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Abstract

We have recently introduced a set of Fortran language extensions that allow for

integrated support of task and data parallelism, and provide for shared data abstrac-

tions (SDAs) as a method for communication and synchronization among these tasks.

In this paper we discuss the design and implementation issues of the runtime system

necessary to support these extensions, and discuss the underlying requirements for

such a system. To test the feasibility of this approach, we implement a prototype of

the runtime system and use this to support an abstract multidisciplinary optimization

(MDO) problem for aircraft design. We give initial results and discuss future plans.

*This research supported by the National Aeronautics and Space Administration under NASA Contract

No. NASA-19480, while the authors were in residence at ICASE, NASA Langley Research ('enter, Hampton,

VA 23681.





1 Introduction

Most of the recent research effort, in parallel languages and compilers has concentraled on

Sl)ecification and exploitation of data parallelism in scientific codes, ttowever, there are a

large nmnber of scientific and engineering codes which exhibit nmltiple levels of parallelism.

Multidisciplinary applications are a good example of such codes. These al)plications, such

as weather modeling and aircraft design, integrate codes from different disciplines to solve

a larger and more complex problem. In general, the different discipline codes can execute

concurrently, interacting with each other only when they need to share data. In addition

to this outer level of task parallelism, the individual discipline codes often exhibit internal

data parallelism. For example, the design of an aircraft requires data parallel codes from

disciplines such as aerodynamics, propulsion, structural analysis, controls and so forth to

interact asynchronously while optimizing the design variables of the aircraft;.

Data paralM language extensions such as Itigh Performance Fortran (HPF) [17] and

Vienna Fortran [5] are adequate for the l)arallelism within individual discipline codes, hut

do not l)rovide any support for coordinating the execution and interaction of these codes.

We have recently designed a set of extensions to HPF which provide such support [6]. Along

with extensions to manage independently executing tasks, we have introduced a new mech-

anism, called ,5'hated Data Abstractions (SDAs), to allow these tasks to share data with

each other. SDAs generalize Fortran 90 modules by including features from both obje:cts in

object-oriented systems and monitors in shared memory languages. This provides a high-

level, controlled and clean interface for large grained parallel tasks to interact with each

other in a plug compatible ilia.tiller.

In this 1)aper, we concentrate on the design of a runtime support system to address

the specific needs of SDAs. In pa.rl, icular, we address two specific areas of design for SDA

runtime support: distributed data structure management and SDA method invocation (see

Figure 5). Distributed data structure management includes the distribution of SDA data

structures as well as the protocols for interfacing with distributed data structures in the

indi\'idual task codes. Method invocation includes the protocols for accessing and executing

SDA method functions based on the monitor semantics and condition clauses that can guard

every SDA method. The SDA runtime system is based on lightweight, user-level threads that

are capable of SUl)porting both intra-processor and inter-processor communication primitives

in the form of shared memory, message t)assing, and remote service requests [16]. This allows

the independently executing tasks and the SDA methods to share the underlying parallel re-

sources. Along with asynchronous communication between threads, the system also supl)orts

collective communication among SPMD threads executing in a loosely synchronous manner,

such as those that might be produced by an HPF compiler for data parallel computation.

Since data parallel tasks need to communicate distributed data to each other, the runtime

system also supports communication between two sets of SPMD threads.

Other projects that focus oil the integration of task and data. pa.rallelism include Fortran-

M [11, 12], Dec [27] and FX [28, 29]. Fortran-M and Dec support mechanisms for estab-



]ishing messaget)lmnbing betweentasks, directly basedon ports and an extensionof C file
structures, respectively. In Fx, tasks communicateonly through argumentsat the time of
creation and ternaination. The runtime support systemsfor theseefforts face someof the
sameissuesdiscussedill this paper. However,unlike the SDA runtime system described
here, thesesystemsarenot basedon lightweight threads.

The remainder of the paper is organizedas follows: Section 2 summarizesthe For-
tran languageextensionsfor supporting both task parallelismand shareddata abstractions;
Section3 outlines the runtime support necessaryfor supporting theseextensions,with par-
titular respect to data distribution and method invocation issues;and Section4 introduces
a prototype of the SDA runtime system,dew,loped to test the feasibility of the SDA method
invocation design.

2 An Introduction to Shared Data Abstractions

In this section, we provide a short overview of the Fortran extensions we have designed to

support the integration of task and data parallelism. Full details of the these extensions can

l)e found in [6].

In our system, a program is composed of a set of asynchronous, autonomous tasks that

execute independently of one another. These tasks may 0mbody nested parallelism, for

example, by executing a data parallel HPF program. A set of tasks interact by creating an

SDA object of an appropriate type and making the object accessible to all tasks in the set.

The SDA executes autonomously on its own resources, and acts as a data repository. The

tasks can access the data within an SDA object by invoking the associated SDA methods,

which execute asynchronously with respect to the invoking task. Itowever, the SDA semantics

enforce exclusive access to the data for each call to the SDA, which is done by ensuring that

only one method of a particular SDA is active at any given time. This combination of task

and SDA concepts forms a powerful too! for lfierarchically structuring a COml)lex body of

parallel code.

\_ presume that ttigh Performance Fortran (HPF) [t 7] is to be used to specify' the data

parallelism in the codes. Thus, the set of extensions described here build on top of HPF

and concentrate on management of asynchronous tasks and their interaction through SDAs.

Multidisciplinary optimization (MDO) problems form a natural target for integrating task

and data parallelism, as they are commonly formed by combining data parallel units fi'om

various disciplines to form a single application. As an example, we introduce a simplified

MDO application for aircraft design that will highlight the need for supporting task parallel

constructs and conmmnication between tasks using data structure repositories (SDAs).



F olver

Figure 1: A sample MDO application for aircraft design

2.1 A Sample MDO Application

We now briefly des,tribe a focus application: the simultaneous optimization of the aerody-

namic and structural design of an aircraft configuration. Though a realistic multidiscil)linary

optimization of a full aircraft configuration would require a number of other discipline codes,

such as controls, we present this simplified version for the sake of brevity.

The structure of the program is shown in Figure 1 where the tasks are represented

by recta_ngles and the SDAs by ovals. The Optimizer is the main task and controls the

execution of the entire MDO application. It creates three SDAs (,5'tatusRccord, &nsitivitics,

and SutfaccG¢om,) and makes them available to the other two tasks, Flow,,%Ivcr and F(:,5'olvcr,

as they are spawned.

The Optimizcr initiates execution of the application by storing the initial geometry in

the SDA ,S'u_fac(:Gcom. The Fc,%lvcr task generates a finite element model based on this

geometry and uses some initial forces to determine the structural deflections. These deflec-

tions are then stored in SurfaccGcom as a deflected geometry. The FlowSoIvcr, meanwhile,

generates an aerodynamics grid based on the initial geometry and performs an analysis of

the airflow around the aircraft, producing a new flow solution.

In subsequent cycles, the FcSolvcr uses forces based on the current flow solution to

l)roduce new deformations, while the Flow,5'olvcr nses the deformed geometry and the pre-

vious flow solution to produce new solutions. This process is repeated until the F_Solvcr

determines that the difference between the new and old deflections is within some specified

tolerance. At this point, it places some output variables in the ,5'tatusRccord SDA. Both

Fc,S'olvcr and FlowSoIvcr also produce sensitivity derivatives and place them in the ,5'(,nsitiv-

itics SDA. These represent the behavior of the output variables, such as lift and drag, with

respect to design variables, such as the sweep angle of the wing.

When, the inner iteration is completed, the Optimizer obtains the output variables and

the sensitivity derivatives and, based on some objective function that it is minimizing, decides

whether to terminate the program or to produce a modified basegeometry. In the latter

case, it places the new geometry in the SurfaccGcom SDA, and the inner cycle is repeated.
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SPAWN FlowSolver(SurfaceCeom,Sensitivities....) ON resource-request

Figure '2: Code fragment spawning the Flow,Solver task

2.2 Task Management

We now describe the HPF extensions required to create and manage tasks. These tasks are

units of coarse-grain parallelism executing in their own address space. They are spawned

by explicit activation of task programs, entities syntactically similar to a Fortran subroutine

(except for the keyword TASK CODE which is used instead of SUBROUTINE). The spawn

is non-blocking in that the spawning task continues its execution after the spawn. A task

terminates when its execution reaches tile end of the associated task program code, or if it

is explicitly killed.

An example of how the Optim, izcr task could spawn the Flow,5'olvcr task is depicted

in Figure 2, where ,%rfaceGfom and Sensitivities are SDA objects which are passed as

arguments to the FlowSolver task.

Tasks operate on a set of system resources allocated to them at the time of their spawn-

ing, either through an explicit resource request (using an on clause as shown above) or as

defaults assigned by the system. A resource request has two optional parts: a machine spec-

ification and a processor specification. Tim machine specification can be used to specify a

particular physical machine or a class of machines. If a class of machines is specified, such

as Sun Spare 10, then the system is free to choose one from a set of such machines. The

processor specification is used to select the set of processors on which the specified task will

execute. In either case, the user can request that the spawned task use part of the spawning

task's resources, or that the system should allocate new resources for the spawned task.

Tasks may have nested functional or data parallelism, where the former is embodied

by spawning other tasks, and the latter is specified using HPF directives. Thus, the task

code specification may include a PROCESSORS directive along with directives that specify'

the distribution of data across these processors. It is then the compilers job to produce the

appropriate SPMD code for the data parallel task.

2.3 Shared Data Abstractions

An SDA type specification, modeled after the Fortran 90 module [2], consists of a set of

data structures and an associated set of methods (procedures) that manipulate this data.

The data and methods can be public or private, where public methods and data are directly

accessible to tasks which have access to an instance of the SDA type. Private SDA data and

methods can only be used by other data or methods within an SDA. In this respect., SDAs
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SDA TYPE SGeomType(StatusRecord)
SDA (StatRecType)StatusRecord
TYPE (surface)base
TYPE (surface)deflected

LOGICAL DeflectFull = •FALSE.

PRIVATE base, deflected, DeflectFull

CONTAINS

SUBROUTINE Put.Base (b)

TYPE (surface) b
base = b

deflected = b

DefiectFull = .TRUE.

END

SUBROUTINE GetDeflected (d) WHEN DeflectFull

TYPE (surface) d
DefiectFull = .FALSE.

d = deflected

END

END Surface(teem

Figure 3: Code fragment specifying for the SurfaceGeom SDA

and their methods are similar to C++ classes and class functions [8].

As stated before, access to SDA data is exclusive, thus ensuring that there are no data

conflicts due to the asynchronous method calls• That is, only one method call associated

with an SDA object can be active at any time. Other requests are delayed and the calling

task blocked until the currently executing method completes.

Figure 3 presents a code fragment that depicts a portion of the type specification for the

SurfaceGeom SDA. The first part (before the keyword CONTAINS) consists of the internal

data structures of the SDA, all of which have been declared private here, and thus cannot be

directly accessed from outside. The second part (after the keyword CONTAINS) consists

of the procedure declarations which constitute the methods associated with the SDA.

Each procedure declaration can have an optional condition clause which "guards" the

execution of the method, similar to Dijkstra's guarded commands [7]. The condition clause



SDA (StatRecType)StatusRecord
SDA (SGeomType)SurfaceGeom
SDA (SensType)Sensitivities

CALL StatusRecord%INIT
CALL SurfaeeGeom%INIT(StatusRecord)
CALL Sensitivities%INIT

Figure 4: Declarationand initialization of SDA variables.

consistsof a logical expression,comprisedof tlle internal data structuresand the arguments
to the procedure. A method call is executedonly if the associatedcondition clause is true

at the moment of evaluation. If the condition clause evaluates to false, the corresponding

method call is enqueued until the expression evaluates to true, as a result of the SDA data

being modified by another method call. A method that is declared without a condition clause

will be assigned a default condition clause that always evaluates to true. For example, in

the above code, the calls to metho(1 G(,tD(fl_:ct(d will be executed Ollly whpll D_flcctFulI

is true. Thus, if a task calls G_'tDefl_'ctcd before a call for PutBasc, the former is blocked

until the latter is executed, ensuring that the variable d_flcctcd has an appropriate value.

(_!ondition clauses, therefore, provide a way to synchronize task interactions based on data

dependencies.

Similar to HPF procedure declarations, each SDA type may have an optional procc_ors

directives which allows the internal data structures of the SDA to be distributed across

these processors. This is useful (or perhaps necessary) for SDAs that comprise large data

structures. Tile dummy arguments of the SDA methods can also be (tistril)llt('d using th( _

rules applicable to an HPP procedure.

An SDA variable is declared using syntax similar to Fortran 90 deriw:'d types. For

example, in our MDO application the Optimizer might declare tile SDA variahles as shown

in Figure 4, where N is the operator used for member selection. As with any other glol)al

variable, an SDA variable has to be initialized before it can be used. This is done using the

l)redefined methods INIT (as shown in Figure 4), which initializes the SDA by allocating

the internal data structures from the heap, or LOAD, which loads the data from secondary

storage. The corresponding SAVE method can be used l)y the programmer to save the

internal state of an SDA to secondary storage for later use. This allows SDAs to be pc:rsistr_.t,

which is an important consideration for most MDO appli(;ations. An SDA may specify an

optiot!a] resource request, similar to the one used when spawning tasks, which is used to

specify the resources to be used for executing the SDA.

Having provided an initial overview of tasks and SDAs, we now examine the issues

involved with providing runtime support for the SDA extensions. A detailed description of



the task and SDA extensions,including samplecodefor a similar MDO application, can1)e
found in [6]

3 SDA Runtime Support

If we take a.n al)stract view of the SDA proMenl, we see that there are two basic types of

"tasks" that must be mapped to a set of physical resources: computation tasks, responsible

for executing the actual computations being performed, and SDA tasks, responsible for

executing the SDA methods and performing any resulting communication operations. Each

processor participating in a computation will be assigned at least, one computation task, and

each processor participating in the storage of an SDA object will be assigned at least one SDA

task. Since multiple computations and SDAs may utilize the same (or overlapping) resources,

any given processor in the system might be responsible for the simultaneous execution of

multil)le, independent tasks. Execution of these multiple tasks can be implemented on Unix-

based systems by mapping each task to a process, where each processor can execute multil)le

processes in some fashion. However, this process-based approach has several drawbacks,

including

tile inability to control scheduling decisions, since Unix processes are scheduled by the

operating system with little input from the user;

tile inability to share addressing spaces between tasks, since each Unix process is

assigned its own address space. It is desirable for the SDA task to deliver data to the

computation task without involving tile comt)utation task;

costly context switching, due to the large amount of context associated with a (heavy-

weight) Unix process; and

the inability to execute on systems that do not fully support multiple Unix processes

per processor, such as the nCUBE/2 [24], or systems running special microkernels

without process support, such as the SUNMOS kernel for the Paragon.

In light of the disadvantages of mapping our tasks to Unix processes, our approach is

to utilize lightweight, user-level threads to represent these various independent tasks. A

lightweight, user-level thread is a unit of computation with minimal context that executes

within the domain of a kernel-level entity, such as a Unix process or Math thread. Lightweight

threads are becoming increasingly useful in supporting language implementations for both

parallel and sequential machines by providing a level of concurrency within a kernel-level

process. Threads are used in simulation systems [14, 26] to provide parallel events that

can be scheduled on a single processor, language implementations [20, 22, 25] to provide

support for coroutines, Ada tasks, or C++ method invocations, and generic runtime systems

[13, 15, 32] to support fine-grain parallelism and mnltithreading capabilities. Additionally,



SDARuntimeInterface
I

Distributed Data Structure Support 1 Method Invocation Support
I

Chant: Communicating Threads

Communication Library Lightweight Thread Library
(e.g. MPI, p4, PVM, ..3 (e.g. pthreads, cthreads, ..3

Figure 5: Runtime layers for SDA support

tile POSIX committee has adopted a standard for a lightweight threads interface [18], and

many lightweight thread libraries have been designed and implemented for workstations and

shared memory multiprocessors [1, :3, 9, 19, 23, 30].

Lightweight threads offer significant advantages over heavyweight processes, including

full coi_trol over thread scheduling, shared addressing spaces among threads within the same

process, very fast context switching, and the ability to execute on systems that do not l)rovide

m_dtiprocess support. The main drawbacks of using threads to support our tasks are a lack (,f

l)ortability and standardization, and a lack of support for distril)uted memory communication

l)rimitives. The computation tasks will require point-to-point communication primitives

and SDA tasks will require both point-to-t)oint and remote service request primitives to

communicate with tasks located in other memory spaces. For example, tile computation

task may be an HPF module that contains send/receive primitives inserted by the compiler,

and an SDA task may need to execute a remote service request to fetch a piece of remote

data. Out' solution to these problems is to implement our SDA runtime support, as depicted

in Figure 5, atop a runtime interface called Chant [16] that we are currently developing.

Chant supports both a standardized interface for thread operations (as st)ecified by the

POSIX thread standard [18]) and communication among threads using either point-to-point

primitives (such as those defined in the MPI standard [10]) or remote service requests (such

as Active Messages [31]). A descrit)tion of Chant, and its current status, can be found in

[16].

Figure 5 depicts the SDA runtime system as being composed of two portions: one for

distributed data structure management and one for method invocation management. Iu the

next two sections we examine these portions in more detail.

3.1 Distributed Data Structures

In addition to the two types of threads being potentially mapped to each processor (com-

putation threads and SDA threads), there are two types of data structures that must be

distributed across the processors: computation data, which is any data structure defined

within a computation task, and SDA data, which is any data structure defined within an



PROGRAM main
!HPF$PROCESSORS P(M)

SDA (SType)S

INTEGER A(1000)
!HPF$DISTRIBUTE A(BLOCK)

, ,,

CALL S_put(A)

. . ,

END main

SDA TYPE SType

!HPF$ PROCESSORS P(N)

CONTAINS

SUBROUTINE put ( B )

INTEGER B(:)

END put

.••

END SType

Figure 6: SDA code excerpt

SDA. Since each type of data may be independently distributed over a set of processor men>

ories, we must have a mechanism for transferring data between the two. We now illustrate

the issues that arise when data must be transferred fi'om a distributed computation data

structure to a distributed SDA data structure. To illustrate the point, let's consider the

code excerpt in Figure 6, which declares an HPF computation, main, on M processors, and

an SDA, S, distributed among N processors. The task main contains an array, A, that is

distributed by BLOCK across the same M processors that contain main. At some point, the

values from the distributed array A are used to update the SDA array, B, using the SDA

method put. Let's consider the issues that arise with different values of N and N.

IfM and N are both greater than 1, then both main and S along with their data structures

are distributed. We will assume that main and S are each represented by a set of threads

distributed over the processors, and that each contains a "master" thread among the set,

which may be responsit)le for external coordination of the thread group. To execute the put

method, we have the following options for transferring the data from h to B:

1. The master thread from main collects the elements of h into a local scratch array, theft

sends it to the master thread for S, which distributes tile values among S's remaining

threads, such that each thread updates its portion of B. This provides the simplest

solution in terms of scheduling data transfers, since only one transfer occurs, fiom

master thread of main to master thread of S. However, two scratch arrays and two

gather/scatter operations are required, consuming both time and space.

2. Tlle master thread from main collects the elements of h into a local scratch array',

then negotiates with the master thread of S to determine how the scratch array is

to be distributed among the threads of S, considering B's distribution. After tile ne-

gotiation, main's master thread distributes the scratch array directly to S's threads.

This approach eliminates one scratch array and the scatter operation, but introduces

a negotiation phase that is required to discern B's distribution.



PO PI i"r2

5DA array of 8 elements with BLOCK distribution

i HPF array of 8 elements with CYCLIC distribution

Figure 7: Sample array distributions for HPF and SDA tasks

:3.

4.

The master thread from main negotiates with tile master thread of S, then informs the

other threads in main to send their portion of A to S's master thread. Wheu tile master

thread from 8 has received all of the messages and formed a local scratch array, the

array is distributed among the remaining threads in S. As with the previous scenario,

this approach eliminates a one scratch array and a gather operation at the expense of

a negotiation phase.

The master thread from main negotiates with the master thread of S, then informs

tile other threads in main to send their portion of A to the approl)riate threads in S,

according to the distribution of B. This approach eliminates both scratch arrays and

gather/scatter operations, but requires all threads from S and main to ,ln(h,rstand each

others array distrib,ltion.

The complications in passing data from a computation task to an SDA are a result of

the different ways a particular data structure may want to be viewed. For example, consider

the situation in Figure 7, where an SDA array is distributed differently than an ttPF array,

and we wish to update the SDA array with the values fi'om the llPF array. To avoid scratch

arrays and gather/scatter operations among the tlPF and SDA threads, each HPF thread

must know which array elements it owns locally, and where the corresponding SDA array"

elements are located. Consider the HPF comlmtation thread on Pl, which owns elements

2 and 6 of the ttPF array. After negotiations, it learns that element 2 of the SDA array is

located on processor P0 and element 6 of the SDA array is located on processor P2, and can

then send the array" elements to the processors directly.

Referring again to our example in Figure 6, we explore the special case of having either I4

or Ig (or both) be restricted to 1. When Ig is 1, the SDA is executed on a single processor, and

all computation threads will send their array values to the single SDA processor. Likewise,

when g is 1, the computation array is stored on a single processor, and so a single computation

thread will distribute the array to the SDA processors. When both M and 1_are 1, at most

a single message is needed to update the SDA array. We can summarize the support for

distributed SDA data structures as follows:

• The application will collect a set of hardware processing elements that will be used to

execute all computation and SDA threads, and on which to store all data structures.

10



Each computation task will be representedby a group of computation threads, dis-

tributed over some set of processors. Any data structures belonging to the task will

also be distributed over the same set of processors, according to their respective dis-

tribution directives.

Each SDA will be distributed over some set of processors, where tile presence of all

SDA oil any given processor is evidenced by some set of distributed data and an SDA

thread responsible for that data.

• Each thread group will identify a "master" thread that can act as a negotiator for the

entire thread group on issues such as determining data distribution.

Multiple computation and SDA threads on the same processor will be executed in

an interleaved fashion, according to the scheduling policy of the thread system and

the "readiness" of the threads. Priorities can be used to influence thread schedl,ling

decisions. For example, when a message arrives for an SDA thread, it may assume

higher priority than the other computation threads, allowing it to handle the message

at tile next scheduling opportunity.

This level of complexity in data structure management is necessary to accommodate

tile various modules which comprise an MDO application, since each module is typically

developed independently of the others and wishes to view the same data in a different

format or distribution. In addition to remapping a data structure from one distribution to

another, the SDA may be required to change the dimensionality of a data structure or to

filter the data using some predefined filter. The methods outlined above will accommodate

all of these requests.

3.2 SDA Method Invocation

Referring once again to Figure 5, we now discuss the runtime issues involved with SDA

method invocation. The semantics of SDAs place two restrictions on method invocation:

I. each method invocation has exclusive access to tile SDA data (i.e. only one method

for a given SDA object can be active at any one time), and

2. execution of each method is guarded by a condition, clause, which is an expression that
must evaluate to true before the method code can be executed.

We can view an SDA as being comprised of two components: a control structure, which

executes the SDA methods in accordance with the stated restrictions, and a set of SDA data

structures. In the previous section we addressed with the issues arising due to distributed

SDA data structures. We now address the issues regarding SDA control structure and method

invocation.

11



At. this point, our designonly supportsa centralizedSDA control structure, represented
by a single master thread on a specified processor. All remaining SDA processors will host

worker threads, which take part in the method execution when instructed by the master

thread. Allowing for distributed control of an SDA would require inll)lementing distributed

mutual exclusion algorithms, such as [21], to guarantee the monitor-like semantics of SDAs,

and is a point of interest for future research.

Mutually-exclusive access to the SDA in the current design, is guaranteed by the fact

that each SDA is controlled by a single master thread. When an SDA method is invoked

by a thread executing on a different processor a message is sent to the processor executing

the SDA master lhread with a request to invoke the method. The calling task then waits

for the reply. Since the SDA master is located on a single processor, and all actual method

invocations are performed by the master, we maintain the monitor-like semantics of SDA
method invocation.

IIaving established the master-worker organization of the SDA control structure, we

can now describe a simple mechanism for ensuring that the second restriction is enforced.

Each SDA method has an associated boolean condition flmction representing the condition

expression specified by the programmer. When an SDA master receives a request to execute

a method, its condition function is first evaluated to see if the condition is true and, if not,

the method is enqueued and another request is handled. Whenever a condition function

evaluates to true, the associated method is invoked, after which the condition functions for

any enqneued methods are examined to see if their conditions have changed. When no more

enqueued method conditions evaluate to true, a new method invocation request is processed.

Starvation is prevented by ensuring that any enqueued method whose condition has changed,

is processed before a new method request. Fairness is determined by the order in which

enqueued method conditions are evaluated, which is under the programmer's control.

4 A Prototype Implementation

We now describe a prototype implementation of the SDA runtime system for method invo-

cation. At this point, all data structures are allocated to a single processor, and the SDA

control structure is centralized. The prototype is built using C++ and is currently running on

a cluster of workstations, supported by the p4 [4] portable primitives for parallel execution.

To test the feasibility of our method invocation design, we have successfully implemented

and executed two SDA programs using this prototype: a simple stack manipulation program

and the MDO application for aircraft design introduced in Section 2.1.

To explain the details of our prototype implementation, we present the SDA stack

example, which provides several public methods, such as push, pop, and top. Each method is

guarded by a condition clause to ensure that the stack does not overflow or underflow. For

example, the pop and top methods may only be invoked when the stack is non-empty, while

the push may only be executed so long as the stack is not at its maximuna size. If a task

12



TYPE SDA-stack-pop-stub ()

{

send-message-to-SDA (POP)

receive-message-from-SDA (result)

return(result)

bool SDA-stack-pop-condition ()

{

return (stack-height > O)

}

generic SDA-stack-pop-method()

{

.result = pop-from-private-stack ()

return (result)

}

Figure 8: Three fuuctions needed to implen_ent the SDA stack method pop

thread sends a request to pop an empty stack, the condition clause will evaluate to false and

the method will be enqueued until tile condition clause can be satisfied. When (perhaps at

a later time) another task thread sends a push request to the same stack and, assuming the

stack is not full, its condition clause will evaluate to true, the push will be executed, and an

acknowledgment returned to the caller. The condition for the blocked pop will now evaluate

to true since the stack is now non-empty, and the resulting value returned to its caller in an

acknowledgment message.

Each SDA method is compiled into three fmwtions:

1. the method function, which embodies the method code itself as specified by the pro-

gral]lln er,

2. the conditioT_ function, which is a boolean function that evaluates the guarded condition

clause, and

3. the stub function, which provides the inethod's public interface to the task threads and

is used to access the SDA method function from a remote processor.

Figure 8 depicts the pseudocode for the SDA stack method pop. When a task inakes a

method call, it is actually invoking the stub routine for the specified method, which marshals

the arguments into a buffer, sends a generic message to the SDA master, and awaits a reply.

Each message consists of (1) the name of the method to be invoked, (2) the callers address

(used for the reply message), and (3) the method arguments.

13



qlist[O].cond_ptr

int push_conditionO

\
qlist[0]

qlist[ 1]

qlist[2]

qlist[3]

eoo

qlist[O] .method ptr

int push(void*)

/

@t t • PUSH

@l _ • TOP

oo_

qentry qentry qentry

I] 12'a drI

I void args I_ [void args

Figure 9: Tile queue list data structure used in the stack SDA prototype

Each SDA master is a thread which waits for messages from task stubs and takes

appropriate action as specified by the message. The master incorporates a data structure

analogous to that shown in Figure 9 for the stack SDA. Tim data structure consists of a list

of queues, one for each method, and associated with each method queue are poin(ers to its

condition and method functions. Both fimctions are called using the single generic argument

pbinter that was created by the stub code and sent with the method invocation request. The

condition function always returns a boolean, whereas the method function returns a generic

value that is sent back to the stub function. Along with pointers to the method and condition

functions, each method queue also contains a list of outstanding method invocation requests,

represented by the message received from the stub routine.

The algorithm in Figure 10 depicts the main loop of the SDA master. On receiving a
message from a task stub routine, the SDA master executes the associated condition function

to deterlnine if the method can be executed. If the condition function returns false, the

method is enqueued in the appropriate list. Otherwise, the associated method function is

executed and the results returned to the caller through the stub routine. Since the execution

of any method may change the SDA state, the condition functions associated with any

enqueued SDA methods are reevaluated and the methods whose conditions evaluate to true

are executed. This reevaluation of condition functions is repeated until no further methods

can be executed, at which time the master continues waiting for further messages from stub
routines.
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Sda-mast er ()

{

do forever

m = wait-for-message ();

(m.condition (m.arg) == true)if

{

result = m.method (m.arg);

return-result-to-caller (result, m.caller);

repeat

(

for each method queue do

{

while condition of queue i is true

{

m = get-first-method-in-queue (i)

result = m.method (m.arg)

return-result-to-caller (result, m.caller)

}

}

} until no methods are executed in a single pass

}

else

enqueue-message (m);

Figure 10: Pseudocode for tile main loop of an SDA master

4.1 Preliminary Results

In order to quantify the overhead of our method invocation design, we 1)et'formed the follow-

ing experiment:

1. We first measured the round-trip message delay of our network using p4. This provides

the basis for comparing our other results, since in all cases a single message is passed

from the calling stub to a master thread, and back to the calling stub.

2. Next, we encoded a version of our SDA stack routines using a simple remote procedure

call mechanism, but without the complicated SDA master algorithm and queue struc-

tures. This is done by performing a sequence of pushes and pops without checking

for underflow/overflow conditions. Since our SDA method must do at least this much

work, this test represents a lower bound to the execution of our SDA stack.

15



3.

4.

Next, we timed our prototype SDA implementation performing a series of alternating

pushes and pops. However, although the conditions are evaluated for each method,

they always evaluate to true and so we never enqueue any methods. This test is

designed to highlight the overhead associated with packing and unpacking messages

from tile stubs and evaluating condition routines.

Finally, we timed our SDA stack prototype using a series of alternating pushes and

pops, but this time we simulate each method function evaluating false on the first

time, true on the second. This forces the SDA master to enqueue the arriving method,

then retrieve the method, re-evaluate its condition function, and finally complete its

execution. This test is designed to measure the overhead associated with manipulating

the method queues.

Each of the four tests consisted of inultiple trials of 10,000 complete method calls, and

each trial was timed (including message delays) to determine the average time required for a

method call (or a round-trip message in the case of test #1). The different trials were then

averaged together to achieve confidence intervals of 95%. All tests were performed under

similar conditions on a set of Sun Sparcstation 10 workstations with low traffic.

The outcome of the tests, presented in Figure 4.1, yield the following empirical results:

the basic R.PC mechanism adds only 1.7% overhead to the basic round-trip message

time (test #1 vs. test #2), where the relative overhead of test #2 to test #1 is

computed as: (tt,_st#2 -tt_st#1)/l_test#t. Remaining overheads are computed similarly.

the overhead for marshaling messages and executing condition functions adds only

1.7% overhead to the basic RPC mechanism (test #3 vs. test #2), which is 3.4%

overhead as compared with the basic round-trip message time (test #3 vs. test #1);

the overhead for manipulating the method queue structures is 2.3% (test #4 vs. test

#3), so the overhead for the entire SDA method invocation mechanism adds only 4.0%

overhead to the basic RPC mechanism (test #4 vs. test #2), which is only 5.8%

overhead when compared with round-trip message time (test #4 vs. test #1).

We acknowledge that some overheads may be obscured by tile large round-trip message

latency of the p4 package, and that a leaner message passing interface may yield higher

overheads, and we are currently in the process of porting our prototype to other platforms,

such as the Paragon. We plan to report on these results in the final version of this paper.

5 Conclusions and Future Research

We have introduced a mechanism for integrating task and data parallelism by extending the

HPF definition with a set of primitives for defining and controlling parallel tasks and shared
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data abstractions (SDAs). We focus on the runtime support necessary, to support such a

system, and provide design details for the two segments of the runtime support: distributed

data structures and method invocation using monitor and guarded condition semantics.

In particular, we describe the implementation of our method invocation design as a C+ +

prototype capable of executing SDA and task codes with centralized SDA control and data

structures. Using this prototype we have implemented and executed two systems employing

task parallelism and SDAs: a simple stack program which performs randomized pushes and

pops, and a multidisciplinary optimization (MDO) application for aircraft design. Both

codes execute on a cluster of workstations using p4 as the communication library.

Using our prototype implementation, we have measured the expected overhead of our

method invocation design and have found that our design adds little overhead to a stripped-

down RPC version of the same test, which we feel is a realistic lower bound for remote

method invocation. We plan to expand our results on the overheads of method invocation

for the final version of the paper.
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W'e are currently in the processof incorporating tile Chant runtime system into our
prototype, which will give us the capability to exerciseour distributed SDA data structure
designs,as well as full support of our parallel tasks and portalfility to a large number of
platforms, including the Paragon and KSR-1. From the experiencesand results of our
prototype, wearemakingmodificationsto the SDAsyntax andsemantics,andareworkingon
a source-to-sourcetranslator that will take HPF programsaugmentedwith our SDA syntax
and producecodethat will executeon distributed memorymultiprocessorsand workstation
clusters. Finally, weare working with severalapplicationsgroups to developrealistic MDO
codesthat will provide the true test of our designs.
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