, with this exception, the viscous

sublayer is decoupled from the rest of the structure. The inviscid sublayer is found to be governed by nonlinear

thin-layer Euler equations and it is this layer which feels the effect of the pressure-displacement interaction. For

hypersonic flows, the predominantly inviscid flow is governed by a modified inviscid Burgers equation

AT+ (A- 1)Ax= 0 (1.1)

This equation also governs the unsteady initial value problem for high frequency, large amplitude, short-scaled

waves introduced into the original viscous interactive boundary-layer. Additional implications of eqn. (1.1),

especially as regards finite-time singularities, are addressed by Brotherton-Ratcliffe & Smith (1987) and Smith

(1988).
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From the Smith & Burggraf (1985) model, eqn. (1.1), several interesting observations can be made. Linear

waves propagate upstream, finite-time shocks are inevitable at finite wave amplitudes, and at sufficiently high

amplitudes the characteristics change direction. This suggests that the differencing of at least the streamwise

convective term uux and pressure gradient, which produce the (A - 1)Ax term, is not a simpIe matter, but

depends on an interplay between the deviation from a "mean flow profile" and the pressure displacement

interaction.

Most finite difference methods for calculating high Reynolds number unsteady viscous flows tend to rely on

upwinding schemes based on the sign of the streamwise velocity (see for example Keller (1978)). However, the

above observations suggest that traditional differencing techniques may not be appropriate in some unsteady

interactive boundary-layer computations. The present study indicates that in non-parallel, unsteady, hyperson-

ic boundary layers - and in a wide variety of zero-displacement boundary layers - the zones of influence are

determined by a subtle interplay between the convective effects, the pressure-displacement interaction and the

nonparallel (possibly separated) flow - throughout the entire viscous sublayer.

2. Governing Equations

The principal problem to be addressed in this study is the linear unsteady flow superimposed upon an

originally nonlinear steady hypersonic boundary layer. The equations governing a high Reynolds number un-

steady interactive hypersonic boundary layer may be found in a number of studies, including: Brown et al

(1974, 1975) and Gajjar & Smith (1985). The governing equations, with the Prandtl transposition, are found to

be: the conservation of mass equation,

gx+ Vr= O (2,1)

and the conservation of streamwise momentum equation,

UT + UUx + VUr = - Px(X, 7") + Urr

with no-slip boundary conditions at the wall and

(2.2)

U(X,Y, T) -* Y+F(X)+A(X,T) as Y--_ _. (2.3)

The pressure displacement relation in the hypersonic flow of Brown et al (1974,1975) is simply P=-A. Here

F(X) is a prescribed steady hump/indentation shape. For the unsteady internal flow of Smith (1976) and Duck

(1979,1985), as well as the short-scale hump in a Blasius boundary layer (Smith et al (1981)), the P=-A law is

replaced by A=0. The primary issue of interest here is the numerical integration of the above system of equations

using a finite difference procedure. This issue, as will be shown in this study, may not be as simple as it might first

appear.

3. High Frequency Limit

Suppose that a nonlinear steady state solution has been calculated for equations (2.1) through (2.3) - say a

hump induced separation. This may be easily done using a variant of the Davis (1984) alternating direction

explicit (ADE) method (see also Brotherton-Ratcliffe (1987)). A linear unsteady disturbance is superimposed

upon this steady base solution:

[U,V]--[Uo, gol(X,I_+4 [fi,,g,,I(x,Y,T)+O(4 a) (g ,_ 1) (3.1)

Equations (2.1) and (2.2) will be further simplified by letting the time scale become short, or

O O
_= Q-- (f2 ,> 1) . (3.2)
OT 3to

The reader will note that this approach follows very closely the work of Smith & Burggraf (1985), Tutty &
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Cowley (1986), Brotherton-Ratcliffe & Smith (1987) and Smith (1988). The lower deck is found to break up

into two distinct regions (I and III in Fig. 1). For purposes of discussion, and comparison with Smith & Burggraf

(1985), an extra region, II, will be introduced. Region II can be derived as a limit of Region III. The entire

structure is found to be confined to a neighborhood of a point Xo within the lower deck, with

X=X0+Q-lx0 , (3.3)

and viscous effects are found to be confined to a thin classical Stokes layer, Region I, where Y= g_-1/2_. The

Stokes layer equations are solved subject to the no-slip boundary conditions at the wall and matching with

Region III. It should be noted that Region I is decoupled from Region III. In Region III we take Y to be O(1) and

the governing equations are found to be

filxo + vlr = 0 and tilt0 + Uo(I0liXxo + U'o(Y)_;a = -/5,, o , (3.4a,b)

where Uo(Y) is the local steady velocity profile. Upon integration of equation (3.4b), application of the tangency

boundary condition, and the hypersonic pressure displacement relation, the entire problem is reduced to:
Y

fi,to + Vo(Y)ti,xo - V'o(Y) f ti,_o(xo, r], to)dr l = dq_° , (3.5)
0

subject to _, --, fi, as Y---* oo. Equation (3.5) will form the basis of the numerical calculations presented later in

this study. It may be shown that in the limit as Y becomes large eqn. (3.5) reduces to the linear version of the

Smith & Burggraf (1985) wave equation (1.1), but with a non-trivial displacement effect from region III:

a,to + (Fo + Ao - 1)filxo = - d (3.6)

Further details of this structure may be found in Tutty & Cowley (1986) and Rothmayer (1990).

4. Zones of Infh_ence for the Unsteady Linear and Nonlinear Viscous Sublayer

Although the numerical results of this study will be for the high frequency limit of section 3, this approach

may be generalized to other cases. First consider an integrated form of equations (2.1) and (2.2) for the fully

nonlinear problem:

Y

UUx-UrJ Ux(X, tI, T)dt 1 = -Px(X,T) + Urr , (4.1)UT +

0

where P(X,T) is fixed from the appropriate pressure displacement law and the u-matching condition (2.3).

Linearized problems may be considered, in which case, given an expansion of the form of eqn. (3.1), equation

(4.1) becomes

Y

Ur + Uoux + uUox + Vour - Uor J ux(X, 71,T)d_l = -px(X, T) + urr , (4. 2)

0

subject to no-slip at the wall and u(X, _, T) = a + f as Y---, _. The high frequency limit of Rothmayer (1990)

results in a parallel flow approximation and neglecting viscous effects in the main portion of the boundary layer.

Equivalently, the high frequency equation is simply equation (4.2) without the underlined terms, for linear

flows, or equation (4.1) without the underlined terms, for nonlinear flows. Equation (4.2) may be evaluated

on the Y grid Yj = (/-1)AY using, say, a central difference approximations for uv and urr and a trapezoidal

rule quadrature for the integral in (4.2). As will be shown in section 5, equation (4.2) may be reduced to

the form

Ur + Aux = Bu + g or [ti_lt 0 + A[tit]x 0 = 0 (4.3a,b)

when a high frequency approximation is used (see eqn. (3.5), also Rothmayer (1990)) and the underlined
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terms in equation (4.2) are neglected. This equation assumes that a suitable pressure displacement relation

has been used to relate the pressure to some combination of the velocities on the vertical grid (see Rothmayer

(1990)). For example, the hypersonic interaction law gives /_ = -U_iN whereas the prescribed displacement

law (A=0) may be used, in which case the high frequency approximation gives:

N-I

p, -_ -g + 2 uj, AY and g(x,t) = f_ + (YN + Ao + Fo-1/2_fx (4.4)
./=2

The vector g is given by g = [g...g]r while the matrix A is given in Rothmayer (1990) for the high frequency

limit. The same analysis may be applied to equation (4.1), but now in terms of U = [Uil, ..., UiN]r and the

coefficient matrix A is a function of the solution. Equation (4.3a) is simply an N-dimensional wave equation

which may be solved by standard means using the method of characteristics. Note that the viscous effect as

well as the nonparallel effects (i.e. all underlined terms in (4.2)) only contribute to B and so do not affect

the sub-characteristic analysis. The primary difference between the present study and the standard method

of sub-characteristics is that the characteristics cannot be determined via a local analysis, due to the pressure

displacement interaction P=-A (or the A=0 law). The eigenvalues of the coefficient matrix A can readily be

calculated and satisfy [A-Jii I = 0, and the eigenvectors are found from Avi = ,_i¥i . The actual method used

in this study for finding the eigenvalues and eigenvectors is a nonlinear Newton-Raphson method (which is

discussed in Rothmayer (1990)). It is not assumed that the eigenvectors have been normalized. Using classical

methods (see John (1971)), a new solution vector u = Vg is defined, where V is an NxN matrix whose columns

are the eigenvectors, i.e. V = [Vl...VN]. Substitution into equation (4.3a) and multiplication by the inverse

of V diagonalizes eqn. (4.3a), and gives

_r + A_ix = fiti + _ , (4.5)

where !_ = V-1BV, _ = V-lg and A is the diagonal eigenvalue matrix A = dia_,_ ..... 3tN). Equation (4.5) can

be easily integrated along its characteristics for fi, and then the fi can be converted back to u. Direct integration

of (4.3a) requires a differencing formulation which correctly incorporates the diagonalization transformation

u = Vfi.

5. A Solution of the Non-Local High-Frequency Characteristic Problem

As in the preceding section, consider a quadrature of the integral in equation (3.5) on the vertical grid

= (]"- 1)AY with j= 1 ..... N. A trapezoidal rule will be employed here, although other quadratures may be used,

in which case:

til_,0- AYU0s t]lx,0- AYU0filL,_o+ Uoj- AYU'oj l_ljxo--UlNxo =0 , (5.1)

keeping in mind that t]lN= al. Equation (5.1) is applied at the points j=3 ..... N. At j=2 the summation from

L=2 ..... j-1 is removed from the equation, while at j=l equation (5.1) is replaced by _11t0-e dlN,° = 0. The

above equations are just the single matrix wave-equation (4.3b) where [ti,] = [ul, -.. t]lN] rand the coeffi-

cient matrix A is given in Rothmayer (1990). The characteristic slopes, 2:, are the eigenvalues of A, and satisfy

1A - Jil I = 0, where ). = OXo/Oto . The Riemann invariant Fj associated with the :-j eigenvalue satisfies (see Cho-

fin & Marsden (1979)):
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In general there are N eigenvalues, and it turns out that the first N-1 are roughly the slope of the Uo velocity at a

particular j gridpoint (for the particular solution being calculated in this study). The last eigenvalue, Jim, does not

appear to have any simply determined value and must be found via numerical computation. These eigenvalues

have associated with them the Fj Riemann invariants, each of which is constant along the characteristic with

slope ).j. Therefore at each (Xo,t0,Y) gridpoint a system of N equations in the N filj's needs to be solved, namely

aF_

where (Fj)0 's are the Riemann invariants evaluated along the initial data plane. The equations (5.3) may be

inverted to give:

-1

Lo.,,j
This is effectively the diagonalization process of equation (4.5). Equation (5.4) gives the dependence of each

_lj on the Riemann invariant Fj associated with the 2j eigenvalue. Therefore the inverse of the Jacobian matrix

of the Riemann invariants gives the domain of dependence of the streamwise velocity at each jth gridpoint in

terms of the j characteristics with slope ).j, providing that the Riemann invariant multiplying a given row element

of the inverse is non-zero. In the general case, there is no reason to expect the domains of dependence to be

simple.

For purposes of computation, an idealized flow will be considered. The velocity field is assumed to take the
form:

U0(Y) = Y+ A(1 - e -r) , (5.5)

where A is taken as an independent parameter, in lieu of A0+F. The wall shear stress is given by

r_, = U0(0) -- 1 + A, indicating that the flow is attached for A>-I and separated for A<-I. The case A=0 gives an

undisturbed sublayer. Velocity profiles for various values of A are shown in Figs. 2 through 4, along with the

eigenvalue and eigenvector calculations. In addition, a new function, ®i, will be defined, which is the product of

a row element in the inverse eigenvector matrix and the corresponding element of the Riemann invariant vector:

OF -1

i_)i=["_ul]o[Fj] o (5.6)

The results of these calculations are shown in Figs. 5 through 8, assuming constant perturbation velocities on

the initial data plane. The results for A=0 are in agreement with the linear results of the Smith 8: Burggraf (1985)

study. The solution at any vertical point in the grid depends only on the j=N eigenvalue which has slope -1. The

results of the above calculations for an accelerated flow are shown in Figs. 6 and 7. Consider the schematic

interpretation of Figs. 5 through 7, shown in Fig. 8. This figure is a qualitative interpretation only and is not

meant to convey accurate quantitative data. At low amplitudes (i.e. A near 0) all of the characteristics point

downstream with slope -1. As the flow is accelerated (i.e. A increasing) a region of dependence begins to

emerge for small values of j, and the slope of the downstream-directed characteristic begins to decrease. A
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typicalcase,sayA=5,nowhasthej=Neigenvaluecompetingwiththeeigenvalueswhichareapproximatelythe
velocitiesnearthebottomoftheboundarylayer.Notethatthisonlyoccursin theouterportionoftheboundary
layer(i.e.forj large).Theeigenvaluesassociatedwithsmallj's havecharacteristicswhichpointupstreamandso
thetendencyin theouterportionof theboundarylayeris for theupstreamdirectedcharacteristicsto begin
competingwith,andeventuallyovertaking,thedownstreamdirectedcharacteristic.Theoverallpictureisthat
thecharacteristicsin theouterportionof thesublayerappearto changedirectionfor increasingA, whereasthe
characteristicsinthelowerportionofthesublayerdonot.Thismeansthatthecharacteristicsarenotpointingin
thesamedirectionthroughoutthesublayerwhenthechangein thedirectionof thecharacteristicsdoesoccur,
but vary with vertical position.

7. Conclusion and Implications for Finite Difference Computations

In this study it has been shown that the sub-characteristics in an unsteady interactive viscous flow are not

simply determined by the convective velocity, but rather are fixed by an interplay between the convective terms,

the pressure displacement interaction, and the nonparallel base flow. In addition, the sub-characteristics may

vary throughout the entire viscous sublayer and may possess a complex structure. These results seem to be in

accord with the work of Smith & Burggraf (1985) on nonlinear hypersonic waves, which suggests that the

characteristics will change direction at sufficiently large disturbance amplitude. Is it worthwhile to perform the

domain of dependence calculation before proceeding to the finite difference solution? This of course depends

on the results for a particular case. A simple differencing scheme may correctly capture the physics of the

problem in question. However, the present study indicates that it is possible for an unsteady flow to possess

complicated domains of dependence, and hence to require complex differencing schemes. It is anticipated that

problems related to incorrectly modeling the domains of dependence in a finite-difference method will manifest

themselves either as a CFL (Courant-Friedrichs-Lewy) condition or as spurious oscillations in the solution.
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Figure 1. Asymptotic structure for a high frequency
unsteady linear disturbance in a nonparallel viscous
sublayer.
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profile for A=0 and N--51. ej is the eigenvector
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Figure 3. Eigenvalues, eigenvectors and the velocity
profile for a model separated flow (A=-5, N=51).

Figure 4. Eigenvalues, eigenvectors and the velocity
profile for a model accelerated flow (A=5, N=51).
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Introduction

The behavior of a turbulent boundary layer which has been subjected to a local

ramp-like deceleration in the external velocity field, which leads to forced separa-

tion, has been studied experimentally, z The data of this study are re-interpreted

in light of more recent findings concerning the temporal nature of boundary-layer

turbulence 2 in the presence of forced unsteady shear. In particular, the robustness

of the near-wall turbulent motions to organized deformation is recognized. Their

resilence to unsteady shearing action promotes continued efficient turbulent mixing

and rapid redistribution of turbulent kinetic energy during forced transients. In

aerodynamic problems, the rapid nature of the adjustment of the turbulence field

to a new temporal boundary condition necessitates equally rapid remedial measures

to be taken if means of control/prevention of forced unsteady separation are to be

deployed to maximum effect. This requirement suggests exploration of the use of

simple real-time statistical forecasting techniques, based upon time-series analy-

sis of easily-measurable features of the flow, to help assure timely deployment of

mechanisms of boundary-layer control.

This paper focuses upon the nature of turbulence in boundary layers undergoing

forced deceleration which would lead to separation. A preliminary form of a fore-

casting model is presented and evaluated. Using observations of the previous two

large eddies passing a detector, it forecasts the behavior of the future large eddy

rather well.
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Background

Close to the wall, the robustness of the dominant turbulent motions of boundary

layers to forced unsteady deformation has been demonstrated experimentally. In

a recent water-tunnel experiment, _ measurements of the major component of the

turbulence production tensor were made when the parent boundary layer was sub-

jected to a superposed oscillatory variation in the free-stream velocity, shown in

figure !, while decelerating with increasing streamwise distance. On average, the

motions of the turbulent boundary layer were extremely robust to the imposition of

forced unsteadiness at any frequency. Mean values of production of u'u', and of all

measured components of the Reynolds stress tensor showed no variation with fre-

quency and scarcely differed from the equivalent steady or quasi-steady measures,

as illustrated by the turbulence production data shown in figure 2.

The time-dependent response of this spatially-decelerating flow undergoing un-

steady forcing was characterized by momentary measures of turbulence production

of very similar shape to their time-averaged counterparts, with peak production

always around y+ _ 9 (shown in figure 3). The coincidence of the position of peak

production, and the shape similarity implied that temporal production arose only

as a modulation of a robust mean process, which was undisturbed by temporal

variation in the local shear, over a range of frequencies. More importantly, mea-

surements of the time lag between peaks in temporal values of u'u' and v'v' showed

that the process of redistribution of turbulent kinetic energy from the component

in which it was produced (u'u') to one with negligible production (v'v') took place

locally over the same scales of time regardless of the frequency of unsteadiness -- a

process driven by motions characteristic of the mean flow. This key result is shown

in figure 4 and demonstrates the importance of the robust turbulent motions of the

parent boundary layer in accounting for temporal redistribution of turbulent kinetic

energy, when necessitated by the superposition of oscillatory shear. It is also of con-

siderable importance that the cycle-averaged lag between u'u' and v'v' reached a

maximum of around only 40 viscous units in time (referenced to the mean friction

velocity) -- an extremely short period of time in typical aerodynamic applications

-- and that this time lag was greatest close to the location of maximum produc-

tion of u_u _ and of maximum anisotropy in the Reynolds stress tensor. This short

time scale, representative of temporal redistribution of turbulent kinetic energy, is

indicative of the efficient turbulent mixing which appears to be unaffected by the

superposition of an oscillatory shear field.

In summary, the near-wall motions of the parent turbulent boundary layer have

been shown to be resilient and to sustain their steady-state character when subjected
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to unsteady forcing of a sinusoidal kind. Also, they appear to dictate features of

the response of temporal turbulent motions of the boundary layer during transients,

and in particular, time scales of temporal redistribution of turbulent kinetic energy.

These findings, revealed from measurements of two components of the velocity

field in a turbulent boundary layer undergoing sinusoidal unsteadiness, may be ap-

plied to results of an earlier study in the same apparatus, 1 in which an abrupt,

ramp-like deceleration in free-stream velocity (and increase in streamwise pressure

gradient) was enforced on an otherwise steady flat-plate turbulent boundary layer,

in order to initiate separation. The forcing boundary condition and the normalized

response of the turbulence (u'u') are shown in figures 5 and 6. Once the starting

transients had died out and the ramp-like deceleration had been established, the

organized unsteady component of streamwise velocity followed a quasi-laminar de-

velopment, as described by a viscous Stokes layer which grew outward from the wall

in time. The flow was then one in which the momentary production of u'u' was

being reduced rapidly, through the abrupt decrease in shear strain. The concurrent

reduction in u'u' to values greatly below its initial level was then due to the extreme

effectiveness of redistribution of turbulent kinetic energy amongst other component,

as driven by the sustained presence of robust turbulent motions which originated in

the boundary layer before the forced deceleration. The consistency of shape in pro-

files of the component of u'u' deviatoric from its initial state, when normalized by

the component of free-stream velocity deviatoric from its initial value, concurs with

the interpretation that it is the sustained presence of the dominant motions of the

boundary layer before imposition of forcing which account for this rapid, efficient

turbulent mixing and adjustment of the boundary layer during the transient. The

sustained presence of these turbulent motions during unsteady deformation may be

an important factor in understanding the kinds of hysteresis observed frequently in

unsteady flows of this kind.

It is worthwhile noting that U'u' is reduced by 25% of its value in a time of 28

viscous units (referenced to the friction velocity of the initially undisturbed flow)

which corresponds to 0.8 seconds of transient behavior shown in figure 6. A time

scale of this order represents an extremely rapid transient if a means of boundary-

layer control is to be deployed after detection of a related event, in order to control

the subsequent evolution of the boundary layer. Moreover, if the proposed mode

of boundary-layer control were one in which vorticity (or equivalently, shear strain)

were reintroduced at the wall, it would be most effective if deployed during the

transient, while there were still appreciable levels of Reynolds stress near the surface,

in order to regenerate turbulent kinetic energy through the interaction of Reynolds

•stress and shear strain.
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Since finite actuation times for devices for control of boundary layers (pop-up

delta surfaces, localized suction, surface acceleration etc.) are a necessity, the prac-

tical utility of these devices may well depend upon the ability to forecast conditions

under which the process of separation might be forced by the external flow. Based

on the physical picture portrayed in this section of a turbulent boundary layer

undergoing forced deceleration towards separation, a time series model describing

the temporal behavior of streamwise velocity in the decelerating turbulent bound-

ary layer is presented, with a view to testing its capabilities for predicting future

velocity conditions at which separation would be anticipated, and control devices

deployed.

Forecasting of non-stationary turbulent processes

There are a number of statistical forecasting techniques which may be used to

continually update a limited time series of information, with a view to predicting

a future value of the time series with some degree of confidence. Most of these

techniques follow the parametric approach of seeking models for observation data,

and well-known examples include ARMA 3 (autoregressive moving-average) models,

for stationary stochastic processes, and AR1MA 3 (autoregressive integrated moving-

average) models, for non-stationary stochastic processes. In the spirit of Box &

Jenkins, 3 the models deemed most desireable are those which follow the principle

of parsimony and provide adequate representations of observation data with the

smallest possible number of parameters. This point is of particular importance if

the eventual goal is real-time forecasting from sequential data. The time series

of the measured velocity (at y+ = 400) in a turbulent boundary-layer shown in

figure 7, for the case of rapid deceleration which leads to separation, was used

for model selection and testing. A second time series of streamwise velocity data

recorded under steady conditions was used for concurrent testing, since any robust

non-stationary forecasting scheme for a finite series of sequential data should also

perform satisfactorily for stationary data.

After considerable methodical testing of a range of orders of ARMA and ARIMA

models, the most suitable appeared to be a model in which the time series was

represented by a locally-stationary first-order autoregressive stochastic process, su-

perimposed upon a non-stationary process modeled only by its level and slope with

respect to time. Physically, this model may be thought of as a decomposition of

the velocity field into two distinct kinds of motion, i.e.

=  (e)n-s +  (t)s (I)
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The non-stationary component u(t)n-s is modeled as:

-- AU

u(t)n-s = U + _--_t (2)

where U is a short-time mean of u and _, the short-time estimate of the gradient

in time, from a linear fit to data. The stationary component u(t)s is modeled as:

[uCt)s - #uCt)] - ¢[uCt - 1)s - #(t - 1)] = a(t) (3)

where #(t) = U + _v_t, _ is the single autoregressive parameter of the model, and

a(t) is a white-noise process, uncorrelated from one time to the next.

The non-stationary scale represents the local velocity as a large eddy, which car-

ries the short-time-mean level of velocity, its short-time-mean gradient with respect

to time, and represents the memory of the fluid. The superposed stationary scale is

a Markoff stochastic process, whose past has no influence on the future if its present

is specified. It therefore represents the less coherent aspects of turbulent motions.
-- AU

The parameters U, A----T,¢ and a, which characterize these scales of motion for short

time series, are continually updated by new information, and are therefore adaptive

in time.

The reasonableness (and parsimony) of this representation may be demonstrated

by considering the power spectrum of a Markoff stochastic process. This spectral

estimate is shown in figure 8 for a stationary time series of turbulent velocity data,

in which a smoothed, windowed Fourier transform spectral estimation is also in-

cluded for purposes of comparison. Although the windowed Fourier representation

admittedly provides a more detailed description of the power spectrum, the Markoff

model only requires fitting the data to a single parameter _ (though autoregressive

processes of higher order could be modeled if desired). Moreover, the importance

of autoregressive spectral estimation in other engineering applications is such that

a number of efficient adaptive parameter-estimation schemes have been developed

for real-time application (i.e. the Widrow algorithm 4 for which each estimate of

an updated autoregressive parameter requires only a very small number of add or

multiply computations).

The model of (1), (2) and (3) is implemented by taking a short part of a time

series (say, 25 points) and fitting the parameters of the model to the data of the

time series. Forecasts of expected future values of u may be made by evaluating

(1), (2) and (3) for future times, for any expected future value a(t) assumed to be

zero. 3 Values of forecasts and their associated confidence levels may then be made.

In a real-time sequential algorithm, new data would then displace the oldest data
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from a shift register, new values of adaptive parameters would be estimated, and

new forecasts made.

In preliminary tests of this model, the length of the past time series upon which

the model parameters were chosen was based on the time scales of large eddies of

boundary layer. A forecasting target of the time scale of one large eddy into the

future was chosen, with a 95% confidence level placed on that future forecast. The

time series was sampled at a rate of approximately 1/t + Hz, and slower sampling

rates could be experimented with by considering every other data point, etc. Com-

parisons of forecasts made 25 observations into the future, with the measured data

at these times, are shown in figure 9. These representative data describe the out-

come of choosing a model which is tuned by (or estimates its parameters from) the

previous two large eddies (50 observations, in this case) and forecasts the behavior

of the flow one large eddy (25 observations) into the future. Estimates of the asso-

ciated confidence limits of the forecast are also shown. Given the simplicity of the

model, its forecasts appear remarkably good.

Some very general observations from other preliminary tests indicated that fore-

casting more than two large eddies into the future was very much more uncertain,

regardless of how many previous large eddies were used to tune the model. There

was also a small improvement in the forecasts if they were tuned to the previous

four large eddies, though at the expense of a greater time requirement for estimating

parameters of the model.

Summary

Modeling of non-stationary turbulent velocity data as a superposition of coherent

(in local velocity and its time gradient) and incoherent (Markoff) motion yields

surprisingly good forecasts of the future behavior of a turbulent velocity time series

given its past. Since coherent motions are known to play important roles in the

transient behavior of turbulent boundary layers, and are of particular importance

in a variety of separation phenomena, 5 time-series methods of this kind appear to

have the capability of playing very important roles in schemes aimed at the active

control of separation of turbulent boundary layers.
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Turbulence mQdel!ing for unsteady separated flow_ -

abstract for NASA/AFOSR/ARO Workshop on Unsteady Separation

?eter Bradshaw, Feb. 1990

i. Unsteadiness

The exact transport equations for turbulent (Reynolds)

stresses have left-hand sides representing the "substantial

derivatives" of the Reynolds stresses, i.e. the rates of

change of stress with respect to time, as seen by an

observer following the mean motion of the fluid. Here the

"mean" is a statistical average for the turbulent motion,

distinguished from the ordered unsteadiness on which it is

superimposed: for a turbomachine blade or a cyclically-

pitching airfoil, the mean is a phase average (Fig. I: see

Ref. 1 for a practical discussion). Written in coordinates

fixed with respect to a solid surface, the substantial

derivative appears partly as an Eulerian time derivative at

given spatial coordinate position and partly as a spatial
derivative.

If the Reynolds-stress transport equations are modelled term

by term ("stress-transport" or "second-order" models), the

left-hand sides are left in exact form. The right-hand sides

of the exact equations contain no time derivatives and there

is no justification for introducing them in a model.

Therefore the applicability of a stress-transport model to

unsteady flow can be judged on its performance in steady

flow: a model that behaves well in steady flows with rapid

streamwise changes in stress (implying a large substantial

derivative on the left-hand side) will behave equally well

in unsteady flows where the left-hand side is equally large

because of rapid timewise and/or streamwise changes.

This conclusion is true only of stress-transport models:

models which ignore or approximate the left-hand sides

cannot be judged in this way, but are necessarily suspect in

any flow where the left-hand is large. It seems inescapable

that the only candidates for rapidly-changing unsteady flows

are stress-transoort models (e.g. Refs. 2, 3). Any model
based on eddy viscosity relates the turbulent stresses to

the local mean velocity gradients, which amounts to ignoring

the left-hand sides of the Reynolds-stress transport

equations. (This is trueeven for two-equation models, which

use transport equations for turbulent energy and dissipation
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rate.) Algebraic stress models are based on an approximation

to the left-hand sides which can easily be shown to be poor
in rapidly-changing flows.

Clearly, unsteadiness can lead to secondary effects Ce.g.

appearance of concentrated spanwise vortices in a boundary
layer or vortex street) which would defeat a turbulence

model even in steady flow, so that passing =he "left-hand-

s!de" test is necessar,y but not sufficient.

_. Zeparation

Separation presents two SD_C_ _i c Drob!ems to a turbulence
model:--

(i) Prediction of the flow near separation depends

critically on the "near-wall" part of the turbulence model.

Several workers are currently studying this problem (Refs.

4-9), but all are using conventional models for the

correlations between the pressure fluctuation and the

velocity-gradient f!uctua_ions. These correlations

redistribute contributions to the Reynolds-stress tensor

among the different components, and their modelling is a key

part of any transport-equation method. Current practice is

to relate the "redistribution', terms to local turbulence

quantities and mean-flow gradients, but this is essentially

risky because the pressure fluctuation at a point depends on

an integral of the velocity fluctuations over a nominally

infinite volume. Comparison with turbulence simulation data

(Ref. 10) show that this "local" assumption breaks down very
badly in the viscous wall region, where turbulence

quantities and mean-flew gradients are changing rapidly with

distance from the surface. Uhe models can always be forced
to reproduce the "law o_ the wa I_''

- - ._ .n attached flows, simply

by making the empirlca _ coeff:clents functions of a Reynolds

number related to the ,_imens:onless wal _ di=tance y+:

however the flaw in the basic assumptions suggests that the

models will break down near separation where the law of the
wall no longer holds.

(ii) Downstream of separation, a boundary layer changes

gradually to a mixing layer. Even in the simplest case of

formation of a mixing layer from the boundary layer at exit

from a .e_ nozzle, the effects of initial cond!tzons persist
for extremely long distances downstream, if the turbulence

model does not predict boundary layers and (asymptotic)

mixing lave_= adequately with =he same set of coefficients,

the coefficient3 must be interpolated in the streamwise

direction. This is the "zonal mode!'_ng" technique (Ref.

II): it is also applicable in ad hoc corrections of the

defects of turbulence models in special zones like imbedded
vortices or shock-wave interactions.
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Toward the Optimization of Control of Unsteady Separation

S.F.Shen and Zheng-Hua Xiao, Cornell University

Abstract:

Regardless of our understanding, or the lack of it, of the complicated physical
process, means can always be found to alter the occurrence and development of unsteady
separation. To be able to optimize the control of separation, however, requires the
identification of the critical aspects to which the intervention may be focused and achieve
the desired result with minimum waste of effort. The Lagrangian analysis of unsteady
boundary-layer traces the trajectories of individual fluid particles, and reveals the 'bad
seeds' that, through extreme deformation in the direction normal to the wall, eventually
develop into a virtual barrier and cause the ejection of boundary-layer material into the main
stream. It follows logically that separation can be triggered or delayed most effectively by
targeting these 'bad seeds'. Since they are normally interior points of the boundary layer,
attempts to influence them through the boundary conditions are necessarily indirect.
Furthermore, as the strategy has to be the modification of the growing process of the 'bad
seeds', whatever may be the intervention scheme, it needs to be strong enough and early
enough. In Shen and Wu (1988), examples of how acceleration/deceleration of the (2D)
body, as well as the moving wail (of a rotating cylinder), may affect the development of the
bad seed toward separation are shown. In fact it was mentioned therein that the results
might be the first step for a feasibility study of the control of unsteady separation.

A practical difficulty of making Lagrangian calculations of the boundary layers,
even in the simpler 2D case, is the loss of accuracy due to the continuing distortion of the
fluid element with time. This is accentuated in airfoil-like slender bodies (Wu, 1985).

More problems arise if wall suction or blowing is added. These however cause much less
trouble for the more conventional Eulerian formulation. The weakness of the Eulerian

scheme mainly lies in its inability to identify the 'bad seed' that ultimately leads the
uprising. In the traditional marching algorithms of the Eulerian formulation, the resolution
also appear to suffer in the presence of extensive reversed flow, which is typically
prerequisite to unsteady separation. We have developed during the past year a time-
accurate 2D boundary-layer Euler program, by formulating the unsteady boundary layer as
an initial-value problem with spatial boundary conditions. It proves to be able to resolve
the typical 'spike' signature of the displacement thickness at the inception of separation,
which seems to be now generally accepted since the Lagrangian calculations of van
Dommelen and Shen (1980). A comparison of the newly developed Eulerian vs. the earlier
Lagrangian results for the bench-mark case of the impulsively-started cylinder is shown in
Fig. 1. The absolute values of the spike differ because of the limited resolution of both

methods at the mathematical singularity. It is the unmistakable occurrence of the spike that
identifies separation.

With both the Lagrangian and the Eulerian programs as working tools, serious

research on the possible control of unsteady boundary-layer separation and its optimization
could actually begin. In principle we should continuously watch for the emergence and
development of 'bad seeds' with the Lagrangian, and test the efficacy of various means of
control to suppress the bad behavior. Other seeds turning into bad ones can also be tagged
and dealt with. The 'lead time' for intervention is an equally intriguing aspect of the
dynamics of separation. (It cries for a theoretical analysis, but we have yet to be able to
formulate.) The Eulerian serves both as an alternate to the Lagrangian to circumvent the
distortion problem, and as a possibly easier implementation of the control details. The
technical aspects of switching from one code to the other are not expected to be a bottleneck
but remains to be done.

269



Initial experimentationof control by surfacesuctionfor the impulsively-started
cylinder havebeenreportedby Shen(1990).Theresultssubstantiatethecommon-sense
expectationthatsufficient suctionmustbeableto removeall 'badseeds',henceseparation
-- like massivemastectomy,while lesssuctionis neededwith earlier intervention,an
indication of the role of the 'lead time'. Presentedherearesomeadditional resultsof
applyingsuctionto the impulsivelystartedcircularcylinder,which normally separatesat
(dimensionless)timet = 1.5:

Case(1) -- Fairly massivesuctionovertherearhalf,with peakat therearstagnation
point, startingfrom t = 1.3,asshownin sketchof Fig. 2(a).Thesuctionis appliedtoolate
anddoesnot capturethe badseed,asFig. 2(b) showssubstantialreductionof boundary
layer thicknessin the rear but the spikestill appearsat t = 1.5and X = 110°, sameas
without suction.

Case(2) -- Lesstotal suctionbutconcentratedmorearoundX = 110°, startingstill
from t = 1.3,Fig. 3(a). Thespikeappearanceis delayedto t = 1.55andX = 125° in Fig.
3(b), suggestingthattheseparationis now from a newgroupof badseeds.Thereis some
successwith muchreducedexpenditure.

Case(3) -- Similar to case(2) butmovingthesuctionregionalongthesurfacewith
a speeddeterminedby a feedbackfrom the boundarylayer growth, reducing suction
magnitudeto a half, startingstill from t = 1.3,Fig. 4(a). Thespikenowappearsat t = 1.7
andX = 127° approximately. Thus more improvement is achieved with less effort.

The control strategy used in case (3) above is primitive, simply synchronizing the
peak of the applied suction with the location of the maximum of the 'blowing velocity'

d(U_5*)/dx, U being the free stream velocity at the wall and 5* the displacement thickness.

The suction strength Q is another parameter at our disposal. As a trial, we next regulate the
peak suction not only to occur at the location of the calculated maximum blowing velocity
but also to have exactly the same magnitude. Thus the applied suction is programmed as
represented in Fig. 5 (a). The calculated displacement thicknesses, shown in Fig. 5 (b), are
seen to be without the spike feature; the boundary layer remains attached for time up to t =
2.5.

These results are but crude exemples of how to optimize the applied suction and

achieve some control over the time and location of the inception of unsteady separation. In
practical design, other precursors of the nascent spike, such as the flow reversal point on
the wall, could replace the maximum 'blowing velocity' in actuating the control, and
feedback loops may be added.
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(a) Suction Distribution along the Circular Cylinder

Vs = 0.5Q (1.0-Cos((X-X0)/(X1-X0)*2_))
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(b) Calculated Displacement Thicknesses at t = 1.4 and 1.5.

Fig. 2 Displacement Thicknesses on an Impulsively Started Circular
Cylinder with Suction Imposed when t = 1.30, Case (1).

273



(a) SuctionDistributionalongtheCircularCylinder
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Calculated Displacement Thicknesses at t = 1.4 and 1.55.

Fig. 3 Displacement Thicknesses on an Impulsively Started Circular
Cylinder with Suction Imposed when t = 1.30, Case (2).
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(a)

i

Moving Suction Distribution along the Circular Cylinder

Vs = 0.5Q (1.O-Cos((X-XO)/(x 1-XO)*2_))
Q=-25.0 XO<=X<=X1 Xl=XO X1=39.38 °

c_
l

g0.0 120.0 150.0 180.0

X

(b) Calculated Displacement Thicknesses at t = 1.4, 1.5, 1.6 and 1.7.

Fig. 4 Displacement Thicknesses on an Impulsively Started Circular
Cylinder with Suction Imposed when t = 1.30, Case (3).
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THE QUEST FOR STALL-FREE DYNAMIC LIFT

by

C. Tung, K.W. McAlister, L.W. Cart,

E. Duque and R. Zinner

INTRODUCTION

During the past decade, numerous major efforts have addressed the

question of how to control or alleviate dynamic stall effects on helicopter ro-

tors, but little concrete evidence of any significant reduction of the adverse

characteristics of the dynamic stall phenomenon has been demonstrated.

Nevertheless, it is important to remember that the control of dynamic stall

is an achievable goal. Experiments performed at the US Army Aeroflight-

dynamics Directorate more than a decade ago demonstrated that dynamic

stall is not an unavoidable penalty of high amplitude motion, and that

airfoils can indeed operate dynamically at angles far above the static-stall

angle without necessarily forming a stall vortex. These experiments, one of

them featuring a slat that was designed from static airfoil considerations,

showed that unsteadiness can be a very beneficial factor in the development

of high-lift devices for helicopter rotors.

The experience drawn from these early experiments is now being fo-

cused on a program for the alleviation of dynamic-stall effects on helicopter

rotors. The purpose of this effort is to demonstrate that rotor stall can be

controlled through an improved understanding of the unsteady effects on

airfoil stall and to document the role of specific means that lead to stall

alleviation in the 3-D unsteady environment of helicopter rotors in forward

flight. The first concept to be addressed in this program will be a slatted

airfoil. A 2D unsteady Navier-Stokes code has been modified to compute
the flow around a two-element airfoil.
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BACKGROUND

Dynamic sta_ continues to be a serious factor in modern helicopter

design. The impulsive loads that are generated during helicopter airfoil stall

limit high speed helicopter flight and reduce the maneuvering capability of
the aircraft. The character of the dynamic stall phenomenon has been

carefully studied (Refs. 1-3) and a significant body of knowledge has been

acquired concerning the behavior of various airfoils during dynamic stall

(Refs. 4-6). These studies have shown that deep stall is relatively insensitive

to the airfoil profile; however, there are definite indications that dynamic

stall inception is sensitive to the character of the boundary-layer (Ref. 3).

In order to better understand the significance of the boundary layer on

the stall behavior, a variety of passive stall modifications were tested on an

oscillating VR-7 airfoil (Ref. 7). In this study, a backward-facing step was

installed in a attempt to control the progression of flow reversal on the airfoil

and thus delay the formation of the stall vortex. Although several backward-

facing step configurations were tested, no significant effect on the vortex

development or the dynamic stall airloads was detected. Vortex generators

were then installed at 20% chord to delay stall through boundary-layer re-

energization. The vortex generators delayed the static stall significantly

and even kept the boundary layer attached on the rearward portion of the

airfoil under dynamic conditions. However, use of the vortex generators

induced leading-edge stall in the dynamic environment and the loads were

not measurably improved.

Finally, a leading-edge slat was installed in order to shift to the slat the

rapid flow accelerations that normally occur near the leading edge of the

basic airfoil and to re-energize the boundary layer on the main airfoil. A de-

tailed diagram of this particular slat/airfoil combination is shown if Figure

1. This slat was found to postpone the dynamic stall to angles well above

the range normally expected on helicopter airfoils, with virtually no drag

penalty in the angle range associated with retreating blade aerodynamic

conditions. A qualitative comparison of the slat/airfoil combination to that

of the basic airfoil is presented in Figure 2. To approximate the full con-

tribution of the slat/airfoil combination, the lift and moment curves were

adjusted to match that of the basic airfoil at c_ -- 15 °. Figure 3 presents

the lift and moment coefficients for the basic VR-7 airfoil for pitch oscilla-

tions of c_ = 15 ° -b 10 ° sin(wt) and for a range of frequencies. The dynamic
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stall effects are quite evident. Figure 4 presents the same conditions for the

slat/airfoil combination where it is clear that the dynamic stall vortex is no

longer present. Figure 5 shows a comparison of the instantaneous pressure

distributions for the basic airfoil and for the slat/airfoil combination at the

same test conditions. Note the movement of the dynamic stall vortex along

the chord of the basic airfoil and the complete absence of the vortex imprint

in the slatted airfoil results.

APPROACH TO CONCEPT EVALUATION

The results in Reference 7 demonstrate the dramatic involvement that

can be achieved by the use of a slat: the dynamic stall vortex is completely

suppressed throughout the cycle of oscillation at the moderate frequencies

that are compatible with helicopter forward-flight conditions. However, the

slat/airfoil combination tested may not be the optimum shape nor even an

acceptable configuration for a rotor application. Although the addition of

the slat was effective in suppressing stall, the drag penalty is too large at

the lower angles-of-attack (Fig. 6). A more acceptable design for the rotor

would have to feature a retractable slat in order to avoid the high-drag

penalty that would otherwise occur on the advancing side of the rotor disk.

Encouraged by the success of the slat in suppressing the stall vortex, a new

program called High Maneuverability and Agility Rotor and Control System

(HIMARCS) has been initiated to study different techniques for increasing

dynamic lift without stall. At the present time, the slat/airfoil combination

is being reexamined in order to validate new CFD codes and to determine

if the water tunnel can be used to qualitatively assess the performance of

various high-lift concepts.

A general purpose code which solves the conservative thin-layer Navier-

Stokes equations in generalized coordinates (Ref. 8) has been modified to

handle the multi-element airfoil and includes an algebraic turbulence model

(Ref. 9). Figure 7 compares the force and moment results for the basic VR-

7 to the static results from an earlier wind tunnel experiment at Moo = 0.3

and Re = 4.2 x 10 6 (Ref. 3). The computed lift coefficients show a rea-

sonably good agreement with the test data. The moment coefficients also

compare reasonably well at low angles-of-attack, but seriously under pre-

dict at high angles-of-attack. The drag coefficients are over predicted at low

angles-of-attack, but are under predicted at higher angles-of-attack. This
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over prediction of the drag at low angles-of-attack is expected since the

computation assumed a fully turbulent boundary layer and in the experi-

ment the boundary layer was allowed to undergo natural transition. Figure

8 compares the computed lift and drag coefficients for the basic and slatted

VR-7 airfoil with the test results in Reference 7. Again the lift coefficients

compare much better than the drag coefficients. Figure 9 shows the calcu-

lated Mach number and pressure coefficient contours for the slatted VR-7

airfoil at c_ - 15 °. The enlarged views of these contours illustrate the abil-

ity of the code to model the interaction between the slat wake and the

main-element boundary layer.

The slatted VR-7 airfoil will also be tested in the water-tunnel facil-

ity where total lift, drag and pitching moment measurements can be made.

These results will be used to establish the scaling law between the compara-

tively low Reynolds number environment in the water tunnel and the higher

Reynolds numbers attainable in the wind tunnel. The water tunnel results

will also to be used to complement the CFD efforts. A water-tunnel model

of the VR-7 with slat has been constructed (Fig. 10) and a comparison

between the experiment and the CFD calculations will be published in the

near future (Ref. 10). Once greater confidence has been established in the

CFD code as well as the use of the water tunnel for qualifying a candidate

concept, a slotted airfoil will be designed. After the slot shape and position

has been optimized, a set of slotted rotor blades will be constructed and

the concept demonstrated under forward-fllght conditions. The HIMARCS

program will eventually address numerous high lift and control concepts as

suggested in Figure 11.
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]ntroduction

The unsteady bleed technique (a.k.a. internal acoustic forcing) has been

shown to be an effective method for control of separation on low Reynolds number

airfoils, blunt-end cylinders aligned axially with the flow, cylinders aligned

perpendicular to the flow and forebody geometries at high angles of attack. In many

of these investigations, the mechanism for the control has been attributed to

enhancement of the shear layer (Kelvin-Helmholtz) instability by the unsteady

component of the forcing. However, this is not the only possible mechanism, nor

may it be the dominant mechanism under some conditions. In this work it is
demonstrated that at least two other mechanisms for flow control are present, and

depending on the location and the amplitude of the forcing, these may have

significant impact on the flow behavior.

Experiments were conducted on a right-circular cylinder with a single

unsteady bleed slot aligned along the axis of the cylinder. The effects of forcing

frequency, forcing amplitude and slot location on the azimuthal pressure

distribution were studied. The results suggest that a strong vortical structure forms

near the unsteady bleed slot when the slot location is upstream of the boundary

layer separation point. The structure is unsteady, since it is created by the unsteady

forcing. The "vortex" generates a sizeable pressure spike (Cp --- -3.0) in the time-

averaged pressure field immediately downstream of the slot. In addition to the

pressure spike, the boundary layer separation location moves farther downstream

when the forcing is activated. Delay of the separation is believed to be a result of

enhancing the Kelvin-Helmholtz instability. When forcing is applied in a quiescent

wind tunnel, a weak low-pressure region forms near the slot that is purely the result

of the second-order streaming effect.
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Sigurdson and Roshko(1985) used an acoustic driver to excite the

axisymmetric shear layer and separation bubble formed at the blunt end of a

cylinder aligned axially with the flow. They identified two fundamentally different

mechanisms by which the unsteady forcing modified the flow. In the first

mechanism the unsteady forcing enhanced the Kelvin-Helmholtz instability in the

separating shear layer. A second mechanism involved forcing at wavelengths

comparable to the separation bubble height, which enhanced a "shedding" type of

instability for the entire bubble.

Huang, Maestrello and Bryant (1987) demonstrated the effectiveness of

internal acoustic forcing as a flow control technique for reattaching the separated

boundary layer on a low Reynolds number airfoil at high angles of attack. Their

unsteady bleed slot was located near the leading edge of the airfoil. They found that

lift was enhanced and stall was delayed when the separating shear layer was

perturbed by sound at frequencies comparable to those found in the shear layer.
Williams and Economou (1987) used unsteady bleed to control the Karman

vortex formation behind a circular cylinder at Reynolds number 370. This work was

extended by Williams and Amato (1988 a,b). The unsteady bleed was shown to

generate a low pressure region near the body and momentum was added to the flow

by the second-order streaming effect.
In another experiment on an airfoil, Huang, Bryant and Maestrello (1988)

showed spectral evidence that the wake structure responded to the excitation

frequency when the unsteady bleed slot was located near the trailing edge of the
airfoil. In this case the most effective frequency was near the vortex shedding

frequency. The control mechanism was attributed to the generation of large-scale

vortical structures which enhanced entrainment and modified the pressure recovery

region.
Williams, et al. (1989) used the unsteady bleed technique to control the

forebody vortex formation around slender cone-cylinder bodies at high angles of

attack. With the correct forcing conditions it was possible to eliminate the strong

forebody vortex and convert the asymmetric velocity field to a symmetric velocity

field. In this case, the forebody vortex is steady, so there is no natural frequency to

scale the control. Therefore, the control mechanism was attributed to a direct

modification of the mean flow. In particular, the rectified pressure field _d the

momentum addition by the streaming effect were believed to be the controlling

factors.

Hsiao, et al (1989) showed that the flow around airfoils and cylinders could

be influenced by forcing through a slot aligned with the cylinder axis or airfoil span.

They found that the forcing was most effective when placed near the separation line.

As in other experiments on airfoils and cylinders, the data indicated a sensitivity to

298



forcing frequency. This provided evidence that the unsteady component of the

forcing enhanced entrainment and delayed separation. However, their pressure

measurements on a cylinder showed a relatively large pressure spike near the

unsteady bleed slot that could not be explained by enhanced entrainment.
We became interested in the nature of this pressure spike, because it

represented a large percentage of the modified pressure field. The following

experiment was designed to explore the mechanisms by which the unsteady bleed

technique modified the flow.

E,xpcrimental Arrangement

The tests were conducted on a 6.35 cm diameter cylinder mounted vertically

in an open return wind tunnel. The cross section of the wind tunnel was 40 cm by 61

em. End plates were placed 41 em apart, which gave an aspect ratio of 6.4 for the

cylinder. The unsteady bleed forcing was generated by a 30 crn diameter

loudspeaker mounted on top of the wind tunnel and connected by a pipe to the

interior of the cylinder. The loudspeaker was driven by a 60 Watt Dynaco amplifier

and a Hewlett-Packard 3311A function generator. Measurements of the pressure

inside the cylinder showed the pressure fluctuation to be sinusoidal. The power

delivered to the speaker by the amplifier was measured with an r.m.s, voltmeter and

ammeter. Although the power varied with amplitude and frequency, it was always

less than 25 Watts.

A schematic of the cylinder and the forcing arrangement is shown in Figure

1. The slot was 8 em long and 0.1 cm wide and was centered along the span of the

cylinder. Because the slot is the only opening in the forcing system, there is no net

mass addition to the flow over the forcing cycle. For one half of the cycle fluid was

ejected from the cylinder, then during the suction phase of the cycle fluid was drawn

back in to the cylinder.

gesutts

In order to quantify the amplitude of the unsteady bleed disturbance, both

velocity measurements and sound pressure level (SPL) measurements were made

next to the slot in the cylinder wall with no external flow. The hot-wire anemometer

probe was placed in the exit plane of the slot. Although the hot-wire experiences

reverse flow during the suction side of the forcing cycle, the reverse flow signal was

distinct from the outflow phase of the cycle, so the signal could be correctd. The

r.m.s, velocity fluctuation level computed for this signal is shown in Figure 2a as a

function of the frequency at different r.m.s, voltage levels applied to the

loudspeaker. The data show that the r.m.s, velocity level does not increase

monotonically with the forcing frequency. At lower voltage amplitudes to the

speaker, the r.m.s, velocity decreases as the frequency is increased from 20 Hz to
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120Hz.
The soundpressurelevel wasmeasuredunder the sameforcing conditions

with a B&K soundpressurelevel meter placedperpendicular to the exit planeof the
slot. The datashownin Figure 2b havea monotonic increasewith frequencyfrom
20 Hz to 240Hz.

The differencesin the trendswith increasingfrequencyallow us to separate
the effect of the SPL from thevelocity fluctuations. The data presentedin Figure 3
showthe pressuredistribution around the azimuth of the cylinder at two different
forcing frequencies40Hz and 140Hz where the r.m.s,voltage of the speakerwas
kept constantat 2.0volts r.m.s. The freestreamspeedwas5.27m/s. Although the

effect of the forcing produces a significant change in the pressure distribution, it is

clear that very little difference occurred between the two pressure distributions.

From Figures 2a and 2b we see that the velocity amplitude decreases slightly from

6.0 m/s to 5.5 m/s, while the SPL increases from 95 dB to 106 dB at the

corresponding forcing conditions. It is apparent from this comparison that the

control effect follows the behavior of the velocity fluctuations more closely than the

SPL. It is highly unlikely that sound plays a significant role in the flow control
mechanism.

Effect of Forcing on Azimuthal Pressure Distn'bution

The term "acoustic forcing" implies that the control mechanism occurs by a

linear wave process. However, the following results indicate that this is not the case.

Figure 4 shows pressure measurements taken with forcing at 240 Hz, SPL at 121 dB

and the r.m.s, velocity fluctuation level at 14 m/s, but with no flow in the wind

tunnel. (The pressure coefficient has been normalized in this plot by a dynamic

pressure of 0.06694 in. w.c. for comparison with the other data.) It is clear that the

mean pressure field around the slot is lower than the ambient pressure. This is a

nonlinear effect resulting from the rectification of the unsteady pressure signal, and

is analogous to the streaming phenomenon. A discussion of the rectification effect

can be found in the paper by Williams and Amato (1988b).

The disturbances created by the loudspeaker must couple somehow with the

flow field to create the vortical disturbances that enhance entrainment and delay

separation. The r.m.s, velocity fluctuation level associated with a 120 dB sound

wave is only 0.05 m/s. In contrast, the velocity fluctuation measured by the hot-wire

anemometer is three orders of magnitude larger than the velocity associated with

the sound wave. Such a large velocity fluctuation could only come from the

"pumping" of fluid by the displacement of the loudspeaker cone. We believe this is

the primary source of the vortical disturbance, not the acoustic field.

The azimuthal pressure distributions obtained with the slot positioned at

-30 °, 30 °, 45 °, 75 ° and 110 ° from the forward stagnation line are shown in Figure 5,

corresponding to a freestream speed of 5.27 m/s. The forcing conditions are the
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samein all cases,frequency240Hz andr.m.svelocity 14m/s. The most obvious
feature is the largepressurespikeassociatedwith the forcing slot. The changein Cp
from the undisturbed valueis approximatelyACp -- -2.5 at the first pressure tap

downstream of the slot. This is followed by a steep increase and overshoot in

pressure at the next two pressure taps. We believe this is the time-averaged

signature of a periodic vortex-like disturbance generated by the interaction of the

unsteady forcing field with the flow around the cylinder. We suspect that the

"vortex" forms during the suction phase of the forcing cycle, then is "released" during

the ejection phase, although this is still being investigated. Provided the unsteady

bleed slot is upstream of the separation point, the pressure spike has the same

shape, irrespective of the slot location. The same behavior is likely to occur with

unsteady bleed control applied to airfoils upstream of separation. If such strong

localized pressure spikes can be formed by the forcing alone, then substantial

changes in airfoil performance are possible.

Figure 5e shows that when the forcing slot is beyond the separation point,

then the large pressure spike does not form. The flow across the slot in the

separated region is too slow for the interaction with the forcing flow to produce a

strong "vortex". However, the pressure distribution between O = 70 ° and 125 °

indicates that separation was delayed. In this situation we believe that the flow

control mechanism is by enhanced Kelvin-Helmholtz instability (K-H effect)

described by other investigators. The K-H effect can be seen in each case shown in

Figure 5. It is quite interesting that the pressure modification appears to be the

superposition of the pressure spike at the slot location and the K-H effect. This

observation supports the notion that these control mechanisms are fundamentally
different mechanisms.

Conclusions

The unsteady bleed technique and internal acoustic forcing are synonyms for

the same localized flow control technique. Measurements of the sound pressure

level and the r.m.s, velocity amplitude at the slot have shown that the dominant

disturbance is associated with the "pumping" of fluid by the loudspeaker, not the
acoustic wave.

Pressure distributions obtained around the cylinder show three independent

mechanisms are present that modify the flow. The weakest is the "streaming" effect

created by the rectification of the unsteady pressure field at the ble_d slot. This is

likely to be insignificant in most cases unless the forcing amplitude is very strong.

The second mechanism is a strong "vortex-like" disturbance created by the

interaction between the forcing flow and the flow around the body. This resulted in

a very strong pressure spike immediately downstream of the slot. The third

mechanism is the enhancement of the Kelvin-Helmholtz instability in the separating

shear layer, which produced a change in the pressure field slightly weaker than the
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pressurespike.
The latter two mechanismswill likely bepresent on all typesof bodies in

which the unsteady bleed technique is applied. The relative importance of the two

will depend on the details of the forcing configuration, such as the location of the

bleed slot and the forcing amplitude.
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Conclusions

Unsteady bleed and internal acoustic forcing are synonyms for the same

phenomenon.

Acoustic effects are insignificant in this type of control.

The effects of forcing scale with the velocity fluctuation level, not the
SPL.

The second-order "streaming" effect is present, but insignificant.

The forcing flow interacts with the external flow to produce a localized,

large-amplitude pressure spike.

The effects of enhanced K-H instability appear to be present.

Measurements of the velocity spectrum are required.
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Concepts and application of dynamic separation for agility

and super-maneuverability of aircraft-an assessment.

Peter Freymuth, University of Colorado, Boulder, CO 80309-0429

1. Introduction

Aims for improvement of fighter aircraft pursued by the

unsteady flow community are high agility 1 (the ability of the

aircraft to make close turns in a low-speed regime) and super

maneuverability 2 (the ability of the aircraft to operate at high

angles of attack in a post stall regime during quick maneuvers in a

more extended speed range). High agility requires high lift

coefficients at low speeds in a dynamic situation and this

requirement can be met by dynamically forced separation or by

quasistatic stall control. The competing methods will be assessed

based on the known physics. Maneuvering into the post stall regime

also involves dynamic separation but because even fast maneuvers

involving the entire aircraft are "aerodynamically slow" the

resulting dynamic vortex structures should be considered "elicited"

rather than "forced". More work seems to be needed in this area of

elicited dynamic separation.

2. Dynamic separation as a vortex phenomenon

Everyone who visualizes flow around airfoils in rapid maneuvers

quickly realizes that separation foremost means vorticity

separation from various points of the lifting surface, i.e., from

leading edge, trailing edge and other surface points. As a

consequence physical understanding is mainly approached from the

vorticity point of view 3 and is greatly aided by vortex visualization

methods 4- A large body of information on forced dynamic separation

has been collected by many experimentalists as previous workshops
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on unsteady flow attest to 5, 6 Many flow configurations and their

parameter spaces have been surveyed and are available for

assessment.

3. Transient dynamic stall phenomenon (Kramer7effect).

The dynamic stall phenomenon of temporary lift augmentation

during transient maneuvers of airfoils beyond static stall is

interpreted as a diffusive-inertial delay of leading edge vortex

development and subsequent convective shedding into the free

stream. Unfortunately, the stall vortex gets useless for lift

augmentation when shed and a low lift deep stall regime ensues.

The time and strength of transient lift augmentation depend

considerably on flow configuration and parameter space. Usually the

stronger the lift augmentation is, the shorter is the lift

augmentation time, which is an unfortunate correlation when

applications to agility are considered. Lift augmentation time does

not exceed a few times the convection time tc -. c/Uo of the airfoil,

where c is the chord length and Uo is the free stream speed. Since

this time is orders of magnitude smaller than the time needed for

high lift maneuvers, no decisive advantage can be obtained from the

Kramer effect nor is it likely that this will change in the future.

4. Repetitive dynamic stall

effect).

phenomenon (Harper-Flanigan 8

if during maneuver time the dynamic stall phenomenon could be

rapidly repeated a useful cumulative dynamic stall enhancement of

lift could be achieved. This is indeed possible as was first

demonstrated by Harper and Flanigan 8 and has since been

demonstrated many times 1, 3. In essence, the airfoil has to be

rapidly cycled between stalled and unstalled conditions. For

instance, a lift coefficient of 1.8 was achieved by Maresca, et al.9 by

dynamic periodic forcing. Jumper and Stephen 1° have proposed the

study of an unsteady-flow airplane based on a dynamic lift

augmentation by a factor 1.5.
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An area of maneuverability where utilization of repetitive

dynamic stall seems to have found its niche is far removed from

aircraft application: the hovering flight of insects. According to

Freymuth11, 12 a single airfoil executing appropriate periodic pitch-

plunge maneuvers in still air is capable of generating a hover-jet

(Fig. 1) with a lift coefficient as high as 7. In these maneuvers stall

vortices generate high lift and are discarded into the jet before deep

stall sets in. Every half cycle generates a new stall vortex for

generation of high lift. Insects seem to use these maneuvers during

their hovering flight.

It thus seems that repetitive dynamic stall is a viable means

for lift enhancement in principle. It must be judged, however,

against competing methods of lift enhancement, which will be

assessed in the next section.

5. Stall control-the equivalence of dynamic and static

stall control.

An important strategy to circumvent the fleetingness of

dynamic stall is to prevent dynamic stall vortex generation during

high angle of attack maneuvers while trailing edge separation of

starting vortices allows buildup of airfoil circulation to high values

for lift generation. This task is essentially the same as the task of

static stall control in conventional aircraft by means of flaps,

suction, blowing, moving boundaries and turbulators 13, 14 (slats and

3-d vortex generators). The effectiveness of static stall control

methods in a dynamic situation has recently been demonstrated by

Freymuth 15. An airfoil with a nose consisting of a rotating cylinder

(stall control by a moving boundary) was rapidly pitched from 0 ° to

50 ° angle of attack and held (Fig. 2). During and after pitchup a

trailing edge stall vortex separated from the airfoil while leading

edge vortex generation was inhibited as long as the cylinder was

kept rotating. Similar results were obtained for periodic pitching.

Therefore, static stall control measures are applicable in a dynamic
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Fig. 1
Hover-jet moving upward into a still
air environment (from Ref. 11).

Fig. 2
Stall controlled pitch-down maneuver
of an airfoil (from Ref. 15).
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situation and represent a viable alternative for lift enhancement in

fast maneuvers at low speed (compressibility effects decrease

static and dynamic lift enhancement1).

Static stall control methods have produced lift coefficients in

the range 2 to 613, 14 Oversizing the wings would further increase

the lift range capabilities if this need arises in special aircraft and

thrust vectoring at near zero speed adds further lift control.

Comparing lift enhancement by dynamic stall methods and by

dynamic stall control methods it seems unlikely that the former

will outperform the latter in aircraft applications and currently

hardly reaches into the same range. The dynamic stall method of lift

enhancement therefore hardly represents a crucial development

toward the achievement of high agility and even a minor niche for it

has yet to be found.

6. Dynamic stall elicitation for super maneuverability

What benefits could post stall maneuvers add to a high agility

aircraft? A quick turn of a high agility aircraft can only be realized

at a speed low enough to not exceed the g-load limits suitable for

pilots. In order to decelerate an aircraft to this low speed and for

target pointing post stall maneuvers could still remain attractive.

Since force coefficients are not enhanced in such maneuvers they

can be initiated at considerably higher speed Uo than high agility

maneuvers without exceeding set g-limits. Since post stall

maneuvers are aerodynamically slow, the resulting dynamic vortex

structures are not forced but elicited.

From the workshop proceedings 5, 6, it seems that dynamic

elicitation has not received detailed attention. This author

recommends investigation of elicited vortex structures and their

influence on maneuvering control. Such work should entail two-and

three-dimensional lifting surfaces and possibly entire aircraft

models as has been investigated by Ashworth, et al. is in the forced
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range. This recommendation amounts to investigating the low

dimensionless pitch rate range during entire maneuvers for

whichever configuration and associated parameter space appeals to

an investigator.

7. Conclusion

Methods of lift enhancement by means of dynamic stall and by

means of dynamic stall control have been assessed for application to

high agility aircraft. It appears that stall control methods

outperform stall enhancement. Therefore dynamic stall cannot play

a crucial role in design of high agility aircraft. This is in contrast

to helicopter blade and vertical windmill blade design I and to

insect hovering flight 12 where dynamic stall is of the essence.

The role of dynamic separation in supermaneuvers has also been

assessed. Dynamic elicitation in contrast to dynamic forcing of

separation seems to be the key and should be investigated.
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Effect of Initial Acceleration on the Development of the

Flow Field of an Airfoil Pitching at Constant Rate

M. M. Koochesfahani, V. Smiljanovski, and T. A. Brown

Michigan State University

Introduction

We present results from a series of experiments where an airfoil is pitched at

constant rate from 0 to 60 degrees angle of attack. It is well documented (e.g. refer-

ences 1-4) that the dynamic stall behavior of such an airfoil strongly depends on the

nondimensional pitch rate K = &C/(2U..), where C is the chord, & the constant pitch

rate, and U** the free stream speed. In reality, the actual motion of the airfoil devi-

ates from the ideal ramp due to the finite acceleration and deceleration periods

imposed by the damping of drive system and response characteristics of the airfoil

(see Figure 1). It is possible that the pitch rate alone may not suffice in describing

the flow and that the details of the motion trajectory before achieving a desired con-

stant pitch rate may also affect the processes involved in the dynamic stall

phenomenon. We note that the flux of vorticity for attached flow at the airfoil sur-

face, (bco/_y) s, is given by [5]

bo_ _x bUsv = L( ), +p 2t

The details of the acceleration phase may, therefore, modify the surface vorticity flux

by altering the time-varying surface pressure gradient (_p/3x) s, and also directly

through the surface acceleration term (OUJ_t).

To our knowledge, a systematic investigation of the effects of

acceleration/deceleration periods on dynamic stall characteristics of nominally con-

stant pitch rate motions has not been reported. Studying these effects should give

further insight into the processes of vorticity generation and accumulation on

unsteady surfaces. The study is expected to also provide clues to how these

processes may be modified/controlled by the deliberate shaping of the pitch motion

trajectory. Practical applications of the study are to be noted since in real devices

infinite (i.e. extremely large) acceleration/deceleration is neither possible nor
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desirable.

In the present experiments, we investigate the effects of acceleration and
deceleration periods by systematicallyvarying the accelerationmagnitude and its
duration through the initial accelerationphaseto constantpitch rate. The magnitude
and duration of decelerationneededto bring the airfoil motion to rest are similarly

controlled. Our preliminary results indicate that the elapsed time (from start of
motion) until the first indication of leading edge separationis affected by the
accelerationperiod; the airfoil angle of attack where leading edge separationoccurs
is, however,practically unchanged. Many of the detailsof the dynamic stall vortex
formation and its interactions appear to be also insensitive to the details of the
accelerationperiod for the rangeof parametersstudiedso far. We providea scaling
argumentfor the accelerationperiod which may explain the insensitivity of the angle
of attack for leadingedgeseparationobservedhere. This scalingfurther suggeststhe
conditionsunder which accelerationeffectsmay becomeimportant.

Experimental Setup and Results

The experiments were performed in a water tunnel with a NACA 0012 airfoil

(chord length C = 8 cm) pivoted about the 1]4-chord point. For the results described

here, the free stream speed was set to U** = 10 crn/s resulting in a chord Reynolds

number of 8000. A DC servo motor in conjunction with a digital servo controller

were used to pitch the airfoil. A schematic of the type of motion considered is

shown in Figure 1. The airfoil starts at zero angle of attack, reaches the desired

constant pitch rate of & during an acceleration period of Ta, and stops at the final

angle of attack of 60 degrees through a deceleration period of T a. We characterize

the pitch trajectory by the usual nondimensional pitch rate, K, and the parameter

e = 0.5(T a + Ta)/T c, where Tc is the "ideal" constant pitch rate time scale needed for

the motion. The acceleration parameter e gives an indication of the fraction of the

motion time used for acceleration/deceleration. The magnitudes of the acceleration

and deceleration were the same for the present results so that T a = Ta and e = Ta/T c.

We present flow visualization results for the case K = 0.4 and different values

of e. The actual pitch trajectories recorded during the experiment for the two cases

of e = 0.6 and 0.15 ,are shown for comparison in Figure 2. The evolution of the

flow field for K = 0.4, e = 0.6 is illustrated in Figure 3. For each picture, the

elapsed time from the start of the motion and the instantaneous angle of attack are

indicated. This sequence of pictures was obtained using the Hydrogen-bubble tech-

nique and laser sheet illumination at the airfoil mid-span location. Images were
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sensed by a CCD camera at a rate of 60 fields/sec with an exposure time of 2

msec/field and acquircd by a digital image acquisition system into hard disk in real

time.

Figure 3 shows that the first visual indication of separation and vortex formation

near the leading edge occurs between (t -- 0.73 s, o_ = 27 deg.) and

(t -- 0.83 s, o_ = 32 deg.). The actual elapsed time and angle of attack were deter-

mined to be (t -- 0.80 s, o_ -- 31 deg.) after close inspection of the image sequence

versus time. There are many interesting features in the flow development shown in

Figure 3. Note, for example, the number of vortices formed and their interaction and

also the upstream (reversed) flow near the airfoil surface at (t -- 2.17, 2.37 s).

Reducing the acceleration period by a factor of four to e = 0.15 resulted in the

fow development shown in Figure 4. The first visual appearance of leading edge

separation and vortex formation was determined to be at (t -- 0.64 s, _ -- 32 deg.).

In fact many of the details of flow development are nearly the same in Figures 3 and

4 except for a time shift between the occurrence of the events. Reducing the value

of e by another factor of four to 0.037 confirmed the observation that while the

elapsed time for leading edge separation and vortex formation is affected by e, the

angle of attack where this occurs remains unchanged. Similar conclusion was

reached when the two cases of e = 0.037, 0.15 at a reduced frequency of K -- 0.2

were compared. We should note that our results and conclusions only address the

timing of the various events in the flow field development. We do not know, at this

time, how the vorticity flux into the separated zone, the circulation of the dynamic

stall vortex, and forces on the airfoil are affected as we change the acceleration

period.

We now present a scaling argument which suggests that our lowest acceleration

corresponds to a time scale that may be too fast for the flow to respond to. For an

airfoil reaching a constant pitch rate 6_ at a constant acceleration 6_, the acceleration

time scale T a can be defined as

6_
Ta =

The flow convection time scale Tfto,,, corresponds to the time it takes for the flow to

travel the length of the chord and can be written as

C
Tj_ow --

2uoo

A nondimensional acceleration time scale Kac c can now be defined and simplified as

follows

Tflow K
Kacc =

T a O;ma x e
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where K is the reduced frequency, (Xma x the maximum angle of attack, and e the

acceleration parameter defined earlier.

Carta [6] has shown that unsteady inviscid effects lead to a reduction of the

chordwise pressure gradient which he proposed as the mechanism responsible for

dynamic stall delay. These ideas were later extended by McCroskey [7] who showed

that unsteady attenuation of the inviscid pressure gradient near the leading edge could

explain the dynamic delay in laminar boundary-layer separation. Carta's results,

which were derived for oscillating airfoils, show that for high enough reduced fre-

quencies, 2xfC/(2Uoo) > 0.5, the unsteady reduction of the inviscid pressure gradient

reaches an asymptotic value. We interpret this to mean that if the motion time scale

is short enough relative to the convection time scale, the inviscid pressure gradient

over the airfoil reaches an asymptotic state. We, therefore, suggest that for our

experiment the condition K_c > 0.5 corresponds to a "frozen" inviscid pressure gra-

dient. According to McCroskey's [7] results, we expect laminar separation to be

mostly dictated by the inviscid pressure _-n-adient with little influence from unsteady

boundary-layer response.

In all the cases we have presented here, the value of K,_cc exceeds 0.6. Based

on the argument above, for all three cases of e = 0.6, 0.15, 0.037, the airfoil boun-

dary layer is exposed to the same "frozen" inviscid pressure gradient. This may be

the reason why all three cases show the first indication of leading edge separation at

the same angle of attack. The scaling argument also suggests that at low values of

Kac c the effects of acceleration period max' become important. Since the maximum

value of e is unity, low values of reduced frequency K would be required for this to

happen.
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Figure 2. Time history of the airfoil pitch angle recorded during the

experiment. Both trajectories reach the same constant pitch
rate but with different constant accelerations.
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Figure 3. Evolution of the flow field on the airfoil suction side.

(K = 0.4, e = 0.6)
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t = 1.80 s, a = 60" t = 2.37 s, a = 60" t = 3.57 s, a = 60"

Figure 3. Continued.
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Figure 4. Evolution of the flow field on the airfoil suction side.
(K = 0.4, e = 0.15)
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L.C:

t = 1.21 s, a = 60 ° t = 1.44 s, a = 60" t = 1.97 s, a = 60"

27 s, a = 60 ° t = 1.57 s, a = 60" t = 2. , = 60"

t : 1.34 s, a = 60" t = 1.84 s, a = 60" t = 2.27 s, a = 60 °

Figure 4. Continued.
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U_ g>

o_

1"

Schematic of constant pitch rate motion.

&C
Nondimensional pitch rate K =

au_.

In reality, the actual motion of the airfoil deviates from the ideal ramp

due to the finite acceleration and deceleration periods imposed by the

damping of drive system and response characteristics of the airfoil. The

flux of vorticity for attached flow at the airfoil surface, (brainy)s, is given
by

__y 1 _ aUsv( )s = 7(ax)S+ a-7-

The details of the acceleration phase may, therefore, modify the surface

vorticity flux by altering the time-varying surface pressure gradient

(_p/c3x)_, and also directly through the surface acceleration term (aujat).

i
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Constant pitch rate motion with finite acceleration and

deceleration.
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Experimental Setup

Airfoil

Chord length
Pitch axis

Free stream speed

Chord Reynolds number

Angle of attack variation

Nondimensional pitch rate

NACA 0012

C=8cm

1/4-chord

U= = 10 cm/s

8,000

0 to 60 degrees

K = 0.2, e = 0.15, 0.037

K = 0.4, e = 0.6, 0.15, 0.037

Flow visualization

Illumination

Image sensing

Image acquisition

Hydrogen-bubble technique

Laser sheet at airfoil mid-span

CCD camera, 60 fields/s, 2 msec exp.
Digitized in real-time into hard disk
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Summary of Results

T s = elapsed time for leading edge separation (sec).

o_s = angle of attack at leading edge separation (degrees).

T s O_s

K = 0.2, e = 0.15 0.97 24

K = 0.2, e = 0.037 0.90 25

K=0.4, e= 0.6 0.80 31

K=0.4, e=0.15 0.60 30

K = 0.4, e = 0.037 0.57 31
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Flow convection time scale

"Constant" pitch rate time scale
1

Tc=--
d_

Acceleration time scale
&

m

ra=//

Ta=eT c

Nondimensional pitch rate K =
Tyro., &C

"-" m

Nondimensional acceleration time Kacc = Tyr°w K
T a e

It is suggested that for large enough value of Kacc (i.e. Kacc > 0.5), the
inviscid pressure gradient remains "frozen".
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Conclusions

For the range of parameters studied, the finite acceleration period does

not affect the angle of attack where leading edge separation occurs.

Many of the details of dynamic stall vortex formation and its interactions

appear to be also unaffected.

It is suggested that the value of Kacc = K/e must be low enough before

the finite acceleration period affects the flow development.

What Next ?

Test the proposed hypothesis by performing experiments at low values of

Kac c.

Current results are qualitative and only address the timing of various

events in the flow field development. Quantify the study by measuring

the velocity field and determining the evolution of the circulation of the

dynamic stall vortex.
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REPORT ON THE
WORKSHOP ON ANALYTICAL METHODS

IN UNSTEADY SEPARATION

by

A. T. Conlisk
Department of Mechanical Engineering

The Ohio State University
Columbus, OH 43210

A workshop centered around the use of analytical techniques in the
computation of unsteady separated flow was held at the Ramada university
Hotel and Conference Center on January 25 and 26, 1990. The meeting was
sponsored by the U.S. Army Research Office in Research Triangle Park, North
Carolina and was hosted by the Departments of Aeronautical and Astronautical
Engineering and Mechanical Engineering of The Ohio State University.
Meeting Co-Chairmen were R. J. Bodonyi and A. T. Conlisk. During this
presentation the Workshop will be summarized and the main conclusions of the
Workshop participants will be discussed.

The organization of such a workshop focused on the use of analytical
methods in computing unsteady separated flows was motivated by the fact that
until the last several years, little was known about the structure of large-scale
unsteady separation. Indeed, in problems where the precise details of the
unsteady separation boundary layer have been required, such as in the high
Reynolds number flow past a bluff body where vortex shedding occurs, ad hQC
procedures have generally been used to determine the separation point and
the magnitude of the shed vorticity. Furthermore, the computation of accurate
solutions to the full time-dependent Navier-Stokes equations at high Reynolds
numbers, especially in three-dimensions, remains a difficult, if not impossible,
task because of the many different scales of motion which can occur in such a
large-scale separated flow. Given these difficulties, a natural question to ask is
whether analytical techniques could profitably be used to reduce the amount of
numerical computation required or to render untractable numerical problems
tractable.

The first day of the workshop consisted of presentations by the invited
speakers who were: Professor F. T. Smith, The Ohio State university and
University College London, Professor O. R. Burggraf, The Ohio State University,
Professor S.F. Shen, Cornell University, Professor J.D.A. Walker, Lehigh
University, Dr. P. W. Duck, University of Manchester, Professor N. Riley,
University of East Anglia, Professor S. J. Cowley, Imperial College of Science
and Technology, and Professor L. Van Dommelen, Florida State University..
The second day consisted of a session wherein the other participants presented
short discussions of their particular research in the area., This rather informal
session was followed by a panel discussion led by the invited speakers and
involving all participants ® unsteady separated flow problems involving
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eruptions of boundary layer fluid from the wall layer into the main flow. F.T.
Smith discussed a possible structure for such a eruptive behavior in general
terms within an interactive framework and he defined a sequence of stages of
the flow leading to formation of a vortex structure all involving quite distinct
length and time scales (all scaling with an inverse power of the Reynolds
number); the numerical problems associated with computing such a flow are
obvious. The other speakers addressed the above question through discussion
of a particular problem. J.D.A. Walker focused on the emergence of a
singularity in the boundary layer flow induced by a potential vortex; he
discussed computations of the flow up to the singular time using a Lagrangian
scheme. Professors Shen and Riley addressed the problem of high Reynolds
number unsteady flow past a cylinder while Professor Burggraf addressed the
problem of propagating stall in compressors. Professor Duck considered the
problem of unsteady separation in a local region near a line of symmetry and
Professors Cowley and Van Dommelen discussed the unsteady separation
process in three-dimensions.

The main conclusions of the Workshop were that although we know
much more about unsteady separation than we did say ten years ago, the
numerical methods which must be employed to bridge the gap between small
and large scale separation have not been developed. Indeed, while there
seems little doubt that there does exist a singularity in the boundary layer

equations at finite time in these unsteady separated flow problems, the
concensus of the workshop was that considerable effort should be directed to
developing methods by which computation of the flow may be effected beyond
the singularity.
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