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ABSTRACT

This paper describes a novel approach to the development of a
learning control system for autonomous space robot (ASR) which
presents the ASR as a "baby" -- that is, a system with no a priori
knowledge of the world in which it operates, but with behavior
acquisition techniques that allows it to build this knowledge from
th_ experiences of actions within a particular environment (we

will call it an Astro-baby). The learning techniques are rooted in

the recursive algorithm for inductive generation of nested
schemata molded from processes of early cognitive development
in humans. The algorithm extracts data from the environment and
by means of correlation and abduction, it creates schemata that are
used for control. This system is robust enough to deal with a

constantly changing environment because such changes provoke
the creation of new schemata by generalizing from experiences,
while still maintaining minimal computational complexity, thanks
to the system's multiresolutional nature.

Experimenting with ASR is especially interesting because the
rules of input control do not coincide with human intuitions.
Actually, we want to see that the simulated device can learn the

unexpected schemata from its own experience. Although the
traditional approach to autonomous navigation involves off-line
path planning with a known world map (such as the potential
fields algorithm ). in most of the real tasks the environment is not

weU known because of ever-changing conditions of the
assignment absence of gravity, and sophisticated, hard to predict
obstacles like components of the space stations, etc. Astro-baby
gathers data from its sensors and then by using a
schema-discovery system it extracts concepts, forms schemata and
creates a quantitative/conceptual semantic network.

When the Astro-baby is first dropped into the space it does not
have any experiences and its sensors and actuators are sets that do

not have any distinction among its elements. Then. by trial and
error, the ASR learns the function of its actuators and sensors;
and how to activate them to achieve a the goal given by its creator,
or the sub-goals that it finds. In our simulation the initial goal is to
minimize the distance to a beacon.

The learning techniques are rooted in a nested"hierarchical
algorithm molded from processes of early cognitive development
in humans. The algorithm extracts data from the environment and
by means of correlation, it creates schemata (rules) that are used
for control This system is robust enough to deal with a constantly
changing environment because such changes provoke the creation
of new schemata using generalization, while still maintaining
minimal computational complexity, thanks to the system's
multiresolutiortal nature.

The results of simulation are positive. Astro-baby displays the
ability to learn a number of maneuvers.

I. INTRODUCTION

Although the traditional approach to autonomous

navigation involves off-line path planning with a known

world map (such as the potential fields algorithm shown in
[1]), in most of the tasks assigned to autonomous robots, the

environment is not well known because of ever-changing

conditions of the space, complicated conditions of visibility,
and diversified obstacles like trusses, other automated

machines, unpredictable objects from other planets. Thus, a

system robust enough to cope with changes by means of

learning rules about the situation is needed. Motion

planning and control for autonomous ground vehicles can

be approached based upon substantial human experience of
dealing with a diversity of ground vehicles. We believe that

3-D dynamic motion in space requires control rules which

are not easily available and are not a part of the intuition of

a human designer. Therefore. our intention is to allow the

A_SR to collect its own rules based upon a system of

unsupervised(teacher-independen0 conceptuallearning.

We have developeda systemfor earlycognitionthatis

capableof extractingconcepts from the environment and

using them for planning and controllingthe ASR.

Astro-babygathersdatafrom itssensorsand then by using

a rule-discoverysystem and a conceptformattingsystem it

extractsand storesthe concepts and schemata to createa

quantitative/conceptualsemantic network as a system of

knowledge representation.The natural growth of the

rule-base can be compared with the "subsumption"

architecture.However, the subsumption concept does not

emphasize theearlylearning,and isusuallydesigned from

priorexperienceofoperation.

Our approach focuses on self-developing

knowledge base which startswith a minimal amount of

knowledge, which we call "bootstrap-knowledge".The

bootstrapknowledge does not include any implicitor

explicitinformationabout the world or the robot.Ithas a

mAnimai setof learningruleswhich theAstro-baby uses to

createa world model, decision-making rules,rules of

motion,and rulesofperception.

The main ideaof our approach isknowledge-base

generationby applyinggeneralizationrecursivelytoobtain

the schemata,or rulesof behavior at differentlevelsof

resolutionfrom the stored informationof experlences

properly labeledand organized.During the lifeof the
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unmanned vehicle, these rules are constantly reviewed and

updated based on new sensor information and deductions
which the Astro-baby makes on the basis of algorithms
which are hard-coded in the system ("bootstrap

knowledge")
In the beginning, Astro-baby does not have any rule of

operation and its sensors and actuators are sets that do not
have any distinction among its elements. Then. by trial and
error, the space robot learns the function of its actuators and
sensors; and how to activate them to achieve a certain goal

given by its creator or learned sub-goals. In our simulation
the initial goal is to minimize the distance to a beacon (with
sensors measuring angle and distance to the beacon with
some error) which cotdd be a sunken ship, a lost diver, etc.,
but because of its learning capabilities, the system's

applications could be very broad. Given the goal (expressed
as a cost functional) the Astro-baby learns concepts like

direction, passageway, or obstacle. If these actuation rules
were not to apply in a different environment, it would
extract a new set of rules.

The world in our simulation consists of a fully dynamic
3-D environment. We have attempted to incorporate as

many variables from the real world as possible, so as to
fully test the robustness of the learning algorithm. The
environment is constantly changed and no map is given.

Astro-baby is a very adaptable system that can both create
rules of planning and control and deal with situations that
were not envisioned by its creators.

IT.LEARNING

Standard Approach
The Artificial Intelligence community has made

attempts to write "intelligent" programs, or programs which
learn from mistakes, for many decades. Some of the early
work is Newell, Shaw, and Simon's General Problem Solver
(1956), and Samuers checkers playing program (1959).
Most of these learning systems were built to solve very

specific problems of learning. In our Astro-baby, although
we take into consideration as many variables from the
environment as possible in our simulation, we do not give
this knowledge to the learning system. In our research we
decided to develop a system which arrives at this knowledge
on its own. This cannot be done unless the system is given

some initial knowledge [Z 3]. One of the attempts we have
made is to fmd what this minimum initial knowledge
should be.

Differences in our approach with other existing

approaches are classified below.

A. Drawbacks of Subsumption Architecture
The subsumption architecture is also a multiresohitional

one. as is ours. However, in a subsumption architecture, the
set of rules of control is predetermined by the designer of
the system. This means that the designer must be aware of

all possible situations that the asr will encounter. This
precludes the assumption of an open environment and that
the system will be able to store all the rules for that open
environment and that the designer of the system has all
these rules to begin with. This makes applying existing

approaches to subsumption for astro-robots impossible. We
do not include any heuristic schemata in our system.
Instead, we include rules (called "bootstrsp knowledge")

which help the system to acquire, by itself, through
learning, the rules that are given a priori in a subsumptien
architecture.

B. Multi-Agent versus Centralized Decision-Making
In a multiagent system, the decision-making is

decentralized. Thus, it has a set of entities which have their

own goals and an arbiter who is in charge of switching or
deciding the weight or power of each agent depending on
the urgency of the situation. For example, [4] uses a
subsumption-based, multiagent approach, generating
potential fields of attraction and repulsion in various areas
of the map. Some examples of preprogrammed agents are
'ToHow Object", "Forward A_action", "Open Space
Attraction", "Wall Following". In this approach the
environment must be entirely known because of the

necessity to determine placement of the potential fields.
Moreover, the behavior that the robot should take in front
of these potential fields must also be known in order to

preprogram these agents.
A centralized control system, in the opinion of its

critics, creates a bottleneck by forcing each separate unit of
the control system, regardless of the type or resolution of its

task, to query one decision maker for instructions. Indeed,
this happens if the centralized system is not based upon
proper (multiresolutional) task decomposition. The latter
not only eliminates the bottleneck but actually reduces the
complexity dramatically. In [5] it is proven that a
hierarchical system largely reduces the complexity of the

computations involved in search.

C. Flat Schemata and Multiresolationai Schemata

An example of learning using centralized
decision-making and flat schemata is shown in [6]. When
we have a centralized decision-making control system

working in a complex environment, the amount of rules
that must be dealt with is so large that working in a

flat-level is impossible. When we work with centralized
learning systems, we must use a multiresolutional
configuration to avoid complexity.

The approach of our paper is based upon M. Arbib's
theory of motor schema [7] applied to a muldresolutional
structure. We believe that high-resolution schemata

generalize in such a way as to create a low-resolution level
of schemata. This procedure of generalization is recursive
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in nature, and is inherent in the learning loop. The reality
of computation requires it for complexity reduction.

The Multiresolutional Schemata Approach

A. Theory of Multiresolutional Schemata

There exists a multiplicity of definitions for the idea of
"schema" which takes into consideration different aspects of
this powerful concept. The concept has existed for
centuries, and has recently been applied in the area of
neurobiology by [6-8] and others. Schema is a construct
which represents an entity related to the areas of perception,
knowledge organization, and control.

As fax as problems of motion control are concerned, we
believe that "schema" should be defined as follows:

Schema is an implication

"situation-->action" [9] formulated as an entity for a

particular i= level of resolution of the world representation.
More formally, this statement can be represented as a
notation (from [10])

= {[s,(O_(O].p_}. (I)
where_,isthe"schema",

•, is the "situation" determined only by a set of the
"entity discovered in the set of sensor information at a
resolution Pi"so that s_= [rh,gi,35],

is the percept: "a set of information delivered from the
sensors",

_qis the context: "a set of information delivered from the

sensors at time t-pi",

35- is the final goal at a level: "an entity defined by the

assignment at a lower resolution level p__,"

a_ - is the action: "an entity defined upon a set of
dynamic changes in a position and orientation at a
resolution p,"; action is a string of subgoals y=(k=l,2 .....m;

y,_= _ to be reached before the final goal is achieved, in

other words a,-_(7,.,y,_,...,Y=),

p, - is a vector which contains the minimum
distinguishable discrete of a spatial dimension or time in
the i= level.

The storage of schema is done based upon a concept
called semantic network, exemplified in Figure 1.

B. Learning in Multiresolutional Schemata
(I) Bootstrap knowledge

Bootstrap is a minimal set of algorithms which allow us
to manipulate a multiresolutional representation of our
schemata, which include generalization and task
decomposition. The minimal set also includes the rule: "IF
<no rule for this situation> THEN <give random signal to
actuators>". Other than this, only a "goal" percept and a
corresponding cost function are given. This capability and
associated learning-related functions are examined in detail
below.

Lowresolu_on

/Inclusion_

Highresolution

¢

Figure I. Multiresolutional Schema Representation

(2) Multiresolutional representation

A perfect example of a multiresolutional organization is
any linguistic unit. Words form sentences. The sentences
form paragraphs, paragraphs form sections, sections form
chapters, chapters form articles, and all these articles make
books, which also form libraries. Without its
multiresolutional hierarchical organization, any book would
be a gigantic word. This word would carry all the meaning
of all the articles written here. This would create problems
not only from an implementation standpoint but also frem
the point of view of searching through, storing, and
commtmicating. The sentences and paragraphs do not need

to be referenced frequendy so we do not label them. On the
other hand, subsections, sections, and articles carry a label
and each of them has different broadness, granularity, or
resolution. The tide of the book summarizes the content of
the book, and is of lower resolution than each of the tides of

the articles; the titles of the articles refer to topics that are
more specific than the book title. So, we can say that this
structure is also nested in the sense that the fide of the book

includes information about its contents, and so on.
A distinctive property of a mulfiresolutional

organization is the property of "nesting": sets of a particular
resolution level are "nested" in a single unit of the lower
resolution level. As a result, any multiresolutional
representation is a multiple representation of a system at
different scales: each level of resolution can representthe
same entity with different degree of detail.

Now lets analyze why this multiresolutional nested
organization is ever-present:

(a) Search time

Every time we store data -- and in our system we need to
do it very often -- this data needs to be retrieved, The Baby
Robot stores different percepts and different contexts for

further use. These percepts need to be compared to the
current percept. Thus, we have to search through the stored

percepts. In general, we are interested in performing an.
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NP-completeproceMures without paying for this by any
increase in complexity.

It was demonstrated [5] that it is possible to do by
repeating the same search several times at different
resolution levels: starting with tim lowest level (coarse
granularity) and performing ttm search in a large envelope,
and ending with a very high resolution space (free
granularity) however, in a very narrow envelope of search.
Unlike the search processes (which propagate top-down)

the processes of concept generation propagate bottom-up:
fine granularity events and entities merge into lower
resolution events and entities until the hierarchical tree of

percepts and concepts can be assembled. If we store these
percepts in a nested multiresolutional manner, our search
time will be greatly reduced; it was proven by [5] that
searching a nested multiresolutional structure reduces
search time.

(b) Creation of schemata

Experiences are stored in a form opposite to the form in
which the schema is presented (1). Experiences E_
formulated at the i-th level of resolution for the k-th
moment of time are interpreted as our memories about

actions a_(t.,.1) we pea'formed in response to a particular
situation g,(h,-l) and what was the result _(tk) of these
actions

F._ = { [s#__,)._(t_.,), p,-_s_(t.,)] _. p,}. (2)

include higher resolution ones as the components which are
required to accomplish the lower resolution task.

(c ) Task decomposition

If we create and store schemata in a nested multi-

resolutional manner, then actions of a lower resolution level

can be decomposed into sub-tasks that are goals for higher
levels of resolution. This is done by the virtue of string
generation for the higher resolution level in the following
manner:

a_(t_.,)=> a,.,(h÷,.,), a,+,(t,.,._) ..... a_,(t,+,_) (3)

For example, in the previous given rule, "IF <obstacle
visible> TttEN <avoid it>", the action "<avoid it>" can be

decomposed into "turn right". "orient up". and "slowly
accelerate" (Astro-baby creates decomposition which vary
with the type of situation). Each one of these actions can
again be subdivided until we have a direct command to our
actuators.

where -is the value of the increment of "goodness"

achieved during the interval of time At=k-h,.,.
Experiences are grouped by theirgoodnessina classof

"goodexperiences".Withinthisclass,a setof subclasses

can be created"goodexperiencesatparticularsituations

[s,,n=1,2.....N}. A generalizedstatementofexperienceis

declared typical for a particular situation 9"[Ej where G is

an operator of generalization. In this paper we will use only
the least sophisticated operator of generalization: weighted

averaging assuming all weights equal to 1.
Generalized inverted experiences can be considered the

basis for transforming them into hypotheses of the future
schemata. After a while a set of schemata emerges as a
result of inverting classes of similar experiences based
upon the value of goodness delivered by a particular action
in a particular situation. When creating schemata it is
possible, - eyen necessary, to create them to apply a
_ended action to an entire class of situations, not just
to its members. For example, the Astro-baby might create a
rule such as "IF <obstacle visible> THEN <avoid it>". This

will include every obst_le _aat it could sense, and it w0_d paPer examples of how
_not require to-create__c rifles for every' ldnd_f Astro-baby are given.
obstacle, every velocity and every direction. This is only

possible in a system where lower resolution concepts

(3) Reasoning and Decision Making

We use only tim most fundamental tools of reasoning
which are critical for development continuous
Cnever-ending") processes of learning. Thus, all reasoning
is based upon three major operations: a) determining
whether a particular entity and/or event are related to a
particular class, or not ("issuing the acknowledgment of
inclusion"); b) finding an appropriate member of a

particular class Ciustantiating the class"); and c) forming a
new class by determining a group of entities and/or events
similar in some respect ("generalization").

The operator of generalization G is the key

operator in a multiscale system. It is evoked and utilized
to drastically reduce the required amount of

computations by allowing to use the "typical" class

representative instead of using different particular elements
of_ class.

For example,generalizationis the kernel of the

operationthattakesschematainone levelofresolution,

groupsthem in orderof goodness(givenby the cost
function),andbymeans ofcorrelatingthemitfindsfeatures

thatam incommon inthegood schemata.Thesefeatures
createschemataoflowerresolutionthatcreateanew lower

levelofresolution.

Generalization is recursive in the sense that the highest
level of resolution creates a level that is of lower resolution

:and this lower levei creates other level given that sufficient
instanfi-ations _ _s schemata Were collected to create

clusters form the correlation. In the simulation part of this
this generalization works in
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HI. ASTRO-BABY

One of the possible realizations for Astro-baby is shown
in Figure 2. It is possible to demonstrate that this simple
configuration is able to provide for all necessary motions. In
this paper, we won't concentrate on the subtleties of control
for the configuration in Figure 2; we use abstracted
translational and rotational vectors of control which should

be obtained for any configuration.

Figure 2. A configuration of Agro-baby

Early learning processes are studied here as applied to
the systems which can be represented in a form of
six-box:diagram (see Figure 3).

..... _--- C°HP-Udati°rn/_tS/urc_cutuer-e-- -_---

Sensors World Actuators

Figure 2. Six-Box-Diagram

The diagram is divided into the Computational
Structure and the Hardware Structure which are mapped
into another. The Hardware Structure is composed into
three blocks: sensors, world, and actuators which are

simulated by our program in order to be able to test BR.

The other three boxes constitute the structure of intelligence
and include: Perception, Knowledge Base and
Planning/Control, are the basic components of BR or any
control system for that matter. Perception receives the

signals coming from the sensors, quantifies them. encodes
them into a language suitable for storage and manipulation.
and organizes them.

The Knowledge Bas module receives the encoded
sensor information (percepts), puts it into correspondence
with the rest of previously stored knowledge and finds
relationships (rules) between the actions performed and the

concepts perceived. Finally. the Planning/Control
("decision making") module uses all available information
and the decision making mechanism to fmd the command
sequence for the actuators.

It was demonstrated that the systems which can be
represented by six-box-diagrams has to be equipped by at
least two modalities of sensing and have at least two
degrees of freedom in their actuation.

In a multiresolutional system, the six-box-diagram is
becoming multiresolutional too. Thus it forms a structure of
loops which can be called a multiresohtional nested
structure (see [11 ]). In this structure, each lower resolution

loop includes generalized activities of the adjacent higher
resolution loop. In this paper we will consider a single loop
but the results of reasoning can always be expanded to other
loops.

The setting for sensing part is easily understood
from Figure 3.

Sensors

The following sensors are given to Astro-baby:

A. Distance, Angle to Goal
In our simulation, we simulate real-world sensors by

tintroducing errors. The angles to goal are expressed as
Euler angles between the local axes of the ASR and the
imaginary vector pointing towards the goal. Some error is

introduced in distance to goal.

f

Reference

._ Dir_tion .

Figure 3. Sensing the position and orientation
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B. Dynamic Avoidance Regions (DAR )
In [11] a DAR system for ground autonomous vehicles

was introduced as a technique of substantially reducing the
amount of information to be dealt with by fuzzifying the

sensor. DARs axe regions that grow bigger and fuzzier the

further away they are from the astro-baby. This is a
multixesolutional sensor where each one of these zones is a

boolean sensor for Astro-baby. [4] describes a
non-multixesolutional DAR. In contrast, our sensor will

allow Astro-baby to create obstacle avoidance schemata of
different resolution. In [12] an implementation example is

Figure 4. "l_e DAR Sensors

given using sonar with only one DAR. By overlapping these
fixed beam sonars we could create multiple DARs as shown

in Figure 4.

C. Proximity sensors
A set of proximity sensors is included surrounding the

body of the Astro-baby covering higher resolution

proximity zones that are beyond the sensitivity c£ DARs.
Errors and maximum reach are introduced in the

simulation to make these sensors closer to real world

_n_3rs.

Actuators
Astro-baby has a source of translational and a source of

rotational motion which it controls with three forces: Fx.

Fy, F_ in local coordinates.

The Structure of Learning
Figure 5 describes one level of resolution in Astro-baby

(the only one at the beginning of the learning). However,

one can proceed with several levels of resolution by using

the same picture; at the next resolution level one should use

the same loop. The system is divided into two parts:

(a) Simulation of the hardware is composed of S

(sensors). W (world), A (actuators). Actuators produce

changes in the world, and the sensors sense the world. Our
simulation includes dynamics. The existence of dynamics

makes learning motion difficult, especially in 3-D.
Co) Astro-baby is composed of the Percept Knowledge

Base (KB), Context KB. Schema KB and the learning loop.

Astro-baby is unaware of the information stored in the
hardware simulation, the only communication between the

two boxes is done via sensors and actuators. An explanation

of how this structure works is done as follows.

SIMULATION

f
Goal

Schema KB

S A

_ql _4

Figure 6. The _-ucture of learning

When the Astro-baby is started, there is a first set of

sensor values that come from the sensors, since our Percept

KB is empty save for the goal percept. These sensor values

are tagged and then stored in the Percept KB. So, since
there is no previous percept, there is no conteXt and

therefore there is no schema for this percept. Thus. the

Astro-baby must execute its first random movement. The
random commands generator is a part of bootstrap

knowledge (see Figure 6).

Iv,

"++_ i+o _ _o _ _o _ "_ + _ ,mo
"rkm,

: Rotdon

......... '000
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Figure 6. Random commands

These random commands generate random motion
which is shown in Figure 7. As a result we have a change
in the environment and a change in the goodness (change
in the distance to goal divided by the step size). So. when
the next percept is coming, it has the previous percept,
change in goodness, and a context, but it still does not have
a rule. But we have the following expression: previous

f

Hgure 7. Random movements

percept, action, percept(now) and change in goodness for
this action. Thus, we can create, via abduction, hypotheses
(schemata that do not have enough statistical data collected
either to become full Schemata or to be rejected, we call
"Baby Schemata"). The following is a "Baby Schema": IF
((percept(n-I)) && (percept(n)) && (delta(goodness) is
desired)) THEN action. The desirable goodness is given by
the user as a threshold.

This Baby Schema will probably apply only in very
selected situations and as a matter of fact they might give a
different goodness in the same situation (because of
dynamics) and its goodness could be very low (i.e. going
away from the goal). But after we go through this process
several times, we have a set of "Baby" schemata that cover
some situations. If we have two or more Baby Schemata for
the same situation, then the schema with better goodness is
applied.

We can see in Figure 8 that this baby schemata
causes Astro-baby to "spiral" towards the goal, The use of
the baby schemata by Astro-baby improves its operation and
at the same time it helps to collect more data of "good" baby
schema. Then the generalization process starts working.

Baby Schemata are ordered by goodness, and a correlation

"engine" tries to fred similarities among the baby
schemata. First it tries to see if some of the values have

been kept constant (within a fuzzy region), then it checks if

the bad baby schemata also have this quality, If not it
decides that this is a good characteristic in this class. In the
case of the Astro-baby the Euler angle between the nose of
the sub and the goal are

-'\ ....I

I 'X

Figure 8. Testing Baby Schemata

very small in all the good schemata, so it creates a new low
resolution schema that could be understood as:

if <empty> and goal I are required then
make sensor° = 0

(4)

Where sensor, is the Euler angle between the nose of
the sub and the goal, and goal is minimize delta distance to

goal/delta step. The reason that it puts an <empty> in the
Percept and Context parts of the situation is that it could
not find any relationships between them in the good
situations. When it will encounter obstacles, this part of
the schema will not be empty.

Other relationships that we check if they where within a
fuzzy boundary are the following: addition, subtraction,
multiplication and division of two sensors and deltas of
individual sensors (giving Astro-baby the ability to derive).
These other relationships could alsocreate schemata if they
were good characteristics.

At this point Astro-baby has two levels of resolution,
thus our goal (minimize delta distance to goal/delta step)
is passed to the lower resolution level. And this lower
resolution level passes to the higher resolution level "make
sensor, = 0". The higher resolution level does not know
how to do this, so it starts again to give random commands
collecting them in baby schemata. But these Baby
Schemata are judged with the new cost function. Mter a

few trials Astro-baby creates some schemata that perform a

Bang-Bang control on the Astro-baby (see Figure 9) trying
to point at all times the nose of the sub towards the goal. In
the traces of the tail of Astro-baby can be seen clear marks
of this kind of control. The oscillations are big because it
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doesnothaveenoughdatato apply the exact amount of
control needed, thus is overshooting.

Once some schemata are formed, new schemata are

created that are very similar to the ones already created.
These new schemata are used to quantitatively improve the

previous ones. For example when schema (2) is formed,
sensor, is not exactly zero but a small number; this number
is refined every time the same schema is encountered. Thus
the overshoot that we see in Figure 6 will become smaller
and smaller.

:!i!_::i::'._i_i::iii::iz+_:_:....

Figure 9. Bang-bang Control

The process of learning does not stop here; new levels of
lower resolution appear when obstacles (of any kind:
currents, low visibility, etc) are included in its world. The
more the variety of circumstance which Astro-baby
encounters, the more complex its own control system
becomes and the richer its world representation becomes.

LEARNING CURVES

The following experiment was performed:

a) all knowledge was deleted from the database (except
bootstrap)

b)thevei_clewas set_narand_posltioninthescreen.

c) the goa] was set in a rand0m _idori.
d) when vehicle achieves the goal then go to b)

The learning curves where built by calculating the
Euclidean distance between the vehicle and the goal in the
initial position and dividing it by the number of steps (time)
used to achieve it. The second graph shows the number of
schemata versus time.

Case 1 _ -

Figure lOa and lOb show the case where no initial
random moves where assigned before allowing

generalization of schemata. It is possible to see that the
learning curve is not very stable, although the performance
of the submarine is improves, in some trials it has to

perform several new random movements to be able to
generalize rules that it does not have. It is also possible to
see that the number of schemata levels up, the mason for
this is that since the simulation is a closed environment,
The set of rules that it found it is sufficient for its operation.

F
L5

!,

..... Figure _lOb: Number of Schemata

Case 2

Figure- 11a and 1lb show the case where I003 random
moves where assigned before allowing any generafizafion

of schemata. It is possible to see that the learning curve is
a lot more consistent. It is also shown by this curve that the
number of schemata found increases faster than in the

previous case,
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Case 3

Figure 12a and 12b show also a case where 1000

random moves where assigned before allowing any
generalization of schemata and once a Bayes estimator is

used to rank the performance of the found schemata. If the

Bayes estimator is low then the rule is eliminated. It is

possible to see that the learning curve sinks lower than in

the previous 2 cases. This is interpreted as the vehicle

improving its performance, thus, achieving more distance
per number of steps. Figure 12b shows two curves: the one

on the top represents the total number of schemata that
where created and the one on the bottom shows the total

number of schemata that where eliminated using a Bayes
estimator. It is possible to see that the number of schemata
remains constant.
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MAIN RESULT

The early learning process explored in this paper has

demonstrated the following sequence of stages:

1. After the random sequemm is completed, the learning

structure determines that the way to achieve the goal is to
minimize (null) the Euler angles. Now this result is

considered to be the new goal of operation.

2. As the new goal is pursued, the system learns that it

can be achieved by bang-bang control (or variable structure

control). The system assign bang-bang control objectives

and they become a new goal.

3. The results presented in positions I and 2 can be

considered a formation of the low and high resolution

levels. If the control objectives of the bang-bang control are

considered to be a new goal, the next (the highes0

resolution level is formed where the system learns how to

provide the oscillation free motion.

4. These stages of the learning process constitute a

multiscale system of dealing with experiences and creating

a rule based controller. Our conjecture is that the process of
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the ("never-ending") learning will continue in the
multiresolutional fashion demonstrated above.

5. The bootstrap-knowledge set coda'meat to be
conducive of the Cnever-ending") learning process.

CONCLUSIONS

1. A structure of learning mechanisms for an ASR has
been described, based upon a theory of mttlti- resolutional
schemata.

2. A system of simulation has been constructed which

allows for testing the process of early learning.

3. The following observations have been made:

Astro-baby is a very adaptable learning system. Adaptable
in two sense, s:

a) when it is installed in a robot it can deal with

different kinds of situations and incorporate the knowledge
extracted from the environment in its knowledge bases as

percepts,contextsand schemata;and
b) in the sense that could be applied different platforms

almost without modification and given the "proper" sensors

and actuators for the goal assigned it will learn schemata
about its own operation and its interaction with the
environment.

Astzo-baby discovers Bang-Bang Control and applies it

efficiently to perform the assigned task.

GLOSSARY
An attemptis made to formally and conciselydefine

terminology used frequently throughout this paper, so as to
minimize interdisciplinary misunderstandings.

Resolution - The granularity at which a particular situation is
viewed based upon the size of a minimum distinguishable unit of

space
Multiresolutional System - A system which views the world at

multiple levels of granularity
Multiresolutional Hierarchy - A graph-like structure used to

demonstrate the organization of data in a multiresolutional system
Learning - The process of acquiring knowledge about the

world and developing behavior patterns to deal with
accomplishing a apccified task within the framework of the
acquired knowledge _

Bootstrap Knowledge - An initial set of information or
knowledge, including, more specifically, techniques required for
learning

Goal - A desired outcome of events

Intelligence - The ability to efficiently process and organize
knowledge acquired through learning

Inteiii_ent System - A System exhibiting the properties of
in nlg nc   using - -

TdskDecompoiih_on -/( pr_),_ whereby a giyen _0al is
subdivided into sub-Goals which are achievable at a pgficular
level of Res01ut_on _n---_a__braYdlscret6._C)_f_ us_- by

Intell_geiit Systemsto_ computational complex_ ....

Percept - A set of se/i_r v_ues acquired at a particular level
of resolution at a parcel= moment of time
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Context - Various information about the world at a particular
lime. Context may include Percept information, as well as data
from other sources

Action - A set of activation of actuators in a body, to perform a
task, usually set by a Goal

Situation - A grouping of information about the world and the
task at hand, consisting of a Percept, a Context, and a Goal

Schema (pl. schemata) - A logical operation relating a Percept,
Context, and Goal with an Action. Can be expressed as follows:
IF (Percept & Context & Goal) THEN Action
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