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INTRODUCTION

During the past decade, numerous major efforts have addressed the

question of how to control or alleviate dynamic stall effects on helicopter ro-

tors, but little concrete evidence of any significant reduction of the adverse

characteristics of the dynamic stall phenomenon has been demonstrated.

Nevertheless, it is important to remember that the control of dynamic stall

is an achievable goal. Experiments performed at the US Army Aeroflight-

dynamics Directorate more than a decade ago demonstrated that dynamic

stall is not an unavoidable penalty of high amplitude motion, and that

airfoils can indeed operate dynamically at angles far above the static-stall

angle without necessarily forming a stall vortex. These experiments, one of

them featuring a slat that was designed from static airfoil considerations,

showed that unsteadiness can be a very beneficial factor in the development

of high-lift devices for helicopter rotors.

The experience drawn from these early experiments is now being fo-

cused on a program for the alleviation of dynamic-stall effects on helicopter

rotors. The purpose of this effort is to demonstrate that rotor stall can be

controlled through an improved understanding of the unsteady effects on

airfoil stall and to document the role of specific means that lead to stall

alleviation in the 3-D unsteady environment of helicopter rotors in forward

flight. The first concept to be addressed in this program will be a slatted

airfoil. A 2D unsteady Navier-Stokes code has been modified to compute
the flow around a two-element airfoil.
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BACKGROUND

Dynamic stall continues to be a serious factor in modern helicopter

design. The impulsive loads that are generated during helicopter airfoil stall

limit high speed helicopter flight and reduce the maneuvering capability of
the aircraft. The character of the dynamic stall phenomenon has been

carefully studied (Refs. 1-3) and a significant body of knowledge has been

acquired concerning the behavior of various airfoils during dynamic stall

(Refs. 4-6). These studies have shown that deep stall is relatively insensitive

to the airfoil profile; however, there are definite indications that dynamic

stall inception is sensitive to the character of the boundary-layer (Ref. 3).

In order to better understand the significance of the boundary layer on

the stall behavior, a variety of passive stall modifications were tested on an

oscillating VR-7 airfoil (Ref. 7). In this study, a backward-facing step was

installed in a attempt to control the progression of flow reversal on the airfoil

and thus delay the formation of the stall vortex. Although several backward-

facing step configurations were tested, no significant effect on the vortex

development or the dynamic stall airloads was detected. Vortex generators

were then installed at 20% chord to delay stall through boundary-layer re-

energization. The vortex generators delayed the static stall significantly

and even kept the boundary layer attached on the rearward portion of the

airfoil under dynamic conditions. However, use of the vortex generators

induced leading-edge stall in the dynamic environment and the loads were

not measurably improved.

Finally, a leading-edge slat was installed in order to shift to the slat the

rapid flow accelerations that normally occur near the leading edge of the

basic airfoil and to re-energize the boundary layer on the main airfoil. A de-

tailed diagram of this particular slat/airfoil combination is shown if Figure

1. This slat was found to postpone the dynamic stall to angles well above

the range normally expected on helicopter airfoils, with virtually no drag

penalty in the angle range associated with retreating blade aerodynamic

conditions. A qualitative comparison of the slat/airfoil combination to that

of the basic airfoil is presented in Figure 2. To approximate the full con-

tribution of the slat/airfoil combination, the lift and moment curves were

adjusted to match that of the basic airfoil at a - 15 °. Figure 3 presents
the lift and moment coefficients for the basic VR-7 airfoil for pitch oscilla-

tions of a -- 15 ° + 10 ° sin(cat) and for a range of frequencies. The dynamic
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stall effects are quite evident. Figure 4 presents the same conditions for the

slat/airfoil combination where it is clear that the dynamic stall vortex is no

longer present. Figure 5 shows a comparison of the instantaneous pressure

distributions for the basic airfoil and for the slat/airfoil combination at the

same test conditions. Note the movement of the dynamic stall vortex along

the chord of the basic airfoil and the complete absence of the vortex imprint

in the slatted airfoil results.

APPROACH TO CONCEPT EVALUATION

The results in Reference 7 demonstrate the dramatic involvement that

can be achieved by the use of a slat: the dynamic stall vortex is completely

suppressed throughout the cycle of oscillation at the moderate frequencies

that are compatible with helicopter forward-flight conditions. However, the

slat/airfoil combination tested may not be the optimum shape nor even an

acceptable configuration for a rotor application. Although the addition of

the slat was effective in suppressing stall, the drag penalty is too large at

the lower angles-of-attack (Fig. 6). A more acceptable design for the rotor

would have to feature a retractable slat in order to avoid the high-drag

penalty that would otherwise occur on the advancing side of the rotor disk.

Encouraged by the success of the slat in suppressing the stall vortex, a new

program called High Maneuverability and Agility Rotor and Control System

(HIMARCS) has been initiated to study different techniques for increasing

dynamic lift without stall. At the present time, the slat/airfoil combination

is being reexamined in order to validate new CFD codes and to determine

if the water tunnel can be used to qualitatively assess the performance of

various high-lift concepts.

A general purpose code which solves the conservative thin-layer Navier-

Stokes equations in generalized coordinates (Ref. 8) has been modified to

handle the multi-element airfoil and includes an algebraic turbulence model

(Ref. 9). Figure 7 compares the force and moment results for the basic VR-

7 to the static results from an earlier wind tunnel experiment at Moo = 0.3

and Re = 4.2 x 10 6 (Ref. 3). The computed lift coefficients show a rea-

sonably good agreement with the test data. The moment coefficients also

compare reasonably well at low angles-of-attack, but seriously under pre-

dict at high angles-of-attack. The drag coefficients are over predicted at low

angles-of-attack, but are under predicted at higher angles-of-attack. This
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over prediction of the drag at low angles-of-attack is expected since the

computation assumed a fully turbulent boundary layer and in the experi-

ment the boundary layer was allowed to undergo natural transition. Figure

8 compares the computed lift and drag coefficients for the basic and slatted
VR-7 airfoil with the test results in Reference 7. Again the lift coefficients

compare much better than the drag coefficients. Figure 9 shows the calcu-

lated Mach number and pressure coefficient contours for the slatted VR-7

airfoil at c_ = 15 °. The enlarged views of these contours illustrate the abil-

ity of the code to model the interaction between the slat wake and the

main-element boundary layer.
The slatted VR-7 airfoil will also be tested in the water-tunnel facil-

ity where total lift_ drag and pitching moment measurements can be made.

These results will be used to establish the scaling law between the compara-

tively low Reynolds number environment in the water tunnel and the higher

Reynolds numbers attainable in the wind tunnel. The water tunnel results

will also to be used to complement the CFD efforts. A water-tunnel model

of the VR-7 with slat has been constructed (Fig. 10) and a comparison

between the experiment and the CFD calculations will be published in the

near future (Ref. 10). Once greater confidence has been established in the
CFD code as well as the use of the water tunnel for qualifying a candidate

concept, a slotted airfoil will be designed. After the slot shape and position

has been optimized, a set of slotted rotor blades will be constructed and

the concept demonstrated under forward-flight conditions. The HIMARCS

program will eventually address numerous high lift and control concepts as

suggested in Figure 11.
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Figure 1.- Detailed sketch of VR-7 airfoil with slat.
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Figure 2.- Lift and moment measurements on the basic and slatted VR-7 airfoils

at k - 0.15, c_ -- 15 ° -b 10 ° sin wt, Moo - 0.185 and Re -- 2.5 x 106.
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Figure 3.- Lift and moment coei_cients for the basic VR-7 airfoil over a range of

frequencies at cz = 15 ° + 10 ° sin _t. Dashed lines indicate decreasing cz.

286



2..5

C L

,11

C M

C L

CM

' 1 I l

K - 0.15
0 I I I | l

.11 •""

K -0.05

I I i I I

I I I I l

(_,_Z=_ l'ImqmJ "m 'ramqm. ,mlb

--._ I I I I J I I I I '

0 10 20 0 10 20

a, deg a, deg

K - 0.10
i I I I I

vtlmm_

I I _, I

10

a, deg

Figure 4.- Lift and moment for the VR-7 airfoil with slat for c, = 15 ° + 10 ° sin wt,

Moo = 0.185, Re = 2.5 × 106 and a range of frequencies. Dashed Lines

indicate decreasing c_.
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Figure 10.- Water-tunnel model of the VR-7 airfoilwith slat.
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Figure 11.- Wide range of high-lift and control devices considered in HIMARCS.
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