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Preface

This document provides a comprehensive description of LSODE, a solver for

initial value problems in ordinary differential equation systems. It is intended to

bring together numerous materials documenting various aspects of LSODE,

including technical reports on the methods used, published papers on LSODE,
usage documentation contained within the LSODE source, and unpublished notes

on algorithmic details.

The three central chapters--on methods, code description, and code usage--are

largely independent. Thus, for example, we intend that readers who are familiar

with the solution methods and interested in how they are implemented in LSODE

can read the Introduction and then chapter 3, Description of Code, without

reading chapter 2, Description and Implementation of Methods. Similarly, those

interested solely in how to use the code need read only the Introduction and then

chapter 4, Description of Code Usage. In this case chapter 5, Example Problem,

which illustrates code usage by means of a simple, stiff chemical kinetics problem,
supplements chapter 4 and may be of further assistance.

Although this document is intended mainly for users of LSODE, it can be used

as supplementary reading material for graduate and advanced undergraduate

courses on numerical methods. Engineers and scientists who use numerical

solution methods for ordinary differential equations may also benefit from this
-document.
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Chapter 1

Introduction

This report describes a FORTRAN subroutine package, LSODE, the Livermore

Solver for Ordinary Differential Equations, written by Hindmarsh (refs. 1 and 2),
and the methods included therein for the numerical solution of the initial value

problem for a system of first-order ordinary differential equations (ODE's). Such

a problem can be written as

1- --

Y(_0) = Y0 = Given,]

(1.1)

where y, Y0' Y-"and :[are column vectors with N(> l) components and _ is the

independent variable, for example, time or distance. In component form equa-

tion (1.1) may be written as

dYi(_) - f/(Yl(_) ..... YN(_)'_)

Yi(_O) = Yi.o = Given

i = 1..... N. (1.2)

The initial value problem is to find the solution function y at one or more values

of t in a prescribed integration interval [_--_,_nd], where the initial value of Y, Y0
at _ = _ is given. The endpoint, _nd, may not be known in advance as, for

example, when asymptotic values of y as _ _ _ are required.

Initial value, first-order ODE's arise in many fields, such as chemical kinetics,

biology, electric network analysis, and control theory. It is assumed that the
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problem is well posed and possesses a solution that is unique in the interval of

interest. Solution existence and uniqueness are guaranteed if, in the region of

interest, f is defined and continuous and for any two vectors y and y* in that
region there exists a positive constant _£ such that (refs. 3 and 4)- -

which is known as a Lipschitz condition. Here I1°11denotes a vector norm (e.g.,

ref. 5), and the constant _ is known as a Lipschitz constant of:[ with respect to y.
The right-hand side £of the ODE system must be a function of y and _ only. it

cannot therefore involve y at previous _ values, as in delay or retarded ODE's or

integrodifferential equations. It cannot also involve random variables, as in

stochastic differential equations. A second- or higher-order ODE system must be

reduced to a first-order ODE system.

The solution methods included in LSODE replace the ODE's with difference

equations and then solve them step by step. Starting with the initial conditions at

_0, approximations Y--n, (= Yi,n, i = I,...,N) to the exact solution Y(_n) [= Yi(_n),

i = 1 ..... N] of the ODE's are generated at the discrete mesh points"_ (n = 1,2,...),

which are themselves determined by the package. The spacing between any two

mesh points is called the step size or step length and is denoted by hn, where

hn = _n - _n-l" (!.4)

An important feature of LSODE is its capability of solving "stilT' ODE problems.

For reasons discussed by Shampine (ref. 6) stiffness does not have a simple
definition involving only the mathematical problem, equation (1.1). However,

Shampine and Gear (ref. 7) discuss some fundamental issues related to stiffness

and how it arises. An approximate description of a stiff ODE system is that it

contains both very rapidly and very slowly decaying terms. Also, a characteristic

of such a system is that the NxN Jacobian matrix J (= 3£/_y), with element Jij
defined as

J6 = _'/OYJ' i,j = 1..... N, (1.5)

has eigenvalues {_,i} with real parts that are predominantly negative and also vary

widely in magnitude. Now the solution varies locally as a linear combination of
the exponentials {e_ReO'_)}, which all decay if all Re(7_i ) < 0, where Re(Z,/) is the

real part of L i. Hence for sufficiently large _ (> l/maxlRe(Z,i) I,where the bars l.[

denote absolute value), the terms with the largest Re(Li) will have decayed to

insignificantly small levels while others are still active, and the problem would be

classified as stiff. If, on the other hand, the integration interval is limited to

1/maxIRe(_,i) ], the problem would not be considered stiff.
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In this discussion we have assumed that all eigenvalues have negative real

parts. Some of the Re(_,i) may be nonnegative, so that some solution components

are nondecaying. However, the problem is still considered stiff if no eigenvalue

has a real part that is both positive and large in magnitude and at least one

eigenvalue has a real part that is both negative and large in magnitude (ref. 7).
Because the {Xi} are, in general, not constant, the property of stiffness is local in

that a problem may be stiffin some intervals and not in others. It is also relative in
the sense that one problem may be more stiff than another. A quantitative

measure of stiffness is usually given by the stiffness ratio max[-Re(Xi)]/min

[-Re(Xi)]. This measure is also local for the reason given previously. Another
standard measure for stiffness is the quantity max[-Re(Xi)] _end - _,0. This

measure is more relevant than the previous one when l_end - _01 is a better

indicator of the average "resolution scale" for the problem than I/min[-Re(Xi)].

(In some cases min[-Re(Xi)] = 0.)

The difficulty with stiff problems is the prohibitive amounts of computer time

required for their solution by classical ODE solution methods, such as the popular

explicit Runge-Kutta and Adams methods. The reason is the excessively small

step sizes that these methods must use to satisfy stability requirements. Because

of the approximate nature of the solutions generated by numerical integration

methods, errors are inevitably introduced at every step. For a numerical method

to be stable, errors introduced at any one step should not grow unbounded as the

calculation proceeds. To maintain numerical stability, classical ODE solution

methods must use small step sizes of order I/max[-Re(Xi)] even after the rapidly

decaying components have decreased to negligible levels. Examples of the step

size pattern used by an explicit Runge-Kutta method in solving stiff ODE problems

arising in combustion chemistry are given in references 8 and 9. Now, the size of

the integration interval for the evolution of the slowly varying components is of
order I/min[-Re(_q)]. Consequently, the number of steps required by classical

methods to solve the problem is of order max[-Re(Xi)]/min[-Re(Xi)], which is

very large for stiff ODE's.
For stiff problems the LSODE package uses the backward differentiation

formula (BDF) method (e.g., ref. 10), which is among the most popular currently

used for such problems (ref. 1 l). The BDF method possesses the property of stiff

stability (ref. 10) and therefore does not suffer from the stability step size constraint

once the rapid components have decayed to negligible levels. Throughout the

integration the step size is limited only by accuracy requirements imposed on the

numerical solution. Accuracy of a numerical method refers to the magnitude of

the error introduced in a single step or, more precisely, the local truncation or

discretization error. The local truncation error _J_at _n is the difference between

the computed approximation and the exact solution, with both starting the

integration at the previous mesh point _n-l and using the exact solution Y(_n-l)
as the initial value. The local truncation error on any step is therefore the error

incurred on that step under the assumption of no past errors (e.g., ref. 12).

The accuracy of a numerical method is usually measured by its order. A
method is said to be of order q if the local truncation error varies as hq+l. More
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precisely, a numerical method is of order q if there are quantities C and ho (> O)
such that (refs. 3 and 13)

_ q+l for all 0 < hn < ho, (1.6)]dn < C_hn

where I_] is an N-dimensional column vector containing the absolute values of

the di, n (i = I,...,N). The coefficient vector C may depend on the function defining
the ODE and the total integration interval, but it should be independent of the step

size hn (ref. 13). Accuracy of a numerical method refers to the smallness of the

error introduced in a single step; stability refers to whether or not this error grows

in subsequent steps (ref. 7).

To satisfy accuracy requirements, the BDF method may have to use small step

sizes of order 1/max(Re I il) in regions where the most rapid exponentials are

active. However, outside these regions, which are usually small relative to the

total integration interval, larger step sizes may be used.

The LSODE package also includes the implicit Adams method (e.g., refs. 4 and

10), which is well suited for nonstiff problems. Both integration methods belong

to the family of linear multistep methods. As implemented in LSODE these

methods allow both the step size and the method order to vary (from 1 to 12 for
the Adams method and from 1 to 5 for the BDF method) throughout the problem.

The capability of dynamically varying the step size and the method order is very

important to the efficient use of linear multistep methods (ref. 14).

The LSODE package consists of 21 subprograms and a BLOCK DATA module.

The package has been designed to be used as a single unit, and in normal
circumstances the user needs to communicate with only a single subprogram, also

called LSODE for convenience. LSODE is based on, and in many ways resembles,

the package GEAR (ref. 15), which, in turn, is based on the code DIFSUB, written

by Gear (refs. 10 and 16). All three codes use integration methods that are based

on a constant step size but are implemented in a manner that allows for the step

size to be dynamically varied throughout the problem. There are, however, many
differences between GEAR and LSODE, with the following important

improvements in LSODE over GEAR: (1) its user interface is much more

flexible; (2) it is more extensively modularized; and (3) it uses dynamic storage
allocation, different linear algebra modules, and a wider range of error types (ref.

17). Most significantly, LSODE has been designed to virtually eliminate the need

for user adjustments or modifications to the package before it can be used
effectively. For example, the use of dynamic storage allocation means that the

required total storage is specified once in the user-supplied subprogram that
communicates with LSODE; there is no need to adjust any dimension declarations

in the package. This feature, besides making the code easy to use, minimizes the

total storage requirements; only the storage required for the user's problem needs
to be allocated and not that called for by a code using default values for parameters,
such as the total number of ODE's, for example. The many different capabilities

of the code can be exploited quite simply by setting values for appropriate



1. Introduction

parameters in the user's subprogram. Not requiring any adjustments to the code
eliminates the user's need to become familiar with the inner workings of the code,

which can therefore be used as a "black box," and, more importantly, eliminates

the possibility of errors being introduced into the modified version.
The remainder of this report is organized as follows: In chapter 2 we describe

the numerical integration methods used in LSODE and how they are implemented

in practice. The material presented in this chapter is based on, and closely
follows, the developments by Gear (refs. 10 and 18 to 20) and Hindmarsh (refs. 1,

2, 15, 2I, and 22). Chapter 3 describes the features and layout of the LSODE

package. In chapter 4 we provide a detailed guide to its usage, including possible
user modifications. The use of the code is illustrated by means of a simple test

problem in chapter 5. We conclude this report with a brief discussion on code

availability in chapter 6.





Chapter 2

Description and Implementa-
tion of Methods

2.1 Linear Multistep Methods

The numerical methods included in the packaged code LSODE generate
approximate solutions](_, to the ordinary differential equations (ODE's) at discrete

points _ (n = 1,2,...). Assuming that the approximate solutions Xn-j have been

computed at the mesh points __j (j = 1,2,...), these methods advance the solution
to the current value _ of the independent variable by using linear multistep
formulas of the type

Kl K 2

Y.=Z_jx.-j +h.E_jf..
j=! j=O

(2.1)

where the current approximate solution vector Y_nconsists of N components,

__Y.= (rl,......rN,.)T, (2.2)

and the superscript T indicates transpose. In equation (2.1), fn-j [= f(X_n-j)] is the

approximation to the exact derivative vector at _n-j, Y_"(_,n--j) [= f( Y (_n-j))], where
for notational convenience the _ argument off has been dropped;_he coefficients

{txj} and {_j} and the integers KI and K2 are associated with a particular method;

and hn (= _n - q-l) is the step size to be attempted on the current step [__b_._n].

The method is called linear because the {Yj} and {5} occur linearly. It is called
multistep because it uses information from several previous mesh points. The
number max(Kl, K2) gives the number of previous values involved.

The values KI = 1 and K2 = q - 1 produce the popular implicit Adams, or
Adams-Moulton (AM), method of order q:

plt_ltO_G PAGE BLANK ,NOT FILMED
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q-I

Yn = Y--n-1 + hn Z_jf--n-j"

j=0

(2.3)

The method is called implicit because it uses the as yet unknown f-n to compute

](-n. The method order q means that if equation (2.3) is solved with all past values

being exact, the resulting X_nwill differ from the exact solution y(_) to the ODE
system by a local truncation error that is of order O(H q+!) for snTall values of H =

max[hk[.
The choice KI = q, Kz = 0 results in the backward differentiation formula

(BDF) method of order q:

q

___.= _.,%_Y,,_j + h.13of,,.
j=l

(2.4)

The term "backward differentiation formula" is used to describe the method

because equation (2.4), upon division by hnl]o and rearrangement of terms, can be

regarded as an approximation for _'(_n) in terms of](.n, X_n-I ..... -Y-n--q(refs. 15

and 17).

The two methods can be written in the general form

Y---n = _--n + hn_Jofn = _n + hJJ°f(Y--n)" (2.5)

where _n contains previously computed information and is given by

q-I

___.= X,,-i + h..____13jf._j
j=l

(2.6a)

for the AM method of order q, and

q

j=l

(2.6b)

for the BDF method of order q.

The coefficients {o_)} and {13j} are determined such that equations (2.3) and

(2.4) will be exact if the solution to equation (1. I) is a polynomial of degree q or
less. Stability characteristics limit q in equation (2.4) to 6 (ref. 10). In LSODE,

however, BDF's of order up to only 5 are used because of additional stability

considerations (refs. 7 and 23). The coefficients {ctj} and {[_j} for the two
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methods are given by Gear (ref. 10) for q <_6. In equation (2.5), although the

subscript n has been attached to the step size h, indicating that hn is the step size to

be attempted on the current step, the methods used in LSODE are based on a

constant h. When the step size is changed, the data at the new spacing required to

continue the integration are obtained by interpolating from the data at the original

spacing. Solution methods and codes that are based on variable step size have

also been developed (refs. 17, 23, and 24) but are not considered in the present
work.

2.2 Corrector Iteration Methods

If _0 = 0, the methods are called explicit because they involve only the known

values {Y---n-j}and {_..j}, and equation (2.1) is easy to solve. If, however,
[30 _ 0, the methods are called implicit and, in general, solution of equation (2.1) is

expensive. For both methods, equations (2.3) and (2.4), I_0 is positive for each q
and because f is, in general, nonlinear, some type of iterative procedure is needed

to solve equation (2.5). Nevertheless, implicit methods are preferred because they

are more stable, and hence can use much larger step sizes, than explicit methods

and are also more accurate for the same order and step size (refs. 4, 10, and 12).

Explicit methods are used as predictors, which generate an initial guess for X_n_

The implicit method corrects the initial guess iteratively and provides a reasonable

approximation to the solution of equation (2.5).
The predictor-corrector process for advancing the numerical solution to

therefore consists of first generating a predicted value, denoted by X.,_0], and then

correcting this initial estimate by iterating equation (2.5) to convergence. That is,

starting with the initial guess d °], approximations _[,_m] (m = 1,2,...,M) are

generated (by using one of the techniques discussed below) until the magnitude of

the difference in two successive approximations approaches zero within a specified

accuracy. The quantity X._ml is the approximation obtained on the mth iteration,

the integer M is the number of iterations required for convergence, and we accept

X__MI as an approximation to the exact solution y at _, and therefore denote it by

](-n although, in general, it does not satisfy equation (2.5) exactly.

At each iteration rn the quantity hn_n'_[m],which is defined here, is computed

from X__m] by the relation

, = _n + v0",±n • (2.7)

Now, as discussed by Hindmarsh (ref. 21) and shown later in this section, ifX._ ml

converges as m ---' oo, the limit, that is, lira y_m], must be a solution of
m-'4_

equation (2.5) and _m] converges to _ [= -f(Yn)], the approximation to Y_'(_n)-
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Hence hn y_[nml is the ruth estimate for hnf_ and lim hn_[n m] = hnf_n. The predicted

value ofhn_f, denoted by h _,10l is also obtained from equation (2.7) (by setting
tl--tl s

m = 0). In practice, we terminate the calculation sequence at a finite number M of

iterations and accept as an approximation to hr_f the quantity hn _r n - h ylM]
-- --n_-n Y

which is obtained from y___[M]by using equation (2.7). Note that --Ynis only an

approximation to fn because _M] does not, in general, satisfy equation (2.5)

exactly (see eqs. (2.5) and (2.7)). Moreover, because _M] is defined to satisfy

the solution method, in the sense of equation (2.7), it is not necessarily equal to

f(x__MI). Therefore X._M] and _,[MI do not necessarily satisfy the ODE, equa-

tion (1.1). Thus, in practice, to advance the solution, the methods use the {_j } (e.g.,

see eqs. (2.8a) and (2.8b)), rather than the {_)} as written in equation (2.1).

After convergence of the estimates y__[m],we could define _[nM] to be equal to

f(___M]), so that _M] and _[nMI satisfy the ODE exactly. However, besides being

more expensive because it will require one derivative evaluation, performing this

operation is actually less stable for stiff equations than using equation (2.7)

(ref. 25).

The predicted value at _n, _y_0l, is generated by a qth-order explicit formula

similar to equations (2.3) and (2.4) (refs. 18 and 20):

q

- v._,+h. (28a)
j=,

for the AM method of order q and

q

Y[nO] = Z o_jYn_j + hn_;Y__n_ I (2.8b)

j=l

for the BDF method of order q. In these two equations Y---n-j is the approximation

to f-.n-j computed on the step [_n-j-l,_n-j]. The coefficients {_]} and {13j*}are
selected such that equation (2.8a) or (2.8b) will be exact if the solution to

equation (1.1) is a polynomial of degree q or less.

The predictor step for the two methods can be generalized trivially as

y_[O] ,
n = _n' (2.9)

where _* is given by the right-hand sides of equations (2.8a) and (2.8b),

respecti_'e']y, for the AM and BDF methods.

i0
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To correct the initial estimate given by equation (2.9), that is, to solve

equation (2.5), LSODE includes a variety of iteration techniques--functional,

Newton-Raphson, and a variant of Jacobi-Newton.

2.2.1 Functional Iteration

To derive the functional iteration technique, also called simple iteration

(refs. 11 and 26) and successive substitution (ref. 27), we rewrite equation (2.5) as
follows:

--

where

O_(Yn) = _. + hn_of(Y_n). (2.11)

The (m + 1)th estimate, y___[m+ll(m = 0,1 ..... M-l), is then obtained from

equation (2.10) by (e.g., ref. 27)

n --- = _n + hn[lOf Y-"m]

Now equation (2.7) gives the following expression for h _r[m+l]

_lyim@I] = ---_n-t- _ohn_ [m+ll.

Comparing equations (2.12) and (2.13) gives

/?[m+l] = hnf(y[nm])hn -=-n

for functional iteration.

We now define the vector function g(y) by

(2.13)

(2.14)

--n - y

g(Y) = hnf(Y) + _0 (2.15)

which, upon using equation (2.7), gives
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g(Yn[ml) = hnf(Y[,m]) - hnY_[ml. (2.16)

By using equation (2.15) we can rewrite the functional iteration equation (2.12) as
follows:

n = ---Yn + 130_gY • (2.17)

Finally the combination of equations (2.14) and (2.16) produces the following

functional iteration procedure for hnXn :

h ,_,[m+l] = hn_,n]+ g(y_m]) (2.18)/I -7- n __ "

Equation (2.17) is simple to use, but it converges only linearly (ref. 27). In

addition, for successful convergence the step size may be restricted to very small

values for stiff problems (refs. 4, 10, 12, 26, and 28), as shown here. By using

equation (2.14) we can rewrite equation (2.16) as

g<y_rall = hnf(y_ml)-hnf(Y[nm-'l), (2.19)

for m >_1. Hence, equation (2.17) can be rewritten as

n -._-- n -- --

By using the Lipschitz condition, equation (1.3), we get the following relation

from equation (2.20):

:1< [hn o y[m]y m-I],
which shows that the iteration converges, that is, the successive differences

12

(2.21)
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hn]_o_£ < I. (2.22)

Now stiff problems are characterized by, and often referred to as systems with,

large Lipschitz constants (e.g., refs. 4, 12, and 26), and so equation (2.22) restricts

the step size to very small values. Indeed, the restriction imposed by this

inequality on hn is exactly of the same form as that imposed by stability requirements
on classical methods, such as the explicit Runge-Kutta method (refs. 4 and 26).

For this reason, when functional iteration is used, the integration method is

usually said to be explicit even though it is implicit (ref. 17).

2.2.2 Newton-Raphson Iteration

Newton-Raphson (NR) iteration, on the other hand, converges quadratically

and can use much larger step sizes than functional iteration (refs. 27, 29, and 30).

Rapid improvement in the accuracy of the estimates is especially important

because the corrector is iterated to convergence. The reason for iterating to

convergence is to preserve the stability characteristics of the corrector. If the

correction process is terminated after a fixed number of iterations, the stability
characteristics of the corrector are lost (refs. 4 and 12), with disastrous consequences

for stiff problems.

To derive the NR iteration procedure, we rewrite equation (2.5) as

R--(Yn) = Y--n- _--n- hn_of(Y-n) = O, (2.23)

so that solving equation (2.5) is equivalent to finding the zero of R. The quantity
R(X._m]) is the residual vector on the mth iteration; that is, it is the amount by

which X._ml fails to satisfy equation (2.5). To obtain the (m + 1)th estimate, we

expand equation (2.23) in a Taylor series about the mth estimate, neglect the
second and higher derivatives, and set R(_ [m+l]) = 0 because we seek a X__m+ll

that produces this result (e.g., ref. 27). Performing these operations and then

rearranging terms give the following relation for the NR iteration technique:

p(__y[nm+l] _ y._ml)=. R(y_m]) = _n + hn_of(y_m])_ y___m],

(2.24)

where the NxN matrix P is given by

P = OR/OY = I - hn_oJ. (2.25)

13



2. Description and Implementation of Methods

In equation (2.25), I is the NxN identity matrix and J is the Jacobian matrix,

equation (1.5). Comparing equations (2.15) and (2.23) shows that

R(Y) = -130g(Y), (2.26)

so that equation (2.24) can be rewritten as follows:

y_m+l] = y_m] + 130P-lg(__.y_m]). (2.27)

The NR iteration procedure for hn_n is derived by subtracting equation (2.7)

from equation (2.13) and then using equation (2.27). The result is

This iteration will converge provided that the predicted value is sufficiently

accurate (refs. 4 and 12). The prediction method, equation (2.9), provides a

sufficiently accurate initial estimate that the average number of iterations per step

is less than 1.5 (ref. 7). In fact, the predictor is generally as accurate as the
corrector, which is nonetheless needed for numerical stability. However, much

computational work is required to form the Jacobian matrix and to perform the

linear algebra necessary to solve equation (2.27). Now, because the Jacobian does

not appear explicitly in the ODE's, equation (1.1), or in the solution method,

equation (2.5), J need not be very accurate. Therefore, for problems in which the

analytical Jacobian matrix is difficult or impossible to evaluate, a fairly crude

approximation such as the finite-difference quotient

Jij = AYj , i, j = 1..... N, (2.29)

is adequate. In equation (2.29), AYj is a suitable increment for thejth component

of X.
Inaccuracies in the iteration matrix may affect the rate of convergence of the

solution but not the solution if it converges (refs. 4 and 21). Hence this matrix

need only be accurate enough for the iteration to converge. This beneficial fact

can be used to reduce the computational work associated with linear algebra, as

described in chapter 3.

14



2.2.3 Jacobi-Newton Iteration

2.2. Corrector Iteration Methods

Jacobi-Newton (JN) iteration (ref. 31), also called Jacobi iteration (ref. 32), is

obtained from Newton-Raphson iteration by neglecting all off-diagonal elements
of the Jacobian matrix. Hence for JN iteration

O, i¢j

Jij = [Ofi/Oyj, i= j.
(2.30)

This technique is as simple to use as functional iteration because it does not

require any matrix algebra. Also, it converges faster than functional iteration but,

in general, not as fast as NR iteration.

A method closely resembling JN iteration is implemented as a separate method

option in LSODE. It is like JN iteration in that it uses a diagonal approximation D

to the Jacobian matrix. However, the diagonal elements Dii are, in general,

different from Jii and are given by the difference quotient

Dii = f/(Y + AY) - fi(Y), i= 1..... N, (2.31)

[0]
where the increment vector AY = 0.1130g (_._). If J is actually a diagonal matrix,

Dii = Jii + O(Ay2), but, in general, Dii effectively lumps together the various

elements {J/j} in row i of J.

2.2.4 Unified Formulation

The different iteration methods can be generalized by the recursive relations

_y_m+l] = -=nY[ml+ _0P-lg(y[nm])__ (2.32)

and

p-i (y[m])
h _,[m+l] = h y[m] + (2.33)n---n "n-:n g[,--n '

where P depends on the iteration method. For functional iteration P = I, and for

NR and JN iterations P is given by equation (2.25), where J is the appropriate

Jacobian matrix, equation (1.5), (2.30), or (2.31).
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2. Description and Implementation of Methods

The combination of equations (2.32) and (2.33) gives

y[m+l] y[m] hn[_ (y__.'n[m+l] ,yn[m] )n -.:---n = 0 -- ' (2.34)

which shows that if X,_m] converges as m ---) oo, so does 2Inm] . Equation (2.32)

shows that if_ m] converges (to :Y-.n)as m --_ _, g(_ra]) ___)0, and therefore we

see from equations (2.15) and (2.16), respectively, (I) that the converged solution

satisfies equation (2.5) and (2) that _[nm] --->[(Y-Y-n)= _n.

The predictor-corrector methods can be summarized as follows:

Predictor:

_v_; 1y[O] _

h ,_[0] ----n lg n

• "12--/2 _ _0 "

(2.35)

Corrector:

g(----Yn[m]) -- hnf_(y[n m] ) - hn£[ m]

y[m+l] = y[m] + fl0p-lg(y[m])n

h,,_l,n+q = hn_[m ] + p-lg(y[m])

m=0,1 ..... M-I.

(2.36)

. [M]
__Y_= ±_

hn¢.ni , ¢ [M]__ = nn l_.n •

(2.37)
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2.3 Matrix Formulation

2.3 Matrix Formulation

The implementation of linear multistep methods is aided by a matrix formulation

(ref. 21). This formulation, constructed by Gear (ref. 18), is summarized here.

To solve for Y,n and hnY_nbY using equations (2.35) to (2.37), we need, and

therefore must have saved, the L = q + 1column vectors_y_n_i, hnY--n-l, hn _n-2 .....

and hn2n_ q for the AM method of order q, or _,n_l, _,n-2 ..... _n-q, and hn_n_ I

for the BDF method of order q. Hence for the AM method of order q we define

the NxL history matrix wn-i at _n-I by

Wn_ l = (Y__n_l,hn_n_l,hn_n_2 ..... hn'Yn_q), (2.38a)

that is,

Wn-I

( Yl,n-I

Y2,n-1

=

YN, n-!

hnYl,n-1 hnYl,n-2 .... hnYl,n- q

hn}Z2,n-1 hn_'2,n- 2 .... hn]Z2,n_q

hn]ZN,n- l hn]ZNn- 2 .... hnYN, n_ q

(2.39)

The updated matrix

w n = (Y_.n,hnYn,hnY_n_ 1..... hn_n_q+l) (2.40a)

is then constructed at each step _n. The predicted matrix wn[0] at _n is given by

= [y[0] • [01 . •win0] hnY n ,hn Yn_1 ..... hn Y n_q+l ].

For the BDF method of order q these matrices take the form

Wn-1 = (Y--n-l, hn'i_n-l, Y---n-2..... Y---n-q)'

Wn = (Yn'hnY---n'Yn-I ..... ---Yn-q+l)'

(2.41 a)

(2.38b)

(2.40b)
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2. Description and Implementation of Methods

and

Y[nOl,hn'C[[n0],Yn 1, ,Yn q+l(....... __ ) (2.41b)

The matrix formulations for w_[°l and wn are derived as follows: Substituting

the expression for X__°l, equation (2.8a) or (2.8b), into that for h y[0l equa-

tion (2.35), and then using equation (2.6a) or (2.6b) give

Y-?:mt -- --

for the AM method of order q and

(2.42a)

_I * lS_h.?. l• , lOl ,etj - ¢tj

nnI"Ln = j=l _, _0 Yn-i + [3O _ _ (2.42b)

for the BDF method of order q. Equations (2.8a) and (2.42a), or (2.8b) and

(2.42b), that is, the prediction process, can be rewritten as the matrix equation

10] Wn_lB, (2.43)W n =

where the LxL matrix B depends on the solution method. For the AM method of

order q, it is given by

18

B

1 0 0 0 0 0"

ft_ fl_ fl_ 1 o o o
rio

_2 2 132 o I o o
_o

_q-I _q-1 _q-I 0 0
_o

13q Pq 0 0
_o

1

0 1

0 0

(2.44a)



and for the BDF method of order q,

2.3 Matrix Formulation

g_

, 0_ -- _1

51 [30

• 13L

• 0¢2 -- 0:2

¢X2 130

• _3- 0_3

_¢3 90

* _q-1 -- _q-I

_q-I _0

* _q -- _q

O_q [_0

1 0 0

0 0 0 0

0 1 0 0

0 0 1 0

.....

0 0 0 1

0 0 0 0

(2.44b)

The corrector equation, equation (2.36), can be expressed in matrix form as

[re+l] Ira] p-i (y [m]'_
W n =Wn + g[--n ) _' (2.45)

where wn[m], the history matrix on the mth iteration, is given by

w[m] =(Y[m],hn_[nm],hnY---.n-I ..... hnYn q+l ) (2.46a)

for the AM method and by
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2. Description and Implementation of Methods

Ira] (vim] l, +[m] v v
Wn =_ _--n ,"nln ,--_n-l,'",--_n-q+l J (2.46b)

for the BDF method, /_ is the L-dimensional vector

.....0),

and P depends on the iteration technique, as described in section 2.2.4.
The matrix formulation of the methods can be summarized as follows:

Predictor:

(2.47)

Corrector:

W_ ]-- Wrl_l g. (2.48)

(y Ira] [m] • [m] ]

_ [m] -1 [m] /[m+l] --Wn + P g(Y'n )---W n

m = 0,1 ..... M - 1. (2.49)

w n = winMI. (2.50)

2.4 Nordsieck's History Matrix

Instead of saving information in the form Wn-l, equation (2.38a) or (2.38b),

Gear (ref. 18) suggested making a linear transformation and storing the matrix

Zn_1 given by

zn_ 1 = wn_lQ, (2.51)

where the LxL transformation matrix Q is nonsingular. In particular, Q is chosen

such that the matrix representation suggested by Nordsieck (ref. 33) is obtained:

(2.52)

= 20



that is, the NxL matrix zn_ 1 is given by

2.4 Nordsieck's History Matrix

Zn_ I =

Yl,n-I hnYl,n-1 hq v(q)
....... "_. q,n-I

Y2,.-, hnY2,n-1 h_ v(q)
....... -_-.i _2,n-i

h.q
hnYN,n-! _q)VN,n-! ....... _, N,n-I

q'

(2.53)

In equation (2.53),l_z'!n_l is thejth derivative of the approximating polynomial for

Yi,n--1. Because scaled derivatives h_Y(Dn_l/j! are used, Q is independent of the

step size. However, Q depends on the solution method. The N rows of Zn_l are

numbered from 1 to N, so that the ith row (i = 1,...,N) contains the q + 1 scaled

derivatives of the ith component, Yi,n--l, of__n-l- The q + 1 columns are, however,

numbered from 0 to q, so that the column number corresponds to the order of the

scaled derivative stored in that column. Thus the jth column (3"= 0, I ..... q), which
we denote by the vector/,n-l(/'), contains the vector hJn_Y__llj!. The Nordsieck
matrix formulation of the method is referred to as the "normal form of the

method" (ref. 10).

Applying the appropriate transformation matrix Q to the predictor equation,

equation (2.48), gives

zn[0l = w_°lQ = Wn_lB Q = zn_IQ-1BQ = Zn_lA, (2.54)

where

[01 (.[0] ,,' [0] h2 "'[Ol h..___nq[Ol(q)1Zn = £n ,nnLn '2-'T-Y'n ..... q! --Y.n ,
(2.55)

is the predicted NxL Nordsieck history matrix at _ and
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2. Description and Implementation of Methods

A = Q-IBQ. (2.56)

The LxL prediction matrix A provides a qth-order approximation to Zn[°l in terms

of Zn_l and is therefore the lower-triangular Pascal triangle matrix (ref. 10), with

element Aij given by

io, i <j
Aij = (: _ i,j = 0,1 ..... q, (2.57)

, i>_j

(;)is,',e',inomia,coef cient oOn.

Hence

= j!(i-j)!" (2.58)

A =

Q 0 0 0 ......

1 1 0 0 ......

1 2 I

1 3 3 1 0 . . .

0 0

I q-2 _ (q- 2Xq- 3Xq-4)
2! 3! ...... I

1 q-1 _ (q-lXq-2Xq-3)
21 3! ...... (q-D I

q(q - I) q(q - IXq - 2) q(q- I)
1 q 2[ 3! ...... 2! q

O"

(2.59)

The principal advantage of using the Nordsieck history matrix is that the matrix

multiplication implied by equation (2.54) can be carried out solely by repeated

additions, as shown by Gear (ref. 10). Hence computer multiplications are
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2.4 Nordsieck's History Matrix

avoided, resulting in considerable savings of computational effort for large
problems. Also A need not be stored and z[°l overwrites Zn_ l, thereby reducing

memory requirements.
Because

i+1) = (jill+ (_) (2.60)j+l) +

andAii =Aio = 1 for all i, the product zA is computed as follows (refs. 10 and 15):

For k=0,1 ..... q-I, do:

For j=q,q-1 ..... k+l, do:
Zi, j_ 1 4-Zi.j+Zi, j_l, i=l ..... N.

(2.61)

In this equation the subscripts n and n-1 have been dropped because the z values

do not indicate any one value of _ but represent a continuous replacement process.

At the start of the calculation procedure given by equation (2.61), z = Zn_l; and at

the end z = z[°l. The arrow "4-" denotes the replacement operator, which means

overwriting the contents of a computer storage location. For example,

Zi,3 4-- Zi,4 + Zi,3

means that zi,4 is added to Zi,3 and the result replaces the contents of the location

zi,3. The total number of additions required in equation (2.61) is Nq(q + 1)/2. The
predictor step is a Taylor series expansion about the previous point _-i and is

independent of both the integration method and the ODE.
Another important advantage of using Nordsieck's formulation is that it makes

changing step size easy. For example, if at _ the step size is changed from hn to
rhn, the new history matrix is obtained from

z n _-- ZnC, (2.62)

where the LxL diagonal matrix C is given by

C_-

r 2

0 r q

(2.63)
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2. Description and Implementation of Methods

The rescaling can be done by multiplications alone, as follows:

R=I

For j=l ..... q, do:

R <---rR

Zi, j 4---Zi,jR, i=I ..... N.

The corrector equation corresponding to equation (2.49) is given by

zn[m+|] : wn[m+ll Q = w[nm]Q+ pMig(yI[nm]) _Q = z[nm] + p i, g(Z _ ]) _ '

where z[nm], the Nordsieck history matrix on the mth iteration, is given by

zn[m] =(y[ml h _/'[ml h2__ng:[nm] hq,c[m](q) )_--n , n-n ' 2! ...... q! "--n

and

is an L-dimensional vector

(2.64)

(2.65)

(2.66)

f = hQ (2.67)

__= (_0,_1 ..... _q). (2.68)

For the two solution methods used in LSODE the values of Q are derived in

references 21 and 22 and reproduced in tables 2.1 and 2,2. Methods expressed in

the form of equations (2.54) and (2.65) are better described as multivalue or L-

value methods than multistep methods (ref. 10) because it is the number L of

values saved from step to step that is significant and not the number of steps
involved.

The two matrix formulations described here are related by the transformation
equations (2.51), (2.54), and (2.65) and are therefore said to be equivalent

(ref. 10). The equivalence means that if the step [_n-I,_n] is taken by the two

methods with equivalent past values Wn-I and Zn_l, that is, related by equa-

tion (2.51) through Q, then the resulting solutions w n and zn will also be related

by equation (2.51) through Q, apart from roundoff errors (ref. 21). The

transformation does not affect the stability properties or the accuracy of the
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2. Description and Implementation of Methods

TABLE 2.2.--METHOD COEFFICIENTS FOR BACKWARD

q _0

1 1 1

2 ] !2 -
3 3 3

11 11 11

z4 so 36 IO4
50 50 50 50

12o 27_._4 22is s_A5
274 274 274 274

720 1764 1624 736
6 _ ;76---_ 1764 176---_" _ '

DIFFERENTIATION FORMULA METHOD IN
NORMAL FORM OF ORDERS 1 TO 6

I_I _2 13 ] It4 _5 It6

I_.
60

274 274

176 2.._LI. _ ,
1764 1764

1
1764

method, but roundoff properties and computational effort depend on the
representation used, as discussed by Gear (ref. 10).

The first two columns ofzn and wn are identical (see eqs. (2.38a), (2.38b), and

(2.52)), and so Q0 = 130and Ql = 1. For the same reason the corrector iteration

procedures for Y---nand hn_,_ remain unchanged (see eqs. (2.45), (2.47), and
(2.65)). However, to facilitate estimation of the local truncation error, a different

iteration procedure than that given by equation (2.65) is used. To derive the new
formulation, z_m+]l is written as

or

ZnIra+l] =/'n-Ira+l] -- Z[nm]+ ZnIra] -- _'n-[m-l] +... + Zn[1] _ zn[O] + Zn[O]

[m+l] [0]
z n = z n + zn -/+ll - z n (2.69)

Substituting the difference zff +11 - znffl obtained from equation (2.65) into equa-

tion (2.69) produces

_Ira+l| [0] + '_-' p-I ] [0] [m+U-z n =z n g Y = z n + e n __, (2.70)

j=0

where en[m+_l is defined as
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en

It is clear from this equation that

2.4 Nordsieek's History Matrix

_p-! :ytil_
= 2-, _g_,--n )" (2.71)

j=0

[m+l] [m] / [nm])en =% +p-lg y . (2.72)

Equation (2.70) can be used to rewrite _g(X.,_m]),equation (2.16), as follows:

-gt-"J -- _ -e., (2.73)

because l]I = 1.

Finally, because only the first two columns of zn enter into the solution of equa-

tion (2.5), the successive corrections can be accumulated and applied to the

remaining columns of zn after convergence. Clearly, not updating all columns of

the Nordsieck history matrix after each iteration results in savings of computational

effort, especially when a high-order method is used and/or the number of ODE's

is large. For additional savings of computer time the history matrix is updated

only if both (I) the iteration converges and (2) the converged solution satisfies

accuracy requirements.

The predictor-corrector formulation utilized in LSODE can be summarized as
follows:

Predictor:

[0l zn-iAz n

[Ol
-gn = O.

(2.74)

Corrector:

gt.-. )- tml "tOl t,,,l

tm+,l lml+.-lg(_1)e n = e n Y

y[nm+l] , [0] _Ira+l/-- = X--n + _0 -e0

m=0,1 ..... M-I. (2.75)
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2.Description and Implementation of Methods

= °l +

(2.76)

2.5 Local Truncation Error Estimate and Control 1

The local truncation error is defined to be the amount by which the exact

solution Y(_) to the ODE system fails to satisfy the difference equation of the

numerical method (refs. 4, 10, 12, and 26). That is, for the linear multistep
methods, equation (2.1), the local truncation error vector _ at _n is the residual in

the difference formula when the apj_roximations {Yj} and {fj.} are replaced by the
exact solution and its derivative: In LSODE, however, the basic multistep

formula is normalized by dividing it by

K 2

j=0

IAlthough the corrector convergence test is performed before the local truncation error

test (which is done only if the iteration converges), we discuss the accuracy test first
because the convergence test is based on it.

2As discussed in chapter 1, another commonly used definition for the local truncation

error is that it is the error incurred by the numerical method in advancing the approximate
solution by a single step assuming exact past values and no roundoff errors (refs. 12, 13,
and 21). That is, On is the difference between the numerical approximation Y* obtained by

using exact past values (i.e., { Y(_n-j)} and { "_y(__j)}) and the exact solution y(_):

D

dn = Yn -_y(_n ), (2.77)

where,'for example,

* q h *

j=l

for the BDF method of order q. For an explicit method the local truncation error given by
equation (2.77) and that obtained by using the definition given in the text above (i.e., the
residual of eq. (2.1)) have the same magnitude. However, for an implicit method the two
quantities are only approximately proportional to one another (ref. 4), although they agree
asymptotically in the limit of small step size.
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2.5 Local Truncation Error Estimate and Control

for reasons given by Henrici (ref. 29) and Gear (ref. 10); however, see Lambert

(ref. 4). For example, the BDF method of order q, equation (2.4), can be

expressed in this form as

0 = Y._j + h.f n,
j=o\ o )

(2.79)

where tx0 = - 1. The local truncation error for this method is then given by

(2.80)

where d_nconsists of N components

dn = (dl.n ..... dN.n) T, (2.81)

If we assume that each Yi (i = 1,,..dr-) possesses derivatives of arbitrarily high

order, each Yi(_n-4) (i = 1..... N; j = 1..... q) in equation (2.80) can be expanded in a
Taylor series about _n. Upon collecting terms the resulting expression for dn can

be stated compactly as

k=O

(2.82)

where the {Ck} are constants (e.g., ref. 10). A method is said to be of order q if

CO= C! ..... Cq = 0, and Cq+l _ O. The local truncation error is then given by

d_.= +O(hq+2). (2.83)

where the terms Cq+l and Cq+lh q+l Y(q+X)(_n) are, respectively, called the error

constant and the principal local truncation error (ref. 4). In particular, for the BDF

method of order q in the normalized form given by equation (2.79) (refs. 22
and 29)

1

Cq+l q + 1" (2.84a)

For the implicit Adams method of order q in normalized form (ref. 22)
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2. Description and Implementation of Methods

= ,lifo(q + 1) -%+, Qo(q), (2.84b)

where t_o(q) and 1_o(q + 1) are, respectively, the zeroth component of the coefficient
vectors for the AM method in normalized form of orders q and (q + 1).

The (q + 1)th derivative at _, y(q+l)(_), is estimated as follows: As discussed
in section 2.4, at each step the solution method updates the Nordsieck history

matrix zn:

• 2 .. hnqy(q)l

..... j (2.85)

For either method of order q the last column of Zn,/,n(q), contains the vector

hq_._q)/q!, which is the approximation to hq y (q)(_._n)/q!. Now the prediction step

being a Taylor series method of order q do_ not alter the last column of Zn_ 1,
namely the vector hqv(q)n-,,-n-_'lal't.. Hence the last column of z[0l, z[n°l(q), contains the

vector hqY(q)_l/q!. The difference, _q) - _0](q), is given by

q+l

hnq (q, hnq v(q, = hl,__' y(q+l, +O(hnq+2 )Zn(q)-z[Onl(q) = "_. Y---n q! "--n-i q! --n
(2.86)

by using the mean value theorem for derivatives. However, equation (2.76) gives

the following expression for/,n(q) - zn[01(q):

z[0]Zn(q) --n (q) = Qqe-n" (2.87)

Equating equations (2.86) and (2.87) gives the following approximation for

hq+ly_.n(q+l) if higher-order terms are neglected:

q+l . (q+l)
hn &n ---q!_qen. (2.88)

Substituting this equation into equation (2.83) and neglecting higher-order terms

give the following estimate for _:

dn = Cq+lq! _qe n. (2.89)

In order to provide for user control of the local truncation error, it is normalized

by the error weight vector EWT n, with element EWTi, n defined by
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2.5 Local TruncationError Estimate and Control

EWTi, n = RTOLi[Yi, n_I[+ ATOLi, (2.90)

where the user-supplied local relative (RTOLi) and absolute (ATOLi) error toler-

ances for the ith solution component are discussed in chapter 4. The solution X.n

is accepted as sufficiently accurate if the following inequality is satisfied:

[[dnl[- _< 1, (2.91)

where 1[°1[denotes the weighted root-mean-square (rms) norm, which is used for

reasons discussed by Hindmarsh (ref. 15). Equation (2.91) can be rewritten as

1 ei,n
- , (2.92)

by using equation (2.89). If we define the test coefficient "c(q,q) as

1

'_(q, q) = Cq+lq! Qq (2.93)

the accuracy test, equation (2.92), becomes

Ile.II

If we further define the quantity Dq by

the accuracy test reduces to

x(q,q). (2.94)

(2.95)

?

Dq < 1. (2.96)

The reason for using two variables in the definition for x will become apparent
when we discuss step size and method order selection in section 2.7.
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2.DescriptionandImplementationofMethods
2.6 Corrector Convergence Test and Control

The test for corrector convergence is independent of both the integration

method and the iteration technique and is determined by the magnitude of the
• [ml h ylm-llsuccessive differences hnY n -"n_n . To provide for user control of the

.[m-q
convergence process, the difference hn_[nm] -hnY___n is normalized by the

error weight vector EW'I]n, equation (2.90). Now, equation (2.33) provides the

' [m-l]
following expression for hn_[nml - hnY n :

h _r[m] _hn_([m-l] =/_[m] (2.97)

where we have replaced P-! g (y_._[m-II)by ._ml. Now, because

1m+ll Z S_J_en =

j=o

?

(see eq. (2.71)) and the test on ]¢.n]is ]gn] < X(q,q), equation (2.94), the following

test for convergence

N 5tin1

i___l[ _,n I S X(q,q_____) (2.98)_"m = N EWTi, n 2(q + 2)

is consistent with the local truncation error test. The empirical factor 2(q + 2) in

equation (2.98) guarantees that the implicit equation (2.5) is solved to greater
accuracy than that required of the numerical solution (refs. 22 and 25).

To increase computational efficiency, especially when the iteration is clearly

not converging, LSODE uses the following convergence test instead of equa-
tion (2.98):

?

te m < "_(q' q) (2.99)
2(q + 2)

The quantity ejn is related to Em by

• • •

Em = Em ram(l, 1.5c m), (2.100)
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where
2.7 Step Size and Method Order Selection and Change

cm = max(0.2Cm_ 1,c m) (2.101)

and

Cm = Em/Em_ I (2.102)

is the estimated convergence rate (refs. 22 and 25). Clearly at least two iterations

are required before Cmcan be computed. For the first iteration cjn is set equal to

the last value of Cm from the previous step. For the first iteration of the very first

step and, in the case of NR or JN iteration, after every update of the Jacobian

matrix, Cm is set equal to 0.7. Equation (2.100) assumes that the iteration

converges linearly, that is, lim (Era+l/Era) = finite constant c, and essentially

anticipates the magnitude of I_mone iteration in advance (ref. 15). Equation

(2.101) shows that the convergence rate of the latest iteration is given much more

weight than that of the previous iteration. The rationale for this decision is

discussed by Shampine (ref. 25), who examined various practical aspects of

implementing implicit methods.

2.7 Step Size and Method Order Selection

and Change

Periodically the code attempts to change the step size and/or the method order

to minimize computational work while maintaining prescribed accuracy. To

minimize complications associated with method order and step size selection, the

new order q' is restricted to the values q - l, q, and q + l, where q is the current

order. For each q' the step size h'(q) that will satisfy exactly the local error bound

is obtained by assuming that the highest derivative remains constant. The method

order that produces the largest h' is used on the next step, along with the

corresponding h', provided that the h' satisfies certain restrictions described in

chapter 3.

For the case q'= q, h'(q) is computed by setting Dq(h') (= value of Dq for step
size h) = 1 (see eq. (2.96)), so that the local accuracy requirement is satisfied

exactly. Then because dn varies as h q+l (see eq. (2.83)), we get

or

1

h<q I,lq+,
rs.me=: ) '

(2.103)
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2. Description and Implementation of Methods

where r is the ratio of the step size to be attempted on the next step to its current

value. The subscript "same" indicates that the same order used on the current step
is to be attempted on the next step.

For the case q' = q - 1, _(q - 1) is of order q, where the variable q - 1 indicates
the method order for which the local truncation error is to be estimated, and

dn( q - l) = CqhqnY_(q)(_n), (2.104)

where Cq = [Q0(q) - Q0(q - l)l for the AM method and 1/q for the BDF method

(refs. 22 and 29). Now, the last column ofz n, Zn(q) , contains the vector hqn__Jnq)/q!

(see eq. (2.85)), and so O_n(q- 1) is easily calculated. On using the rms norm,

equation (2.91), the error test for q'= q - 1 becomes

q_ i,n 7

"_ EWTi, n < 1.
(2.105)

If we define the test coefficient "c(q,q - 1) as 1/Cqq!, equation (2.105) can be
written as

N 2
1 Zin(q)

Oq_] -_
x(q,q-l) x(q,q-1)

!, (2.106)

where Zi,n(q) is the ith element of zn(q). The first variable in the definition for x
gives the method order used on the current step. The second variable indicates the
method order for which the local truncation error is to be estimated.

The step size h'(q - I) to be attempted on the next step, if the order is reduced to

q - 1, is obtained by using exactly the same procedure that was utilized for the

case q' = q, that is, by setting Dq_l(h) = 1. Because d_n(q - t) varies as hq, the
resulting step size ratio rdown is given by

1

.q,,. qrdown - -7-- = . (2.107)

The subscript "down" indicates that the order is to be reduced by I.
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2.7 Step Size and Method Order Selection and Change

For the case q' = q + 1 the local truncation error dn(q + 1) is of order q + 2 and is

given by

.q+2 (q+2)._.
dn(q+l)=Lq+2n n Y tqn), (2.108)

where Cq+ 2 = I f0(q + 2) - Q0(q + l)l for theAM method and ll(q + 2) for the BDF
method (refs. 22 and 29). This case is more difficult than the previous two cases

because equation (2.108) involves the derivative of order q + 2. The derivative

y(q+2)(_n) is estimated as follows. Equation (2.88) shows that the vector _qf,n is

proximately proportional to hq+lx__q+l)/q!. We difference the quantity _qe

over the last two steps and use the mean value theorem for derivatives to get

_qVe_n - _qe_n-- _qen_ I =--

q+l q+l
h n y(q+l) h n v(q+l)

---n ---_n-1
q! q!

q+2

hn y(q+2)+ O(hq+3)--_ Tnn
(2.109)

Hence the error test for q' = q + 1 becomes

l l--_ICq+2q!QqVei'nllNi=1 _ EWTi, n ,) _<1, (2.110)

where we have again used the rms norm and Vei, n is the ith component of Ven. If

we define the test coefficient "c(q,q + 1) as ll(Cq+2q! Qq), the error test, equa-

tion (2.110), can be rewritten as

l N 2

1_( Vein "_

Dq+ ! --- < 1. (2.111)
X(q, q + 1)

To solve for h'(q + 1), we use the same procedure as for h'(q) and h'(q - 1). The

resulting ratio rup is given by
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2.Description and Implementation of Methods

1

h'(q+l) (1 / q+2

rup_- hn =L._) " (2.112)

The subscript "up" indicates that the order is to be increased by 1.

After a suitable value for the step size ratio r has been computed, the step size

h' to be attempted next is calculated:

h' = rhn. (2.113)

If the step size and/or the method order is changed, the Nordsieck history
matrix has to be modified. For the case q' = q and h' _ hn, the q + 1 columns of zn

are scaled, as described in section 2.4 (see eqs. (2.62) to (2.64)). For the case

q'= q - 1 and h'¢: hn, the same scaling is performed on the first q columns; the last

column of the old zn is ignored because it is not needed on subsequent steps.

If q' -- q_ + 1, zn must be augmented by a column containing the vector
(h')q+ly._(q+l)/(q + 1 )[. The column addition is done in two stages. First, by using
equation (2.88) we derive the following expression for hq+l_q+l)l(q + 1)!:

q+l q!O.qe n _qenhn y(q+l) _= =
(q+l)! =n (q+l)! q+l

(2.114)

and the new column, _z,n(q+ 1), is given by

_qen
Zn(q+l)=--. (2.115)

q+l

Second, in order to account for any change in the step size, all q + 2 columns ofz n
are rescaled as before.

Another factor that must be considered if the step size and/or method order is

changed is that the iteration matrix P, equation (2.25), may be altered even if the

Jacobian matrix is current. To minimize convergence failures caused by an

inaccurate P, it must be updated if the coefficient hl_ has changed significantly
since the last evaluation of P.

2.8 Interpolation at Output Stations

It frequently happens that the user requires the solution at values _out,1,

_out,2 .... of the independent variable other than the internally generated {_n }. It is
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2.8 Interpolation at Output Stations

therefore important that in implementing the solution method provision be made

for the efficient computation of the solution at the required output stations.

Moreover, the procedure used for these computations should not adversely affect

the efficiency of the integration beyond the output station. Such a situation arises,

for example, if the method has to adjust the step size to "hit" the output station

exactly. Because the Nordsieck history array is used to store past history

information, the solution can be generated at the output stations quite easily, as

described next.

For each _out the integration is continued until the first mesh point n for which

_n > _out, and then the solution at _out is obtained by interpolation. Now the

solution and its scaled derivatives up to order q'n+l are available at _n. Here q'n+l

is the order to be attempted on the next step, that is, [_n,_.an+l]. Hence the solution

at Gout, Y(_out), is computed by using a (qh+l)th-order Taylor series expansion

about _n and is given by

(_out - _n) 2 _r n
Y(_out) = Yn + (_out - _n)_n + 2' --

(_out--_n) qn+l y(qn+l' q'_+l(_°ut-_n) k g(k)

+ • • - + (qn+l) ! -=n = k=0 k! ---n "

(2.116)

If we define the quantity r by

I

r- -.",
t

h n+l

(2.1 17)

where h'n+t is the step size to be attempted on the next step, equation (2.116) can

be rewritten as

/ _t k
q_+l

k _hn+l) y(k) (2.118)
Yv_out / =(_ _ 2_r k! ---n"

k=0

Now

, k
(hn+l) (k)

k! Yn

is the kth column 7,n(k) of Zn, and so equation (2.118) can be expressed compactly

as
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2. Description and Implementation of Methods

q'_+l

k=O

(2.119)

Because the solution is accurate to order q'n+l at _ and a (q'n+l)th-order Taylor

series expansion is used to compute Y(_ut), the latter is also accurate to order

qn+l.

The solution at _out, equation (2.119), can be evaluated by additions and

multiplications alone by using Homer's rule (ref. 13):

_(tout) = Zi,n(q'n+l),

tout- t.
r- --

t

h n+l
t

For k=l ..... qn+l' do:

• i r

k - qn+l -- k

_',(too,)

i= 1..... N.

_--- zi, n (k') + rYi.( ) itout, = 1..... N.

(2.120)

The Taylor series expansion method can be used to compute the solution

derivative of any order (up to q'n+l) at tout- For example, the Bth-derivative at
tout,--Y(it)(_out), is given by

-it

(_out ,_n)q'n-I y!q',+l)£"'({o.t)---_'+({on,-{°_£"+"+ + _q_-),

q'n+l rk-it ",

=_ : -_(h.+,)'-it£_, (2.121)

v(k) k!zn(k)/(h'n+l) k into equa-upon using equation (2.117). Substituting _ =
tion (2.121) produces

k_

Y0a)(_out) = l q_rk-it (k_B) zn(k ). (2.122)
(h'n+l)it k=it
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2.9 Starting Procedure

2.9 Starting Procedure

At the outset of the integration, information is available at only the initial point

t0. Hence multistep methods cannot be used on the first step. The difficulty at

the initial point is resolved easily by starting the integration with a single-step,
first-order method. The Nordsieck history matrix z0 at G0 is constructed from the

initial conditions Y0 and the ODE's as follows:

z0(0) - Yo = Y0 (2.123)

and

Zo(1 ) -=h0_ 0 = h0 f(yo,_0 ), (2.124)

where h0 is the step size to be attempted on the first step.

As the integration proceeds, the numerical solutions generated at the points _I,

_2 .... provide the necessary values for using multistep methods. Hence, as the

numerical solution evolves, the method order and step size can be adjusted to

their optimal values by using the procedures described in section 2.7.
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Chapter 3

Description of Code

3.1 Integration and Corrector Iteration Methods

The packaged code LSODE has been designed for the numerical solution of a

system of first-order ordinary differential equations (ODE's) given the initial

values. It includes a variable-step, variable-order Adams-Moulton (AM) method

(suitable for nonstiff problems) of orders 1 to 12 and a variable-step, variable-

order backward differentiation formula (BDF) method (suitable for stiff problems)

of orders 1 to 5. However, the code contains an option whereby for either method

a smaller maximum method order than the default value can be specified.

Irrespective of the solution method the code starts the integration with a first-

order method and, as the integration proceeds, automatically adjusts the method

order (and the step size) for optimal efficiency while satisfying prescribed accuracy

requirements. Both integration methods are step-by-step methods. That is,

starting with the known initial condition Y(_0) at _, where y is the vector of
dependent variables, _ is the independent variable, and Go is its initial value, the

methods generate numerical approximations X.n to the exact solution y (_n) at the
discrete points _n (n = [,2,..) until the end of the integration intervalqs reached.

At each step [_-I,_] both methods employ a predictor-corrector scheme, wherein

an initial guess for the solution is first obtained and then the guess is improved

upon by iteration. That is, startin_ with an initial guess, denoted by X._0l,
successively improved estimates _tmJ (m = 1..... M) are generated until the iteration

converges, that is, further iteration produces little or no change in the solution.

Here _nm] is the approximation computed on the mth iteration, and M is the

number of iterations required for convergence.

A standard explicit predictor formula--a Taylor series expansion method devised

by Nordsieck (ref. 33)--is used to generate the initial estimate for the solution. A

range of iteration techniques for correcting this estimate is included in LSODE.

Both the basic integration method and the corrector iteration procedure are identified

by means of the method flag MF. By definition, MF has the two decimal digits
METH and MITER, and
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3. Description of Code

TABLE 3.1.--SUMMARY OF INTEGRATION METHODS INCLUDED IN LSODE
AND CORRESPONDING VALUES OF METH,

THE FIRST DECIMAL DIGIT OF MF

METH Integration method

1 Variable-step, variable-order, implicit Adams method of orders I to 12

2 Variable-step, variable-order, implicit backward differentiation formula
method of orders I to 5

TABLE 3.2.--CORRECTOR ITERATION TECHNIQUES AVAILABLE IN LSODE

AND CORRESPONDING VALUES OF MITER,
THE SECOND DECIMAL DIGIT OF MF

MITER Corrector iteration technique

b4

b5

Functional iteration

Modified Newton iteration with user-supplied analytical Jacobian

Modified Newton iteration with internally generated numerical Jacobian
Modified Jacobi-Newton iteration with internally generated numerical

Jacobian a

Modified Newton iteration with user-supplied banded Jacobian

Modified Newton iteration with internally generated banded Jacobian

aModified Jacobi-Newton iteration with user-supplied analytical Jacobian can be

performed by specifying MrlT__.R= 4 and ML = MU = 0b(i.e., a banded Jacobian
with bandwidth of 1).

bThe user must specify the lower (ML) and upper (MU) half-bandwidths of the
Jacobian matrix.

MF = 10 x METH + MITER, (3.1)

where the integers METH and MITER indicate, respectively, the integration

method and the corrector iteration technique to be used on the problem. Table 3. i

summarizes the integration methods included in LSODE and the appropriate

values for METH. The legal values for MITER and their meanings are given in

table 3.2. The iteration procedures corresponding to MITER = 1 to 5 are

described as modified Newton iteration techniques because the Jacobian matrix is

not updated at every iteration.

3.2 Code Structure

The double-precision version of the LSODE package consists of the main core

integration routine, LSODE, the 20 subprograms CFODE, DAXPY, DDOT,

DGBFA, DGBSL, DGEFA, DGESL, DSCAL, DIMACH, EWSET, IDAMAX,

INTDY, PREPJ, SOLSY, SRCOM, STODE, VNORM, XERRWV, XSETF, and
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3.2 Code Structure

XSETUN, and a BLOCK DATA module for loading some variables. The single-

precision version contains the main routine, LSODE, and the 20 subprograms

CFODE, EWSET, IN'IDY, ISAMAX, PREPJ, R1MACH, SAXPY, SDOT,

SGBFA, SGBSL, SGEFA, SGESL, SOLSY, SRCOM, SSCAL, STODE,

VNORM, XERRWV, XSETF, and XSETUN. The subprograms DDOT,
D IMACH, IDAMAX, ISAMAX, R1MACH, SDOT, and VNORM are function
routines--all the others are subroutines. The subroutine XERRWV is machine

dependent. In addition to these routines the following intrinsic and external

routines are used: DABS, DFLOAT, DMAXI, DMIN1, DSIGN, and DSQRT

by the double-precision version; ABS, AMAX1, AMIN1, FLOAT, SIGN, and

SQRT by the single-precision version; and MAX0, MIN0, MOD, and WRITE

by both versions.

Table 3.3 lists the subprograms in the order that they appear in the code and

briefly describes each subprogram. Among these, the routines DAXPY, DDOT,

DGBFA, DGBSL, DGEFA, DGESL, DSCAL, IDAMAX, ISAMAX, SAXPY,

SDOT, SGBFA, SGBSL, SGEFA, SGESL, and SSCAL were taken from the

LINPACK collection (ref. 34). The subroutines XERRWV, XSETF, and

XSETUN, as used in LSODE, constitute a simplified version of the SLATEC

error-handling package (ref. 35).

The structure of the LSODE package is illustrated in figure 3.1, wherein a line

connecting two routines indicates that the lower routine is called by the upper one.

For subprograms that have different names in the different versions of the code,

both names are given, with the double-precision version name listed first. Also,

the names in brackets are dummy procedure names, which are used internally and

passed in call sequences. The routine F is a user-supplied subroutine that computes

the derivatives dyi/d _ (i = 1..... N), where Yi is the ith component of y and N is the

number of ODE's. Finally, the user-supplied subroutine JAC computes the

analytical Jacobian matrix J (= _[/_y), where f = dy/d_.

The code has been arranged as much as possible in a "modular" fashion, with

different subprograms performing different tasks. Hence the number of

subprograms is fairly large. However, this feature aids in both understanding and,

if necessary, modifying the code. To enhance the user's understanding of the

code, it contains many comment statements, which are grouped together in blocks

and describe both the task to be performed next and the procedure to be used. In
addition, each subprogram includes detailed explanatory notes, which describe

the function of the subprogram, the means of communication (i.e., call sequence

and/or common blocks), and the input and output variables.

Each subprogram contains data type declarations for all variables in the routine.

Such declarations are useful for debugging and provide a list of all variables that

occur in a routine. This list is useful in overlay situations. For each data type the

variables are usually listed in the following order: variables that are passed in the
call sequence, variables appearing in common blocks, and local variables, in

either alphabetical order or the order in which they appear in the call sequence and
the common blocks.
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TABLE 3.3.--DESCRIPTION OF SUBPROGRAMS USED IN LSODE

Subprogram

Double-

precision

version

LSODE

INTDY

STODE

CFODE

PREPJ

SOLSY

EWSET

VNORM

SRCOM

D l MACH

XERRWV

XSETF

XSETUN

DGEFA

DGESL

DGBFA

DGBSL

DAXPY

DSCAL

DDOT

IDAMAX

Single-

precision

version

LSODE

INTDY

STODE

CFODE

PREPJ

SOLSY

EWSET

VNORM

SRCOM

RIMACH

XERRWV

XSETF

XSETUN

SGEFA

SGESL

SGBFA

SGBSL

SAXPY

SSCAL

SDOT

ISAMAX

Description

Main core integration routine. Checks legality of input,

sets work array pointers, initializes work arrays, com-

putes initial integration step size, manages solutions

of ODE's, and returns to calling routine with solution

and errors.

Computes interpolated values of the specified derivative

of the dependent variables.

Advances the solution of the ODE's by one integration

step. Also, computes step size and method order to be

attempted on the next step.

Sets method coefficients for the solution and test con-

stants for local error test and step size and method order
selection.

Computes the iteration matrix and'either manages the

subprogram call for its LU-decomposition or computes
its inverse.

Manages solution of linear system arising from chord
iteration.

Sets the error weight vector.

Computes weighted root-mean-square norm of a vector.

Saves and restores contents of common blocks LS0001

and EH0001.

Computes unit rotmdoff of the computer.

Handles error messages.

Resets print control flag.

Resets logical unit number for error messages.

Performs LU-decomposition of a full matrix by Gaussian

elimination.

Solves a linear system of equations using a previously

LU-decomposed full matrix.

Performs LU-decomposition of a banded matrix by
Gaussian elimination.

Solves a linear system of equations using a previously

LU-decomposed banded matrix.

Forms the sum of one vector and another times a

constant.

Scales a vector by a constant.

Computes dot product of two vectors.

Identifies vector component of maximum absolute value.
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3. Description of Code

3.3 Internal Communication

Communication between different subprograms is accomplished by means of

both call sequences and the two common blocks EH0001 and LS0001. The

reason for using common blocks is to avoid lengthy call sequences, which can

significantly deteriorate the efficiency of the program. However, common blocks

are not used for variables whose dimensions are not known at compilation time.

Instead, to both eliminate user adjustments to the code and minimize total storage

requirements, dynamic dimensioning is used for such variables.
The common blocks, if any, used by each subprogram are given in tables 3.4

and 3.5 for the double- and single-precision versions, respectively. These tables

also list all routines called and referenced (e.g., an external function) by each

subprogram. Also, to facilitate use of LSODE in overlay situations, all routines

that call and reference each subprogram are listed. Finally, for each subprogram

the two tables give dummy procedure names (which are passed in call sequences

and therefore have to be declared external in each calling and called subprogram)
in brackets.

The variables included in the two common blocks and their dimensions, if

different from unity, are listed in table 3.6. The common blocks contain variables

that are (1) local to any routine but whose values must be preserved between calls

to that routine and (2) communicated between routines. The structure of the block
LS0001 is as follows: All real variables are listed first, then all integer variables.

Within each group the variables are arranged in the following order: (1) those
local to subroutine LSODE, (2) those local to subroutine STODE, and (3) those

used for communication between routines. It must be pointed out that not all

variables listed for a given common block are needed by each routine that uses it.

For this reason some subprograms may use dummy names, which are not listed in

table 3.6.

To further assist in user understanding and modification of the code, we have

included in table 3.6 the names of all subprograms that use each common block.

For the same reason we provide in tables 3.7 and 3.8 complete descriptions of the

variables in EH0001 and LS0001, respectively. Also given for each variable are
the default or current value, if any, and the subprogram (or subprograms) where it

is set or computed. The length LENWM of the array WM in table 3.8 depends on
the iteration technique and is given in table 3.9 for each legal value of MITER.

3.4 Special Features

The remainder of this chapter deals with the special features of the code and its

built-in options. We also describe the procedure used to advance the solution by

one step, the corrective actions taken in case of any difficulty, and step size and
method order selection. In addition, we provide detailed flowcharts to explain the

computational procedures. We conclude this chapter with a brief discussion of the

error messages included in the code.
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TABLE 3.4.--ROUTINES WITH COMMON BLOCKS, SUBPROGRAMS, AND

CALLING SUBPROGRAMS IN DOUBLE-PRECISION

VERSION OF LSODE

Subprogram

[Dummy

procedure name]

LSODE

CFODE

DAXPY

DDOT

DGBFA

DGBSL

DGEFA

DGESL

DSCAL

DIMACH

EWSET

IDAMAX

INTDY

PREPJ

IPJAC]

SOLSY

[SLVS]

SRCOM

STODE

VNORM

XERRWV

XSETF

XSETUN

BLOCK DATA

Common blocks

used

LS0001

LS0001

LS0001

LS0001

EH0001 LS0001

LS0001

Subprograms

called and

referenced

DIMACH EWSET

F INTDY JAC

PREPJ SOLSY

STODE VNORM

XERRWV

DAXPY DSCAL

IDAMAX

DAXPY DDOT

DAXPY DSCAL

IDAMAX

DAXPY DDOT

XERRWV

DGBFA DGEFA

F JAC VNORM

DGBSL DGESL

CFODE F JAC

PREPJ SOLSY

VNORM

Calling

subprograms

STODE

DGBFA DGBSL

DGEFA DGESL

DGBSL DGESL

PREPJ

SOLSY

PREPJ

SOLSY

DGBFA DGEFA

LSODE

LSODE

DGBFA DGEFA

LSODE

STODE

STODE

LSODE

EH000 I

EH0001

EH000 I

EH0001 LS0001

LSODE PREPJ

STODE

LSODEINTDY
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TABLE 3.5.--ROUTINES WITH COMMON BLOCKS, SUBPROGRAM S, AND

CALLING SUBPROGRAMS IN SINGLE-PRECISION

VERSION OF LSODE

Subprogram

[Dummy

procedure name]

LSODE

CFODE

EWSET

INTDY

ISAMAX

PREPJ

[PJAC]

RIMACH

SAXPY

SDOT

SGBFA

SGBSL

SGEFA

SGESL

SOLSY

[SLVS]

SRCOM

SSCAL

STODE

VNORM

XERRWV

XSETF

XSETUN

Common blocks

used

LS0001

LS0001

LS0001

LS0001

EH0001 LS0001

LS0001

EH0001

EH000 !

EH0001

Subprograms

called and referenced

EWSET F INTDY

JAC PREPJ

RIMACH SOLSY

STODE VNORM

XERRWV

XERRWV

F JAC SGBFA

SGEFA VNORM

ISAMAX SAXPY

SSCAL

SAXPY SDOT

ISAMAX SAXPY

SSCAL

SAXPY SDOT

SGBSL SGESL

CFODE F JAC

PREPJ SOLSY

VNORM

Calling

,. subprograms

STODE

LSODE

LSODE

SGBFA SGEFA

STODE

LSODE

SGBFA SGBSL

SGEFA SGESL

SGBSL SGESL

PREPJ

SOLSY

PREPJ

SOLSY

STODE

SGBFA SGEFA

LSODE

LSODE PREPJ

STODE

LSODE INTDY
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TABLE 3.6.--COMMON BLOCKS WITH VARIABLES AND

SUBPROGRAMS WHERE USED

Commo_

block

EH0001

LS0001

Variables (dimension)

MESFLG LUNIT

CONIT CRATE EL(13)

ELCO(13, 12) HOLD RMAX

TESCO(3, 12) CCMAX EL0

H HMIN HMXI HU RC TN

U'ROUND ILLIN INIT LYH

LEWT LACOR LSAVF LWM

LIWM MXSTEP MXHNIL

NHNIL NTREP NSLAST

NYH IALTH IPUP LMAX

MEO NQNYH NSLP ICF

IERPJ IERSL JCUR JSTART

KFLAG L METH MITER

MAXORD MAXCOR MSBP

MXNCF N NQ NST NFE

NJ_ NQU

Subprograms where

used

SRCOM XERRWV

XSETF XSETUN

BLOCK DATA"

LSODE INTDY

PREPJ SOLSY

SRCOM STODE

BLOCK DATA"

"Double-precision version only.

TABLE 3.7.--DESCRIPTION OF VARIABLES IN COMMON BLOCK EH0001,

THEIR CURRENT VALUES, AND SUBPROGRAMS WHERE THEY ARE SET

Variable Description

MESFLG

LUNIT

Current Subprogram where

value variable is set

Integer flag, which controls i

printing of error messages from

code and has following values

and meanings:

0 No error message is printed.

1 All error messages are printed.

Logical unit number for messages 6

from code

BLOCK DATA in

double-precision version

and XERRWV in single-

precision version

BLOCK DATA in

double-precision version

and XERRWV in single-

precision version
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TABLE 3.8.--DESCRIFrlON OF VARIABLES IN COMMON BLOCK LS0001, THEIR

CURRENT VALUES, 1F ANY, AND SUBPROGRAMS WHERE

THEY ARE SET OR COMPUTED a

Variable Description

CONIT Empirical factor, 0.5/(NQ + 1)

used in convergence test (see

eq. (2.99))

CRATE Estimated convergence rateof

iteration

EL Method coefficients in normal

form {[i} (see eq. (2.68)), for

current method order

ELCO Method coefficients in normal

form for current method of

orders I to MAXORD

HOLD Step size used on last success-

ful step or attempted on last

unsuccessful step

RMAX Maximum factor by which step

size will be increased when

step size change is next
considered

TESCO Test coefficients for current

method of orders 1 to

MAXORD; used for testing

convergence and local

accuracy and selecting new

step size and method order

CCMAX Maximum relative change

allowed in HxEI.,0 before

Jacobian matrix is updated

EL0 Method coefficient Q0(see

eq. (2.68)) for current method

and current order

H Step size either being used on

this step or to be attempted

on next step

HMIN b Minimum absolute value of step

size to be used on any step
HMXI b Inverse of maximum absolute

value of step size to be used

on any step

HU Step size used on last success-

ful step

Current value,

if any

Normally 10; 104 for very

first step size increase

for problem if no dif-

ficulty encountered; 2

after a failed converg-

ence or local error test

0.3

Subprograms where

variable is set or

computed

STODE

STODE

STODE

CFODE

STODE

STODE

0.0

0.0

CFODE

LSODE

STODE

LSODE

STODE

LSODE

STODE

aNote that some variables appear in the table before they are defined.

bDefault value for this variable can be changed by the user, as described in table 4.6.
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TABLE 3.8.--Continued.

Variable

RC

TN

UROUND

ILLIN

Description

Relative change in HxEL0

since last update of/acobian

matrix

Value of independent variable

to which integrator either has

successfully advanced solution

or will do so after next step

Unit roundoff of computer

Number of consecutive times

LSODE has been called with

illegal input for current

problem

INIT Integer flag (= 0 or 1) that
denotes if initialization of

LSODE has been performed

(IN1T = i) or not (INIT ffi0)
LYH Base address for Nordsieck

history array YH of length

NYHxOdAXORD + I)

LEWT Base address for error weight

vector EWT of length N

LACOR Base address for array ACOR

(of length N) containing local

errors on last succes,_l step

LSAVF Base address for an array

SAVF (of length N), used for

temtx_ary storage

LWM Base address for array WM (of

length LENWMC). requited

for linear algebra associated
with Jaeobian and iteration

matrices

CUITeUI value,

if any

Subprograms where

variable is set or

computed

STODE

STODE

DI MACH in

double-precision
version and

RI MACH in

single-precision
ve_ioll

Initialized in

BLOCK DATA

(double-precision

version)and

I._ODE (single-

precisionversion).

Updated in LSODE
in both versions.

LSODE

21

LWM + LENWM e

LEWT + 2N

LEWT + N

LYH +

NYHx(MAXORD + 1)

LSODE

LSODE

LSODE

LSODE

LSODE

°I'helengthLENWM_the_ayWMdepen_ on theites_i_techniq_and_givenin

table3.9.
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TABLE 3.8.--Continued.

Variable

LIWM

MXSTE_

t_o-iNn,b

NI-INIL

NTREP

NSLAST

NYH

IALTH

Description _

Base addre_-s ffiCi_integer work

array 1WM - .

Maximum number of sie_ps

allowed on my one call to

LSODE . . _.
Maximum number of time_ that

warning message-that Step

size is so small thatTl_l'+ °

H -- TN for nckt step _ "

printed

Number of times that this dif-

ficulty with small step size

has been encountered so far

for problem
Number of eonsecutive _im_es an

initialization or "fast" call

(see table 4.3) has been made

to LSODE with same initial

and final values for integra-

tion interval

Number of ste_ used for

problem prior to current call

to LSODE; used to check that

the limit of MXSTEP steps is

not exceeded

Maximum number of ODE's to

be solved for cur_nt problem

(This number is equal to the

number of ODE's specified on

fwst call to LSODE.)

Integer counter, related to step
size and method order

changes, with followhlg

values and meanings:

0 Select optimal step size and

method order.

1 If NQU < MAXORD, save

vector c (see eqs. (2.76) and

(2.111)) so that an order

increase em be considered

on the next step.

>1 Neither of these two opex-

ations is to be performed.

CuircBt value,

if any

I0

Subprograms where
variable is set or

computed

LSODE

LSODE

LSODE

LSODE

Initialized in

BLOCK DATA

(double-precision

version)and

LSODE (single-

precision

version). Updated

in LSODE in

both versions.

LSODE

LSODE

STODE

bDefault value for this variable can be changed by the user, as described in table 4.6.
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TABLE 3.8.--_ontinued.

Variable

:IPUP

_LMAX

_O

NQNYII

NSLP

IERPJ

IERSL

Description

Integer flag, related to Jacobim

matrix update, with following

values and meanings:

0 lacobian matrix is either

not needed or does not have

to be updated.

>0 Jacobian matrix must be

updated before corrector
iteration.

Maximum number of columns

of Nordsicck history array

Integration method specified on

previous call to LSODE
Number of elementsof

Nordsicck historyre'raythat

are changed by predictor

Step number when lacobian

matrix was lastupdated

An integerflag,relatedtoiter-

ationconvergence, with fol-

lowing values and meanings:

0 Solution converged.

1 Convergence. test failed and
Jacobian matrix is not

cutl_nt.

2 Convergence test failed and
Jacoblan matrix is either

current or not needed.

Integer flag, related to singulm-

ity of iteration matrix, with

following values and

meanings:
0 Iterationmatrixwas suc-

cessfullyLU-decomposed

(MI'rER = I,2,4, or 5) or

inverted (MITER = 3) (see

table 3.2)
1 Iteration matrix was found

to be singular.

Integer flag, related to singular-

ity of intcration matrix modi-
fw,d to account for new

(HxEL0) for MITER = 3 (see

table 3.2). IERSL has fol-

lowing values and meanings:

0 Modified iteration matrix

was suce2asfully inverted

and corrections computed.

1 New matrix was found to be

singular.

Current value,

if any

Subprograms where

variable is set or

computed

MAXORD + 1

NQxNYH

STODE

STODE

STODE

STODE

STODE

STODE

PREPJ

SOLSY
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TABLE 3.8.---Continued.

Variable

JCUR

JSTART

KFLAG

L

METH

MITER

MAXORD b

MAXCOR

MSBP

_)efault valu

Description

Integer flag, related to state of

Jacobim matrix, with fol-

lowin 8 values and meanings:

0 Jacobian matrix is not cur-

rentand may need tobe

updated later.
1 Matrix is current.

Integer flag, used to communi-

catestateofcalculationto

STODE, with following

values and meanings:

0 This is fl_ first step for the

problem.

1 Continue normal calculation

of problem. (This is the value

returned by STODE to

facilitate continuation.)

-I Take the next stepwith new

valuesfor H, MAXORD, N,

METH (seetable3.1),

MITER (seetable3.2),

and/ormauix parameters.

A completioncode from

ffrODE withfollow_ngvalues

and meanings:

0 Stepwas successful.

-I Requesled localac_earacyin

solution could not be

achieved.

-2 Repeated convergence test
faihues ocoured.

Number of columns of

Nordsieck array

Integrationmethod to be used

on nextstep

Iteration technique to be used

on next step
Maximum method ocderto be

used forproblem

Maximum number of corrector

itermiom tobe attemptedon

any one step

Maximum number of steps for
which same Iacobian matrix is

used

NQ+ I

12 for Adams-Moulton

method md 5 for

backward different-

iation formula method

3

20

Subprograms where
variable is set or

computed

PREPJ

STODE

LSODE

STODE

STODE

STODE

I.SODE

1.3ODE

LSODE

LSODE

LSODE

for this variable cm be changed by the user,as describedin table 4.6.
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TABLE 3.8.---Conclude.d.

Variable

MXNCF

N

NQ

NST

NFE

NJE

NQU

Description

Maximum number of corrector

convergence failures allowed

on any one step
Number of ODE's to be solved

on next step

Method order either being tried

on this step or to be attempted

on next step

Total number of integration

steps used so far for problem
Total number of derivative

evaluations required so far for

problem
Total number of Jacobian

matrix evaluations (and

iteration matrix LU-

decompositions or inversions)

required so far for problem

Method order used on last suc-

cessful step.

10

Subprograms where
variable b set or

computed

LSODE

STODE

LSODE

STODE

LSODE

STODE

LSODE

PREPJ

STODE

TABLE 3.9.--LENGTH LENWM

OF ARRAY WM IN TABLE 3.8

FOR ITERATION TECHNIQUES

INCLUDED IN CODE

MITER a LENWM b

0 0

1,2 N 2 + 1

3 N+2

4,5 (2ML + MU + I)N + 2

aSee table 3.2 for description of

MITER.

bN is the number of ODE's and ML

and MU ate defined in table 3.2.
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3. Description of Code

The main routine, LSODE, controls the integration and serves as an interface

between the calling subprogram and the rest of the package. A flowchart of this

subroutine is given in figure 3.2. In this figure ITASK and ISTATE are user-

specified integers that specify, respectively, the task to be performed and the state

of the calculation, that is, if the call to LSODE is the first one for the problem or a
continuation; if the latter, ISTATE further indicates if the continuation is a normal

one or if the user has changed one or more parameters since the last call to
LSODE (see chapter 4 for details). On return from LSODE the value of ISTATE

indicates if the integration was performed successfully, and if not, the reason for

failure. The integer JSTART is an internally defined variable used for
communicating the state of the calculation with the routine STODE. The variables

T (= _), H, and Y are, respectively, the independent variable, the step size to be

attempted on the next step, and the numerical solution vector. TOUT is the

value at which the solution is next required. Finally, TCRIT is the _ value that

the integrator must not overshoot. This option is useful if a singularity exists at or
beyond TCRIT and is discussed further in chapter 4.

The subroutine STODE advances the numerical solution to the ODE's by a

single integration step [_-l,_,]. It also computes the method order and step size

to be attempted on the next step. The efficiency of the integration procedare is

increased by saving the solution history, which is required by the multistep
methods used in the code, in the form suggested by Nordsieck (ref. 33). The

Nx(q + 1) Nordsieck history matrix z__ l at _,,-1 contains the numerical solution
_)(-n-1and the q scaled derivatives hJYOn)_llj! (j = 1..... q), where h. (= _n 7 _n-1) and
q are, respectively, the current step size and method order and ]d(/) = dJY_./d_j.

The flowchart of STODE is presented in figure 3.3. In this figure NCF is the

number of corrector convergence failures on the current step, KFLAG is an

internally defined integer used for communication with LSODE, NQ (= q) is the

method order to be attempted on the current step, and the integer counter IALTH

indicates how many more steps are to be taken with the current step size and
method order. The _Q + 1)-dimensional vector __contains the method coefficients

and depends on both the integration method and the method order; _0 is the zeroth

component of _ (see eq. (2.68)). The matrix zn[0l is the predicted Nordsieck

history matrix at F_n,and the NxN iteration matrix P is given by equation (2.25).

The variable R is the ratio of the step size to be attempted next to its current

value, RMAX is the maximum R allowed when a step size change is next

considered, and HMIN and HMAX are user-supplied minimum and maximum

absolute values for the step size to be tried on any step. The ratios RHDN,

RHSM, and RHUP are factors by which the step size can be increased if the new

method order is NQ - 1, NQ (the current value), and NQ + 1, respectively.

Finally, NQMAX is the maximum method order that may be attempted on any

step, and the vector en (= hn_ n -h _[Ot) is proportional to the local truncation
error vector at _n (see eqs. (2.87) an_ (2.89)).
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3.4.1 Initial Step Size Calculation

3.4 Special Features

An important feature of LSODE is that it will compute the step size ho to be

attempted on the first step if the user does not provide a value for it. The

calculation procedure attempts to produce an h0 such that the numerical solution

YI generated at the first internal mesh point _l will satisfy the local error test.

Now with either solution technique the code starts the integration with a first-

order method. Hence the asymptotic local truncation error di, l in the ith solution
component at _1 will be equal to (1/2)h2yi(_l) for both the AM and BDF methods

of order 1. Here hi is the step size successfully used on the first step, and .J)i(_l) is

the second derivative of the ith component of y at _1. To pass the local error test,

equation (2.91), the weighted local error vector, that is, {di, llEWTi, l}, must
satisfy the inequality

g 1, (3.2)

where EWTi, I is the ith component of the error weight vector for the first step (see
eq. (2.90)):

EWTi, 1 = RTOLi Y/,o +ATOLi. (3.3)

In this equation RTOLi and ATOLi are, respectively, the user-supplied local

relative and absolute error tolerances for the ith solution component, Yi,o is the ith

solution component at _, and the vertical bars I'1denote absolute value.

The test given by equation (3.2) cannot be applied at the start of the step [_0, _1]

because 5)(_1) is not known. We therefore modify this test by using _.(_0) as
follows: XWe first define a weighted principal error function at order 1, _, with

element d_i given by

(3.4)

where

W/= EWTi, I/TOL, (3.5)
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3. Description of Code

and the scalar tolerance quantity TOL, which is to be determined, is such that Wi is

a suitable weight for Yi, the ith component of Y. The step size and the local error

are then together required to satisfy the inequality

ho2 __ < TOL, (3.6)

where I1-11represents a suitable norm. We have used a different symbol for the

initial step size than in equation (3.2) to indicate that this quantity is not known
and must be computed. Because a first-order method will be used on this step, for

a sufficiently small step size the numerical approximation _/'l at _l will not be

significantly different from );(_-,o), and use of the latter quantity is therefore
reasonable. The rationale forTntroducing TOL will become apparent shortly.

The second derivative _;(_0) is not generally available, and so the following

empirical procedure is used to estimate it. We consider the dominant eigenvalue

(= _,) of the ODE system and model this component with the simple scalar ODE

- _ = _,y, (3.7)

where I _l >> 1. For this problem, ¢ = (I/2)ylW = (l12)_2ylW. Now, ifTOL is

chosen such that ylW is of order unity, 0 can be approximated by (}/W) 2

[= (_,y/W)2],which is known. For the scalar ODE this condition is obtained by

setting TOL = RTOL and ATOL = 0 (see eqs. (3.3) and (3.5)). The quantity _/W

may be regarded as the weighted principal error function for a "zeroth order"
method. We use this empirical rule to replace each 0i by (_,ilWi) 2 so that equation

(3.6) can be written as

4, 0/W/ _< TOL,
l

(3.8)

where _,0 [= fiO(.0, _0)] is the first derivative of the ith component at _. Because

the weighted root-mean-square (rms) norm is used in the local error test, equa-
tion (3.2), for convenience, we use the following criterion for initial step size

control:

2 1 f/o
< TOL. (3.9)

Equations (3.5) and (3.9) together show that ho ("_ I/T_) is a decreasing
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3.4Special Features

function of TOL. To produce a reliable estimate for h0, we therefore select a TOL

erring on the high side. A suitable value is given by

TOL = max(RTOLi). (3.10)
l

This expression cannot be used if all RTOLi = 0. In this case an appropriate value

for TOL is given by

TOL=max_ iy/,0-_-- J for Y/,0_0. (3.11)

In any case the value of TOL is constrained to be within reasonable bounds as
follows:

100u < TOL < 10 -3 , (3.12)

where u is the unit roundoff of the computer or the machine epsilon (ref. 13). It is

the smallest positive number such that I + u > 1.

Equation (3.9) cannot be used to compute ho if either each J),o is equal to zero
or the norm is very small. To produce a reasonable ho in such an event, we

include the independent variable _ as the zeroth component Y0 of y and modify

equation (3.9) as follows:

N 2

0 [_-_-_2 -N z_,|'-_--. | | - TOL,

L"o i=l_ 'Jj

(3.13)

where we have used the fact that YO = 1. To be consistent with the other W/,

which are of order Yi,o, the weight W 0 should be of order Go; however, we use

w0=max(Ml ou,,,) (3.14)

to ensure that it is not equal to zero. In equation (3.14), _ut, J is either the first (or

only) value of the independent variable at which the solution is required or, as

discussed in chapter 4, a value that gives both the direction of integration (i.e.,

increasing or decreasing {) and an approximate scale of the problem. If the

quantity _ut, l - _ is not significantly different from zero, an error exit occurs.
Equation (3.13) gives a reasonable value for h0 (= W0 T_) if f0 = 0.
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3. Description of Code

The calculation procedure used for h0 is therefore given by

Several restrictions apply to the step size given by equation (3.15). It is not

allowed to be greater than the difference I_.t,l - _oI. Hence

h0 <-- min(h0,l_out, l - _0 ). (3.16)

In addition, if the user has supplied a value for hmax, the maximum step size to be

used on any step, h0 is restricted to

h0 <----min(h0,hmax). (3.17)

However, no comparison of h0 is made with hmin, the user-supplied minimum

step size to be used on any step, so that h0 is allowed to be less than hmi n. Finally

the sign of h0 is adjusted to reflect the direction of integration.

3.4.2 Switching Methods

Another useful feature of LSODE is that different integration methods and/or

different iteration techniques can be used in different subintervals of the problem.

This option is useful when the problem changes character and is stiff in some

regimes and nonstiff in others as, for example, in combustion chemistry. Indeed,

because stiff problems are usually characterized by a nonstiff initial "transient"

region, the ability to switch integration methods is a desirable feature of any ODE

package. During the course of solving a problem the method flag MF may be

changed both whenever and as many times as desired. As described in chapter 4

changing methods is quite straightforward.

3.4.3 Excessive Accuracy Specification Test

At each integration step [_n-l, _] LSODE checks that the user has not requested
too much accuracy for the precision of the machine. This condition is said to
occur if the criterion

?

di,n < uYi, n (3.18)

is true for all N solution components. In equation (3.18), di, n is the estimated
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3.4Special Features

local truncation error in Yi,n, the ith solution component at _n. Now the numerical

solution X.n at _n is judged to be sufficiently accurate if the following inequality is

satisfied (see chapter 2):

N 2?

The quantity EWTi, n is the ith component of the error weight vector, equa-
tion (2.90), for this step. Equations (3.18) and (2,91) together imply that if the

quantity TOLSF (tolerance scale factor) defined as

TOLSF N 21
_1,v _ Ew'r,.. )

(3.19)

is greater than 1, the test for excessive accuracy requirement is passed. This test is

quite inexpensive, but it can be applied only after the solution at _n is produced. It

is, however, wasteful to generate a solution only to discover that excessive

accuracy has been required, either because TOLSF is greater than 1 or because

repeated convergence failures or error test failures occur. The computational cost

can be significant if any difficulty is encountered because of the corrective

actions--Mescribed later in this section--performed by the code. Even if the step

is successful, the solution is not meaningful because of roundoff errors.

To avoid these difficulties, the calculation procedure for TOLSF uses X_n-1,

which is known, so that the test can be applied at the start of each step, including

the first. Thus the code ascertains inexpensively if excessive accuracy has been

requested before attempting to advance the solution by the next integration step.

The value of TOLSF may be used to adjust the local error tolerances so that this

condition does not recur. For example, scaling up the {RTOLi} and {ATOLi}

values by a minimum factor of TOLSF should produce satisfactory values for the
local error tolerances if the same type of error control is to be performed (see

chapter 4 for details).

3.4.4 Calculation of Method Coefficients

The integration method coefficients and test constants used to check corrector

convergence and locaI accuracy, as welI as to select method order and step size,

are computed in subroutine CFODE. The calculation procedure uses the generating

polynomials discussed by Hindmarsh (refs. 21 and 22) to increase portability of

the code. The coefficients corresponding to all method orders are computed and

stored both at the start of the problem and whenever the user changes the
integration method. This feature avoids the computational cost associated with

recomputing these quantities whenever the method order is changed.
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3.Description of Code

3.4.5 Numerical Jacobians

If Newton-Raphson (NR) or Jacobi-Newton (JN) iteration is selected, the code

will generate elements of the Jacobian matrix by finite-difference approximations

if the user chooses not to provide an analytical Jacobian. For the iteration

procedures corresponding to MITER = 2 (full Jacobian matrix) and 5 ("banded"

Jacobian matrix, i.e., a matrix with many zero entries and all nonzero elements

concentrated near the main diagonal), the element Jij (= _fi/_Yj) at _ is estimated
by using the approximation

J,7= , = (3.20)

where IA_] is the kth component of d 0], 8kj is the Kronecker symbol,

o, k _ j8kJ= l, k=j,
(3.21)

and the increment AYj in thejth solution component is selected as follows: The

standard choice for AYj is

This equation cannot be used if ]'40] is either equal to zero or very small.
Therefore an alternative value, based on noise level, is deduced as follows: Now

the error in eachfi due to roundoff is of order u_.l. Hence in replacing 3fi/_Yj by

the difference quotient, equation (3.20), the resulting element Jij has an error of

order ulfil/rj, where for clarity in presentation we have replaced AYj by rj. Finally
because the method coefficient 13o (= _0) is of order unity (see tables 2.1 and 2.2),

the error 8Pij in the element Pi) of the iteration matrix P, equation (2.25), is

approximately

= Ih[u /ri" (3.23)

If we introduce the N-dimensional column vector s, with element sj defined as

sj =llrj, j=l ..... N, (3.24)

the matrix 8P containing the errors {SPi)} is given by
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_iP = h I u __ T, (3.25)

where Ifl is an N-dimensional column vector containing the absolute values of the

fi (i = 1,...,N) and the superscript T indicates transpose. A suitable increment rj is
obtained by bounding I_Pl,as discussed next.

To be consistent with the corrector convergence test, equation (2.98), and the

local error test, equation (2.91), we use the weighted rms norm, which for an

arbitrary N-dimensional column vector x is given by

Ixl--'
I !

l i=! "- ' /

(3.26)

If we introduce the diagonal matrix D of order N, with element Dii given by

Dii = llEWT i, i = 1..... N, (3.27)

it is easily verified that

Ix =UDxlJ_, (3.28)

where II'ItEis the Euclidean norm, defined for x as

11-41 --4- (3.29)

Now the norm of 8P is given by

I_p- maxII_Pxll
- x_ x_ (3.30)

where

II_pxl= Ihl.Ilfl Tx[, (3.31)

because _iP is of rank 1. Hence
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INI=l*l.ll-fll?x =l l.ll-fl9 INI

D-1

which can be rewritten as

I6l_< m!n(_/EWTi)" (3.32)
I

To establish the maximum allowable error in P, we consider the linear system

1_ = b, which is the form of the equation to be solved at each Newton iteration,

equation (2.24). To first order, the error 8x in x due to the error 5P in P is given by

(e.g., ref. 13)

(3.33)

The norm I p-I [ is not known but is expected to be of order unity because P --, I,.

the identity matrix of order N, when h --e 0 and P - -hl_0J when h --* ,,_ (see
eq. (2.25))i Therefore, a reasonable strategy is to bound [ 8P [ alone by selecting a

suitably small value for the relative error that can be tolerated in the Newton

correction vector. By using a value of 0.1 percent for this error, we obtain from

equations (3.32) and (3.33)

rain( ri )_>10 3 Ihl.NIlfll-r0. (3.34)

For additional safety r0 is reset to 1 if it is equal to zero. Finally the increment AYj

in thejth variable used to estimate the {Jij} is given by
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(3.35)

For a full Jacobian matrix the above procedure will require (N + 1) derivative
evaluations and can therefore become much more expensive than the use of an

analytical Jacobian, especially for large N. Now f(Y__°], _n) is required by the

corrector (see eq. (2.36)), irrespective of the iteration technique. Hence the use of

MITER = 2 requires the evaluation of only N additional derivatives.

In generating the finite-difference banded Jacobian matrix (MITER = 5) the

code exploits the bandedness of the matrix for efficiency. The number of additional
derivative evaluations required to form the Jacobian matrix is only ML + MU + 1,

where ML and MU are, respectively, the lower and upper half-bandwidths of the

Jacobian matrix.
If JN iteration with MITER = 3 is used, the Ndiagonal elements Jii (i = I,...,N)

are estimated by using the approximation

Jii = AYi , i = 1..... N, (3.36)

which requires only one additional derivative evaluation. The increment AYi is

selected as follows: Now equation (2.17) shows that if functional iteration were

used, the correction X__U - .y__Olthat would be obtained on the first iteration is

equal to the quantity 130g Y(_°]), where the vector function g is given by equa-

tion (2.16). The increment vector AY is taken to be 10 percent of this correction:

,, (y[Ol_,
AYi =0.1POgi(--n ) i=1 ..... N. (3.37)

Hence the diagonal matrix approximation, equation (3.36), resembles a directional

derivative of 1_taken in the same direction as the correction vector above. Also,

this approximation gives the correct Jacobian if it is a co.nstant diagonal matrix. If

themagnitudeofAYiislessthanO.lu[3oEWTi, thatis, iflgi(Y---[°n]ll<uEWTi, Jiiis

set equal to zero.

3.4.6 Solution of Linear System of Equations

IfNR iteration is used for the problem, a linear system of the form Px = b must

be solved for the correction vector x at each iteration (.see eq. (2.24)). The linear

algebra necessary to solve this equation is performed by the LU method (e.g.,
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refs. 5 and 36), rather than by explicitly inverting the iteration matrix, which will

require prohibitive amounts of computer time (ref. 13). In the LU method the

iteration matrix is factored into the product of two triangular matrices L and U.

Solving equation (2.24) then requires the fairly simple solution of two triangular

linear systems in succession.

LSODE also includes special procedures for the LU-decomposition of the

iteration matrix and the solution of equation (2.24) when the matrix is known to

be banded. Compared to a full matrix, it is significantly less expensive to form a

banded matrix, perform its LU-decomposition, and solve the linear system of

equations (refs. 5, 25, 26, and 36). An important advantage of LU-decomposing a

banded matrix over inverting it is that, besides being faster, the triangular factors

L and U lie within nearly the same bands as the original matrix, whereas the
inverse is a full matrix (ref. 36). This feature makes the computation of the

correction vector significantly faster with the LU method than by premultiplying

the right-hand side of equation (2.24) with the inverse of the matrix.
If MITER = 3 is used for the problem, the resulting iteration matrix is diagonal

(see eq. (3.36)). Its inverse can therefore be obtained trivially and is used to

compute the corrections.

3.4.7 Jacobian Matrix Update

The difficulty with Newton-Raphson iteration is the computational cost

associated with forming the Jacobian matrix and the linear algebra required to
solve for the correction vector at each iteration. However, as discussed in chap-

ter 2, the iteration matrix need not be very accurate. This fact is exploited to

reduce the computational work associated with linear algebra by not updating P at

every iteration. For additional savings it is updated only when the iteration does

not converge. Hence the iteration matrix is only accurate enough for the solution

to converge, and the same matrix may be used over several steps. It is also

updated if three or more error test failures occur on any step. Now P may be

altered if the coefficient h_0 is changed (see eq. (2.25)) because a new step size
and/or method order is selected. In order to minimize convergence failures

caused by an inaccurate P, the code updates P and performs its LU-decomposition

(or inversion if MITER = 3) if hi30 has changed by more than 30 percent since the
last update of P. In addition, for MITER = 3, because p-I can be generated

inexpensively, it is first modified to account for any change in hl_0 since its last

update, before the corrections are computed. The reevaluation and LU-

decomposition or inversion are also done whenever the user changes any input

parameter required by the code. Finally the same P is used for a maximum
number of 20 steps, after which it is reevaluated and LU-decomposed or inverted.

3.4.8 Corrector Iteration Convergence and Corrective Actions

Irrespective of the solution method and the corrector iteration technique, the
maximum number of corrector iterations attempted on any step is set equal to 3,
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based on experience that a larger number increases the computational cost without

a corresponding increase in the probability of successful convergence (refs. 19,

2 l, 22, and 25). In addition to performing the convergence test, equation (2.99),

at each iteration, STODE examines the value of the convergence rate Cm, equa-

tion (2.102). If Cm is greater than 1, the iteration is clearly not converging.

STODE exploits this fact by abandoning the iteration if c m is greater than 2 after
the second iteration.

If convergence is not obtained because either (1) equation (2.99) is not satisfied

after three iterations or (2) Cm > 2 after the second iteration, the following
corrective actions are taken: For NR and JN iterations, if P is not current, it is

updated at y = )_0] and LU-decomposed or inverted, and the step is retried with

the same step size. However, if either P is current or functional iteration is used, a

counter of convergence failures on the current step is increased by 1, the step size

is reduced by a factor of 4, and the solution is attempted with the new step size.

The same corrective actions are taken in the event of a singular iteration matrix.

This procedure is repeated until either convergence is obtained or the integration

is abandoned because either (1) l0 convergence falures have occurred or (2) the

step size has been reduced below a user-supplied minimum value hmi n. In the

event of an error exit the index of the component with largest magnitude in the

weighted local error vector is returned to the subprogram calling LSODE.

3.4.9 Local Truncation Error Test and Corrective Actions

After successful convergence STODE performs the local truncation error test,

equation (2.96). If the error test fails, the step size is reduced and/or the method
order is reduced by 1 by using the procedures outlined in section 3.4.10, and the

step is retried. After two consecutive failures the step size is reduced by at least a

factor of 5, and the step is retried with either the same or a reduced order. After
three or more failures it is assumed that the derivatives that have accumulated in

the Nordsieck history matrix have errors of the wrong order. Therefore the first

derivative is recomputed and the method order is set equal to 1 if it is greater than

1. Then the step size is reduced by a factor of 10, the iteration matrix is formed

and either LU-decomposed or inverted, and the step is retried with a new zn-i that
is constructed from )_,z-I and __Yn-I = -fY(_-I).

This procedure is repeated until either the error test is passed or an error exit is

taken because either (l) 10 error test failures have occurred or (2) the step size has

been reduced below hmi n. In the event of an error exit LSODE returns the index of

the component with the largest magnitude in the weighted local error vector to the

calling subprogram.
If the accuracy test is passed, the step is accepted as successful, and the

Nordsieck history matrix zn and the estimated local truncation error vector _[n at

are computed by using equations (2.76) and (2.89), respectively. Irrespective of

whether the step was successful or not, STODE saves the value of the most recent

step size attempted on the step so that the user may, if desired, change it.
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3.4.10 Step Size and Method Order Selection

In addition to advancing the solution STODE periodically computes the method

order and step size that together maximize efficiency while maintaining prescribed

accuracy. As discussed in chapter 2, this result is accomplished by selecting the
method order that maximizes step size. To simplify the algorithm, the code

considers only the three method orders q - 1, q, and q + 1, where q is the current
method order. For each method order the step size that will satisfy exactly the

local error bound is computed by assuming that the highest derivative remains

constant. The resulting step size ratios (defined as the ratio of the step size to be

attempted on the next step to the current value hn) are given by equations (2.107),

(2.103), and (2.112), respectively, for method orders q - 1, q, and q + I. These

equations are, however, modified by using certain safety factors (1) to produce a

smaller step size than the value that satisfies the error bound exactly, because the
error estimates are not exact and the highest derivative is not usually constant, and

(2) to bias the order-changing decision in favor of not changing the order at all,
because any change in order requires additional work, and then in favor of

decreasing the order, because an order reduction results in less work per subsequent

step than an order increase. The formulas used in STODE to calculate the step
size ratios are as follows:

1
(3.38)

1

i Oq11.2 q+l + 10 -6

(3.39)

1

1.4 +1 +2 +10 -6

(3.40)

In equations (3.38) to (3.40) the factors 1.2, 1.3, 1.4, and 10-6 are strictly

empirical. The subscripts "down," "same," and "up" indicate, respectively, that
the method order is to be reduced by 1, left unchanged, and increased by 1.

To prevent an order increase either after a failed step or when q = qmax, the
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maximum order allowed for the solution method, rup is set equal to zero in such
cases. Similarly, if q = 1, rdown is set equal to zero to avoid an order reduction.

The maximum step size ratio r = max (rdown, rsame, rup) and the corresponding
method order are selected to be attempted on the next step if r > 1.1 after a

successful step. Changes in both step size and method order are rejected if the

step size increase is less than l0 percent because it is not considered large enough

to justify the computational cost required by either change (refs. l0 and 22). After

a failed step the method order is decreased if rdown > rsame; however, r = max

(rdown, rsame) is reset to 1 if it is greater than 1. Several additional tests, given

next, are performed on r, if r > I. 1 after a successful step, but irrespective of the

value of r after a failed step, before the step size h' (= rhn) to be attempted next is
selected.

If the maximum step size hmax to be attempted on any step has been specified

by the user, r is restricted to

(3.41)

Similarly if the user has specified a minimum step size hmin that may be attempted

on any step, r is restricted to

(3.42)

Finally r must satisfy the inequality

r < rmax, (3.43)

where the variable rma x is normally set equal to 10. However, for the very first

step size increase for the problem, if no convergence or error test failure has

occurred, rmax is set equal to 104 to compensate for the small step size attempted

on the first step. For the first step size increase following either a corrector

convergence failure or a truncation error test failure, rmax is set equal to 2 to
inhibit a recurrence of the failure.

To avoid numerical instability caused by frequent changes in the step size,

method order and step size changes are attempted only after S successful steps

with the same method order and step size, where S is normally set equal to q + 1.

However, if an unsuccessful step occurs, this rule is disregarded and the step size

and/or the method order may be reduced. Following a failed error test or a failed
convergence test with either functional iteration or NR and IN iterations if P is

current, S is set equal to q + 1. If three or more error test failures occur on any one
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step, S is set equal to 5 even though the method order is reduced to 1. Finally

following a step for which step size and method order changes are rejected

because r < 1.1, S is set equal to 3.

After every S - 1 successful steps STODE saves the vector g, if q < qmax, in

order to estimate Vg, which is required to compute rup (see eqs. (2.109) to

(2.112)). To minimize storage requirements, _n is saved as the qmaxth, that is, the

last, column of zn.

3.5 Error Messages

The code contains many error messages--too numerous to list here. Every

input parameter is tested for legality and consistency with the other input variables.

If an illegal input parameter is discovered, a detailed message is printed. Each
error message is self-explanatory and complete. It not only describes the mistake
but in some instances tells the user how to fix the problem. Any difficulty

encountered during execution will result in an error exit. A message giving the

reason for termination will also be printed. If the computation stops prematurely,
the user should look for the error message near the end of the output file

corresponding to the logical unit number LUNIT (see chapter 4).
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Chapter 4

Description of Code Usage

To use the LSODE package, the following subprograms must be provided: (1) a

routine that manages the calls to subroutine LSODE, (2) a routine that computes

the derivatives _. = dyi/d_} for given values of the independent variable _ and the

solution vector y, and (3) if an analytical Jacobian matrix J (= _f./O_y) is required
by the corrector iteration technique selected by the user, a routine that computes
the elements of this matrix, In addition, some modifications, discussed below, to

the LSODE source itself may be necessary.

4.1 Code Installation

4.1.1 BLOCK DATAVariables

The user may wish to reset the values for the integer variables MESFLG (cur-

rently 1) and LUNIT (currently 6), which are both set either in the BLOCK DATA

module (double-precision version) or in subroutine XERRWV (single-precision
version). The variable MESFLG controls the printing of error messages from the

code, and LUNIT is the logical unit number for such output (see table 3.7).

Setting MESFLG = 0 will switch off all output from the code and therefore is not
recommended.

The single-precision version of the code loads initial values for the common

block LS0001 variables ILLIN and NTREP (see table 3.8) through a DATA state-

ment in subroutine LSODE. The same procedure is used in subroutine XERRWV

for the common block EH0001 variables MESFLG and LUNIT (see table 3.7).

However, on some computer systems initial values for common block elements

cannot be defined by means of DATA statements outside a BLOCK DATA

subprogram. In this case the user must provide a separate BLOCK DATA

subprogram, to which the two DATA statements from subroutines LSODE and

XERRWV must be moved. The BLOCK DATA subprogram must also contain
the two common blocks EH0001 and LS0001 (see table 3.6).
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4.1.2 Modifying Subroutine XERRWV

The subroutine XERRWV, which prints error messages from the code, is

machine and language dependent. Therefore the data type declaration for the

argument MSG, which is a Hollerith literal or integer array containing the message

to be printed, may have to be changed. The number of Hollerith characters stored

per word is assumed to be 4, and the value of NMES, which is the length of, that

is, number of characters in, MSG is assumed to be a multiple of 4, and at most 60.

However, the routine describes the necessary modifications for several machine

environments. In particular, the user must change a DATA statement and the
format of statement number 10. The routine assumes that all errors are either (1)

recoverable, in which case control returns to the calling subprogram, or (2) fatal,

in which case the run is aborted by passing control to the statement STOP, which

may be machine dependent. If a different run-abort command is needed, the line
following statement number I00, which is located near the end of the routine,

must be changed.

4.2 Call Sequence

The call sequence to subroutine LSODE is as follows:

CALL LSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, ISTATE,
IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)

All arguments in the call sequence are used on input, but only Y, T, ISTATE,
RWORK, and IWORK are used on output. Also, Y and T are set only on the first

call to LSODE; the other arguments may, however, have to be reset on subsequent

calls. The arguments to LSODE are defined as follows:

The name oftbe user-supplied subroutine that computes the derivatives

of the dependent variables with respect to the independent variable.

This name must be declared EXTERNAL in the subprogram calling

LSODE. The requirements of subroutine F are described in section
4.3.

NEQ The number of first-order ordinary differential equations (ODE's) to
be solved. (The code allows the user to decrease the value of NEQ

during the course of solving the problem. This option is useful if
some variables can be discarded as the solution evolves as, for example,

in chemical kinetics problems for which the reaction mechanism is

reduced dynamically.) As discussed later, NEQ can be specified as an

array. In this case NEQ(1) must give the number of ODE's to be
solved, and the subprogram calling LSODE must contain a dimension

statement for NEQ.
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Y

T

TOUT

ITOL

4.2 Call Sequence

A vector of length NEQ (or more) containing the dependent variables.

The subprogram calling LSODE must include a dimension statement

for Y if it contains more than one component. On the first call to

LSODE this vector must be set equal to the vector of initial values of

the dependent variables. Upon every return from LSODE, Y is the

solution vector either at the desired value (TOUT or TCRIT, see

below) of the independent variable or that generated at the end of the

previous integration step. In case of an error exit Y contains the

solution at the last step successfully completed by the integrator.

The independent variable. On the first call to LSODE, T must give

the initial value of this variable. On every return from LSODE, T is

either the independent variable value (TOUT or TCRIT, see below) at

which the solution is desired or the independent variable value to

which the numerical solution was advanced on the previous integration

step. If an error exit occurs, T gives the value of the farthest point (in

the direction of integration) reached by the integrator.

The next value of the independent variable at which the solution is

required, if ITASK = 1, 3, or 4 (see table 4.1). For 1TASK = 2 or 5,
LSODE uses TOUT on the first call to determine the direction of

integration and, if necessary, to compute the step size to be attempted

on the first step; on subsequent calls TOUT is ignored. LSODE

permits integration in either direction of the independent variable.

A flag that indicates the type of local error control to be performed.

The legal values that can be assigned for ITOL and their meanings are

TABLE 4.1 .--VALUES OF rrASK USED IN LSODE

AND THEIR MEANINGS

ITASK Description

a 1

2

a 3

a,b4

b5

Compute output values of Y(_) at _ = _-_outby overshooting and

interpolation.

Advance the solution to the ODE's by one step and return to

calling subprogram.

Stop at the first intemal mesh point at or beyond _ --. _-a,ut and

return to calling subprogram.

Compute output values of Y(_) at _ = _t but without over-

shooting _ = _nt"

Advance the solution to the ODE's by one step without passing

= _rit and return to calling subprogram.

aUser must supply value for _-.out (= TOUT).

bUser must supply value for _ctit (= TCRIT). This option is useful if the

problem has a singularity at or beyond _ = _rit.
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TABLE 4.2._VALUES OF ITOL USED
IN LSODE AND THEIR MEANINGS

ITOL Descril_ion

Scalar RTOLand scalarATOL
Scalar RTOL and arrayATOL
ArrayRTOL and scalar ATOL
ArrayRTOL and arrayATOL

RTOL

ATOL

ITASK

ISTATE
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given in table 4.2. The variables RTOL and ATOL are described next.

The local relative error tolerance parameter for the solution. This param-
eter can be specified either as a scalar, so that the same tolerance is used

for all dependent variables, or as any array of length NEQ, so that
different tolerances are used for different variables. In the latter case the

subprogram calling LSODE must contain a dimension statement for
RTOL.

The local absolute error tolerance parameter for the solution. This

parameter can also be specified either as a scalar, so that the same

tolerance is used for all dependent variables, or as an array of length

NEQ, so that different tolerances are used for different variables. In

the latter case the subprogram calling LSODE must contain a dimension
statement for ATOU

An index that specifies the task to be performed. This flag controls

when LSODE stops the integration and returns the solution to the

calling subprogram. The legal values for ITASK and their meanings

are given in table 4.1. If 1TASK = 4 or 5, the input variable TCRIT (=

independent variable value that the integrator must not overshoot, see

table 4.1) must be passed to LSODE as the first dement of the array
RWORK (defined below).

An index that specifies the state of the calculation, that is, if the call to

LSODE is the first one for the problem or if it is a continuation. The

legal values for ISTATE that can be used on input and their meanings

are given in table 4.3. The option ISTATE = 3 allows changes in the

input parameters NEQ, ITOL, RTOL, ATOL, IOPT, MF, ML, and MU
and any optional input parameter, except H0, discussed in the

descriptions of RWORK and IWORK. The integer variables IOPT,

MF, ML, and MU are defined below. The parameters ITOL, RTOL,

and ATOL may also be changed with ISTATE = 2, but LSODE does

not then check the legality of the new values. On return from LSODE,

ISTATE has the values and meanings given in table 4.4.



TABLE 4.3.--VALUES OF ISTATE THAT CAN BE USED ON

INPUT TO LSODE AND THEIR MEANINGS

ISTATE

i

2

I_cri_on

This is the first call for the problem.

This is not the first call for the problem, and the calculation is to

be continued normally with no change in any input parameters

except possibly _ and ITASK. a

This is not the first call for the problem, and the calculation is to

be continued normally, but with a change in input parameters

other than _-.oet and ITASK. a

ase¢ table4.1 for descriptionof ITASK.

TABLE 4.4.--VALUES OF ISTATE RETURNED BY LSODE

AND THEIR MEANINGS

ISTATE Meaning

2

-I

-2

-3

-.-4

-5

-6

Nothing was done because TOUT --- T on first call to LSODE.

(However, an intemal counter was set to detect and prevent

repeated calls of this type.)

The integration was performed successfully.

Excessive amount of work was done on this call (i.e., number of

steps exceeded MXSTEP a on this call), but the integration was

successful as far as the value returned in T.

Too much _¢.curacy was requested for the computer being used, but

the integration was successful as far as the value returned in T.

(If this error is detected on the first call to LSODE (i.e., before

any integration is done), an illegal input error trISTATE = -3, see

below) occurs instead.)

Illegalinputwas specified.The errormessage isdctalledand self-

explanatory.

Repeated error test failures occurred on one step, but the integration
was successful as far as the value returned in T.

Repeated convergence test failures occurred on one step, but the

integration was successful as far as the value returned in T.

Some component, EWTi, of tile error weight vector

vanished, so thin the local error test cannot be applied, but the

integration was successful as far as the value returned in T. (This

condition arises when pure relative error control (i.e., ATOLi

= 0 b) was specified for a vat/able whose magnitude is now zero.)

aSee table 4.6.

bSee chapter 2.
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IOPT An integer flag that specifies if any optional input is being used on

this call. The legal values for IOPT together with their meanings are

given in table 4.5. The optional input parameters that may be set by

the user are given in table 4.6. For each such input variable this table

lists its location in the call sequence, its meaning, and its default

value. The quantities RWORK and IWORK are work arrays described

below.

TABLE 4.5.--VALUES OF IOPT THAT CAN BE USED ON
INPUT TO LSODE AND THEIR MEANINGS

IOPT Meaning
=

user has not set a value for any optional input parameter, a

(Default values will be used for all these parameters.)
Values have been specified for one or more optional input

parameters, a

aSee table 4.6 for a list of these parameters.

TABLE 4.6.--OPTIONAL INPUT PARAMETERS THAT CAN BE SET BY USER

AND THEIR LOCATIONS, MEANINGS, AND DEFAULT VALUES

Optional

input

pm-an_ter

H0

I-IMAX

I./MIN

MAXORD

MXSTEP

MXHNIL

Location

RWORK(5)

RWORK(6)

RWORK(7)

tWORK(5)

rwoR_(6)

t'WORK(7)

Meaning

Step size to be attempted on
the first step

Absolute value of largest step
size (in magnitude) to be

used on any step
Absolute valueof smallest

stepsize (inmagnitude) to
be used on any step a

Maximum method order to be

used on any step

Maximum number of integra-

tion steps allowed on any
one call to LSODE

Maximum number of times

that warning message that

step size is getting too small

is printed

Default value

Computed by LSODE

12 for Adams-Monlton

method and 5 for
backward differenti-

ationformulamethod

500

10

aThis value is ignored on the first step and on the final step to reach TCR1T when

ITASK = 4 or5 (see table 4.1).
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RWORK

LRW

IWORK

LIW

JAC

4.2 Call Sequence

A real work array used by the integrator. The subprogram calling
LSODE must include a dimension statement for RWORK. If ITASK =

4 or 5, the user must set RWORK(1) = TCR/T (see table 4.1) to

transmit this variable to LSODE. If any optional real input parameters
are used, their values are also passed in this array to LSODE; the

address for each of these parameters is given in table 4.6. Upon return

from LSODE, RWORK contains several optional real output
parameters. For each such output variable table 4.7 lists its location in

RWORK and its meaning. In addition, the Nordsieck history array at
the current value of the independent variable (TCUR in table 4.7) and
the estimated local error vector in the solution incurred on the last

successful step can be obtained from RWORK. Table 4.8 lists the

names used for these two quantities and their locations in RWORK.

In this table NYH is the value of NEQ on the first call to LSODE, and

NQCUR and LENRW are both defined in table 4.7, which also gives

their locations in the array IWORK (see below).

Length of the real work array RWORK. Its minimum value depends
on the method flag MF (see below) and is given in table 4.9 for each

legal value of MF. In this table the integer MAXORD is the maximum
method order (default values = 12 and 5 for the AM and BDF methods,

respectively) to be used. The integers ML and MU are the lower and

upper half-bandwidths, respectively, of the Jacobian matrix if it is

declared to be banded (see table 3.2).

An integer work array used by the integrator. The subprogram calling
LSODE must include a dimension statement for IWORK. If MITER

(= second decimal digit of MF, defined below) = 4 or 5 (table 3.2), the
user must set 1WORK(I) = ML and IWORK(2) = MU (see descriptions

above) to transmit these variables to LSODE. If any optional integer

input parameters are used, their values are also passed in this array to

LSODE; the address for each of these parameters is given in table 4.6.

Upon return from LSODE, IWORK contains several optional integer

output parameters. For each such output variable table 4.7 lists its

location in IWORK and its meaning.

Length of the integer work array IWORK. Its minimum value depends

on MITER (table 3.2) and is given in table 4. I0 for each legal value of
MITER.

The name of the user-supplied subroutine that computes the elements
of the Jacobian matrix. This name must be declared EXTERNAL in

the subprogram calling LSODE. The form and description of sub-

routine JAC are given in section 4.4.
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TABLE 4.7.--OPTIONAL OUTPUT PARAMETERS RETURNED BY LSODE

AND THEIR LOCATIONS AND MEANINGS

Optional

output

parameter

HU

HCUR

TCUR

TOLSF

NST

NFE

NJE

NQU

NQCUR

IMXER

LENRW

LENIW

Location

RWORK( 1 !)

RWORK( i 2)

RWORK(13)

RWORK(14)

IWORK(I 1)

[WORK(t 2)

rWORK(13)

IWORK(14)

fWORK(15)

IWORK(!6)

IWORK(17)

IWORK(Ig)

Meaning

Step size used on last successful step

Step size to be attempted on next step

Current value of independent variable. The

integrator has successfully advanced the

solution to this point.

A tolerance scale factor, greater than 1.0, that

is computed when too much accuracy is

requested (ISTATE --- -2 or -3, see table 4.4).

To continue integration with the same ITOL,

the local error tolerance parameters RTOL

and ATOL must both be increased by at

least a factor of TOLSF.

Number of integration steps used so far for

problem

Number of derivative evaluations required so

far for problem

Number of Jacobian matrix evaluations (and

iteration matrix LU-dex:ompositions or

inversions) so far for problem

Method order used on last successful step

Method order to be attempte_ on next step

Index of component with largest magnitude in

weighted local error vector (ellEWT i, see

chapter 2). This quantity is computed when

repeated convergence or local error test

failures occur.

Required length for array RWORK

Required length for array IWORK
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TABLE 4.8.--USEFUL INFORMATIONAL QUANTITIES REGARDING INTEGRATION

THAT CAN BE OBTAINED FROM ARRAY RWORK

AND THEIR NAMES AND LOCATIONS

Quantity Name

Nordsieck history array for problem YH

Estimated local error in solution on ACOR

last successfulstep

Location

RWORK(2I) to

RWORK(20 + NYH(NQCUR + !))

RWORK(LENRW - NEQ + 1) to

RWORK(LENRW)



4.3 User-Supplied Subroutine for Derivatives OF)

TABLE 4.9.--MINIMUM LENGTH REQUIRED BY REAL WORK
ARRAY RWORK (i.e., MINIMUM LRW) FOR EACH MF

MF

MF Minimum LRW a

10,20 20 + NYH(MAXORD + 1) + 3 NEQ
11,12,21,22 22 + NYH(MAXORD + 1) + 3 NEQ + (NEQ) 2
13,23 22 + NYH(MAXORD + 1) + 4 NEQ
14,15,24,25 22 + NYH(MAXORD + l) + (2 ML + Mid + 4)NEQ

aNYH is the number of ODE's specified on first call to LSODE,

MAXORD is the maximum method order to be used for problem,
NEQ is the number of ODE's specified on current call to LSODE,

and ML and MU are, respectively, the lower and upper half-
bandwidths of the banded lacobian matrix.

TABLE 4.10.--MINIMUM

LENGTH REQUIRED BY
INTEGER WORK ARRAY

[WORK (i.e., MINIMUM
LIVO FOR EACH MITER

MITER_ Minimum LIV¢b

0 2O

1,2 20 + NEQ
3 2O

4,5 20 + NEQ

aSee table 3.2 for description
of MITER.

bNEQ is the number of ODE's

specified on cut'rent call to
LSODE.

Method flag that indicates both the integration method and corrector

iteration technique to be used. MF consists of the two decimal digits

METH, which specifies the integration method, and MITER, which

specifies the iteration technique (eq. (3.1)). Equation (3.1) and

tables 3.1 and 3.2 show that MF has the following 12 legal values--

10, 11, 12, 13, 14, 15, 20, 21,22,23, 24, and 25. IfMF= 14, 15, 24, or

25, the values of ML and MU must be passed to LSODE as the first

and second elements, respectively, of the array IWORK (see above).

4.3 User-Supplied Subroutine for Derivatives (F)

Irrespective of the solution method or corrector iteration technique selected to

solve the problem, the user must provide a sub-)urine that computes the derivatives

_} for given values of the independent variable and the solution vector. The

name (F) of this subroutine is an argument in the call vector to LSODE and must
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4. Description of Code Usage

therefore be declared EXTERNAL in the subprogram calling LSODE.
derivative subroutine F should have the form

The

SUBROUTINE F (NEQ, T, Y, YDOT)

DIMENSION Y(1), YDOT(1) in FORTRAN 66

or DIMENSION Y(*), YDOT(*) in FORTRAN 77

In addition, if NEQ is an array, the subroutine F should include a DIMENSION

statement for it. The routine F should not alter the values in T, NEQ (or NEQ(1),

if NEQ is an array), or the first N elements in Y, where N is the current number of

ODE's to be solved. The derivative vector should be returned in the array YDOT,

with YDOT(I') = dyi/d_ (i = I), evaluated at _ = T, y = Y.

If the calculation of {])} involves intermediate quantities whose current values,

that is, at _ = _n (or _out), are required externally to LSODE, a special calculation,
such as a call to the routine F, must be made. The results of the last call from the

package to the routine F should not be used because they correspond to a Y value

that is different from X.n [or Y(_ou0] and a _ value that may be different from _n
(or _-_out). Here gn is the independent variable value to which the numerical

solution was advanced on the previous integration step and _jout = TOUT. If a
special call to subroutine F is made, to reduce the storage requirement, the

YDOT argument may be replaced with RWORK(LSAVF), the base address of an

N-dimensional array, SAVF (see table 3.8), used for temporary storage by LSODE;

LSAVF is the 224th word (6th integer word after 218 real words) in the common

block LS0001 (table 3.6). If the derivative Yn is required, it can be obtained by
calling subroutine INTDY, as explained in section 4.8.

Z

4.4 User-Supplied Subroutine for Analytical
Jacobian (JAC)

If the corrector iteration technique selected by the user requires a Jacobian
matrix, we recommend that a routine that computes an analytical Jacobian be

provided. The name (JAC) of this routine is an argument in the call vector to

LSODE and must therefore be declared EXTERNAL in the subprogram calling
LSODE. The Jacobian subroutine JAC should have the form

SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)

DIMENSION Y(1), PD (NROWPD, 1) in FORTRAN 66

DIMENSION Y(*), PD (NROWPD, *) in FORTRAN 77

Here ML and MU are, respectively, the (user-supplied) lower and upper half-
bandwidths of the Jacobian matrix if it is banded; and NROWPD, which is set by

k_
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4.5 Detailed Usage Notes

the code, is the number of rows of the Jacobian matrix PD. For a banded matrix

NROWPD is equal to the extended bandwidth (= 2ML + MU + 1), and for a full

matrix it is equal to the current number N of ODE's. If NEQ is an array, the

subprogram JAC must include a DIMENSION statement for it.

This routine should not alter the values in NEQ (or NEQ(I), if NEQ is an

array), T, ML, MU, or NROWPD. However, the Y array may, if necessary, be

altered. For a full lacobian matrix (MITER = 1) the element PD(I,J) (I = 1..... N;
I

J = 1..... N) must be loaded with 3f/ yjI¢_T;z=y(/= I;j= J). In this case the

arguments ML and MU are not needed. If the Jacobian matrix is banded (MITER

= 4), the element _fi/3Yj (i = 1.....N; i -ML <j< i + MU) must be loaded into PD
(I - J + MU + 1, I) (I = i; J = j). Thus each band of the Jacobian matrix must be

loaded in column-wise manner, with diagonal lines of J, from the top down,

loaded into the rows of PD. For a diagonal matrix ML = MU = 0, and the diagonal

elements must be loaded into a single row of length N. In any case the solver sets

all elements of PD equal to zero before calling JAC, so that only the nonzero

elements need to be loaded. Also each call to subroutine JAC is preceded by a call

to subroutine F with the same arguments NEQ, T, and Y. To improve computational

efficiency, intermediate quantities needed by both routines may be saved by

routine F in a common block, thereby avoiding recomputation by routine JAC. If

necessary, even the derivatives at T can be accessed by JAC by means of this
method.

If functional iteration (MITER = 0) or an internally generated Jacobian matrix

(MITER = 2, 3, or 5) is used, a dummy version of JAC may nonetheless be

required to satisfy the loader. This version may be given simply as follows:

SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
RETURN

END

4.5 Detailed Usage Notes

It is apparent from the description of the call sequence to LSODE that the code

has many capabilities and therefore requires the user to set values for several

parameters. To further clarify code usage and assist in selecting values for user-

set parameters, we provide here a somewhat detailed guide. We first summarize

how we expect the code to be normally used and then give detailed usage notes.

Additional insight into code usage can be obtained from the discussions by Byrne

and Hindmarsh (ref. 17), who examined in some detail the solution of 10 example

problems representing a variety of problem types, and by Radhakrishnan

(ref. 37), who studied the effects of various user-set parameters on the solution of

stiff ODE's arising in combustion chemistry.
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4. Description of Code Usage

4.5.1 Normal Usage Mode

The normal mode of communication with LSODE may be summarized as
follows:

(I) Set initial values in Y.

(2) Set NEQ, T, ITOL, RTOL, ATOL, LRW, LIW, and MF.

(3) Set TOUT = first output station, ITASK = 1, ISTATE = 1, and IOPT = 0.

(4) Call LSODE.

(5) Exit if ISTATE < 0.

(6) Do desired output of Y.

(7) Exit if problem is finished.

(8) Reset TOUT to next print station and return to step (4).

This procedure will result in LSODE (a) computing the step size to be attempted

on the first step, (b) continuing the integration with step sizes generated internally

until the first internal mesh point at or, more usually, just beyond TOUT, and (c)

computing the solution at TOUT by interpolation. The returned value T will be
set equal to TOUT exactly, and Y will contain the solution at TOUT. Because the

normal output value of ISTATE is 2, it does not have to be reset for normal
continuation.

4.5.2 Use of Other Options

=

The calling subprogram may also make use of other options included in the

package. For example, in step (8) ISTATE could be reset to 3 to indicate that at

TOUT some parameters, such as NEQ or ME have been changed. The task to be

performed, indicated by the value of ITASK, can, however, be changed without

resetting ISTATE. In the event of integration difficulties parameter values may

also be changed in step (5), followed by a return to step (4), if the new values will
prevent a recurrence of the indicated trouble.

4.5.3 Dimensioning Variables

Irrespective of the options selected, the subprogram calling LSODE must

include DIMENSION statements for all call sequence variables that are arrays.
Such variables include Y, RTOL, ATOL, RWORK, IWORK, and, as discussed

below, possibly NEQ. The solution vector Y may be declared to be of length NEQ

or greater. The first NEQ elements of the Y array must be the variables whose
ODE's are to be solved. The remaining locations, if any, may be used to store

other real data to be passed to the routines F and/or JAC. The LSODE package
accesses only the first NEQ elements of Y; the remaining elements are unchanged

by the code.
The parameter NEQ is usually a scalar quantity. However, an array NEQ may
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4.5 Detailed Usage Notes

be used to store and pass integer data to the routines F and/or JAC. In this case the

first element of NEQ must be set equal to the number of ODE's. The LSODE

package accesses only NEQ(I). However, NEQ is used as an argument in the

calls to the routines F and JAC, so that these routines, and the MAIN program,

must include NEQ in a DIMENSION statement.

4.5.4 Decreasing the Number of Differential Equations (NEQ)

In the course of solving a problem the user may decrease (but not increase) the

number of ODE's. This option is useful if some variables reach steady-state

values while others are still varying. Dropping these constant quantities from the

ODE list decreases the size of the system and hence increases computational

efficiency. To use this option, upon return from LSODE at the appropriate time,

the calling subprogram must reset the value of NEQ (or NEQ(1)); set ISTATE = 3;

reset the values of all other parameters that are either required to continue the

integration, such as TOUT if ITASK = 1, 3, or 4 (table 4.1), or _e changed at the
user's option; and then call LSODE again. If the Jacobian matrix is declared to be
banded (MITER = 4 or 5, table 3.2) and reductions can be made to the half-

bandwidths ML and MU, they will also produce efficiency increases, The option

of decreasing the number of ODE's may be exercised as often as the user wishes.
Of course, each time the size of the ODE system is decreased the changes

discussed above should be made and the resulting number of ODE's can never be

less than I, However, the LRW and LIW values need not be reset.

If, at any time, the number of ODE's is decreased from N to N', LSODE will

drop the last N - N' ODE's from the system and integrate the first N' equations. It

is therefore important in formulating the problem to order the variables carefully

and make sure that it is indeed the last N - N' variables that attain steady-state

values. In continuing the integration LSODE will access only the first N'elements

of Y. However, the remaining N - N', or more, elements can be accessed by the

user, and so no special programming is needed in either routine F or JAC.

4.5.5 Specification of Output Station (TOUT)

The argument TOUT must be reset every time LSODE is called if the option
given by ITASK = 1, 3, or 4 is selected. For the other two values of ITASK (i.e., 2

and 5), TOUT need be set only on the first call to LSODE. Irrespective of the

value of ITASK, the TOUT value provided on the first call to LSODE is used to

determine the direction of integration and, if the user has not supplied a value for

it, to compute the step size to be attempted on the first step. Therefore unless the

user specifies the value for the initial step size, it is recommended that some

thought be given to the value used for TOUT on the first call to LSODE.

On the first call to LSODE, that is, with ISTATE = l, TOUT may be set equal to

the initial value of the independent variable. In this case LSODE will do nothing,

and so the value ISTATE = I will be returned to the calling subprogram; however,
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4. Description of Code Usage

an internal counter will be updated to prevent repeated calls of this nature. If such

a "first" call is made more than four times in a row, an error message will be
issued and the execution terminated.

On the second and subsequent calls to LSODE there is no requirement that the

TOUT values be monotonic. However, a value for TOUT that "backs up" is

limited to the current internal interval [(TCUR - HU),TCUR], where TCUR is the

current value of the independent variable and HU is the step size used on the

previous step.

4.5.6 Specification of Critical Stopping Point (TCRIT)

In addition to TOUT a value must be specified for TCRIT if the option
/TASK = 4 is selected. TCRIT may be equal to TOUT or beyond it, but not

behind it, in the direction of integration. The integration is not permitted to

overshoot TCRIT, so that the option is useful if, for example, a singularity exists

at or beyond TCRIT. This variable is also required with the option ITASK = 5. In

either case the first element of the array RWORK (i.e., RWORK(I)) must be set

equal to TCRIT. If the solver reaches TCRIT within roundoff, it will return

T = TCRIT exactly and the solution at TCRIT is returned in Y. To continue

integrating beyond TCRIT, the user must reset either ITASK or TCR/T. In either
case the value of ISTATE need not be reset. However, whenever TCRIT is

changed, the new value must be loaded into RWORK(1).

4.5.7 Selection of Local Error Control Parameters (ITOL, RTOL, and

ATOL)

Careful thought should be given to the choice of ITOL, which together with
RTOL and ATOL determines the nature of the error control performed by LSODE.

The value of ITOL dictates the value of the local error weight vector EWT, with

element EWTi defined as

EWT i = RTOLilY/[+ ATOLi, (4.1)

where RTOLi and ATOLi are, respectively, the local relative and absolute error
tolerances for the ith solution component Yi and the bars I.1 denote absolute value.

The solver controls the estimated local errors {di} in {Yi} by requiring the root-

mean-square (rms) norm of di/EWT i to be I or less.

Pure relative error control for the ith solution component is obtained by setting

ATOLi = 0; RTOLi is then a measure of the number of accurate significant fig-

ures in the numerical solution. This error control is generally appropriate when

widely varying orders of magnitude in Yi are expected. However, it cannot be
used if the solution vanishes because relative error is then undefined. Pure

absolute error control for the ith solution component is obtained by setting
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4.5 Detailed Usage Notes
RTOLi = 0; ATOLi is then a measure of the largest number that may be neglected.

Both RTOL and ATOL _an be specified (1) as scalars, so that the same error

tolerances are used for all variables, or (2) as arrays, so that different tolerances

are used for different variables. The value of the user-supplied parameter ITOL

indicates whether RTOL and ATOL are scalars or arrays. The legal values that

can be assigned to ITOL and the corresponding types of RTOL and ATOL are

given in table 4.2. If RTOL and/or ATOL are arrays, the calling subprogram must

include an appropriate DIMENSION statement. A scalar RTOL is generally

appropriate if the same number of significant figures is acceptable for all

components ofY. A scalar ATOL is generally appropriate when all components of

Y, or at least their peak values, are expected to be of the same magnitude.
In addition to ITOL, RTOL and ATOL should be selected with care. Now the

code controls an estimate of only the local error, that is, an estimate of the error

committed on taking a single step, starting with data regarded as exact. However,

what is of interest to the user is the global truncation error or the actual deviation
of the numerical solution from the exact solution. This error accumulates in a

nontrivial manner from the local errors and is neither measured nor controlled by

the code. It is therefore recommended that the user be conservative in choosing

values for the local error tolerance parameters. However, requesting too much

accuracy for the precision of the machine will result in an error exit (table 4.4). In

such an event the minimum factor TOLSF by which RTOL and ATOL should both

be scaled up is returned by LSODE (see table 4.7). Some experimentation may be
necessary to optimize the tolerance parameters, that is, to determine values that

produce sufficiently accurate solutions while minimizing the execution time. The

global errors in solutions generated with particular values for the local error

tolerance parameters can be estimated by comparing them with results produced

with smaller tolerances. In reducing the tolerances all components of RTOL and

ATOL, and hence of EWT, should be scaled down uniformly.

There is no requirement that the same values for ITOL, RTOL, and ATOL be

used throughout the problem. If during the course of the problem any of these
parameters is changed, the user should reset ISTATE = 3 before calling LSODE

again. (ISTATE need not be reset; however, LSODE will not then check the

legality of the new values.) This option is useful, for example, if the solution

displays rapid changes in a small subinterval but is relatively smooth elsewhere.

To accurately track the soIution in the rapidly varying regio n, small values of

RTOL and ATOL may be required. However, in the smooth regions these
tolerances could be increased to minimize execution time.

4.5.8 Selection of Integration and Corrector Iteration Methods (MY')

The choice of the method flag MF may also require some experimentation. The

user should consider the nature of the problem and storage requirements. The

primary consideration regarding MF is stiffness. If the problem is not stiff, the

best choice is probably MF = 10 (Adams-Moulton (AM) method with functional
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4. Description of Code Usage

iteration.) If the problem is stiff to a significant degree, METH should be set

equal to 2 (table 3.1), and MITER (table 3.2) depends on the structure of the

Jacobian matrix. If the Jacobian is banded, MITER = 4 (user-supplied analytical

Jacobian) or 5 (internally generated Jacobian by finite-difference approximations)
should be used. For either of these two MITER values the user must set values for

the lower (ML) and upper (MU) half-bandwidths of the Jacobian matrix. The first

and second elements of the integer work array IWORK must be set equal to ML

and MU, respectively; that is, IWORK(I) = ML and IWORK(2) = MU. For a full
matrix MITER should be set equal to 1 (analytical Jacobian) or 2 (internally

generated Jacobian). If the matrix is significantly diagonally dominant, the choice

MITER = 3, that is, Jacobi-Newton (JN) iteration using an internally generated

diagonal approximation for the Jacobian matrix, can be made. To use this

iteration technique with an analytical Jacobian, set MITER = 4 and ML = MU = 0.

If the problem is only mildly stiff, the choice METH = 1 (i.e., the AM method)

may be more efficient than METH = 2 (i.e., the backward differentiation formula

(BDF) method). For this case experimentation would be necessary to identify the

optimal METH. If the user has no a priori knowledge regarding the stiffness of

the problem, one way to determine its nature is to try MF = 10 and examine the
behavior of both the solution and step size pattern. (It is recommended that some

upper limit be set for the total number of steps or derivative evaluations to avoid
excessive run times.) If the typical values of the step size are much smaller than

the solution behavior would appear to require, for example, more than 100 steps

are taken over an interval in which the solution changes by less than 1 percent, the

problem is probably stiff. The degree of stiffness can be estimated from the step
sizes used and the smoothness of the solution.

Irrespective of the integration method selected, the least effective iteration

technique is functional iteration, given by MITER = 0, and the most effective is

Newton-Raphson (NR), given by MITER = 1 or 2 (4 or 5 for a banded Jacobian

matrix). Generally JN iteration is somewhere in between. However, storage

requirements increase in the same order as the effectiveness of the iteration

technique (see table 4.9), and so trade-off considerations are necessary. For

reasons of computational efficiency the user is encouraged to provide a routine for

computing the analytical Jacobian, unless the system is fairly complicated and

analytical expressions cannot be derived for the matrix elements. The accuracy of

the Jacobian calculation can be checked by comparison with the J internally

generated with MITER = 2 or 5. Jacobi-Newton iteration requires considerably

less storage and execution time per iteration but will be effective only if the

Jacobian matrix is significantly diagonally dominant.

The importance of supplying an analytical Jacobian matrix, especially for large

problems, is illustrated by Radhakrishnan (ref. 37), who studied 12 test problems
from combustion kinetics. The problems covered a wide range of reaction
conditions and reaction mechanism size. The effects on solution efficiency of

(1) METH, (2) the first output station, and (3) optimizing the local error tolerances
were also examined.
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4.5.9 Switching Integration and Corrector Iteration Methods

The user may specify different values for MF in different subintervals of the

problem. This option is useful if the problem changes character and is nonstiff in

some regions and stiff elsewhere. Because stiff problems are usually characterized

by a nonstiff initial "transient" region, one could use MF = 10 in the initial region
and then switch to MF = 21 (the BDF method with NR iteration using an

analytical Jacobian matrix) in the later stiff regime. It is very straightforward to

change integration methods and corrector iteration techniques. Upon return from

LSODE the user simply resets MF to the desired new value. The other action

required is to reset ISTATE = 3 before calling LSODE again. The lengths LRW

and LIW, respectively, of the arrays RWORK and IWORK depend on MF (see
tables 4.9 and 4.10). If different methods are to be used in the course of solving a

problem, storage corresponding to at least the maximum values of LRW and LIW
must be allocated. That is, the dimensions of RWORK and IWORK must be set

equal to at least the largest of the LRW and LIW values, respectively, required by
the different methods to be used.

4.6 Optional Input

In addition to the input parameters whose values are required by the code, the
user can set values for several other parameters to control both the integration and

the output from the code. These optional input parameters are given in table 4.6,

together with their locations and default values. If any of these parameters are
used, the user must set IOPT= 1 to relay this information to the solver, which will

examine all optional input parameters and select only those for which nonzero

values are specified. A value of zero for any parameter will cause its default value

to be used. Thus to use a subset of the optional inputs, set RWORK(I) = 0.0 and

IWORK(I) = 0 (I = 5 to 7), and then set parameters of interest to the desired

(nonzero) values. The variable H0, the step size to be attempted on the first step,
must indicate the direction of integration. That is, H0 must be a positive quantity

for integration in the forward direction (increasing values of the independent

variable) and negati'ce otherwise. All other input parameters must be positive
numbers; otherwise, an error exit will occur.

To reset any optional input parameter on a subsequent call to LSODE, ISTATE

must be set equal to 3. IOPT is not altered by LSODE and therefore need not be
reset. Also because the code does not alter the values in RWORK (5) to RWORK

(7) and IWORK(5) to IWORK(7), only parameters for which new values are

required need to be reset. To specify a default value for any parameter for which a

nondefault value had previously been used, simply load the appropriate location
in RWORK or IWORK with a zero. Of course, if all variables are to have default

values, simply reset IOPT = 0.
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4.6.1 Initial Step Size (H0)

The sign of the step size H0 must agree with the direction of integration;
otherwise, an error exit will occur. Also, its magnitude should be considerably

smaller than the average value expected for the problem because the code starts

the integration with a first-order method. Of course, the integrator tests that the

given step size does produce a solution that satisfies the local error test and, if

necessary, decreases it (in magnitude). The only test made on the magnitude of

H0 prior to taking the first step is that it does not exceed the user-supplied value
for HMAX, the maximum absolute step size allowed for the problem.

4.6.2 Maximum Step Size (HMAX)

The user may have to specify a finite value for HMAX (default value, oo) if the
solution is characterized by rapidly varying transients between long smooth

regions. If the step size is too large, the solver may skip over the fine detail that
the user may be (primarily) interested in. An example of this behavior is the

buildup of ozone and oxygen atom concentrations in the presence of sunlight

(ref. 17).

4.6.3 Maximum Method Order (MAXORD)

The optional input parameter MAXORD, the maximum method order to be

attempted on any step, should not exceed the default value--12 for the AM
method and 5 for the BDF method. If it does, it wilt be reduced to the default

value_ Also, in the course of solving the problem, if MAXORD is decreased to a
value less than the current method order, the latter quantity will be reduced to the

new MAXORD.

The maximum method order has to be restricted to a value less than the default

value for stiff problems when the eigenvalues of the Jacobian matrix are close to

the imaginary axis; that is, the solution is highly oscillatory. In such a situation

the BDF method of high order (> 3) has poor stability characteristics and, as the

stability plots in Gear (ref. 10) show, the unstable region grows as the order is
increased. For this reason MAXORD should be set equal to 3 unless the

eigenvalues are imaginary; that is, Re(_,i) = 0 and Im(_,i) _ 0, where Re(_,i) and

Im(_,i) are the real and imaginary parts of Li, the ith eigenvalue. In this case the
value MAXORD = 2 should be used.

4.7 Optional Output

The user is usually primarily interested in the numerical solution and the

corresponding value of the independent variable. These quantities are always
returned in the call variables Y and T. In addition, several optional output
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quantities that contain information about the integration are returned by LSODE.

These quantitites are given in tables 4.7 and 4.8, together with their locations.
Some of these quantities give a measure of the computational work required and

may, for example, help the user decide if the problem is stiff or if the right method

is being used. Other output quantities will, in the event of an error exit, help the

user either set legal values for some parameters or identify the reason for repeated

convergence failures or local error test failures.

4.8 Other Routines

To gain additional capabilities, the user can access the following subroutines

included in the LSODE package: INTDY, SRCOM, XSETF, and XSETUN.

Among these, only INTDY is used by LSODE.

4.8.1 Interpolation Routine (Subroutine INTDY)

The subroutine INTDY provides derivatives of Y, up to the current order, at a
specified point T and may be called only after a successful return from LSODE.
The call to this routine takes the form

CALL INTDY (T, K, RWORK(21), NYH, DKY, IFLAG) .

where T, K, RWORK(21), and NYH are input parameters and DKY and IFLAG

are output parameters. The arguments to INTDY are defined as follows:

T Value of independent variable at which the results are required.
For the results to be valid T must lie in the interval [(TCUR -

HU),TCUR], where TCUR and HU are defined in table 4.7.

K Integer that specifies the desired derivative order and must satisfy

0 _<K < current method order NQCUR (see table 4.7 for location

of this quantity). Now, because the method order is never less

than 1, the first derivative d_/d_ can always be obtained by

calling INTDY.

RWORK(21) Base address of the Nordsieck history array (see table 4.8).

NYH Number of ODE's used on the first call to LSODE. If the number

of ODE's is decreased during the course of the problem, NYH

should be saved. An alternative way of obtaining NYH is to

include the common block LS0001 in the subprogram calling
INTDY. LSODE saves NYH in LS0001 as the 232nd word--the

14th integer word after 218 real words (see table 3.6).
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DKY Array of length N that contains the Kth derivative of Y at T. The

subprogram calling INTDY must include a DIMENSION statement

for DKY if NYH > 1. Alternatively, to save storage, DKY can be

replaced with RWORK(LSAVF)---see section 4.3.

1FLAG An error flag with following values and meanings:

0 Both T and K were legal.

-1 Illegal value was specified for K.

-2 Illegal value was specified for T.

4.8.2 Using Restart Capability (Subroutine SRCOM)

The subroutine SRCOM is useful if one is either alternating between two or

more problems being solved by LSODE or interested in interrupting a run and

restarting it later. The latter situation may arise, for example, if one is interested in

steady-state values with no a priori knowledge of the required integration interval.

The run may be stopped periodically, the results examined and, if necessary, the

integration continued. This procedure is clearly more economical than making

repeated runs on the same problem with, say, increasing values of TOUT. To
exploit the capability of stopping and then continuing the integration, the user
must save and then restore the contents of the common blocks LS0001 and

EH0001. This information can be stored and restored by calling SRCOM. The
call to this routine takes the form

CALL SRCOM (RSAV, ISAV, JOB)

where RSAV must be declared as a real array of length 218 or more in the calling

subprogram and ISAV as an integer array of length 41 or more and JOB is an
integer flag whose value (= 1 or 2) indicates the action to be performed by
SRCOM as follows: JOB = 1 means "save the contents of the two common

blocks," and JOB = 2 means "restore this information."

Thus to store the contents of EH0001 and LS0001, SRCOM should be called as

follows:

CALL SRCOM (RSAV, ISAV, 1)

Upon return from SRCOM, RSAV and ISAV will contain, respectively, the 218

real and 39 integer words that together make up the common block LS0001. The

40th and 41st elements of ISAV will contain the two integer words MESFLG and

LUNIT in the common block EH0001 (table 3.6). The lengths and contents of the

arrays RWORK and IWORK must also be saved. The lengths LENRW and

LENIW required for the arrays RWORK and IWORK are saved by LSODE as the

17th and 18th elements, respectively, of the array 1WORK (see table 4.7).

To continue the integration, the arrays RWORK and 1WORK and the contents
of the common blocks LS0001 and EH0001 must be restored. The common block
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contents are restored by using the previously saved arrays RSAV and ISAV and

calling the routine SRCOM as follows:

CALL SRCOM (RSAV, ISAV, 2)

The user should then set values for the input parameters required by LSODE, and

the integration can be continued by calling this routine. Note, in particular, that

ISTATE must be set equal to 2 or 3 to inform LSODE that the present call is a

continuation one for the problem (see table 4.3).

4.8.3 Error Message Control (Subroutines XSETF and XSETUN)

To reset the value of the logical unit number LUNIT for output of messages

from the code, the routine XSETUN should be called as follows:

CALL XSETUN (LUN)

where LUN is the new value for LUNIT. Action is taken only if the specified

value is greater than zero.
The value of the flag MESFLG, which controls whether messages from the

code are printed or not, may be reset by calling subroutine XSETF as follows:

CALL XSETF (MFLAG)

where MFLAG is the new value for MESFLG. The legal values for MFLAG are

0 and 1. Specifying any other value will result in no change to the current value

of MESFLG. Setting MFLAG = 0 does carry the risk of losing valuable information

through error messages from the integrator.

4.9 Optionally Replaceable Routines

If none of the error control options included in the code are suitable, more

general error controls can be obtained by substituting user-supplied versions of
the routines EWSET and/or VNORM (table 3.3). Both routines are concerned

with measuring the local error. Hence any replacement may have a major impact

on the performance of the code. We therefore recommend that modifications be

made only if absolutely necessary, and that too with great caution. Also the effect

of the changes and the accuracy of the programming should be studied on some

simple problems.

4.9.1 Setting Error Weights (Subroutine EWSET)

The subroutine EWSET sets the array of error weights EWT, equation (4.1).
This routine takes the form
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SUBROUTINE EWSET (N, ITOL, RTOL, ATOL, YH, EWT)

where N is the current value of the number of ODE's; ITOL, RTOL, ATOL, and

EWT have been defined previously; and YH contains the current Nordsieck

history array, that is, the current solution vector YCUR and its NQ scaled
derivatives, where NQ is the current method order. On the first call to EWSET

from the routine LSODE, YCUR is the same as the Y array (which then contains

the initial values supplied by the user); thereafter the two arrays may be different.

The error weights {EWTi} are used in the local truncation error test, which

requires that the rms norm of di[EWTi be 1 or less. Here, di is the estimated local

error in Yi. The above norm is computed in the routine VNORM (discussed in

section 4.9.2) to which the EWT array is passed.

If the user replaces the current version of EWSET, the new version must return

in each EWT i (i = 1..... N) a positive quantity for comparison with di. This routine

is called by the routine LSODE only (tables 3.4 and 3.5). However, in addition to

its use in the local truncation error test (which is performed in the routine

STODE), EWT is used (1) by the routine LSODE in computing the initial step

size H0 and the optional output integer IMXER (table 4.7) and (2) by the routine

PREPJ in computing the increments in solution vector for the difference quotient

Jacobian matrix (MITER = 2 or 5, table 3.2) and for the diagonal approximation

to the Jacobian matrix (MITER = 3). The base address for EWT in the array

RWORK is LEWT, which is the 222nd word (the 4th integer word after 218 real

words) in the common block LS0001.
If the user's version of EWSET uses current values of the derivatives of Y, they

can be obtained from YH, as described later. Indeed, derivatives of any order, up

to NQ, can be found from YH, whose base address in RWORK is LYH (= 21), the

221st word (the 3rd integer word past 218 real words) in LS0001. The array YH is

of length NYH(NQ + 1), where NYH is the value of N on the first call to LSODE.

The first N elements correspond exactly to the YCUR array. The remaining terms

contain scaled derivatives of YCUR. For example, the N elements JoNYH + 1 to
JoNYH + N (J = 0,1 ..... NQ) contain the Jth scaled derivative HJY(J)IJ!, where H is

the current value of the step size. On the first call to EWSET, before any

integration is done, H is (temporarily) set equal to 1.0. Thereafter its value may be
determined from LS0001, where it is the 212th real word. This common block

also contains NYH as the 232nd word (the 14th integer word past 218 real words)

and NQ as the 253rd word (the 35th integer word past 218 real words). Thus if the
user wishes to use the Jth derivative in EWSET, it may be obtained by including

the following statements:

SUBROUTINE EWSET (N ..... YH ..... EWT)

REAL (or DOUBLE PRECISION) YH, EWT, RLS, H ....

INTEGER N, ILS, NQ, NYH ....

DIMENSION YH(1), EWT(1) .... in FORTRAN 66

DIMENSION YH(,), EWT(*) .... in FORTRAN 77
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COMMON/LS0001/RLS(218), ILS(39)
NQ = ILS(35)

NYH = ILS(14)

H = RLS(212)

The Jth derivative (0 < J < NQ) is then given by

J! YH(J* NYH + I)
Y(J) = , I = 1..... N, (4.2)

H J

where y(J)is the Jth derivative of Y1. The routine must include a data type

declaration and a DIMENSION statement for X (J). To save on storage, these

values may be stored temporarily in the vector EWT.

4.9.2 Vector-Norm Computation (Function VNORM)

The real (or double precision) function routine VNORM computes the weighted
root-mean-square (rms) norm of a vector. It is used as follows:

D = VNORM (N, V, W)

where N is the length of the real arrays V, which contains the vector, and W, which

contains the weights. Upon return from VNORM, D contains the weighted rms-
nO1T/l

v,
This routine is used by STODE to compute the weighted rms norm of the

estimated local error. STODE also uses information returned by VNORM to

perform the corrector convergence test and to compute factors that determine if
the method order should be changed. Other routines that access VNORM are

LSODE, to compute the initial step size H0, and PREPJ, to compute the increments

in the solution vector for generating difference quotient Jacobians (MITER = 2 or
5, table 3.2).

If the user replaces the routine VNORM, the new version must return a positive

quantity in VNORM, suitable for use in local error and convergence testing. The
weight array W can be used as needed, but it must not be altered in VNORM. For

example, the max-norm, that is, maxlV/W_L satisfies this requirement, as does a

norm that ignores some components of V. The latter procedure has the effect of

suppressing error control on the corresponding components of Y.

97



4. Description of Code Usage

4.10 Overlay Situation

If LSODE is to be used in an overlay situation, the user must declare the

variables in the call sequence to LSODE and in the two internal common blocks

LS0001 and EH0001 in the MAIN program to ensure that their contents are

preserved. The common block LS0001 is of length 257 (218 real or double-

precision words followed by 39 integer words), and EH0001 contains two integer

words (see table 3.6).

4.11 Troubleshooting

In this section we present a brief discussion of the corrective actions that may

be taken in case of difficulty with the code. If the execution is terminated

prematurely, the user should examine the error message and the value of ISTATE

returned by LSODE (table 4.4). We therefore recommend that the current value of

MESFLG not be changed, at least until the user has gained some experience with

the code. The legality of every input parameter, both required and optional, is

checked. If illegal input is detected by the code, it returns to the calling subprogram

with ISTATE = -3. The error message will be detailed and will make clear what

corrective actions to take. If the illegal input is caused by a request for too much

accuracy, the user should examine the value of TOLSF returned in RWORK(13)

(table 4.7) and make necessary adjustments to RTOL and ATOL, as described in

section 4.5.7. If an excessive accuracy requirement is detected during the course

of solving the problem, the value ISTATE = -2 is returned. To continue the

integration, make the adjustments mentioned above, set ISTATE = 3, and call

LSODE again.

Another difficulty related to accuracy control may be encountered if pure
relative error control for, say, the ith variable is specified (i.e., ATOLi= 0). If this

solution component vanishes, the error test cannot be applied. In this situation the

value ISTATE = -6 is returned to the calling subprogram. The error message

identifies the component causing the difficulty. To continue integrating, reset

ATOL for this component to a nonzero value, set ISTATE = 3, and call LSODE

again.
If more than MXSTEP (default value, 500) integration steps are taken on a

single call to LSODE without completing the task, the error return ISTATE = -1 is
made. The problem might be the use of an inappropriate integration method or

iteration technique. The use ofMF = 10 (or 20) on a stiff problem is one example.

The user should, as described previously under the selection of MF (section

4.5.8), verify that the value of MF is right for the problem. Very stringent accuracy

requirements may also cause this difficulty. Another possibility is that pure

relative error control has been specified but most, or all, of the IY/Iare very small
but nonzero. Finally, the solution may be varying very rapidly, forcing the

integrator to select very small step sizes, or the integration interval may be very
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long relative to the average step size. To continue the integration, simply reset
ISTATE = 2 and call LSODE again--the excess step counter will be reset to zero.

To prevent a recurrence of the error, the value of MXSTEP can be increased, as
described in section 4.6. If this action is taken between calls to LSODE, ISTATE

must be set equal to 3 before LSODE is called again. Irrespective of when

MXSTEP is increased, IOPT should be set equal to 1 before the next call to
LSODE.

If the integrator encounters either repeated local error test failures or any local

error test failure with a step size equal to the user-supplied minimum value HMIH

(table 4.6), LSODE returns with ISTATE = -4. The difficulty could be caused by

a singularity in the problem or by inappropriate input. The user should check

subroutines F and JAC for errors. If none is found, it may be necessary to monitor

intermediate quantities. The component IMXER causing the error test failure is

returned as IWORK(16) (table 4.7). The values Y(IMXER), RTOL(IMXER),

ATOL(IMXER), and ACOR(IMXER) (see table 4.8) should be examined. If pure

relative error control had been specified for this component, very small but

nonzero values of Y(IMXER) may cause the difficulty.
These checks should also be made if the integration fails because of either

repeated corrector convergence test failures or any such failure with a step size

equal to HMIN. In this case LSODE returns the value ISTATE = -5 along with a

value for IMXER defined above. If an analytical Jacobian is being used, it should

be checked for errors. The accuracy of the calculation can also be checked by

comparing J with that generated internally. Another reason for this failure may be

the use of an inappropriate MITER, for example, MITER = 3 for a problem that

does not have a diagonally dominant Jacobian. It may be helpful to try different
values for MITER and monitor the successive corrector estimates stored as the Y

array in subroutine STODE.
In addition to the error messages just discussed, a warning message is printed if

the step size H becomes so small that T + H = T on the computer, where T is the

current value of the independent variable. This error is not considered fatal, and

so the execution is not terminated nor is a return made to the calling subprogram.

No action is required by the user. The warning message is printed a maximum
number of MXHNIL (default value, 10) times per problem. The user can change

the number of times the message is printed by resetting MXHNIL, as discussed in

section 4.6. To indicate the change to LSODE, tile parameter IOPT must be set

equal to 1 before LSODE is called.
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Chapter 5

Example Problem

5.1 Description of Problem

In this chapter we demonstrate the use of the code by means of a simple stiff

problem taken from chemical kinetics. The test case, described elsewhere (refs.

17, 28, and 38), consists of three chemical species participating in three irreversible

chemical reactions at constant density and constant temperature:

k 1

£1 ---> _2, (5.1)

k 2

_2 + _3 _ _1 + _3' (5.2)

k 3

_2 + _2 _ _3 + _3, (5.3)

with kl = 4×10 -2, k2 = 104, and k3 = 1.5×107. In reactions (5.1) to (5.3), _i is the

chemical symbol for the ith species, the arrows denote the directions of the

reactions (the single arrow for each reaction means that it takes place in the

indicated direction only), and the {kj} are the specific rate coefficients for the

reactions. The units of k) depend on reaction type (e.g., ref. 39). If Yi denotes the
molar concentration of species i, that is, moles of species i per unit volume of

mixture, the governing ODE's are given by

d_
=__1 = _ 0.04 Yl + 104y2Y3 , (5.4)
dt

dY2 =
0.04 Yl - 104y2Y3 - 3 x 107y2Y2 , (5.5)

dt
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dY-----_3= 3 x 107y2Y2 , (5.6)
dt

where t is time in seconds. The initial conditions are

Yl(t=O)=l; Y2(t=O)=Y3(t=O)=O. (5.7)

The example problem is interesting because the reaction rate coefficients vary

over nine orders of magnitude. Also it can be quite easily verified that at steady
state, that is, as t ---) oo,yl-.) 0, Y2 --) 0, and Y3 _ 1. To study the evolution of the

chemical system, including the approach to the final state, we integrate the ODE's
up to t = 4x10 l° s, generating output at t = 0.4x10 n s (n = 0,1 ..... 11).

5.2 Coding Required To Use LSODE

5.2.1 General

All of the coding required to solve the example problem with LSODE is

included (in the form of comment statements) in the package supplied to the user.

The MAIN program that calls LSODE and manages output is given in figure 5.1.

Figure 5.2 lists the subroutine that computes the derivatives. Because a value of
MITER = I is used (fig. 5.1), a routine that computes the analytical Jacobian

matrix is required. This routine is given in figure 5.3. The names used for the
derivative and Jacobian matrix subroutines are, respectively, FEX and JEX.

Therefore these names are used as arguments in the call to LSODE and declared

EXTERNAL in the MAIN program (fig. 5.1).

5.2.2 Selection of Parameters

Because the problem is stiff, the choice METH = 2 is made. For the same

reason functional iteration, that is, MITER = 0, is rejected. It is straightforward to

compute the analytical Jacobian matrix, which should be used for reasons of

efficiency. In any case, the choice MITER = 3, that is, Jacobi-Newton iteration,
must not be made because the Jacobian matrix is not diagonally dominant. The

choice MITER = 4 with ML = 1 and MU -- 2 could be made but will require more

storage than MITER = 1 (see table 4.9). More importantly the computational

overhead for the LU-decomposition of the iteration matrix is more for MITER = 4
than for MITER = 1. Hence the value MF = 21 is used.

The number NEQ of ODE's is equal to the number (= 3) of chemical species.

To minimize storage, the lengths LRW and LIW of the work arrays RWORK and

IWORK are set equal to their minimum required values. According to the

formulas given in tables 4.9 and 4.10 for MF = 21, these lengths are as follows:
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20

40

60

80
90

5.2 Coding Required To Use LSODE

EXTERNALFEX, JEX
DOUBLEPRECISION ATOL, RI_)RK, RTOL, T, TOUT, Y
DIMENSION Y(3), ATOL(3), RWORK(58), IWORK(23)
NEQ- 3

- O.DO
Y(3) ,, O,DO
T • O.DO
TOUT,, .41)0
ITOL - 2
RTOL- 1.D-4
ATOL(1) - I.D-6
ATOLl2) - 1.D-10
ATOL(3) - 1.O-6
ITASK - 1
ISTATE - 1
IOPT - 0
LRW • 58
LIW • 23
MF - 21
DO 40 IOUT - 1,12

CALL LSODE(FEX, NEQ,Y, T, TOUT, ITOL, RTOL,ATOL, ITASK, ISTATE,
1 IOPT, RWORK,Llrd, IWORK,LIW, JEX, NF)

WRITE(3,20)T,Y(I), Y(2),Y(3)
FORHAT(7H AT T -,EI2.4,6H Y -,3E15.7)
IF (ISTATE .LT. O) GO TO 80
TOUT • TOUT*IO.DO

WRITE(3,60) IWORK(11), IkR)RK(12), IWORK( ! 3)
FORMAT(/I2H NO. STEPS _,I4,1IH NO. F-$ -,I4,IIH NO. J-S -,I4)
STOP
WRITE(3,90) ISTATE
FORHAT(/I/22H ERRORHALT.. ISTATE -,13)
STOP
END

Figure 5.1 .--Listing of MAIN program for example problem.

SUBROUTINEFEX (NEQ, T, Y, Y1)OT)
DOUBLE PRECISION T, Y, YDOT
OIHENSION Y(3), YDOT(3)
YDOT(I) - -.04DO*Y(1) + I.D4*Y(2)*Y(3)

YDOTI3) = 3.07*Y(2)*Y(2)
YDOT(2) -YDOT(1) - YDOT(3)
RETURN
END

Figure 5.2.--Listing of subroutine (FEX) that
computes derivatives for example problem.

LRW = 22 + 3(5 + l) + 3(3) + 32 = 58

and

LIW=20+ 3 =23.

Selection of the error tolerances requires some explanation. A scalar RTOL is

used because the same number of significant figures is acceptable for all

components. However, because Y2 is expected to be much smaller than both Yl
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SUBROUTINEJEX (NEQ, T, Y, 14L, flU, PD, NRPD)
DOUBLEPRECISION PD, T, Y
DZlIENSZONY(3), PD(NRPO,3)

eoO,1) i -.o4oo
PO(1,2_ 1.D4*Y(3)
eo(t,3_ l.o4*v(z)
eO(Z,l_ .040o
eo(z,3_ -P0(1,3)
eo_3,z:_; 6.07,v(z)PO(Z,2) -PD(I,2) - P0(3,2)
RETURN
END

Figure 5.3.--Listing of subroutine (JEX) that computes
analytical Jacoblan matrix for example problem.

and Y3, an array ATOL, with ATOL(2) much smaller than both ATOL(1) and

ATOL(3), is used. For these choices of the RTOL and ATOL types, table 4.2 gives

ITOL = 2. Pure relative error control cannot be used because the initial values of

both Y2 and Y3 are zero and, as t _ _, Yl ---> 0 and Yz ---> 0. Pure absolute error

control should not be used because of the widely varying orders of magnitude of

the {Yi}. Note that because a scalar RTOL is used, the MAIN program does not

require a DIMENSION statement for this variable.

The remainder of the program calling LSODE is straightforward and self-

explanatory. Because the output value for ISTATE is equal to 2 for a normal

return from LSODE and no parameter (except TOUT) is reset between calls to

LSODE, ISTATE does not have to be reset.

5.3 Computed Results

The output from the program, obtained on the Lawrence Livermore Laboratory's

CDC-7600 computer using single-precision arithmetic, is given in figure 5.4. In

addition to the results at the specified times, values for the following parameters,

which give a measure of the computational work required to solve the problem,

are printed at the end: total number of integration steps (STEPS), total number of

derivative evaluations (F-S), and total number of Jacobian matrix evaluations and

LU-decompositions of the iteration matrix (J-S).

AT T ,. 4.0000E-OI y = 9.851726E-01 3.386406E-05 1.479357E-02
AT T- 4.0000E+O0 Y- 9.055142E-0] 2.240418E-05 9.446344E-02
AT T- 4.0000E+01 Y = 7.158050E-01 9.184616E-06 2.841858E-01
AT T = 4.0000E+OZ Y ,, 4.504846E-01 3.222434E-06 5.495122E-01
AT T- 4.0000E+03 Y- 1.831701E-01 8.940379E-07 8.16BZgOE-01
AT T- 4.0000E+04 y. 3.897016E-02 1.621193E-07 9.610Z97E-01
AT T- 4.0000E+05 Y- 4.935213E-03 1.9837_E-08 9.950648E-01
AT T- 4.0000E+06 Y- 5.159269E-04 2.064759E-09 9.994841E-01
AT T- 4.0000E+07 Y = 5.306413E-05 2.122677E-10 9.999469E-01
AT T - 4.0000E+08 Y - 5.494529E-06 2.197824E-11 9.999945E-01
AT T = 4.0000E+09 Y • 5.129458E-07 2.051784E-1Z 9.999995E-01
AT T - 4.0000E+10 Y ,. -7.170592E-08 -2.868236E-13 1.000000E÷O0

NO. STEPS - 330 NO. F-S = 405 NO. J-S - 69

Figure 5.4.--Output from program for example problem.
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Chapter 6

Code Availability

The present version of LSODE, dated March 30, 1987, is available in single or

double precision. The code has been successfully executed on the following

computer systems: Lawrence Livermore Laboratory's CDC-7600, Cray-1, and

Cray-X/MP; NASA Lewis Research Center's IBM 370/3033 using the TSS

operating sytem (OS), Amdahl 5870 using the VM/CMS OS and the UTS OS,

Cray-X/MP/2/4 using the COS and UNICOS operating sytems and the CFT and
CFI'77 compilers, Cray-Y/MP/8/6128 using UNICOS 6.0 and CFT77, Alliant

FX/S, Convex C220 minicomputer using the Convex 8.00S, and VAX

11/750, 11/780, 11/785, 6320, 6520, 8650, 8800, and 9410; NASAAmes Research

Center's Cray-2 and Cray-Y/MP using the UNICOS operating system and the

CFT77 compiler; the Sun SPARCstation 1 using the Sun 4.0 OS; the IBM RISC

System/6000 using the AIX 3.1 OS and the XLF and F77 compilers; several IRIS

workstations using the IRIX 4.0.I OS and F77 compiler; and various personal

computers under various systems.

The LSODE package is one of five solvers included in the ODEPACK collection

of software for ordinary differential equations (ref. 2). The official distribution
center for ODEPACK is the Energy Science and Technology Software Center at

Oak Ridge, Tennessee. (ESTSC supersedes NESC, the National Energy Software

Center at Argonne National Laboratory, in this activity.) Both single- and double-

precision versions of the collection are available. Additional details regarding
code availability and procurement can be obtained from

Energy Science and Technology Software Center
EO. Box 1020

Oak Ridge, TN 37831-1020

Telephone: (615) 576-2606

The ODEPACK solvers can also be obtained through electronic mail by accessing
the NETLIB collection of mathematical software (ref. 40). Both single- and

double-precision versions of ODEPACK are contained in NETLIB. Detailed
instructions on how to access and use NETLIB are given by Dongarra and Grosse

(ref. 40).
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ORDINARY DIFFERENTIAL EQUATIONS

Krishnan Radhakrishnan and
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On page 1, second line past equation (1.2), there should be a comma after 3'0"

On page 2, paragraph 3, line 3, delete the comma after X_n.

In the third part of equation (2.75) on page 27, ,,._,,+ 11,,should be "e_'n+l]''.The
equation should read as follows:

_gfyi-}%_ ,:,,[,i_ . ..,to] [.]

lm+ll _lml + p-I l,('yl-ll _
¢,, = _. _-. J

y[m+n =Y[°l .. l_+ll
n -=-n -a'-,_0en

m = 0,1 ..... M - l. (2.75)

,

.

In equation (2.121) on page 38,
• #

The two halves of figure 3.3 on pages 60 and 61 are misaligned. In order to

make the connections between the two halves, the bottom half On page 61
should be viewed as being moved to the left by approximately 0.23 in., so that
the rightmost vertical lines on the two halves are aligned.

6. On page 71, paragraph 3, line 2, replace "falures" with "failures".





Form Approved

REPORT DOCUMENTATION PAGE o=aNo.070*01SS
Pu0k mr.mleg _¢den for th_ cokdk_ a _om_l_ iS=ramrod Io =_'age I hourper rgr.porm._ It_ wrr,a kx revl_W_ N=f L_:_:,_E,=cachingSx_Ing ==a

cotledlono¢il_fOnllaUon,ln,_ldlng Ions for redudngibis burdmr,,IoWam'dngt_ _de_ _$, DirectorIllefor InIol"rnaoon al_l I =N mn_._

1. AGENCYUSEONLYILoawblank) 2. REPORTDATE 13. REPORT TYPE AND OATES COVEBED

December 1993 I Reference Publication

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Description and Use of LSODE, the Livermom Solver for Ordinary

Differential Equations

6. AUTHOR(S)

Krishnan Radhakrishnan and Alan C. Hiodmarsh

7, PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS{ES}

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

WU-505-62-52

IlL PERFORMING ORGANIZATION

REPORT NUMBER

E-5843

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA RP-1327

UCRL-ID-I 13855

11. SUPPLEMENTARY NOTES

Krishnan Radhakrish nan, Sverdrap Technology, Inc., Lewis Research Center Group, 2001 Aerospace Parkway, Brook Park, Ohio 44142 (work funded

by NASA Contract NAS3-25266), arid Alan C. Hiedmarsh, Lawrence Livermore National Laboratory, Llwrmor¢, CA 945.51 (work funded by DOE

Contract W-7405_=NG_18). Responsible person, Edward L Mul arl, organization cede 2650, (216) 433-5850.

12_ DISTRIBUT1ON/AVAILABIUTY STATEMENT

Unclassified -Unlimited

Subject Categories 61 and 64

12b, OI::)IHJUUTION CODE

13. ABSTRACT {M=xlmum 200 worrY)

LSODE, the Livermom Solver for Ordinary Differential Equations, is a package of FORTRAN subroutines designed for

the numerical solution of the initial value problem for a system of ordinary differential equations. It is parlicularly well

suited for "stiff" differential systems, for which the backward differentiation formula method of orders I to 5 is provided.

The code includes the Adams-Moulton method of orders I to 12; so it can be used for nonstiff pr,ablems as well. In

addition, the user can easily swilch methods to increase computational efficiency for problems that change characler. For

both methods a variety of corrector iteration lechalques is included in the code. Also, to minimize computational work,

both the step size and method order are varied dynamically. This reporl presents complete descriptions of the code and

integration methods, including their lmplemenlation. It also provides a detailed guide to the use of the code, as well as an

illustrative example problem.

14. SUBJECT TERMS 15. NUMBER OF PAGES

First-order ordinary differential equations; Stiff ODE's; I .inear multistep method; Adams-Mc, uhon 122

method; Backward differenliation formula method; Simple iteration; Newton-Raphson iteration; le. PRICE CODE

Numerical Jacobians; Accuracy; En'_" control; Method order selection; Step size selection A06

17. SECURITY CLASSIFICATION 1$. SECURITY CLABSrF1CATION lg, SECURITY CLASSIRCATION 20. UMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 754(>01-280-5500 Standard Form 298 (Rev. 2-89)
Pre_rR:_d by ANSI SId Z39-18
29B-Io2




