
SST -115

Software Architecture Standard
for Simulation Virtual Machine

Version 2.0

NAS9-18181

20 April

INTEGRATED TRA_ING

FACILITY

1994

d

Prepared for:

National Aeronautics and Space Administration
Lyndon B. Johnson Space Cente_

Houston, Texas 77058

(NASA-CR-1882ql) SOFTWARE

ARCHITECTURE STANDARD FOR

SIMULATION VIRTUAL MACHINE,

2.0 Final Report. (CAE-Link

246 p

VERSION

Corp.)

Prepared by:

CAE-Link Corporation
Houston Operations

2224 Bay Area Boulevard
Houston, Texas 77058

N94-35443

Uric 1as

G3/61 0013762

=

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for revlewlng instructions, searching exisl_ng data soumes, gathering and

maintaining the data needed, and completing and reviewing the collection of Information_ Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,

VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

20 April 1994 Final

4. TITLE AND SUBTITLE

Simulation Virtual Machine

Software Architecture Standard

6. AUTHOR(S)

Sturtevant, Robert and William Wessale

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CAE-Link

2224 Bay Area Blvd.

Houston, TX 77058

9. SPONSORING/MONITORING AGENCYNAME(S) ANDADDRESS(ES)

Hill, Ken/DK 1200 NASA Road l

Mission Operation Directorate Houston, TX 77058-3696

Lyndon B. Johnson Space Center (713) 244-7250

____N_io_erona__nd Spac_ Administration
11. SUPPLEMENTARY NOTES

SVM is architecture of the simulation executive developed

Space Station Verification and Training Facility (SSVTF).

5. FUNDING NUMBERS

C - NAS9-18181

8. PERFORMING ORGANIZATION
REPORT NUMBERS

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

SST-II5

for and used in the

12a. DISTRIBUTIO_AVAILABILITYSTATEMENT

See NASA Handbook NHB 2200.2

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Simulation Virtual Machine (SBM) is an Ada architecture which eases the effort

involved in the real-time software maintenance and sustaining engineering. The

Software Architecture Standard defines the infrastructure which all the simulation

models are built from. SVM was developed for and used in the Space Station

Verification and Training Facility.

14. SU_ECTTERMS

Real-time, rate monotonic, Software architecture

17. SECURITY CLASSIFICATION
OFREPORT

Unclassified

18. SECURITY CLASSIFICA_ON
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

730
16. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR

\

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std. 239-18

298-102

-,,..,/

1. Abstract .. 3

2. Definition of Terms : 4

3. Overall Architecture 7

-_,_j

4. Real-Time Services

4.[.

4.2.

4.2.1

4.2.1.1
4.2.1.2

4.2.2

4.2.2.1

4.2.2.2
4.2.3

4.2.4

4.2.5
4.2.5.1

4.2.5.2

4.2.6

4.2.6.1
4.2.6.2

4.2.6.3

4.2.7

4.2.7.1
4.2.7.2

4.2.8

4.2.9

4.2.10
4.2.11

4.3.

4.3.1

4.3.2
4.3.3

4.3.4

4.3.4.1
4.4.

4.4.1

4.4.2
4.4.3

4.4.4

4.4.5

4.5.

4.6.
4.6.1

4.6.2

4.6.3
4.6.4

4.7.

13

Generic Model (Model Executive Interface) ... 13

Simulator Moding . .. 15

Simulation Set-Up ... 16

Register I/O / Set-Up ... 16
CreateData . ,. 16

Initialization ... 16
FuU IC ..

State Adjustment ..
Self Initialize ..

System Initialize ..
Freeze ..

Asset Add ..

Asset Drop
Run

Asset Add

Asset Drop
Safestore

Hold

Datastore

Abort

Terminate

Run To Freeze Transition

States of a Training Session
States of an Asset

The Messaging System

One- to- Many (Normal) Communication

Many- to-One Communication
Remote Communication

Mailbox communication

Mailbox Reads by Partitions
The DIS Concept ..
What is the DIS?

How is the DIS Organized?

Connecting Terms, Prefixes, and Malfunctions

Handling Enters, Malfunctions, and Initialization data
How Will Off-line Tools Use the DIS?

Mapping Logical Name to Physical Address: DIS & Symbol Map
Datastore/Initialization .

Perform a Datastore

Initialize to a Datastore

Partition Requirements ..
Datastore Notes . ..

Safestore ...

16

17

17
18

18

18
18

19

19

19
19

19

19

19
20

20

20
21

23

23
25

26

26

27
28

28

30
32

34

36
37

42

42
42

42

42
47

4.7.1
4.7.2
4.7.3
4.7.4
4.8.
4.8.1
4.8.1.1
4.8.1.2
4.8.2
4.8.3
4.8.3.1
4.8.3.1.1
4.8.3.1.2
4.8.3.1.3
4.8.3.1.4
4.8.3.2
4.8.3.2.1
4.8.3.2.2
4.8.3.2.3
4.8.3.2.4
4.8.3.3
4.8.3.4
4.8.4
4.8.4.1
4.8.4.1.1
4.8.4.1.2
4.8.4.1.3
4.8.4.1.4
4.8.4.2
4.8.4.2.1
4.8.4.2.2
4.8,4.2.3
4.8.4.2.4
4.8.4.3
4.8.4.4
4.9.

PerformaSafestore... 48
ReturntoaSafestore. ,. 48

Partition Requirements .,, 48
Safestore Notes ... 48

interface agents . .. 50
introduction ... 50

What is an Asset ?? ... 50

What is an Interface Agent ?? ... 51
interface Agent General Notes .. 55

Interface agent for asset with SVM 56
Simulating Interface 56

Communication 56

Moding
Malfunctions

User-Requested Data Entry
Effecting Pass-Thru Interface

Communication

Moding
Malfunctions

User- Requested Data Entry
Adding Asset

Dropping Asset
Interface agent for asset without SVM ..

Simulating Interface
Communication

Moding
Malfunctions

User- Requested Data Entry
Effecting Pass-Thru Interface

Communication

Moding ..
Malfunctions ..

User-Requested Data Entry ..
Adding Asset ..

Dropping Asset ..
Asynchronous I/O ..

5 Non-Real-Time Section• e it. iii I , i i e + i it it i+ i i i o i i i i • g i II i I i i I I +

5.1.

5.2.
5.3.

5.4.
5.4.1
5.4.1.1

5.4.1.2
5.4.1.3

5.5.

Overall Structure

Classes and Instances

• Inheritance and Composition

Operational Components

Communicating with Other Operational Components/Partitions
File Exchanging

Utifizing the Real-Time Interface
POSIX Interprocess Communication

Templates and Guidelines

6 "131-*'t- II _ m I[... o

DlOllOglrdpUy";'i++ ,, ' ,

7 Appendix I - Ada Structural Templates
7.1

56
56

56
57
57

57
57
57

57
58
59
59

59
59
59

59
60
6O

60
60
60

61
61
62

66
.. 66

66
66
66

66
67
67

67
67

69

I-1

Class Template .. I- 1

J

v

____ J

M.../
7.2

7.3

' 7.4

Class Template With Computed Period .. I-3

Partition Template .. I-5

Generic Partition Template . I- 12

o Appendix II -Real Time Interface Packages H-1
8.1. Generic Model . II- 1
8.2. Message II-3

8.3. Mailbox II- 14

8.3.1 Enter_Mailbox II-20

8.3.2 Maffunction Mailbox II- 22

8.3.3 Safestore_Mailbox II-23

8.3.4 Mega_Mailbox II- 24
8.4. DIS II-26

8.5. SSTF_De fs II- 44

8.6. Timer_ServicesClass II-55

M.i

o

10.

Appendix Ill - Questions and Answers: III-1
9.1. Ada Structural Components: II1-1
9.2. Executive Sequencing and Moding: III-4

9.3. Messaging: III-5

9.4. Generic Partition: III-6

9.5. DIS II1-6

9.6. Datastore: II1-6

9.7. Interface Agent: III- 7

Appendix IV -Example Code (non-real-time)
11 Appendix V - Hydraulic System Example
11.1 Real World Hydraulic System

11.1.1 Fluid Pressurization Assembly

11.1.1.1 Motor

11.1.1.2 Gear Box
11.1.1.3 Pump

11.1.2 Valve

11.1.3 Accumulator
11.1.4 Reservoir

11.1.5 Reservoir Quantity Sensor

11.1.6 Pressure Sensor

11.1.7 Distribution System

11.1.8 Return Lines
11.2 Specification of the Software System

11.2.1 External Components

11.2.1.1 Control Surfaces
11.2.1.2 Landing Gear

11.2.1.3 Electrical System

11.2.1.4 Hydraulic Control Panel

11.2.1.5 IOS

11.2.1.6 Malfunctions
11.2.1.7 Look and Enter Data

11.2.1.8 Aural Cue

11.2.2 Internal Components

131-1

V-1
V-I

V-I

V-I

V-I
V-1

V-I

V-2
V-2

V-2

V-2
V-2

V-2

V-4

V-4
V-4

V-4

V-4

V-4
V-5

V-5

V-5

V-6

V-7

ll.3

11.3.1

l 1.3.2

11.3.3

11.3.4

11.3.5

11.4

11.4.1

11.4.2

11.4.3

ll.4.3.1

11.4.3.2

11.4.3.3

l 1.4.3.4

11.4.4

11.4.5

11.5

11.5.1

11.5.2

11.6

11.6.1

11.6.2

11.6.3

11.6.3.1

11.6.3,2

11.6.3.3

11.6.3.4

11.6.3.5

11.6.3.6

Transition to Design . V-9
Sensor Class . V-9

Reservoir Class . V-9

Drive Unit Class . V-9

Hydraulic PumpCIass . V-9
Other Classes V-10

Class Specification V-!I
Attributes V- 11

Type Declarations V- i 1

Modifier Specifications V- 12
Default Modifiers V-12

Update V- 12

Request_State_Change V- 12
Create V-12

Selector Specifications V- 12

Textual Description V- 12

Class Examples V- 13
The Accumulator Class V- 13

The Pressure and Quantity Sensor Class V- 13

The Hydraulic System Partition V- 14

Hydraulic System Partition Interfaces V- 14

Hydraulic_System_Partition Package Specification V- 14

Hydraulic_System_Partition Package Body V- 14

Generic Class Instantiations V-14

Local Type Definitions V- 14

Message Pointers V-14
Class Instances V- 15

InternalData V-15

Creating Thread Exec V-15

V

i

V

Ada Unit 1 Accumulator_Class Package Specification V- 17

Ada Unit 2 Accumulator_Class Package Body V- 18

Ada Unit 3 Accumulator_Class.Report_Symbols Separate Procedure V- 19

Ada Unit 4 GenericSensor_Class Package Specification V-20

Ada Unit 5 Generic_Sensor_Class Package Body V-21

Ada Unit 6 Generic_Sensor_Class.Report_Symbols Separate Procedure V-22
Ada Unit 7 Elec_Motor_Class Package Specification V-23

Ada Unit 8 Elec_Motor_Class Package Body V-24
Ada Unit 9 Elec Motor class.Report Symbols Separate Procedure V-25

Ada Unit 10 Dc_Motor_Class Package Specification V-26

Ada Unit 11 Dc Motor_ClassPackage Body V-27

Ada Unit 12 Dc_Motor_Class.Report_Symbols Separate Procedure V-28
Ada Unit 13 Gear_Box_Class Package Specification V-29

Ada Unit 14 Gear_Box_Class Package Body V-30

Ada Unit 15 Gear_Box_Class.Report_Symbols Separate Procedure V-30
Ada Unit 16 Drive_Unit_Class Package Specification V- 32

Ada Unit 17 Drive_Unit_Class Package Body V-33
Ada Unit 18 Drive Unit_Class.Report_Symbols Separate Procedure V-34

Ada Unit 19 Drive_Unit_Class.Update Separate Procedure V-34

Ada Unit 20 PositiveDisplacement_Pump_Class Package Specification V- 36

Ada
Ada

V-38

Ada Unit 23

Ada Unit 24
Ada Unit 25

Ada Unit 26
Ada Unit 27

Ada Unit 28

Ada Unit 29
Ada Unit 30

Ada Unit 31
Ada Unit 32

Ada Unit 33
Ada Unit 34

Ada Unit 35

Ada Unit 36
Ada Unit 37

Ada Unit 38
Ada Unit 39

Ada Unit 40
Ada Unit 41

Ada Unit 42

Ada Unit 43
Ada Unit 44

Ada Unit 45
Ada Unit 46

Ada Unit 47

Ada Unit 48
Ada Unit 49

Ada Unit 50

Unit 21 Positive_Displacement_Pump_Class Package Body V- 37

Unit 22Positive Displacement_Pump_Class.Report_Symbols Separate Procedure

Axial_Piston_Pump_Class Package Specification V-39

Axial_Piston_Pump_Class Package Body V-40

Axial_Piston_Pump_Class.Report_Symbols Separate Procedure V- 42
Actuator_Class Package Specification V-43

Actuator_Class Package Body V-44

Actuator_Class.Report_Symbols Separate Procedure V-45
Centrifugal_Pump_Class Package Specification V-47

Centrifugal_Pump_Class Package Body V-48

Centrifugal_Pump_Class.Report_Symbols Separate Procedure V- 48
Hydraulic_Pump_Class Package Specification V-50

Hydraulic_Pump_Class Package Body V- 52

Hydraulic_Pump_Class.Report_Symbols Separate Procedure V-53

Hydraulic_Pump_Class.Update Separate Procedure V- 53
Distribution_System_Class Package Specification V-56

Distribution_System_Class Package Body V- 57

Distribution_System_Class.Report_Symbols Separate Procedure V- 58

Generic_Reservoir_Class Package Specification V-59
Generic_Reservoir_Class Package Body V-60

Generic_Reservoir_Class.Report Symbols Separate Procedure V-61
Valve_Class Package Specification V-62

Valve_Class Package Body V-63

Valve_Class.Report_Symbols Separate Procedure V-64
Elec_Sys_Intfc DefsPackage Specification V-65

Hyd_Control_panel_Intfc_Defs Package Specification V-66
Hyd_Sys_Intfc_Defs Package Specification V-67

Hydraulic_System_Partition Package Specification V-70

Hydraulic_System_Partition Package Body V-70

Hydraulic_System_Partition.Create_Data Separate Procedure V-73

Ada Unit 51

Ada Unit 52

Ada Unit 53

Ada Unit 54

Ada Unit 55

Ada Unit 56

Ada Unit 57
Ada Unit 58

Ada Unit 59

Ada Unit 60

Ada Unit 61

Hydraulic_System_Partition.Hold Separate Procedure V-74

Hydraulic_System_Partition.Initialize_ModelSeparate Procedure V-74
Hydraulic_System_Partition.Ifiitialize_OutputsSeparate Procedure V-74

Hydraulic_System_panition_Process_MailboxSeparate Procedure V-75

Hydraulic_System Partition.Register_IoSeparate Procedure V-78
Hydraulic_System_Partition.Report_SymbolsSeparate Procedure V-81

Hydraulic System_Partition.Run Separate Procedure V-81

Hydraulic_System_Partition.Self_Init Separate Procedure V-81

Hydraulic System_partition.Set_UpSeparate Procedure V-82

Hydraulic_System_Partition.System_lnit Separate Procedure V-84

Hydraulic_System_Partition.Term Separate Procedure V-84

Ada Unit 62Hydraulic_System_Partition.Update Hydraulic_System Separate Procedure ...
V-85

Ada Unit 63 Hydraulic_System_Partition.Update_Inputs Separate Procedure V-85

Ada Unit 64 Hydraulic_System_Partition.Update_Outputs Separate Procedure V-86
Ada Unit 65Hydraulic_System_Partition.Update_Press_Components Separate Procedure ..

V-88

Ada Unit 66Hydraulic_System_Partition.Update_Supply_Components Separate Procedure.
V-89

Ada Unit 67 Orvc Common_Types Package Specification V-91

Ada Unit 68 Orvc_Defs Package Specification V-91

Ada Unit 69 Hydraulic System Defs Package Specification V-91

V

1. ABSTRACT

The Space Station Verification and Training Facility (SSVTF) is using an object-oriented design (OOD) meth-
odology for software design, a rate monotonic scheduling (RMS) and message passing system called "Simu-
lation Virtual Machine" (SVM) to support the highly distributed execution environment, and the Ada language
to implement most of the software. This architecture document specifies how the Ada language will be used,
in general, to support SVM and implement OOD. Itwill define the Ada structure of "classes", "class instances",
"algorithm packages", "partitions", and many other architectural elements of the system. Itwill give guidance
on ways to decompose requirements into the various Ada structural elements. It will show how communica-
tion is implemented between objects at different levels of the software design (class instances, partitions).
It will also specify how the simulation will model the required real-world space station communication and
simulation requirements for specific types of interfaces (i.e., 1553, discretes, interfaces to real and simulation
hardware).

This document does not detail the specific design of various models in the simulation - it simply (importantly)
defines the infrastructure which all the simulation models are built from. Adhering to the concepts and tem-
plates in this document will support a consistent architecture across the program assuring that Ada features
are used logically and within reason. This architectural specificationwill support the development of a quality
product through consistent design I early analysis and documentation of the "big picture" requirements. It will
also be the common location to document general architectural issues and solutions.

This document can be viewed as a software developer's users guide. The following describes the basic steps
in implementing the real-time Ada architecture. Several steps should be done concurrently (1..3,5..7). These
steps represent the general flow to implement the architecture - not a cookbook. Iterative and vertical slice
development are highly encouraged.

1. Identify solution-space objects and classes via OORA and iterative development.
2. Determine how the class instances will be grouped (composition, inheritance, ASM, partition). Define the
rate that the partitions will execute.
3. Identify all external interfaces (input and output) to the partitions.
4. Start implementing classes by copying the templete provided in Appendix I and filling in model-specific
details (attributes, names, routines). Class structures do not have to follow the template exactly, but the se-
mantic structure defined by the templates should be maintained.
5. Start implementing partitions by copying the template provided in Appendix I. Supply mode routines for
the generic model and message variables for the messaging system.
6. Create interface definition packages owned by the partition. Find / coordinate other partition's interface
definitions.
7. Create a "nominal" partition that drives default messages and executes at the required rate. No model
code executes in a nominal partition, only the partition shell. Time burners and memory allocators should be
defined. This shell will be used by others for unit testing and load analysis. More information and an example
of a nominal partition will be provided in future documentation.
8. Develop DIS packages as required. Identify terms for datastore, safestore, lOS look, lOS enter, and lOS
malfunctions. Add partition code to register DIS terms.
9. Refine "ProcessMailbox" procedure to handle DIS input terms (in partition body). Note option to process
or "stuff" variables.
10. Refine mode routines, interfaces, and other partition / class structures as the design proceeds.

What is Provided to developers:
1. Real-time interface packages shown in Appendix II. Developers use these packages to communicate
across partitions (Messaging), to execute partitions in real-time (Generic_Model), and to communicate with
the lOS and perform datastores (DIS).
2. Class and Partition templates shown in Appendix I. Developers may make a copy of the templates to get
a head-start in the implementation.

2. DEFINITION OF TERMS

Abstract Data TyDe(AD_: Normal implementation of a _ The class exports visible operations in a
limited private data type representing the class state in the specification of the package. The body
of the class contains the operations. Classes never define variables outside the private type struc-

ture (no global data).

r " • Non-standard implementation of an object, sometimes using generics.
Also used to describe partitions and Operational Components. An ASM is an Ada package that
experts operations in the specification and defines state in the body.

Z_ A standalone procedure that WlTHs all partitions that make up a single executable for a single
cpu. The Ada main will not perform any processing or sequencing - this is done by the thread
executive portion of SVM. The Ada main is only used to bind together a set (any set) of models so
that they may be executed.

A_orithm Package: An Ada package that experts functions/procedures that perform simple operations
(like transcendental functions). No state data is allowed in this package - all data referenced are
formal parameters in the exported routines.

An execution method (form of a thread executive) defined by the SVM "Get ,c_Model" pack-
age that allows aperiodic updates within an RMS base rate. The updates can bt ggered by inter-
rt,_ts or other events, and a predetermined max number of events can be handi_ ,vithinthe RMS
period. All processing must complete within the period time boundaries.

Asset." Any computer node or device on the RTSN such as lOS, SNS, and CSlOP.

Batch." A transaction model that runs in background without any urgency in completion time.

C,_ Class Specification. Used in final phases of Object-Oriented Requirements Analysis. This doc-
ument represents a minimal specification of the requirements in an object-oriented fashion.

C/ass: "A set of objects that share a common structure and a common behavior. The terms c/ass and
type are usually (but not always) interchangeable." [Booch 91] Classes are modeled as Ada ab-
stract data type packages.

Composition: The creation of a new class by constructing it from other classes.

A set of independent data items that is collected on demand and can be returned to models
as an initialization point.

DIS (Distributed Identifier SD.ecification_: A method and set of Ada package; _d structures that
associate logical names to physical variables for datastore, safestore. ; took and enter, and mal-
function data. DIS is also used to uniquely identify pa_tions and partit,cn messages.

G._2._G._J_ An SVM Ada package that provides the real-time execution capability for a partition.
Partitions instantiate either a "Periodic" or "Aperiodic" thread executive from the Generic_Model

package to enable real-time execution.

GP LAN: A general-purpose local area network for file download and non-time critical network opera-
tions between the OSS, lOS, and session computers.

The ability to extend the structure of a class, and possibly it's operations, to create a more
specialized component. It differs from _ because inheritance always results in a more
specialized version of it's parent class, whereas composition provides a more generalized abstrac-
tion.

"Something you can do things to. An instance has state, behavior, and identity. The structure
and behavior of similar instances are defined in their common class. The terms instance and
are interchangeable." [Booch 9i] An Instance is the object created from an ADT class package.

Interface A_aenL"A partition that provides simulation or pass-thru for an asset. Asset add/drop and asset
management are also supported.

./D.Le_C,_LD.¢_ A "type" package that contains the definitions of messages output by a partition. It con-
tains no executable code. Use of this package enforces type checking and interface control be-

tween partitions.

V

j
v

Mailbox Messaqe: A form of command and control, non-real-world interface message transmission on
the software backplane. This form is used primarily by the lOS. Mailbox messages are free-form,
non-_typed binary messages (unpacker must understand algorith_m of packer).

Many-to-One Message: A form of message transmission on the software backplane where a partition
defines the message structure for a message that it will receive from other partitions (in its interface
definition package). Many other partitions use the message definition to send message to the
single partition. Messages are queued. This is a special case messaging method to support parti-
tions who receive many identical messages from different senders.

Message Package: A SVM Ada package that is the interface to the software backplane for a modeler's
partition. It provides services to register and attach input/output messages, and it provides put I get
operations for partitions.

Mode/." A general term to describe a simulation software model such as propulsion, orbiter, and inertial
sensor assembly. Models are codified into 1 or more Ada partitions.

Distinct modes which all real-time models operate in. Modes include freeze, run, hold, initialize,
etc.

t._]B_L_tL_]_ A partition shell for an actual model which executes a null procedure and reads /
sends default messages at the desired rate. A time burner and memory allocator are implemented
for timing/sizing analysis (activation is optional). No class structures or model-specific code is im-
plemented. Basically, it is a shell that includes all the SVM hooks that are specific to the actual
model. It is also used for by other modelers to provide active stubs of external partitions for unit
testing.

Node." A single computer assembly containing several cpus connected through shared memory and a
system bus.

See _.

Object-Oriented Design: The design process whereby the software architecture is organized around
meaningful g._, rather than functions.

One-to-Many Message: A form of message transmission where a partition sends a message and any
number of partitions may receive the message. This is the primary method of sending messages
on SSVTF.

Operational Component: Largest unit of documentation in the O-Spec. The approximate real-time
equivalent of the Operational Component is the _.

O-Soec: Abbreviation for "Object Specification". This is the document that describes a CI in terms of an
object oriented perspective.

A self-contained code unit encompassing a single thread executive. It is an ASM that exports
nothing in the package specification. It internally holds instances of classes and iterates them cor-
rectly. Internally, it uses Ada parameters to pass data between class instances. Externally, parti-
tions use an SVM message scheme to communicate. Documented as an (_erational Comoonent.
Note that 1 or more partitions may represent a single documented operational component and
vise--versa. The general code size of an Partition will be from 5 to 20KSLOC.

An execution method (form of a thread executive) defined by the SVM "Generic_Model" pack-
age that provides periodic updates at a specified hertz rate. All processing must complete within
the period time boundaries.

Rate-Monotonic Schedu/in_e (RMS): A non-frame-based scheduling approach where models execute at
a periodic rate for a specified worst case time. Each model runs independently - RMS algorithms
assure models will meet their iteration rates.

Rea177me Mode/: An application model that simulates a real-world structure, assembly, or function and
iterates over a pre-defined time interval at a specified rate. The model's effects appear to be run-
ning "in normal human-perceivable time"- not faster than normal, not batch. Real-time also in-
cludes potentially fast processing to simulate missing hardware boxes - other real hardware would
not know the difference.

3

A real-time local area network (FDDI) for high-speed network communication between
assets for a training session.

_" A set of time-dependent data sent by models and captured during RUN at specified intervals.
The data is used to recover to the safestore time if required.

Selector: A function in a class ADT that returns an attribute value (state variable) of the class.

Session: The main computer(s) and simulation program that run the simulation. The lOS, SNS, OSS,
and CSIOP computers are not part of the session computers.

Simulation Virtual Machine (SVM): The SSVTF executive structure that provides an RMS-based execu-
tive and a messaging system for the distributed operating environment

Software Bac_lane: A term used to describe all the SVM software components that are involved in the
transmission of messages between partitions, cpus, nodes, and assets. It is a passive structure
that "wires together" the partitions and provides communication capabilities. The backplane pro-
vides several message transmission methods (1-to-many, many-to---I, mailbox) and time-consis-
tent data transfer for the entire SSVTF.

t:3te The state of the simulation (not mode). There are 3 states pre-session, active, post-
sessioP ',r,these states, nodes are:

pre_esslon - loaded, connected, waiting for something to do (asset)
session active - part of session (asset)
post-session - disconnected from session (asset)

A nucleus is a training session with at least the RTSC with an lOS and optional Data Management
System (DMS) string.

State." Any persistent data defined by a class or partition. State is defined by a class's private type and
exists in the instance of the class. State may also exist in the partition's body. Messages between
instances or partitions are reflections of the state, not the state itself (no global data). State is modi-
fied by normal iteration of the model or by "request state Cllange" calls to modify state (such as in-
sertion of malfunctions).

Thread Executive: A SVM component that gets created when a partition instantiates the "Generic_Model"
packages. This component sequences the partition's mode routines at the appropriate time. It is
the thre_# '_f control of a partition. There should be only one created per partition.

__ Non-periodic, event driven processing that spans indeterminate time spans. The
model may need to run quickly to emulate real-time data streams, but it is not periodic.

A code implementation where a developer implements a narrow design slice from top
(partition / interfaces) to bottom (class structures / instances) to prove out the design concept
(structure, timing, overhead, algorithm organization / implementation, etc.)

4

3. OVERALL ARCHITECTURE

The SSV'TF Ada software architecture must support a general distributed hardware environment. Figure 3-1
shows the general SSVTF hardware architecture with two session computers and the various non-session
assets connected via the RT LAN (the CSIOPs, lOSs, Visual, etc) and the nodes on the GPLAN (OSS, lOS).
Also shown are the multiple cpus per node and multiple nodes per session computer system. Cpus communi-
cate in local memory, nodes communicate via reflective memory, and other assets communicate on the RT
LAN.

/__ GMT
I pps

[Visual]

RT Simulation Network

units

LAN

OSS
Computers

Each Session will contain from (1) to

(N) nodes. Each node will contain (1)
to (N) CPUs.

Figure 3-1

Each SSVTF software model is decomposed in an object-oriented fashion based on real-world structures
and assemblies. Object-oriented means that data and the data's associated operations are grouped into
"class" structures. A class structure encapsulates the hidden portion of the object's attributes and operations

5

andexports the data type that abstractly represents the object and the valid operations. The class structure
on SSVTF is implemented as an Ada abstract data type (ADT) in the form shown in Appendix I, 7.1. An "ob-
ject" is created when an "_" of the class abstract type is declared. The class should represent real-
world "objects" to the greatest extent possible. Classes/objects are initially defined during the Object-Ori-
ented Requirements Analysis (OORA) phase.

Class structures may be made up of other classes by declaring instances of lower-level classes in the object-
attribute record of the higher-level class. If the higher level class represents a less abstract form of the lower-
level class, then this structure is defined as "inheritance". If the higher-level class represents an assembly
where the lower-level classes are sub-parts of the higher level class, then the structure is called a "composi-
tion". In most cases, composition structures will be used on SSVTF. The depth of the hierarchy of classes
is dependent on the particular model - one to three levels are common.

At some point in the hierarchy of classes, something must define instances of the highest-level classes.
There are three possibilities in Ada- an Ada main program, a task, or an abstract state machine (ASM) pack-
age. On SSVTF, the top-level Ada architectural decomposition structure for a model will be an abstract state
machine (ASM) package called a "_" (template in Appendix I, 7.3). The partition performs two types
of functionality- (1) defines the state of a model and sequences the model over time; (2) connects the model
to the real-time distributed system interfaces.

The stat_ -f a model partition will be located in the package body of the partition. It will primarily consist of
instances of classes. Since the partition is an object itself (and an ASM), it may also contain non-class related
variables defined in the partition body. This data is either "temporary" data required for transformations of
external data into data forms required by the classes, or it is real state data that persists cycle to cycle. In
general however, class instances should contain the state of the model, not the partition. The partition defines
the instances and connects and iterates the instances of the class structures. Instances of classes are con-
nected via procedure calls and parameters.

The real-time system inter:facesinCiud-ea gen__ that pr0vides a l_erlodic RMS task to cycle
the model (partition) at a given rate, a messa0ina system that allows partitions to communicate ina distributed
environment, and the Distributed Identifier Specification (J_ which provides the association of logical
names to physical data variables for lOS display/manipulation and for datastore/safestore.

The real-time system services provide a virtual machine on which models (partitions) execute. These ser-
vices support a distributed Ada environment. Ficj. _-2 shows the topology of the system with respect to
models. Each model ex_ _<in a self-contained str. _.=denoted as the partition. Externally, partitions inter-
face through the softwa .,ackplane via the packa_;e "Message'. The backplane provides the messaging
capability on the mul_u, multi-node distributed system. The backplane also allows the partitions to be
very decoupled. The interfaces (messages) between partitions are defined by the "lnterface_Defn" Ada type
packages shown. These packages contain records defining the format of messages sent between partitions.
This structure allows the Ada compiler to verify that interfaces have no inconsistencies. The messages are
therefore defined usingnormal Ada constructsand then sent as messages via the software backplane toother
partitions. At the bottom of the figure, the "DIS" (distributed identifier specification) is used to map logical
names to physical variables for the purpose of lOS display and datastores.

V

V

6

i ! ! i i iii!i i iiSof_areBac_n61 ii iii!i iiiil i!iiiiiiil ill iil

,:" "lntfc_Defs" Message Ada Type Packages ';. I-II-I1-11-1I-I1-11--I1-11-1I-I1-11-11-11-1I-!I-1;

mo_'_scgll"...................... "'" " "''" " °"'" °° "°

Model

[(.,,rtition)[

Model

I(Partition) I

Model Model

All models
register.

(DDDDDDD _,
•. o

IKEY: _]
Modeler Code:

Exec. Code:

FIGURE 3-2

The following discussion explains the various parts of a partition. Reference the code templates in Appendix
I for specific detail on code structures and actual implementation.

Partition Structure:

Figure 3-3 shows the various structures related to a partition: The large box labeled "Partition" represents
an Ada package ASM. In the body of the package (hidden from external view) are the instances of ciasses
(objects), local variables, and local subprograms. At the bottom of the page are the "class" packages that
are used internally by the partition. The code template for class packages is shown in the "Class Template"
section of this document. On the lower right side of the partition box, the "l'hread_Exec" is shown. This is
the SVM distributed executive that is an instantiation of the "periodic" package defined by the "Generic_Mod-
el"package (see appendix II). The partition supplies the mode routines during the instantiation. The thread
exec executes the mode routines at the appropriate times. The two "lnrfc_Defs"packages at the topare Aria
type packages that define the messages that are produced by partitions. "External_lntfc_Defs" defines the
messages of another external partition, and "Partition_lntfc_Defs" defines the messages owned by this parti-

tion. By WlTHing in interface definition packages, a partition gains the type-checking features of Ada and
the exact specification of the interface messages. They can be thought of as mini-interface control docu-
ments between partitions. The interface definition packages contain no executable code - only type struc-
tures. Inside the partition body, variables are declared using the interface definition package and the "Mes-
sage" package. These variables are used to send and receive messages. The code template for this set of
modules is located in the "Partition Template" section of this document.

Internal Partition Object Communication:

Within a partition, normal Ada language constructs are used to attach, iterate, and communicate data be-
tween class instances. Associations (message passing) between classes are done in a vertical fashion.
Class structures themselves do not laterally invoke routines of other class structures primarily because the
instances of the classes are not "known" by the classes themselves. A higher order module must create the
instance and provide the associations between the instances. The class structure does not "know" or have
access to instances of other class structures, so a class calling another class's exported routines is rendered
impossible by the imposed structure (ref. class template). Note that this does not apply to class compositions
or inheritance structures. In compositions and inheritance, the instance of a superdass is defined within the
state definition type of the subclass. A call to the subclass can then update the superclass instance.

As shown in figure 3-3, instances of class structures are declared in the body of the partition. The partition
provides the mode routines that iterate the instances of the classes.

v

Partition

I Routine A I
Routine B I

mode routines

Setup
Create_Data
Self Inlt

Sys_m__
Run
Freeze
Hold
Term

obJoct_l%

obJect_/-
Alg6rlthm Pkg

R'outlne 11

<obJ> Class
I

_reato

Hequest_chango
Update
Selo_

I

Partition Intfc Defs

External Intfc Defs

DIS

SSaie'.....!iiiil

<obJ> Class
KEY:
Modeler Code:

Exec. Code:

•rob J> Class <obj>_Clau

FIGURE 3--3

Figure 3-4 shows the local area network, interface agents representing the I_AN nodes, and the SVM parts.
Interface agents simulate LAN nodes when the node is not active or they pass data through from the LAN
interface to the other models if the nodeis active. They will be discussed later in this document.

9

USAV
(CSIOP)

Station
Network
Simulator
(SNS)

Asset

Shuttle
Mission
Simulator
(SMS)

Asset

lOS

RTSN

Asset

In_facedata
_omassets.

Orbiter

Interface data
from assets.

OSS

_mulated (or)
pass-thru data.

Command and
Conffol

Partition

Note: Message defini_ons
defined by Inffc_ Defs Ade
type packages.

Partition
(Model)

obJ:Ckm;

Allmodelsregister
malvariableswi_ _,_,...__._Dp _DISlogicalnames.

°i I

•" DDDD"
," DDDDD ",
:'ODDDDDD
',.Q/s._P_._o_

JGPLAN
Asset

lOS

Look'requests.

Partition
(Model)

c_l :C_;

10

\ j

4. REAL-TIME SERVICES

The real-time services _nciude the following:

1. Moding and Control
2. RMS-based scheduling (thread executive)
3. Simulation Clock
4. Messaging System (1-to-Many, Many-to-I, Mailbox)
5. Distributed Identifier System (DIS) (for lOS and Datastore/Safestore Variables)
6. Datastore and Safestore Operations
7. Device Drivers
8. Architectural constraints (partition, messaging, DIS, interface agent)

Executive, moding, the messaging system, DIS, datastore/safestore, and interface agents are discussed
below.

4.1. Generic Model (Model Executive Interface)

In order to execute a model in real-time, the model partition must use the SVM package "Generic_Model"
to obtain the real-time scheduling services. This package specification is shown in Appendix II, and its use
is shown in Appendix I under the section "Partition Template". Figure 4.1-1 illustrates the executive software.
The Generic_Model contains two generic subpackages "Periodic" and "Aperiodic". Both are RMS scheduled
which implies the allocated CPU time for the model is based on the pedod time and period rate. Partitions
must run within their max period time otherwise period overruns will occur and simulation will be stopped.

The rates supported in the "Generic_Model" are described in the "Periodic_Type" and "Aperiodic_Type"
enumeration values. SVM is not limited to these rates, but the rates being supported are shown here (if other
rates are needed, they can be added). Note that whole (non-fractional) hertz rates are used since it is desired
to have a repeating major cycle every 1 or 2 seconds. Fractional hertz rates would complicate mode
transitions since the entire system must wait until the end of a major period when changing modes. Rates
supported by SVM are to facilitate modeling the real world or to support interfaces with real world components
in the simulator, and in following the guidelines of RMS, do not have to be harmonic. When data is shared
between models executing at different rates that are not harmonic, the data consumed will appear to be

node

",..j

CDU

:.::::..%.:. :.::....: :.._._.i,:.

CDU
FIGURE 4.1-1

11

producedin irregularanddisproportionateintervals.Themodelershouldbeawareof therelationship
betweentheproducingandconsuming partitions when choosing execution rates.

lnstantiation of the "Periodic" package results in a thread executive for the partition that runs the partition's
mode routines cyclically at the requested period (expressed in hertz). The modeler supplies mode routines
in the partition body and uses them to instantiate the thread executive package. The mode routines include
setup, create_data, self_init, system_init, run, freeze, hold, and terminate. The mode routines are explained
in section 4.2. The modeler also provides the required rate and the name of the partition during the

I instantiation. The name is used to identify the partition if problems are detected. An optional parameter is

available to specify the partition task's stack size; a larger stack is necessary to correct Storage_Errors for
memory-intensive computations. The number of DIS terms that are anticipated to be retrieved from the
partition is specified in the parameter, Max_DiS_Terms. This is used to distribute partition processing across
execution frames. During execution, the thread executive will call the various mode routines, then process
requests for retrieving the DIS term values.

The generic Thread Exec package contains subprograms which can be called to obtain characteristics of the
instantiated executive software. Two functions, "Delta_Time" and "Rate_Of_Execution", provide the modeler
with information concerning the characteristics of the thread exec. "Delta_Time" is exported by the
instantiated Periodic package and provides time representing the interval time in seconds of the period (10
hz = 0.100 seconds in all modes except in freeze when 10hz = 0.0). This time should be used when updating
the model and calculating integration 'constants.' "Rate_Of_Execution" returns the execution rate; the same
as the generic parameter supplied at the time of instantiation. This function is to be used when supplying
information to the software backplane. The function "A_Full_lc_ls_Required" provides Information
concerning the type of system initialization conducted (refer to section 4.2.2). A call to this function is made
from the self-init procedure. "Ready_To_Transition" is called by the partition when it completes certain mode
transitions (refer to sections 4.2.1 through 4.2.4). This signals the master executive that the partition is ready

I to change mode if commanded. The procedure has an optional parameter that allows the SelLInit procedureto continue cycling when it is set to true. The two functions G_M_T and S_G_M T return GMT time and SGMT
time. The time returned Is relative to the period of the partition (if the partition runs at 10 hz, GMT will tick In
a 100ms interval). GMT or SGMT should only be used if required - models should use Delta_Time for
propagating state.

Instantiation of the "Aperiodic"package results in the creation of a thread executive for the partition that runs
the partition's mode routines in a periodic time reference but activated on an event. The generic formal
parameters are similar to the "Periodic" package with the addition of "Iterations" and "Vector". "Iterations"
defines the maximum r _ _er of times the aperiodic scheduler may run in a given period, and "vector" is the
method to attach an int_: .:[or event to the aperiodic scheduler. This scheduling method is still RMS-based
which means that a wo, _.;asetime per period and period rate are required. Worst case time is computed
as the period time per _[eration times the number of iterations allowed. The partition must honor the RMS
periodic scheduling time intervals (it cannot run as a transaction model).

Instantiation of the "Asynchronous" package creates a thread executive for the partitions that are non-rate
based; these partitions execute ina CPU dedicated to asynchronous activitywithinan asset. These partitions
run only when needed, to support the real-time simulation. The generic formal parameters are similar to the
"Periodic" package wi_ the substitution of "Delay__me" for "Rate". "Delay_Time" is the amount of time to
wait before the partition is allowed to execute again. This scheduling method is not RMS-based; all
Asynchronous partitions will run at the same priority and execute when CPU time is available. These
partitions will not execute in synch with the Periodic partitions. Typical partitions of this type include those
buffering real-time data for collection/display, and those reading or writing to disk.

Package "Clock" is renamed and USEd in the thread executive so that the partition can have access to all
the binary operations on "rime" in simulation clock without having to WITH Simulation_Clock in the partition.
"13meretrieved from the Periodic functions for GMT and SGMT will reflect time at the start of the partition's
period. Aperiodic partition time reflects the start of the last period that has started. No accurate time can be
guaranteed Asynchronous partitions, so the function is not available. "rime is available from a message
broadcast by SVM on the software backplane _20hz resolution). This time can be used for low-fidelity time
requirements (since there willbe inherent delays trom the time the sender generates the time and the receiver
reads it).

--=

12

4.2. Simulator Moding

J The various software modes that will be used in the SSVTF are described below. Following this discussion
is a pictorial representation of mode transitions (figure 4.2-1). Note the shaded area of the diagram
represents modes in which partitions execute in a one-pass manner and overruns are not detected. In these
modes, partitions will not be called repeatedly by RTSSW software in order to complete their processing.
Partitions have as much time as needed to complete processing and are therefore not considered executing
in "realtime". (See section 7.3 for templates of the mode procedures).

Included at the end of this section is a discussion detailing the various States of the Training Session, and
the States of an Asset. Figures 4.2.10-1 and 4.2.11-1 pictorially represent these transitions.

J

ration reglater :::::

HOLD

abort abort state
: ad

recovery

detected In

Supplied by Partition - required for g_ne¢lc Inslintlstlon

I"-_l Supplied by RTSSW

Overruns not detectedfor modu within

,.required by some partitions
grouping

FIGURE 4.2-1 Mode Transition

13

I

I

4.2.1 SlmulaUon Set-Up

4.2.1.1 Register 1/O / Set-Up

• Set-Up

•• Partitions create objects (class instances) as required

• • Partitions connect addresses to DIS term identifiers and 'prefix' information to
component identifiers (see section 4.4 for details).

• o Partitions connect Dis identifiers to symbol name(s) for each term to be
displayed by lOS by calling Dis.Connect_Term.

• Register I/O

== Required by partitions needing to communicate with other partitions and
receive mailbox messages

•- Partitions register or identify their input and output messages with the
RTSSW communication software. This allows the communication routing
tables, which ar necessary for the communication to take place, to be set up.

e• Mailbox creation is also performed in this routine for Partitions requiring
mailbox communication.

4.2.1.2 Create Data

Create_Data is the second phase of the partition to partition communication set up.

• Partitions provide the necessary information to the RTSSW communication
software in order to create their communication (message) buffers.

• Partitions must then initialize these buffers (Only One_To_Many output
messages) by setting all output messages to default values.

o. This activity sets up the message buffers used by the RTSSW
communication software in order to pass messages between partitions.

• Platform Manager partitions populate and send a registration message to the
Training Session Manager.

• • Included in the message is the platform's worst case transition time for the
run to freeze and freeze to run transitions.

4.2.2 Initialization

There are two forms of initialization, a "full Initial Condition (IC) reset" or a "state adjustment". The full IC form
of initialization occurs when an initialization point, return to datastore or return to safestore is requested from
the lOS. Also, the automatic initialization that occurs following the Start-up phase is considered a full IC.
Initialization that occurs following a request to perform a step-ahead is considered the state adjustment form
of initialization.

4.2.2.1 Full IC

i The purpose of the Full IC initialization is to allow the simulation to be reset to a new starting point. For
example, if a return to datastore or new initializationpoint is requested by the lOS, the simulation transitions
into a HOLD mode in which the partition's execution is temporarily halted. The following steps are taken in
ora'_ _.start over.

• Once Initialization is entered, RTSSW reads the initialization values from disk
and loads them into the various partition mailboxes. Read Init Data phase is now
complete.

= The simulation automatically enters Self_lnit.

14

• Partitionsresettheirinternalstatetodefaultvalues,(predeterminedsafestarting
values).

• Partitionswill readtheirmailboxesandsettheirinternalstatetotheValues
suppliedand/orramptheirmodelsto thedesiredstate.Self-ln!t!snow
complete.

4.2.2.2 State Adjustment

The State Adjustment initialization is used to perform a system Step Ahead. The Environment partition will
receive a point in time in which to step ahead, while other Paritions receive new values in which to set their
internal states. The key difference between this initialization and Full IC is that the intemaJ state is not reset
t_Z_[_gJt_v_. The new internal state values, provided through mailbox messages are simply applied to
the existing internal state. The following steps are taken to perform a State Adjustment.

• RTSSW is notified by the lOS to perform a Step Ahead. This causes the
simulation to transition into the Initialization instructor mode.

• Because this is a Step Ahead, the Instructor is involved and is responsible for
providing the Step Ahead time as well as any state change values that may be
applied to various partitions.

• The lOS is requested to send all state change data to the various partitions, lOS
notifies RTSSW when complete. The Step-Ahead/Scripting Data phase is now
complete.

• The simulation now enters Self_lnit.

• Partitions read their mailbox messages and will perform whatever tasks they are
instructed. Mailbox messages may include information pertaining to the time to
step-ahead, and/or new state data information.

• . Partitions needing to perform a step ahead will provide a routine to STEP to
the new point in time inside their Self_lnit procedure. Step ahead may not be
completed in a single pass in which case the partition would be responsible
for controlling it's internal execution until the desired point in time is reached.
Partitions will execute untilcompleted and are not considered running
iteratively.

• Self-lnit is now complete.

4.2.3 Self Initialize

• A function will be called in the self-init procedure that will identify if this will be an
IC reset or state adjustment self-initialize. The logic of the Partition's self_init
procedure must use this to determine how to process the mode request. See
section 4.2.2. for more information regarding the different initialization types.

• Partitions may need to read their input data (messages) prior to execution in this
mode. If so they are doing so at their own risk. This may be old or inconsistent
data for what they are trying to do in this mode.

• Full IC reset - the Part]tion's internal state is cleared to some predetermined
starting state.

** Partition reads its mailbox for new internal state values and applies them to
the internal state

• State Adjustment - a Step Ahead was requested by the lOS

.. Partitions will extract receive the target step ahead time via the generic
model "S G M 1" function call

.. Partitions may also receive some state change information via the mailbox

15

eo Envwilladvancetothetargettimeandthenapplyanynecessarystate
change information to the internal state

• o Other partitions may receive only state change information - and will apply it
to the internal state

• Self Init will remain a one pass procedure. Partitions that need to iterate will do
so by executing until complete. Each partition will notify RTSSW when complete
by calling the Ready_To_Transition procedure.

4.2.4 System Initialize

During System Initialize, partitions initialize with each other (both within an asset and between assets in a
session) via their System_lnit procedures.

• Partitions use the messaging system in order to pass data to other Partitions
allowing values to be ramped and achieving a steady state for the simulation.

• Ready_To_Transition is called by the Partition when it has determined it's internal
state is steady and at the appropriate values in order to begL,"the simulation.

When all Partitions have successfully initialized, the session will automatically transition to freeze mode. Note
that System_lnit is an iterative procedure running at the rate of the partition, i.e. delta time is equal to the
partition's period time. The RTSSW executive software will detect overruns in this mode.

4.2.5 Freeze

Freeze mode is an iterative procedure in which RTSSW will detect overruns.

• RTSSW sets delta time to 0.

• Class structures should be able to run with a delta time equal to zero or greater.

• Partitions will execute a procedure that takes the delta time change into account.
Two methods to accomplish this:

• . Partitions may use their existing RUN procedure if it is able to take into
account the reset of delta time.

,• Partitions must supply a unique FREEZE procedure if special processing
must be performed due to delta time being set to zero.

Messages will continue to be sent, received, and responded to by the partitions. Malfunctions will be held
at the lOS until the Freeze mode is complete.

4.2.5.1 Asset Add

Prior to attempting to add an asset, the asset will have completed the PROGRAM ELABORATION,
SETUP/REGISTER I/O, and CREATE DATA steps. An asset may be added while the session is in Freeze,
or Run mode.

When adding an asset during run mode, one-way communication is established with the asset prior to
passing data. Data is then passed to the asset so that it can initialize itself with the ongoing.simulation. When
everything is synchronized and it is time to join the asset to the simulation, the communication becomes
two-way and the interface agent acts as a pass-through for the data transfer. The same basic steps apply
when adding an asset during freeze mode; however, a system initialization may take place after
communication is established. After all partitions have completed system initialization and checked in, the
simulation will automatically transition to freeze mode. Refer to section () for more information regarding
Interface Agents.

4.2.5.2 Asset Drop

An asset can be dropped in Freeze, Run, or Terminate mode. The interface agents are the only Partitions
with activity in this phase. They will receive the Drop command from the training session mode manager and

v

16

-_ J

I

cease communication with the asset. The interface agent is now responsible for simulating the asset's
outputs rather than acting as a pass through for the asset.

4.2.6 Run

During run, partitions iterate with their period time equal to delta time via their Run procedure. Messages are
sent and received. Malfunctions and other commands will be entered and processed. Note that Run is an
iterative procedure. RTSSW will detect overruns.

4.2.6.1 Asset Add

Refer to section 4.2.5.1.

4.2.6.2 Asset Drop

Refer to section 4.2.5.2.

4.2.6.3 Safestore

Refer to section 4.6.

4.2.7 Hold

In HOLD mode, partitions are in a suspended state and not executing, therefore overruns are not detected.
This mode is used to process a Datastore or an Abort request. Hold will also be entered to initiate an
initialization. Mailboxes will be populated with data for initialization if appropriate, but will not be read until
Initialization is commanded by the lOS (that is when the Self_lnit procedure is executed). Malfunction
information and messages will not be passed between partitions during this mode.

4.2.7.1 Datastore

When a datastore is requested, the session transitions from FREEZE to HOLD mode and RTSSW collects
all datastore terms that have been identified in the DIS. Taking a datastore in this manner ensures that a
time-homogeneous data set is collected. During Datastore, partitionsare ina suspended state (Hold mode)
and do nothing. Refer to section 4.5 for more information about Datastores.

4.2.7.2 Abort

Abort conditions are detected by RTSSW. These are severe conditions that will not allow processing to
continue. Due to the severity of this condition, the Abort detection must be processed immediately.
Therefore, this transition is not an orderly one. During other mode transitions, the simulation does not begin
executing in the new mode until all partitions have completed execution in the current mode. When the Abort
transition occurs, partitions are commanded to transition to a Hold or suspended state as soon as the
command is received (i.e., the next time they are released for execution). Partitions may not have completed
their processing in the current mode when they receive the new mode. The following steps describe the Abort
sequence:

• RTSSW detects an unrecoverable error condition and sends an Abort command
to the Training Manager.

• Upon receipt, the Training Manager issues the Abort to all assets. The transition
to Abort (actual transition to HOLD mode, the partition's are not executing) is
processed immediately and is not dependent upon the OBCS's requirements for
advanced notification of mode transitions. This disorderly shutdown may cause
the OBCS to be placed in an unstable state.

• Partitions will each complete their current period's execution and then transition
to Hold mode.

• RTSSW will then receive a command to initialize either through a return to data
store point or initialiZation pointl However, the error condition may be deemed

17

too severe to attempt a recovery. In this case, RTSSW will receive a commar _.transition to terminate. In either case, RTSSW will wait for further instructions
from the lOS.

oe RTSSW will read the initialization data and populate the partition's message
buffers.

• o Partitions will self initialize.

=, The system will then Initialize and an automatic transition to freeze will occur.

4.2.8 Terminate

During terminate, assets are dropped, partitions complete execution, and the RTSSW executive and
communication software gracefully ceases execution. Each partition provides a Terminate procedure which
shall allow for a graceful termination of that partition. Note that Terminate is a one-pass procedure. The
RTSSW executive software will not detect overruns during terminate.

4.2.9 Run To Freeze Transition

• The request to Freeze is issued by tr- JS to RTSSW.

i • Training Session Manager compute_ ;ased on the registered worst case run to
freeze transition times (See section 4.2.1), the earliest point in time the simulation
can transition to freeze.

• Training Session Manager commands the Platform Managers to transition their

i Mode Controllers in each CPU to Freeze

°- The time to transition is included in the command to the Platform Managers.

• When the time to transition is reached, the simulation will transition to the new
mode.

Ovals represent procedures that the partition developer will provide when the generic model is instantiated,
while the explosions represent special case processing in which only a few partitions may need to supply
procedures. (Note: these procedures will not be required for the generic instantiation.) Rectangles represent
software that RTSSW is responsible for providing and clouds represent logical groupings of activity.

I

4.2.10 States of a Training Session

Figure 4.2.10-1 denotes the states of a training session: null, session nucleus, and target session active.
A training session starts out as null; that is, no session exists. Before the OSS attempts to establish a new
training session, several things are assumed to be established. 1) The Session Computer (SC) operating
system will be configured for simulation and loaded into the correct CPU's. 2) A SaC process will be running
on the SC and will send status information to the OSS computer. (This information will be used to determine
the availabilityof the SC forconfiguration into a trainingsession.) 3) The OSS is responsible fordown-loading
the training files into the correct machines. 4) The executable code is brought up on the SC in the correctly
configured CPU's.

When a new training session is desired, the OSS first determines the availability of a session computer (SC)
with its associated Data Management Set (DMS) string and at least one Instructor Station. Then the OSS
directs the SC to establish a new training session with its DMS string and the available instructorstation. If
communication between the SC and its DMS string or between the SC and the Instructor Station cannot be
established, the training session Is not established (training session remains in the null state) and the three
assets remain available for configuration into another training session. When the training session is
established, it transitions from the null state to the session nucleus state. While in this state, it may
commanded by the OSS to add or drop other assets as required to form the desired hardware configuration
for the training session. When the OSS detects that the desired hardware configuration has been reached,
itcommands the training session to transition from the session nucleus state to the target session active state.
At this time, command and control of the training session is passed from the OSS to the Instructor Station(s).

V

18

ASSET ASSET
ADD DROP ASSET

ADD

NULL
NUCLEUS

(SESSION NUCLEUS)

TARGET
(SESSION ACTIVE)

',,,.,.I

ASSET
DROP

o OSS establlshss a new
Session, and requests
Asset Adds for SC,
DMS, and 1 IOS, as
approprlate, to sstabllsh
the Session Nucleus.

o OSS determines when
the Nucleus configuration
Is reached.

O OSS determines whim
the Tin'get configuration
is rseched.

Figure 4.2.10-1 Training Session States

While in the target session active state, the training session may be commanded by the OSS to add or drop
assets.

4.2.11 States of an Asset

Figure 4.2.11-1 provides the states of an asset: maintenance, pre--session, session active, and
post-session. While in the maintenance state, tests and checkout procedures (and other activities involved
withoff-line testing) are performed on the asset's hardware. When the OSS detects that the asset's hardware
is operational (on-line), the OSS transitions the asset from the maintenance state to the pre--session state
(ready-to-load substate).
An asset will remain in the ready-to-load substate until it is required for configuration into a training session.
When the OSS has successfully loaded and started the asset, it transitions from the ready-to-load substate
into the loaded-and-ready substate. In this substate, the Asset sends out an Up_And_Ready message to
the OSS, following completion of Simulation_Setup Processing. This notifies SaC that the Asset is ready for
configuration instructions. Next, the asset awaits for a Create_SeSSion command from the OSS. When the
OSS commands the asset to create a trainingsession, the asset transitions intothe session connect substate.
While in the session connect state, the Training Manager for the asset performs the necessary processing
to create a training session then notifies Sac that it is Ready_To_Configure meaning the Asset is now ready
to add assets to itsestablished training session orto be added to another training session. Ineither case when
communication is established between an asset and the training session, the asset transitions from the
pre-session state (session connect substate) to the session active state.

While in the session active state, an asset provides services that make it worthy of being configured in the
training session. An asset's responsibilitiesvary between assets. During session active state, an asset may
transition between many different modes (such as Initialization, Run, Freeze, Hold, etc.). Also, the asset may
receive an asset drop command from the training session (training session manager). Upon reception of an

II asset drop command, the asset performs processing that will remove it from the training session.

Upon completion of the asset drop, the asset transition into the post-session state. During the post-session
state, the OSS saves asset-resident data which were created during the training session. Other activities

19

SESSION ACTIVE
STATE

PRE-SESSION
STATE

)N
CONNECT

READY
TO LOAD

LOADED
READY

MAINTENANCE
STATE POST-SESSION

STATE

Figure 4.2.11-1 Asset States

may also occur du ;_gpost-session state, depending on the requ ments of the asset (such as running the
OSS Productivity Monitoring Tool at an Instructor Station). When all post-session state activities are
complete, the asset transitions from the post-session state to the pre-session state (into either the
ready-to-load substate or the loaded-and--ready substate).

V

2O

",,..J

4.3. The Messaging System

There are four types of communication which are supported by the communication mechanism (software
backplane), see figure 4.3-1. The first type is one producer sending to one or more receivers (one-to-many).
This is the normal method for modeling real world interfaces (wiring, plumbing, talking, etc.). In this type of
communication messages are queued in rate based queues to insure that the receiver will receive time con-
sistent messages based upon the relative exxecution rates of the sender and receiver. For example, if the
receiver runs four times as fast as the sender, the receiver will receive every message sent four times. If the
receiver runs one fourth as fast as the sender, the receiver will receive every fourth message sent. Even if
the sender and receiver are not running at harmonic rates, time consistent messages will be received.

The second type of communication is many producers sending to one receiver (many-to-one). This is aspe-
cial case and should only be used by select systems (ENV, OBCS, EPS). Systems using the many-to-one
interface will have to compute worst case message bursts for queue limit setups. In many-to-one commu-
nication, messages are queued in a FIFO queue to insure that all messages sent to the receiver will be re-
ceived independent of the rate at which the sender and receiver execute.

The third type of communication is remote communication. It is used for messages that are sent to a remote
node. Remote communication is not used by partitions, it is used by interface agents, RTSSW software, and
a few special systems such as lOS which do not have Real-time Sessions Software running on them. Remote
messages are also queued in FIFO queues. The one-to-many, many-to-one, and remote communication
routines are located in package Message (see section 8.2).

Users of the messaging system declare taypes for their message in an interface definition package. Pointer
types (access types) to each of the message types are also declared in this package. Partitions wishing to
communicate WITH the appropriate interface definition packages and declare local objects of the access
types for the messages they wish to send and receive. These local pointer objects will be registered with the
software backplane. The software backplane will control them so that they point to the appropriate locations
in the message buffers. Therefore, to send and receive messages, partitions just reference and de-reference
their local pointers; the data may or may not actually get copied. Because messages are referenced by point-
ers, and because discriminants of a variant record referenced by a pointer cannot be changed, messages
cannot be variant records and receive the benefits of variant records.

The fouth type of communication is mailbox communication. Mailbox communication is a special slow rate
command and control messaging operation that is intended mainly for initialization, return to safestore, mal-
function requests, and lOS enter operations. It is not encouraged as a general, partition to partition, commu-
nication mechanism. Mailbox messages are a stream of packed bytes that require packing and unpacking
of data by the senders and receivers. It does not enforce Ada strong typing constructs. It is up to the sender
and receiver to insure that they are using the same data types for mailbox messages. Unlike the messaging
system where senders and receivers must register for specific messages, mailbox messages are dynamically
routed. Each mailbox has a FIFO queue that holds incoming messages.

Partitions may have more than one mailbox. Each mailbox must have a unique prefix. Prefixes are associated
with the owner of the mailbox through the DiS.Register_Component operation (see section 4.4.1). The mail-
box system currently supports six types of messages, return to safestore messages, return to datastore mes-
sages, malfunction messages, enter messages, mega messages, and user defined messages. The first five
types (safestore, data,store, malfunction, enter, and mega) are referred to as predefined messages because
they have predefined data types. The predefined data types along with their operations are defined in four
support packages: Safestore_Mailbox, Malfunction_Mailbox, Enter_Mailbox, and Mega..Mailbox. The mega
message is used for return to datastore messages. In general, mega messages are used to send sets of data.
These data sets may be logically related data items such as the x, y, and z values of a state vector which must
be received by the model at the same time, or they could be a group of related data items such as the terms
for a return to datastore. User defined messages are used for messages other than one of the predefined
messages. The mailbox communication routines are located in the package Mailbox (see section 8.3).

4.3.1 One-to-Many (Normal) Communication

The producing partition registers its output messages with the software backplane using the "Regis-
ter To Send_Msg" operation during the Setup submode. During the Create Data submode, the producing

21

One-To-Many _ i ,
Hate uaseo uueue f _t Partition J

.........:..............++++++,+:+,.+.+:+::+_++_i:i+_:.:_.... ,
B.r.,,oni+TTT+i+i+
/ ;!i_i_i_;;i;;;i;;i;_!i;;;{;i_iiiiiiiiii_! I

____+_ pllrtltlon I

Many-To-One

I Partition_ FIFO Queue

I ...:.,:,+.,.,+++.,.:+.+,+:::..:+++:++..+++._...........................++..'++_I I
.,,<,,+,.::::+`_::_h_<_`_``_:`_:_+++:_:-_::_:_:_:_+`_+`:_×`:`:.:_:`:_`+_`>:+_:.:_:_:_:+:`_:_:'x+:+:z+:_+_x_`+_:+.+_`_++_x_+`_x_:'x::+_I _._...:::: :.:.m:+++{+;_m::+:::.......+:++,+,:::+:m+:+m:_.++.:::++:+:.::....+....++.+_+m_++:::+_|

i _:._._::::_:_:i:_:::;:_:_:'_:._%_::'::::_.:::::::+_.::_:+:?'+:_.::_+_`.+:!:_`+'`+_:+:::_`_*::_:_:;..'<;_:_:;_:_:_'.`._:_:_._`@_::.:::_>_.:+_`_._._+_._._

l,.-o°l-

Remote LAN FIFO Queue

FIFO Queue V

Mailbox

i , _ FIFO Queues _ , ,
..... I__ ___-_._+.-_ Plmrlltlon I

I _1 II i | _+_ I II I _ !

__.

::::::::::::: ::::_<:::::::_<_:::::_::::::::_<`_:::_:!:_:!:_:::_<{:_N_<i:_:_:::i_:_:::_<<:_:_ =

_: Software
Backplane

I FIGURE 4.3-1

partition calls "Create_Msg". If buffers for this message have already been created in the software backplane
the producers local pointers will be set to point to the message buffers. Otherwise the buffers will be created
and then the pointers will be set. After ~Create_Msg" has been called the receivers local pointer will be point-

V

22

"_..j

ing to the first write buffer for the particular messages. The partition should_also initialize its output messages
during the Create Data submode. This is done by updating the Ioca|pointers and then calling the "Put" opera-
tion. Note that local pointers cannot be updated until after the "Create_Msg" operation has been called. As
the partition executes, it continues to update its local pointers and send out messages with the "Put"operation.
The messaging system does not automatically refresh data. This means that after calling the "Put" operation,
the partitions local pointer will be pointing to a new memory location and the partition should not make any
assumptions about the values in this memory location. Therefore, partitions should output data in complete
messages and should not read from their output pointers. If automatic data refresh turns out to be needed,
an option to provide this capability may be added to the messaging system in the future.

The receiving partition registers to receive input messages using the "Registe r_To_Recv_Msg" operation dur-
ing the Setup submode. During the Create Data submode, the receiving partition calls "Create_Msg". If buff-
ers for this message have already been created in the software backplane the receivers local pointers will
be set to point to the message buffers. Otherwise the buffers will be created and then the pointers will be set.
To receive a message the partition calls the "Get" operation and de-references its local pointer. The local
pointer must be de-referenced after the "Get" operation has been called and during the same period. The
local pointer is only valid for one period. There are two variations of the "Get" operation: "Get" and "Get_Lat-
est". The "Get" operation provides time consistent messages relative to the execution rate of the consumer.
This guarantees that, for example, a receiver executing half as fast as the producer will always get every other
message produced. Time consistent messages are guaranteed by giving the receiving partition the most re-
cent message that was valid at the beginning of its current period. Therefore, the partition is receiving data
that was produced during its previous period. The "Get_Latest" operation allows the requesting partition to
receive the most recent message sent by the producer. Note that this operation does provide time homoge-
nous data but not time consistent data. The time deltas between the messages received will vary depending
upon the relative execution order of the producer and consumer. Both the "Get" and "Get_Latest" operations
optionally return the time that the message was sent if the "Msg_'l'ime" parameter is supplied.

4.3.2 Many-to-One Communication

The many-to-one communication works similar to the normal communication (one-to-many). The produc-
ing partitions register their output messages using the "Register_To_Send_Msg" operation during the Setup
submode. During the Create Data submode, the producing partition calls "Create_Meg". If buffers for this
message have already been created in the software backplane the producers local pointers will be set to point
to the message buffers. Otherwise the buffers will be created and then the pointers will be set. As the parti-
tions execute, they update their local pointers and call the "Put" operation to send the messages. All mes-
sages sent are placed in the receivers queue. The exception "Queue_Full" is raised if the receiver's queue
is full when the "Put" operation is called.

The receiving partition registers to receive input messages using the"Register_To_Recv_Msg" operation du r-
ing the Setup submode. During the Create Data submode, the receiving partition calls "Create_Msg". If buff-
ers for this message have already been created in the software backplane the receivers local pointers will
be set to point to the message buffers. Otherwise the buffers will be created and then the pointers will be set.
To receive a message, the partition calls the "Get" operation and de-references its local pointer. The local
pointer must be de-referenced after calling the "Get" operation and during the same period in which it was
called. All messages sent to the receiver are queued in FIFO order, the "Get" operation retrieves the next
message in the queue. The size of the queue is specified as a parameter to the "Register_To_Recv_Msg"
operation. The queue size should be determined based upon two factors. First, the number of possible send-
ers and second, the relative execution rates of the senders and the receiver. If the receiver is executing faster
than the senders or at the same rate as the senders, the queue size must be at least as large as two times
the number of senders. If the receiver is executing slower than the senders the following formula can be used
to calculate the queue size: [(senders rate / receivers rate) x 2] x # senders. For example, if the receiver is
executing at 10Hz with three senders executing at 40 Hz the queue size should be [(40 / 10) x 2] x 3 = 24.

The "Number_Of_Msgs_To_Get" operation returns the number of messages that have been sent and are
available for the receiving partition to retrieve. The "Get" operation will raise the exception "No_Messages"
if it is called when there are no messages to be retrieved. The "Get" operation also optionally returns the time
that the message was sent if the "Msg_'13me" parameteris supplied.

23

4.3.3 Remote Communication

Remote communication is not used by partitions, it is used by interface agents, RTSSW software, and a few
special systems such as lOS which do not have Real-time Sessions Softwarerunning on them. Remote com-
munication works similar to the many-to-one communication. The producers register their output messages
using the "Register._ To_Send_Msg" operation during the Setup submode. During the Create Data submode,
the producing partition calls "Create Msg'. If buffers for this message have already been created in the soft-
ware backplane the producers local pointers will be set to point to the message buffers. Otherwise the buffers
will be created and then the pointers will be set. To send messages the producers update their local pointers
and call the "Put" operation. As messages are sent they are picked up by the router and transmitted to the
destination node. There can be more than one receiver of a remote message on a node.

The receivers register to receive input messages using the "Register_To_Recv_Msg" operation during the
Setup submode. During the Create Data submode, the receivers call "Create_Msg". If buffers for thiSmes-
sage have already been created in the software backplane the receivers local pointers will be set to point to
the message buffers. Otherwise the buffers will be created and then the pointers will be set. To receive a
message, the receiver calls the "Get" operation and de-references its local pointer. The local pointer must
be de-referenced only after calling the "Get" operation and during the same period in which it was called.
All messages sent to the receiver are queued in FIFO order, the "Get" operation retrieves the next message
in the queue. The size of the queue is specified as a parameter to both the "Register_To_Recv_Msg" and
"Register_To_Send_Msg" operations. The queue size should be determined based upon two factors. First,
the number of possible senders, and second, the relative execution rates of the senders and the receiver.
If the receiver is executing faster than the senders or at the same rate as the senders, the queue size must
be at least twice as large as the number of senders. If the receiver is executing slower than the senders the
following formula can be used to calculate the queue size: [(senders rate / receivers rate) x 2] x # senders.
For example, if the receiver is executing at 10Hz with three senders executing at40 Hz the queue size should
be [(40 / 10) x 2] x 3 = 24. All senders and receivers should use the same queue size.

The "Number_Of_Msgs_To_Get" operation returns the number of messages that have been sent and are
available for the receiving partition to retrieve. The "Get" operation will raise the exception No_Messages if
the "Get"operation is called when there are no messages to be retrieved. The "Get" operation also optionally
returns the time that the message was sent if the Msg_rime parameter is supplied.

4.3.4 Mailbox communication

Mailbox are registered using the "Register_Mailbox" operation during the Setup submode. Anyone wishing
to receive mail messages must register a mailbox.

The sender of a predefined mail message creates the local message using the "Create" operation in the ap-
propriate support package (Safestore_Maiibox.Create, Malfunction_Mailbox.Create, etc.). The message
may then be sent using the appropriate put operation in package Mailbox (Put_Safestore_Msg, Put_Malfunc-
tion_Msg, etc.).

The receiver of a mail message must check its mailbox to determine the number of messages present. This
isdone using the "Num_Mail_Msgs" operation. Then, for each message in the mailbox, the receiver calls the
"Get_Next_Msg__Type" operation to determine the type of the next message. The "Get_Next_Msg_Type" Olm
eration will return one of the six supported types, Retum_To_Safestore, Return To_Datastore, Malfunction,
Enter, Mega, or User_Defined, If the type is one of the predefined types, the receiver calls the appropriate
get operation (Get_Safestore, Get_Malfunction, etc.) to receive the message. The support packages can be
used to interpret messages of predefined types.

Some mailbox users will need to use mail messages for purposes other than Safestore, Datastore, Malfunc-
tion or Enter. For this reason the mailbox system provides support for user defined mail messages. Instead
of usingthe types and operations in Safestore_Mailbox, Malfunction_Mailbox, Enter_Mailbox or Mega_Mail-
box, the user defines their own type for a mail message and is responsible for packing it themselves (as op-
posed to calling a "Create" operation in a support package). Support for user defined messages is provided
through generic operations: "Get_User...Defined_Msg_Type', "Get_.User_Defined_g", and
"Put_User_Defined_Message'. The sender and receiver must declare a type that will allow them to uniquely

V

v

24

a

identify the user defined message. This is referred to as the User_Oefined_Msg_Types. It is recommended
that an enumeration type be used for this. There are two restrictions placed on this type. First, it must have
a size of 32 bits, and second, the values that objects of the type take must be positive. The sender instantiates
the "Put_User_Defined_Msg" operation with the type for User_Defined_Message_Types and with the type
for the mail message itself. After the sender builds the message by assigning to its local copy of the mail mes-
sage, the instantiation of "PuLUser._Defined_Msg" is called to send the message. The receiver instantiates
the "Get_User_Defined_Msg_Type" operation with the type for User_Defined Message_Types and the
"Get User__Defined_Msg"operation with the type for the mail message. The receiver checks its mailbox for
mess-ages using the "Num_Mail_Msgs" operation. For each message in the mailbox the receiver calls the
"Get_Next_Msg_Type" operation to determined the type of the next message. If it is a user defined message
the instantiation of "Get_User_Defined_Msg_Types" is called to determine which user defined message it is.
Once the receiver knows which user defined message it is receiving, it can call the appropriate instantiation
of "Get__User_Defined_Msg" to receive the message. It is up to the sender and receiver to ensure that they
are both using the same data type for user defined mail messages.

4.3.4.1 Mailbox Reads by Partitions

On an initialization to a Datastore/Safestore, partitionswill receive messages containing the datastore/safe-
store data via their partition mailbox. The partitionsare responsible for interpreting the data stream. The data
stream will contain the identifier and value of each data item. See section 4.4.4 for an example of a mailbox

processing procedure.

25

!

I

4.4. The DIS C,: -ept

4.4.1 What is the. _IS?

OMJCIIN._I. PAOE lib

OF POC_ QUALlW

The DIS is used to build a symbol table which identifies data items in the running session. The identifiers are
created using Aria code, and can be used by on-line code as well as by off-line tools. Itwill be used to support
the following SSVTF capabilities:

• lOS Look & Enter capability

• Datastore/Initialize

• Identification of messages passed between SSVTF partitions

• Data Logging

DIS stands for Distributed Identifier Specification;the identifiers created using itcan be distributed anywhere
in the network for data requests. The DIS is composed of a top-level package of general definitions and a
set of packages that decta__.identifiers for different SSVTF systems. The toD-',evel package, called DIS,
iswritten by the RTSSW group, and the general definitions it contains are for ide,- ._rtypes and subprograms
which coerate on these types (see an outline of the specification in section 8.4_ :body of the DIS package
holds t_ _ymbol table; identifiers are added to it by calling the DIS's 'Regis[.. _ubprograms. The set of
oackac Nhich declare identifiers and call these registration functions are re;. _d to as DIS-related pack-
ages. ._sepackages are to be written by the model developers, and must follow certain rules (presented
later in .s discussion) for their format and names.

There are five major abstract data typos in the top-level DIS package: Component_lD, Type_ID, Term_lD,
Message_lD, and Malfunction_lD.

A Component_lDgives a name to a configuration component of the SSVTF. A ComponenLID may refer to a
high-level, or large, component like Robotics or Environment, or it may refer to a much lower-level compo-
nent like the left arm of the SPDM mechanism withinthe Robotics system. Each Component_lD is registered
'below' some other component. For example, if Robotics is composed of SPDM, SSRMS, and MT compo-
nents, these are registered with Robotics as the parent component. In this way, a hierarchy of components
can be established. Component_lDs, Type_lDs, Term_lDs, and Malfunction_lDs can be registered at any
level in the hierarchy of components. The levels are pictorially represented infigure 4.4-1. A Component_lD
can be registered as an arrayby setting t_"--.Length' parameter tc =."_0number of elements desired. This is a
way of reg stering a single name that repr_ '_sa _ _ :f compom _which c, ;_tain identical elements but are
distinct instances; for example a compon_ ,ray -_ used tc _ister fo _ -_at transfer units if they are all
alike. Each element of a Compcnent_lD arr_. __sit_ _a unique Co" ;:,onent_ _. The component array can be
indexed using ordinal numbers _from 1 to Length) or string labels (e.g., Left, Middle, Right). A prefix indicator
can be supplied with the registration call. In most instances, this means that the Component_lD being regis-
tered is also the identifier for a partition and it's mailbox. (If there is more than one mailbox for a partition, each
should be identified by a different Component_lD prefix.)

A Type_lDis adescriptor for data items and can be used by Term_lDs to provide mappings for complex typos.
The DIS supports integer typos (of 8, 16, or 32 bits), floating point typos (single or double precision), the type
String (fixed-length), type Character, and enumeration typos. The DIS declares a Type_Tag which is used to
distiguish between these options. An integer, floating point, or character type identifier may be supplied with
upper and/or lower bounds. Enumeration type identifiers must be supplied with a listof labels that represent
the enumeration literals. Enumeration representation values may optionally be supplied at registration time.
Subtypes are Type_lDs which are based on previously registered Type_lDs, but with (possibly) different up-
per and lower bounds. They can be registered using a Register.Subtype routine -- there is one each for
integer, floating point and character typos. The name of the subtype is the same as its base type, unless an
optional name parameter is supplie,'Jto Register_Subtype. It is important to name typos and subtypes so that
they indicate clearly the engineering units that the user will see at the lOS.

A Terrn_/Dgives a symbol name to a data item within a software mode!. The registration of the name includes
the necessary type information with a Type_lD. A Length parameter greater than one registers a Term_/D

V

V

26

ORIGINAL PAGE IS

OF POOR QUALITY

DIS

I,
SSTF_Defs

! I i i
SPDM Defs SSRMS Defs MT Defs

Arms Defs Head Defs Tools Defs

I I

DIS Interface (RTSSW supplied)

(ID types and operations, globaJ DIS operations)

(Body contains DIS table)

Top-level deflnltlons (RTSSW supplled)

(System IDs, standard types)

System definitions (modeller supplied)

(Component, Type, Object

and MaJfunctJonIDs)

Next-lower level definitions

(Componenk Type, Object

• • and Malfunc_on IDs)

Lowest-level packages

• • (Type IDa, Object IDs,

Malfunction IDs)

The arrows represent package "with's. Each Defs package depends on its parent.

Figure 4.4-1 Levels of DIS Identifiers

l array, multiple terms of the same type. Each element of a Term_lD array is a separate DIS Term_lD; like aComponent_lD array, this can be indexed by ordinal numbers or string labels.

A Message_/D is a symbol for identifying messages transmitted in the software backplane. Message_lDs
are registered ina partition's interface definitionpackage. The only required information about a Message_lD
is the size, in bits, of the data to be sent. In addition, one can specify that it identifies a safestore message.

A Ma/function_lD is a name which can be used by the lOS page developers to invoke a malfunction In the
running session. The malfunction identifier includesdescriptor information that determines the kindof param-
eters which can be sent with the identifier to the host.-A Malfunction_lD arraycan be used to register a mal-
function that applies to many entities; as with Term_lD arrays,this is accomplished by setting the Length pa-

_ rameter the the number of malfunctions desired. As with Term_lD arrays and Component_lD arrays, each
element of a Malfunction_lD array is a unique identifier,and the array can be indexed by ordinal numbers ora

set of string labels.

There are four categories of malfunctions, distinguished by the kind of parameters which can be passed to
them. First is the "simple"or "parametedess" malfunction;this is registered with no parameter information;
when an instructoractivates this kind of malfunction, no inputparameters are passed to the model alongwith
it. Second is the "options" malfunction; a single enumeration-type parameter is passed to the malfunction to
indicate the behavior desired. For example, if a valve can be failed in one of four positions, an enumeration

27

type identifier would be reigistered which lists the four positions; this list will be displayed to the instructor when
the malfunction is activated. Theinstructor will select the correct _s_n at which to faii the valve; thisselec-
tion will be passed to the model as the parameter for the malfunction. Third is the =P1" malfunction; a single
floating point value is supplied with the malfunction. The fourth kind of malfunction, "PI_P2", is supplied with
two floating point values; these are typically used for scale and bias. When registering a malfunction which
has floating point type parameters, the Px_Name and Px_Type parameters are always required. Px_Low and
Px_High limi{s can be supplied; if they ai'ehot supplied, the high and low limits of the malfunction parameter
are taken from the type registration for Px_Type.

Each "..._ID" type is declared "private" in the DIS package spec. For each, there is a =Register_..." function
that returns a value of the respective type (e.g., there is a "Register_Term" function which returns a Term_lD).
These are the functions that are called by the DIS-related packages which are written by the SSVTF model
developers. Each of these functions has the side-effect of adding the identifier to the symbol table in the DIS
package body. Because the identifiers being added to the DIS are notto be changed at runtime, the identifiers
are to be declared constants in the DiS-related packages.

Along with the identifier types and registration functions, a number of other supporting types and functions are
declared in the top-level DIS package. "User" is an enumeration type which provides tags that indicate the
uses of a Term_lD; e.g., a Term_lD with User =Look_Enter" means that the term being identified can be ex-
amined or changed by lOS or data logging. When registering a Term_lD, a list of users is supplied as an
array--the User_List parameter. The default combination of "Look_Enter" and =Initialize" in this list means
that the term can be examined and changed by lOS, and is to be inculded in the Datastore/Initialize data set.

Supporting functions include selectors for information associated with identifiers, such as the string name of
an identifier, the number of levels associated with ComponenLID, the type tag associated with a Term_lD,
and the different descriptor information associated with a Type_lD.

Entities inthe real software are =connected" to DIS identifiersby the operations Connect_Term, Connect_Mal-
function, and ConnecLPrefix. The "Register_..." functions are called from the DIS-related packages written
by the model developers, and provide the static DIS information needed by off-line tools; the "Connect_..."
operations supply the additional run--time information needed to locate data and partitions. The Con-
nect__Termprocedure makes an association between a Term ID and the address of the data which is referred
to by the identifier. This allows the data to be retrieved =through the back door". Connect_Malfunction iscalled
for malfunction-s which need to be datastored orwhich will be "poked' using the Malfunction_Mailbox package.
An address is required for each parameter to be associated with the malfunction, as well as an address of a
Boolean value, the =active" flag, which indicates whether or not the mall is currently activated. The Con-
nect_Prefix procedure's Component_lD parameter must have been registered with Prefix => True. If a parti-
tion will receive messages in more than one mailbox, each should be identifiedwith a different prefix Compo-
nenLID, and each of these needs to be connected with Connect_Prefix. The prefix name should uniquely
identify a particular mailbox.

4.4.2 How Is the DIS Organlzed?

The DIS-related packages are organized in a hierarchy. The top-level DIS-related package is called
SSTF_Defs (all DIS--related packages have the suffix "_Defs"), and is written and maintained by the RTS
group. This package registers the ComponenUDs for the top-level systems in the SSVTF, which includes
Robotics, Environment, USAD, USAV, Visual, SNS, and others. It also registers Type_lDs and supplies
Type_Tags which correspond to the ones inthe SSVTF Standard_Engineering_Types package. See Appen-
dix 11(section 8.5) for the complete specification of the SSTF_Defs package.

For each Component_lD in the above package, another package must be created which defines the identifi-
ers that exist at the next lower level in the DIS hierarchy (this is a general rule for DIS-related packages).
Thus, there must be a package for Robotics (which wouid be written by the Robotics group), and it will look
something like this:

with DIS, SSTF Defs;
m

package Robotics_Defs is

28

package DD renames SSTF_Defs;

-- Identifiers for Robotics components.

MT

SSRMS

SPDM

AVU

MBS

MMD

: constant DIS.Component_ID := DIS.Register_Component

(DD.Robotics, "MT");

: constant DIS Component_ID := DiS.Register_Component

(DD Robotics, "SSRMS");

: constant DIS Component_ID := DIS.Register_Component

(DD Robotics, "SPDM", Prefix => True);

: constant DIS Component_ID := DiS.Register_Component

(DD Robotics, "AVU", Length => 4);

: constant DIS.Component_ID := DIS.Register_Component

(DD.Robotics, "MBS");

: constant DIS.Component_ID := DIS.Register_Component

(DD.Robotics, "MMD");

end Robotics_Defs;

I

This package would be written by the Robotics group. Similar packages would be developed for USAD, Envi-
ronment, etc. Notice that the hierarchy concept is recursive: for the Robotics systems there must be an
SSRMS_Defs package, an MT_Defs package, an SPDM_Defs package, etc.;and for each ComponenLID
registered in these packages, another package must be written. For a component array like AVU, only one
AVU Defs package needs to be written; the identifiersdefined in thispackage will be duplicated the appropri-
ate number of times; in thiscase four. The current design of the DIS permits upto seven (7) levels of compo-
nents to be registered. Term_lDs, Type_lDs, and Malfunction_lDs can be registered at any level in the hierar-
chy. See Figure 4.4-1. Two rules must be followed to ensure that the Dis is created properly: (1) a/llDsin the
same "_Defs"package must be registered with the same Parent Component_/D; and (2) the same Compo-
nent_lD must not be used as a Parent in more than one "_Defs"packages.

The hierarchy of DIS-related packages should reflect the hardware, not the software, structure of the mod-
eled system. There are two reasons for this: (1) the DIS exists mainly to provide a window into the system for
lOS and system initialization; the people performing these duties are not likely to know (nor should they have
to know) the software organization of the system (i.e., the partitions,object classes, etc.); and (2) the software
structure of the simulator will probably change more frequently than the hardware configuration, and changes
to the DIS hierarchy should be minimized, since this has adverse effects on re-compilation. Therefore, the
way a system (like Robotics or USAD) isorganized from the user's point of view is howthe DIS-related hierar-
chy should be organized. The relationship between this organization and the "partition"organization is dis-
cussed below: see "Connecting Terms and Prefixes'.

(Note that Message_lDs do notappear in "_Defs"packages, but inthe appropriate partition'sinterface defini-
tion package, with the suffix "_lnffc_Defs'. They do not form any part of the "_Defs" hierarchy.)

In additionto the hierarchy rule, other guidelines need to be followed inorder for the DIS towork properly. Allof
these DIS-related packages should have no "state'; i.e., all of the identifiers are constants, and no variable
data should be declared in these specs. Furthermore, no subprograms may be exported from these pack-
ages. The "_Defs"packages should not have package bodies. Also,"_Defs" packages should not'with" other
packages which have state or subprograms. This is because the entire "_Defs" hierarchy is to be -withed"
offline for use by off-line tools.

Each Term_lD must include type information inorder to permit interpretaiion of the data being examined. The
code below shows some examples of Type_lD, Term ID, and Malfunction_lD registrations.

with DIS;

k._/ with SSTF Defs;

29

I

I

I

with Robotics_Defs;

package SPDM_Defs is

Circle_Degrees :

Left Arm Yaw
w

Left_Arm_Pitch :

Left_Arm_Roll :

Direction Labels

Right_Arm

Fail Left Arm :

Fail_Right_Arm :

end SPDMDefs

constant DIS.Type_ID := DIS.Register Subtype

(Robotics_Defs. SPDN, Base => SSTF_Defs.Degrees,

Low_Bound => -180.0, High_Bound => 180.0);

constant DIS.Term_ID := DIS.Register_Term

(Robotics_Defs. SPDM, "Left_Arm_Yaw",

The_Type => Circle_Degrees);

constant DIS.TerD_ID :w DIS.Regsiter_Term

(Robotics_Defs. SPDM, "Left_Arm_Pitch",

The_Type => Circle_Degrees);

constant DIS.Tem_ID :w DiS.Register_Term

(Robotics_Defa. SPDM, "Left_Arm_Roll", DIS.Float_Tag,

Users => (DIS.Look, DIS.Initialize));

: _onstant String := "Yaw, Pitch, Roll";

constant DIS.Term_ID :- DIS.Registe___Term

(Robotics_Defs. SPDM, "Right_Arm",

The_Type => Circle_Degrees, Length => 3,

Labels => Direction_Labels);

constant DIS.Malfunction_ID := DIS.Register_Malfunction

(Robotica,D_fs. SPDM, "Fail_Left_Arm",

Options => SSTF_Defs.On_Off);

constant DIS.Malfunction_ID := DiS.Register_Malfunction

(Robotics_Defs. SPDM, "Fail_Right_Arm",

Pl_Nan_ => "Degrees", PIType => Circle Degrees);

V

I
A Component_lD which is registered as an array (by supplying a length parameter to the Register_Compo-
nent routine) requires only one "Defs* package which uses the ID as its parent. The DIS will automatically
duplicate the contents of the *Defs" package to each component represented by the multiple.

4.4.3 Connecting Terms, Prefixes, and MalfuncUons

In the partition code, a modeler needs to supply a procedure to associate (or connecf) addresses to term,
malfunction, and prefix identifiersto the partition. This needs to be called in the Setup procedure. Here is an
example:

II

with Mailbox, Generic_Model, SET,

package body SPDM_Partition is

Robots_Types;

Left Arm Yaw : Float;

Left Arm Pitch : Float;
u

Left Arm P_II : Float;

Left_Arm_On_Off : SET.On_Off;

30

I

II

Right_Arm : array (1..3) of Float;

Fail_Right_Arm_Active : Boolean := False;

Fail_Left_Arm_Active : Boolean := False;

Right_Arm_Degrees : Robots_Types.Degrees;

Partition_Name : constant String := "SPDM_Partition';

Mb : Mailbox.Mailboxes; -- my mailbox

procedure Update is separate;

procedure Freeze is separate;

-- ...etc. for mode procedures.

procedure Setup is separate;

procedure Process_Mailbox_Requests is separate;

package My_Thread_Exec is new Generic_Model.Periodic

(Name => Partition_Name,

end SPDM Partition;

--- etc...

Each Term_lD and Malfunction_lD must belong to a partition in the system. By "belonging" we simply mean
that the data identified by a Term_lD is located in an =owning" partition, and that the handling of a malfunction
identified by a Malfunction_lD is done within a "owning"partition. No data item or malfunction handling is
shared between partitions;there isonly one "owner"per id. A prefixis a Component_lD that directly identifies
a single partition. The prefix of a Term_lD or Malfunction_lD isthat portion of the identifierwhich indicates the
partitionto which that identifier belongs. More than one prefix may identifya partition; also, atl identifiers regis-
tered under a particular prefix must be located within one partition.

an example Of this, considefa partition that combines the SPDM arms and the power supply for the arms.
Suppose that the following four components have been registered: Robotics. SPDM.A--'==, Robo-
tics. SPDM.Arms. Left_Arm, Robotics. SPDM.Arms .Right_Arm, and USAD .=_S .Arm_Power If

the data and malfunctions for all the identifiers in the packages Arms_Defs, Left_Arm_Defs, and
Right_Arm_Defs are to be located inthispartition, then Robotics. SPDM.Arms might be registered with Pre-
fix => True, and the partition calls "Connect_Prefix'with the Component_lD SPDM_Defs .Arms. This parti-
tion also connects the prefix USAD. w.];S. Arm_.Power (which should also have been registered with Prefix =>
True), if the data and malfunctions for all the identifiers in that package are located in this partition.

I In the following example of a Setup procedure, the data items being connected to identifiersare not complex

types. This is not a realistic example, and is provided only to illustrate the way to call the Connect routines.
The way to connect addresses to identifiers representing selected pieces of complex objects is to use the
Symbol_Map package; this is discussed in Section 4.5. The "DIS.Connect" procedures should be called
after creating the object instances in the Setup procedure.

with DIS, SPDM_Defs;

with Local; -- a package to get local system information

I procedure Setup is

begin

.... -- Create objects (see Sec 4.2.1)

DIS.Connect Term
D

(SPDM_Def s. Left_Arm_Yaw,

Left_Arm_Yaw'Address);

'-first parameter is the Term_ID;

-- second is the actual data address.

DIS.Connect_Term

DiS.Connect Term

(SPDM_Defs. Left_Arm_Pitch,

(SPDM Defs. Left Arm Roll,

Left Arm Pitch'Address);

Left Arm Roll'Address);

31

DIS.Connect_Te_n_Array (SPDM_Defs. Right_Am, Right_Arm(1)'Address);

DIS.Connect_Prefix (Robotics_Defs. SPDM, Local.Get_Node_Name,

Local.Get_Process_ID, Partition_Name);

-- if more than one prefix relates to this partition,

-- do another "Connect Prefix" call for that one.

DIS.Connect Malfunction (SPDM.Fail_Left_Arm,

(Active_Addr => Fail_Left_Am_Active'Address,

Options_Addr => Left_Arm_On_Off' Address,

others => Dis.Null_Address);

DIS.Connect_Malfunction (SPDM. Fail_Right_Arm,

(Active__Addr => Fail_Right_ArmActive'Address,

Pl_Addr => Right_Arm_Degrees'Address,

others => DIS.Null_Address));

end Setup;

V

4.4.4 Handling Enters, Malfunctions, and Initialization data

Connecting addressed to identifiers is enough to permit lOS to look at the data items. In order to allow lOS to
"enter"values, it is necessary to receive messages from lOS throughthe partition mailbox. The reason for this
is that a change of state like thiscannot be done the way a read isdone (backdoor via address); it is necessary
to incorporate the new value ina controlled way that cannot corrupt the system in the middle of computation. A
procedure should be written to handle this;in the example below, it iscalled Process_Mailbox_Requests. The
mailbox is used to accept requests for lOS enters, system initialization values, and malfunctions. This proce-
dure should check for mailbox inputsand process whatever has arrived, applying the malfunction or new data.
This procedure should be called at the beginning of the Run and Freeze mode subprograms. Thus, the up-
date is incorporated in a controlled way.

Notice that the different mailbox packages have the abilityto "poke" the data coming in. This takes the data
that has come into the mailbox and puts it into the -_ddress that was connected for that data, whether it is
malfunction data or term data being entered from i_"_ or returned from a datastore Initialize operation. The
example shows how to treat some entered data w; special processing (data which cannot just be directly
placed into the target address), and how to poke _e rest.

ii

II

with DIS, SPDM Defs;
u

with Mailbox, Enter_Mailbox,

separate (SPDM_Partition)

procedure Process_Mailbox_Requests is

Malfnnction_Mailbox, Safestore_Mailbox;

Num_Msgs : Natural := Mailbox.Num_Mail_Msgs (Mb);

More : Boolean;

Msg_Type : Mailbox.Msg_Types;

Size : Natural;

E_Msg : Enter_Mailbox.Enter_Msg;

M_Msg : Malfunction_Mailbox.Malfunction_Msg;

S_Msg : Safestore_Mailbox. Safestore_Msg;

G_Msg : Mega_Mailbox.Mega_Msg;

begin

for I in l..Num_Msgs loop

Msg_Type := Mailbox.Get_Next_Msg_Type(Mb);

case Msg_Type is

when Mailbox. Enter =>

V

32

v

I
|

Mailbox.Get_Enter_Msg (E_Msg, Mb);

if Enter_Mailbox. ID (E_Msg) = SPDM_Defs. Left_Arm_Yaw then

-- You only need to check the ID if you need to do

special processing on the incoming data...

Left_Arm_Yaw := Enter_Msgs. Convert_Float (E_Msg) ;

-- . . . etc.

elsif Enter_Mailbox. ID (E_Msg) = SPDM_Defs. Right_Arm_Yaw then

Right_Arm_Yaw := Enter_Msgs .Convert_Float (E_Msg) ;

-- etc ...

elsif

-- etc...

else

-- for all other enters, just call poke, which directly

-- places the data into its address...

Enter_Mailbox. Poke (E_Msg) ;

end if;

when Mailbox.Return_to_Datastore J Mailbox.Mega => -- datastore

Mailbox.Get_Mega_Msg (G_msg, Mb);

Mega_Mailhox.Go_To (G_Msg, SPDM_Defs. Right_Arm_Yaw, Found) ;

if Found then

Mega_Mailbox.Value (G_Msg, a-floating-point-variable) ;

-- process the floating point variable before assigning'.

-- getting the value of • mega entry ensures that its

-- value will not be poked by a poke all call.

end if;

Mega_Mailbox.Poke_All (G_Msg); -- simply poke all other entries

when Mailbox.Malfunction m>

Mailbox.Get,Malfunction Msg (M Msg, Mb);

if Malfunction_Mailbox. ID (M_Mag) - SPDM_Defs .Fail_Left_Arm then

-- do whatever it takes ...

else

Malfunction_Mailbox. Poke (M_Msg)

end if;

when Mailbox.Return_To_Safestore => -- safestore

Mailbox.Get__Safestore_Msg (S_Msg, M_);

if Safestore_Mailbox. ID (S_Msg) = A_Safestore_Message_Id then

The__Safestore__Data..Object. all :=

Move_Data (Safestore_Mailbox. Value (S_Msg)) ;

elsif ... -- a different id then

... -- move the return value to the data item

end if;

end case;

end loop;

end Process_Mailbox_Requests;

The DIS term registration can be used to tag datastore items for eventual retrieval. Each item tagged for
datastore will be retrieved "inthe background', like an lOS look. Each item tagged for safestore will be re-
trieved through the software backplane; the partition must create software backplane "output messages" for
these items. Both datastore and safestore items will be sent back (for return to datastore and return to safe-
store) to the partitionthrough the partition's mailbox -- the partitionmust have aspecial procedure to read this
mailbox during initialization.

\
\

33

4.4.5 How Will Off-tlne Tools Use the DIS?

The identifiers registered with the DIS through the '_Defs' packages are entered into the DIS body's data
structure at elaboration time, before the start of the main program. Then a program may access any of the DIS
data by calling functions and procedures in the DIS spec. While this works out well for real time models, it is
not good foroff-line tools to be dependent (in the Ada sense) on these packages. If any change is made to the
registered identifiers, the off-line tool usingthe DIS would have to be re-linked inorder to get the new identifier
information. So, for off-line tools, the DIS tree will not be populated by the elaboration of '_Defs' packages,
but by the reading of a file. The DiS.Report routine saves the entire set of registered static information in a file
which can be loaded into the DIS tree using the DIS.Load routine. The off-line tool is dependent on the file
instaead of the packages; in order to get new versions of the DIS, a tool will have to load new versions of this
file, but it will not have to be re-linked.

An example of such an off-line tool is the DIS Browser, which displays the registered identifiers in a worksta-
tion window so that lOS page creators can select an identifier and associate it with a screen gauge, button,
or meter. (On-line tools that require the presence of the entire set of DIS identifiers, like the Datastore parti-
tion and the Central look-at engine facility, will also use the report files rather than the '_Defs' packages.)

The DIS.Load routine can work in two ways: when the File_List parameter is False (default), the FromFile
string parameter is the name of a file containing the output of a DIS.Report call. When the File_Ust parameter
is True, From_File indicates a file that contains a listof files, each of which was created by a DIS.Report call.
Each group (USAD, Robotics, Environment, etc.) will create a different file using DIS.Report. Then these
files will be listed in the file passed to DIS.Load; in this way the entire set if DIS identifiers will be loaded for
tools which need to see the whole of it.

The Dis.Report creates a non-expandedreport file by default. The report contains all information necessary
for the Dis.Load call, and the output is summarized such that only a few lines are used for an id array, even
if the array has hundreds of elements. By setting the "Expand" parameter to True, and expanded report file
is produced. Each line in the file is exactly one identifier--all of the arrays are expanded out. (Unlike the
non-expanded report, the expanded report does not contain enough information to re-create the entire Dis
via a Load call.) The identifier on the line can be converted to its internal representation usingthe appropriate
Dis.Convert call. The expanded report is useful for visual inspection of the Dis contents and for tools that
need to search through or manipulate the entire Dis.

Another way of usingthe Dis is through the Navigate package, a sub-package available in the Dis spec. This
permits a tool familiar with the Dis structure to traverse through the Dis tree using the different types of "han-
dles" defined by the Dis.

m

V

34

-...j

--.._j

I 4.5. Mapping Logical Name to Physical Address: DIS & Symbol Map

In the SSVTF simulation data needs to be displayed at Instructor/Operator Stations (lOS). The DIS was
created to assist in this problem. The DIS provides the lOS a logical view of the simulation by defining a meth-
od of relating simulation terms to lOS page terms. However, the DIS in itself does not solve completely the
problem of mapping physical Ada simulation terms to the lOS logical term.

The SSVTF architecture encourages the use of partitions, classes, and class compositions. A class repre'
sents a specific object and should not be aware of where it is used in the simulation--i.e., which other struc-
tures (partitions, classes) may inherit it. However, there are Ada terms in the individual classes that may need
to be visible at an lOS. How can these terms be registered in the DIS?

A register symbol structure has been defined that can solve the problem. A class provides a procedure that
registers Ada terms in the class with a symbol list. A structure which inherits the class (a parent) provides the
class its name (the parent name) in the Create procedure. Thus, when class terms are registered in the sym-
13ollist the parentage is contained in the term name. In this manner, Ada terms within a class are registered
with the symbol list. This provides a physical mapping of terms to simulation physical addresses.

The specification for the Symbols package which manages the symbol list follows.

with System;

package Symbols is

type Base_Types is (Integer, Real, Enum, Boolean);

I --

Register associates an actual variable name with its type, address, and size.

** NOTE ** Register is only valid during Set_Up mode.

Parameters :

Name: the full name of the variable

Base_Type : the base type of the variable

Tick Address : the address of the variable

** Must use Varlable'Address **

Tick Size : the size in bits of the variable

** Must use Variable'Size **

Exceptions Raised:

Duplicate_Name : raised if the same name is in the database

Register_Mode : raised if system is not in Set_Up mode

Example of how to use:

Register (Name -> Parent & ".item",

Base_Type => Symbols.Integer,

Tick Address => Instance. Item'Address,

-- Tick Size -> Instance.Item'Size) :

__**

procedure Register (Name : in String;

Base_Type : in Base_Types;

Tick Address : in System.Address;

Tick Size : in Natural);

-- Is Address is a function that returns the address of a registered symbol

-- .*--NOTE ** Is Address also removes the symbol from the symbols database

-- Parameter:

-- Name : the full name of the registered variable

-- Returns:

-- Address : the address of the registered variable

35

I --I Exceptions Raised:

--t Name Not Found : raised if the name is not in the database

function Is Address (Name : in String) return System. Address;

__ ***

-- Report is a procedure that prints the contents of the Symbols_Table to a

-- data file.

** NOTE *" This routine is supplied for testing only, and should not be

called in real-time.

Parameter:

Filename : the name of the output file

Exceptions Raised:

Those propagated by Text_Io.

__ ***

procedure Report (Filename : in String);

Parameter:

none

--l Exceptions

..

Name Not Found : exception;

-- raised by Is Address if the name is not currently in the database

Duplicate_Name : exception;

-- raised by Resister if the same name is currently in the database

Reglster_Mode : exception;

-- raised by Register if the system is not in Set Up mode

end Symbols;

W

V

Abstract: Symbols is a service package that is used to associate

variable names with their Type, Address, and Size

attributes.

How to use:

for a Class (in the Create operation)

call Symbols.Register for required variables

for a Partition (in Set_Up)

process all Class.Create operations

call Symbols.Register for required partition symbols (optional)

call Symbols.Report to show all registered symbols (optional)

process all Dis.Connect operations

call Symbols.Clear to remove any unused symbols

36

I

-- Warnings: The Register parameters Tick_Address and Tick_Size must

-- be values that are the direct result of using the Ada

-- Predefined Language Attributes P'Address and P'Size.

-- A call to the Is_Address operation returns the address

-- of the symbol, but also removes the symbol from the database.

.. -

Now we need to map the physical address to the logical name registered in the DIS. This is achieved with
the DIS.Connect_Term procedure.

package DIS is

oee

procedure Connect_Term (Term

Symbol

: in Term_Id; ---DiS.Term Id (Logical)

: in String); --- Symbol.Register name

--- (Physical)

end DIS;

Insumman/,theIOS logicalviewofthesimulationisdefinedviatheDiS and DlS_Defspackages The physical
addressofsimulationtermsiscapturedviathesymbol list(packageSymbols) The two arejoinedviathe

DlSoConnect_Termprocedure.

The following figures depict how the logical to physical mapping works. The figure 4.5-1 provides code ex-
cerpts of a partition, its associated DIS_Defs, and Class packages. The figure 4.5-2 provides a conceptual
view of how the Set_Up procedure ties everything together.

k._.,,-

%= J

37

package Pa_tion;

with Class A, DIS, My Defs;
package body Partition is

procedure Set_Up is
begin

Class_A.Create
(Instance => Zebra,
Parent => "Partition.Zebra');

...

DISConnect_Term
(Term => My_Defs.Value_X,
Symbol => "Pa_tion.Zebra. X"

DIS.Connect_Term
(Term => My Defs.Value_Y,
Symbol => "Par_Eon.Zebra.Y*

DiS.Connect_Term
(Term => My Defs.Command,
Symbol => "Partition.Zebra.Cmd"

end _e't_U p;

end Partition;

with Other_Defs;
package My_Def= is

Value..X : constant DIS.Term Id :=
DIS.Register_Term (Parent => Other_Defs.Sys,

Name => "Vaue_X',
The_Tag => DIS.FloaLTag,
Users => (1=> DIS.Look));

Value Y :constant DIS.Term_ld :=
DIS-Register_Term (Parent => Other_Defs.Sys,

Name => "Vaue...Y',
The. Tag => DIS.Integer_Tag,
Users => (1=> DIS.Look));

Command : constant DIS.Term_ld :=
DIS.Register_Term (Parent => Other Defs.Sys,

Name => "Command',
The_Tag => DIS.Enum_Tag
Users => (1=> DIS.Look));

encl My_Defs;

Symbol Ust

Name Type Size Address
(Bits)

Parti_onZebra.X Rel 32 FAC0
Partiion,Zebra.Y Integer 32 FAC4
PartitJon.Zebra.Cmd Enum 8 FAC8
Partition,Zebra.DogA Boolean 8 FAC9
Partition.Zebra.Dog.B Integer 32 FACC

package Class_A is

type Object is limited private;
type Commands is (Set_Qty, Leak_Oil);

•_ procedure Create (Instance : in out Object;
Parent :in String);

procedure Request_State_Change
(Instance :in out Object;
Command :in Commands;
Val :in Integer);

private
type Object is

record
X : Real;
Y :Integer;
Cmd : Commands;
Dog : Class B.Object;

end record;

end Class_A;

with Class._B, Symbols;
package body Cla__A is

procedure Report.. Symbols
(Instance :in out Objects;
Parent :in SITing) is separate;

procedure Create (Instance : in out Objects;
Parent :in String) is

begin
Report_Symbols (Instance => Instance,

Parent => Parent);
-- Ma_e a class composition

Class B.Create (Instance => Instance.Dog,
Parent => Parent & ".Dog');

en(:l'(_reate;

separate(Class_A)

procedure Report_Symbols is
(Instance : in out Objects;
Parent :in S_ng) is

begin
Symbols.Register (Name => Parent & ".X',

Base_Type => Symbols.ReaJ,
"tick Address => Instance.X'Address,

"rick-Size =>=lnstance.X'Size);
Is.Register (Name > Parent & ".Y',

Base_Type => Symbols.integer,

Tck Address => Instance.Y'Address,
Tck_Size => Instance.Y'Size);

Symbols.Register (Name => Parent & ".Cmd',
Base.Type => Symbols.Enum,
"tick_Address => Instance.Com'Address,
Tick_Size => Instance.Com'Size);

and Report Symbols;

Figure 4.5-1

38

-_._j

IDIS Defsi I

!

\
Robotlcs_Defs

Arms_Defs

\
\

ParUtion

Set_Up

!

_ Class_A

....... _ Create

Symbol List

A.Term Int 32 FCA0
A.Y.Terrn Real 32 FCA4
A.Y.X.Term Enum 8 FCA8
A.Z.Term Int 32 FCAC

", :,, ,,,: _, Symbols

. ::._ Register I

#

Puts registered ,
terms In list /

Legend

With arrow

Procedure call arrow

Resultant action arrow

Figure 4.5-2 Mapping Logical
Terms to Physical Address at

Set_Up

,._j

39

4.6. Datastore/Initialization

The following sections provide a textual description of datastore activities and requirements. The figures, at
the end of this section, depict how a datastore is performed, where datastores are performed and how a return
to datastore occurs, respectively.

A datastore is an instructor initiated activity. The state of the simulation session is captured and saved to a
disk file. The datastore may be saved and used in other simulation sessions. The datastore retains enough
information to initialize the simulation to the same state at which the datastore was taken.

4.6.1 Perform a Datastore

The following steps are performed when a datastore is requestedby the instructor. An instructor enters a
datastore command along with some type of datastore ID. The lOS sends the datastore command and ID
to RTSSW. RTSSW transmits the datastore command to all Ada mains and platforms (including APM and
JEM). The session transitions to the Datastore mode synchronously. In the datastore mode, no data transfers
occur except for those partitions responsible for communicating with hardware devices (to keep them from
dropping off-line). The Datastore object, using the lOS Look-At technique and DIS, reads data from the simu-
tation partitions (note that OBCS may be an exception to this method). The Datastore object buffers the data
and writes it out to an ASCII disk file in records containing the fully qualified Ada DIS name, type, and value.
RTSSW provides datastore status to SaC as required. Lastly, the session transitions to the Freeze mode,
and RTSSW sends lOS the Freeze mode notification.

4.6.2 Initialize to a Datastore

The following steps are performed when an initialize to a datastore is requested. An instructor enters the ini-
tialize to datastore command and corresponding datastore id. The lOS confirms the data entry and sends
both the command and datastore id to RTSSW. The session transitions to the Initialization mode synchro-
nously. The Datastore object opens the datastore file and reads the datastore data from disk. The Datastore
object parses the datastore data and sends the datastore data to the appropriate partitions via mailbox mes-
sages. Each partition reads its mailbox messages and self-initializes to its internal datastore values. The
session then initializes to the datastore point during the system init mode.

4.6.3 Partition Requirements

For a partition to successfully be involved in a datastore event, the following rules must be adhered to:

• Each datastore item must be registered in the DIS.

• Each partition has a mailbox.

• Each partition provides the software to process (input) the data from the mailbox.

• Each partition provides a self-initialize routine to internally initialize to the datastore state.

4.6.4 Datastore Notes

RECON will not be dependent on the DIS to process datastore data.

The datastore file will be ASCII to the extent practical.

OBCS datastore (flight software terms) may be a special case. Due to the size and nature of the OBCS, the
OBCS binary data may be handled in a differer'" manner. OBCS will be responsible for the format of the binary
data. OBCS data will probably be maintaine_ -own datastore file; the file name will correlate to the regular
datastore file name/id.

The datastore file(s) will have an id associatir_ = _store id, SGMT, and load id. RTSSWwill create the datas-
tore file name. A titleand short description of the datastore will be entered by the instructor and placed inthe
datastore file.

40 ORdiNAL PAGE !_

OF POOR QUALITY

CSIOPdoesnotdoadatastoretotheCSIOPplatform(theCSIOPinterfaceagentintheSessionHostpro-
videstheCSIOPdatastoredata).
SNSwilldoadatastoretothedisklocaltotheSNSplatform.TheSNSdatastorefilenamewillcorrespond
to the Session Host name for correlation by OSS/Recon in the datastore repository.

Procedures are supplied (by RTSSW) to build and parse the mailbox headers for the datastore message data.
(Refer to section 7.3 in Appendix I).

The datastore data will be buffered by bytes, not by specific Ada data type. The Datastore object will supply
the procedures necessary for converting the datastore information to the byte form. The return to datastore
partition software will need to convert the 'bytes' to the appropriate Aria data type.

On return to datastore, all the data for a partition will be buffered together in a single mailbox message.

41

FREEZE mode, submode of Hold

Session Host / SNS

Partition A Partition B Partition C Partition N

Datastore
Data

RTSSW (_)

Datastore
Data

Datastore Object

®

Datastore
Data

Datastore
Data

Datastore Term
Location

Datastore
Data

Figure 4.6--1. Taking a Datastore

42

IOS

CSIOP CPU

I

SNS

CPU

RTSN

JEM

GPLAN

OSS

APM

Figure 4.62. Physical Layout of Training Session

43

Sesslon Host

init data

'Dr

USA D ENV ROB IOS
IA

SNS USAV OBCS SaC
IA IA IA

RTSSW

1 l
g II Stores Manager

Sesslon
Manager (_)

DS/SS id
®

Software Backplane

partition, data

data info

DIS

E+--+_

V

buffers

DS/SS

Note: Initialization to a Datastore/Safe-
store will occur in an analogous man-
ner on the SNS platform.

Figure 4.6-3. Initialization to Datastore/Safestore

V

44

4.7. Safestore

The following sections provide a textual description of safestore activities and requirements. Figure 4.7-1

depicts how a safestore occurs. Figure 4.6-3 in the preceding section depicts a return to a safestore.

RUN mode
I1

Session Host

Partition A Partition B Partition C Partition N

Safestore Safestore Safestore Safestore

Data Data Data Data

Safestore

Data
O0 k0b t

Signal to do Synchronous CPUs

Asynchronous CPU J

$ performed during a safestore

* performed at a synchronous rate

Safestore

Data

Figure 4.7-1. Taking a Safestore

45

OF POOR QU_.u'T'_'

Safestore is taking a snapshot of the simu: -tion -- _ronment at consist - intervals during the simulation run
mode. The purpose of the safestore is for _cove _ilowing an expect- :ermination of the s!mulati0n. A re-
covery to a stable point before the termina:_on o-_ ;red can be accoF,,_ ;shed by initializing first to the last
datastore or initialization point and then applying _e of the last four safestores. Note that a safestore set is
much smaller than a datastore set.

4.7.1 Perform a Safestore

The Safestore interval defaults to 15 minutes. An instructor may set the safestore interval to a different value
via the lOS. The lOS checks the validity of the specified interval and then transmits the valid safestore interval
to RTSSW. Valid intervals range from a minimum of five minutes to a maximum of fifteen minutes in incre-
ments of a minute. RTSSW sets the safestore interval as required/requested. Each partition produces safe-
store messages at a consistent rate (minimum of 1 hertz). The safestore object determines the expiration
of the safestore interval. The Safestore object collects all safestore messages from the partitions. The soft-
ware backplane mechanism ensures that the safestore messages are time-homogeneous at the 1 hertz rate.
The Safestore object buffers the data and outputs it to disk.

4.7.2 Return to a Safestore

The lOS receives a return to safestore com_. _nd and safestore id from the instructor. The lOS sends RTSSW
the return to safestore command and id. T;- .afestore object opens the safestore file and reads the safestore
data from disk. The safes;ore object parses the data and places it inthe mailbox for all appropriate partitions.
Each partition processes (inputs) its mailbox message and self-initializes to the safestore state.

4.7.3 PartlUon Requirements

For a partition to successfully be involved in a safestore event, the following rules must be adhered to:

• Register safestore messages with the software backplane.

• Output safestore messages consistently at a minimum of 1 hertz.

• Have a mailbox.

• Process safestore data from the mailbox during a 'return to safestore'.

• Self--initialize to the safestore state.

4.7.4 Safestore Notes

Four (4) safestores are maintained per training session.

CSIOP does not perform a safestore.

SNS does not perform a safestore.

Propulsion, Environment, & GNC (on the Session Host) produce safestore data.

Safestore files are not kept after a session is normally terminated.

With safestore object on an asynchronous CPU, the safestore does notdisturb the RMS algorithms. However,
the safestore interval software interrupt may not be received immediately if the asynchronous CPU is 'busy'.

An instructor may 'protect' one of the four safestores during a session. The protected safestore will not be
overwritten.

The safestore interval object will need to be part of the ;onous simulation inorder to be aware of sir]-
tion modes (to reset after certain modes and not issut -_terruptduring a "eeze).

To reset to a safestore, first an initialization to the origina; ,nitialization point (or datastore point) is performed
followed by the application of the latest safestore.

46 O_GSNAL PAGE IS

OF POOR QUALITY

\ J

On initialization to a new datastore point (or initialization point), previous safestores are essentially flushed.
New safestores will relate to the current initialization point.

47

4.8. INTERFACE AGENTS

4.8.1 INTRODUCTION

This discussion of interface agents is limited to those innerface agents in the Full Task Trainer (FFI') of the
Space Station Verification and Training Facility (SSVTF). In particular, this discussion is limited to interface
agents that are hosted on assets with SVM.

To aid in understanding what an interface agent is and what is does (and maybe get some inkling how an inter-
face agent should do its work), the following background material about assets and interface agents is pro-
vided.

V

4.8.1.1 What is an Asset ??

An asset is an SSVTF F'IT hardware entity attached to the real-time simulation network (RTSN) which can
be used as an element of a training session. Table 4.8-1 provides a list of the FTT assets and how many
assets may be configured into a training session. An asset cannot be configured in more than one training
session at a time. An asset may be configured into and out of an active training session.

F'I-I" Asset Total # Min / Max # Asset Asset
Asset Owner of Asset Configured in a with without

Class Name Instances Training Session SVM SVM

RT Session RTS 2 1 / 1 X
Computer (RTSC)

SNS SNS 1 0 / 1 X

OTW Visual VlS 1 0 / 1 X

CCTV Visual VlS 1 0 / 1 X

lOS Work Station lOS 14 1 / 14 X

I DMS String OBCS 2 1 / 1 X
(with SIB)

C&T String USA D 1 0 / 1 X

Crew Station USA V 3 0 / 3 X

APM APM 1 0 / 1 ? ? (X)

IJEM JEM 1 0/1 ? ? (X)

SMTF: 1.. 1 0 / 1 XSMS

Table 4.8-1 FTT Assets within a Training Session

v

Some assets contain the real-time system software (RTSSW) executive and communication environment
known as the Simulation Virtual Machine (SVM). These assets include the RTSC, Crew Station host (CSIOP),
and SNS. Since these assets contain the RTSSW environment, these assets are referred to as "assets with
SVM" throughout this document. Some assets, such as lOS Work Stations, contain only the SVM commu-
nication environment. In thisdocument, there is no differentiation made between assets with SVM and asset
with only the SVM communication environment; these assets will be treated alike.

Most assets are black boxes which need to be stimulated in order to work properly in the FTI'. Examples of
these black box assets include the OTW and CCTV IGs and the DMS String. Since these assets do not con-
tain the RTSSW environment, these assets are referred to as "assets withoutSVM" throughout thisdocument.

All assets have the ability to operate with other assets when configured into a training session. During this
"integrated" or "configured" mode of operation, an asset may communicate with one or more other assets.

V

48

R._.J

Some assets have an additional ability to operate by themselves (in a "standalone" mode of operation). These
assets include the SNS, OTW and CCTV IGs, lOS Work Stations, DMS String, and SMTF. (It is expected
that the APM and JEM simulators will also have the capability of standalone operation.)

4.8.1.2 What is an Interface Agent ??

An interface agent is the software that provides model data from one asset to another throu_ah_3controlled
interface. In essence, an interface agent provides an abstraction of its parent asset. The asset providing the
interface agent is called the "parent asset". The asset where the interface agent resides is called the "host
asset". Note that the location of an interface agent (its host asset) depends on the parent asset's requirements
for integrated and standalone modes of operation and whether the parent asset is an asset with or without
SVM; the general rule is that interface agents will only reside in assets with SVM.

I Figure 4.8-1 provides a simple example of an interface agent between two assets. In this figure, Asset B has
some need (requirement) to use some data produced by Asset A. (Let's postpone discussions about imple-
menting an interface agent until later.) In order to support Asset B's need for data, Asset A employs an inter-
face agent to provide Asset Bwith the required interface to Asset A. When Asset B needs some data produced
by Asset A, Asset B uses the interface agent to get that data. Note that in this simple example, Asset B is
an asset with SVM.

I Figure 4.8-2 provides a general association diagram of an interface agent (a non-lOS interface agent). In
this figure, the interface agent is effecting a pass-thru interface between its host asset (Asset A) and its parent
asset (Asset B). The interface agent exchanges data with some of Asset A's models (called Partition A, Parti-
tion Y, and Partition Z). The interface agent receives malfunction and enter value requests from an lOS inter-
face agent. The interface agent receives add/drop asset commands from its Platform Manager, and returns
the asset add/drop status to both the Platform Manager and a Status and Control (SAC) agent. Note that in
this example, Asset A is an asset with SVM.

An interface agent may play one of two roles while controlling virtually all information transmitted between
its parent asset and host asset. These two roles are:

A. Simulating an asset that is not configured in the training session

B. Effecting a pass-thru interface with an asset that is configured in the training session

I In a training session where a given asset is not present, as shown In Figure 4.8-3, the interface agent will
simulate the interaction between the "missing" parent asset and the host asset at some fidelity (the minimum

fidelity required for meeting the resource and consumable demands of the host asset). The fidelity of asset
simulation will depend on the requirements imposed on and capabilities of the interface agent. (Note that the
interface agent should use static values wherever possible when simulating its parent asset's interface.)

I In a training session where a given asset is present, as shown in Figures 4.8-4 and 4.8-5, the interface agent
will effect a high fidelity interchange between the "present" parent asset and the host asset. Note that Figure
4.8-4 shows the communication path when both assets have SVM, and Figure 4.8-5 shows the communica-
tion path when only one asset has SVM.

Asset A

idata

Model I-" data

Asset B

data j
i

Asset B IModel

Figure 4.8-1 Simple Example of an Interface Agent

49

AssetA /__-_ i__D'" •o. Y]

//?-.,
Platform r l!::::!?:i::iS_:ii:ii_iiii.:.__ii!ii!iiii:iir-',.

"V7--

r

Add/Dr_ -.- _s/ Mslfunctions

lOS]Interface Agent

Asset B

V

Figure 4.8-2 General Interface Agent Association Diagram

Asset A
Model

Asset A
Asset B

Asset BModel

Asset A is configured in the training session.
Asset A is an asset with SVM.

Asset B is not configured in the training session.
(Asset B may or may not t)¢ an asset wxth SVM.)

Figure 4.8-3 Interface Agent Playing Roll as Asset Simulation

Figure 4.8-6 provides a general state diagram for an interface agent. On startup, the interface agent defaults
to simulating the parent/host asset interface. An interface agent effects the pass-thru interface when the par-
ent asset has been successfully integrated into the host asset's training session. Allowing an interface agent
to (easily) switch between the roles of an interface simulator and an interface stimulator provides for a well-
controlled, constant interface relationship between the assets.

II Figure 4.8-7 shows a diagram of a better-detailed communication path between two assets with SVM when
both assets are integrated in the same training session. Note that two interface agents are employed.

V

50

Asset A
Model

Asset A

! data _!iiiii!!!!:_!::i_i_::_!_::_i_!_!_i::!::i!!::i::i::i!i::!i

Asset A is configured in the training session.
Asset A is an asset with SVM.

data

Asset B

,...] _iiiiiiiiiiiiiiiiiiiiiiil] data _.1

ta] _^--Ida data
I

n

Asset B
Model

Asset B is configured in the training session.
Asset B is an asset with SVM.

IIFigure 4.8-4 Interface Agent Playing Role as Asset (with SVM) Stimulator

Asset AModel

Asset A

..- [data_iii:!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!ii!ili!iii|

I data :::::::::::::::::::::::::::::::::::::::

data

Asset B

Asset B I
data I Model

Asset A is configured in the training session.
Asset A is an asset with SVM.

Asset B is configured in the training session.
Asset B is an asset without SVM.

_igure 4.8-5 Interface Agent Playing Role as Asset (without SVM) Stimulator

S all modes, malfunction, enter v_ue-_

xist _,)

____Interface

"] Simulated_

drop_Interface -_

Figure 4.8-6 General Interface Agent State Diagram

51

Asset A

Software Backplane

()
Model P i

!
t

N
J

t"

J

¢,,J

(/

-.>
.J

Asset B

I iliiii!';iii!ii_i_ii:,_iiiiiii_ilit
!
I

I I I RTSN (LAN)
I I _ i

I \ /

Model P \\ Interface Agent //types
t

Package ptcYcY_ge

Software Backplane

,/ i
I I i

"t V'Model C

types
Package

_- "with" dependencies

_igure 4.8-7 General Interface Agents within Two Assets with SVM

V

52

4.8.2

Rules

1.

.

.

INTERFACE AGENTGENERALNOTES

All output message tyl2.e_in a partition's interface are defined via Interface Definition _ Packages.
The Distributed Identifier Specification (DIS) creates identifiers (Message_lDs) for the messages
listed in a partition's interface definition packages. The SVM communication software uses these mes-
sage identifiers to determine the location of the output messages. A partition creates the actual output
message _ (the data itself) using the SVM communication software. Interfaces between partitions
are effected by registering input and output identifiers with the SVM communication software.

It is _ desired that a training session should not stop when an asset goes down or goes improperly
off-line.

SGMT will be provided on demand from a generic clock model.

--,.._..j

Assumptions

1. Generally, do not mix data at different rates in the same message on the LAN. The idea here is to en-
sure that high-rate data is notstarved by waiting for low-rate data to be ready for transfer in the same
data block. One simple work around is to issue the data block at the higher rate, and only update the
low-rate data as necessary in the block. Of course, the receiver must be ready to deal with getting
multi-rate data in a data block.

2. An interface agent (or at least some part of an interface agent) will be packaged as (and treated like)
a partition. An interface agent will register with SVM communication and executive software in the
same manner as a partition. An interface agent can do sub-scheduling within itself where needed.
(This capability for sub-scheduling within a partition may be provided by the SVM executive software.)

3. Generally, there will be only one interface agent per asset class. The interface agent shall control virtu-
ally all communication between the host asset and the parent assets.

4. An interface agent is responsible for resolving word-size or word definition differences between the host
and parent asset via bit-fiddling, byte-swapping, or whatever other means are available to the inter-
face agent. If the byte-swapping or bit-fiddling is a general problem of the asset interface (i.e., it's a
problem for every basic data type), then the Network Services part of Connectivity might be able to
perform these actions on all data transferred across the interface. (Network Services will not be able
to handle type-specific conversions - it's all or nothing.)

5. An interface agent helps to optimize FDDI packets (helps reduce amount of little packets sent across
LAN), thus helping the RTSN and GP LAN to provide better response to every user.

6. Mode transitions commands (from the master Platform Manager) should be "disabled" during asset
add and asset drop activities. This will allow the asset to be added or dropped in a "stable" mode. Also,
the master Platform Manager should not issue asset add and drop commands while a Datastore or
Initialization is occurring.

Other Notes

All interface agents provide the following four main capabilities:

.

2.

3.

4.

Simulating an asset interface

Effecting pass-thru interface for an asset (with or without SVM)

Adding an asset

Dropping an asset

Each capability is discussed at length in the following sections. Whether an interface agent is simulating an
asset interface or effecting a pass-thru interface, it must still deal with the issues of communication, modes,
malfunctions, and user-requested data entry.

53

4.8.3 INTERFACE AGENT FOR ASSET WITH SVM

4.8.3.1 Simulating Interface

4.8.3.1.1 Communication

The interface agent shall use the SVM communication software to communicate with other partitions. No
moding of the parent asset is performed during the asset interface simulation.

During the startup phase, the interface agent must set up all communication paths (for simulation of the inter-
face as well as effecting a pass-thru interface) before beginning its simulated interface behavior. This allows
for a quick (and controlled) behavioral change into the pass-thru interface behavior when the parent asset
is added.

4.8.3.1.2 Moding

The portion of the interface agent that Is periodic (the partitionportion) shall respond to modes (just like a nor-
mal partition). The interface agent's particular interface modelling responsibilities depend on the required fi-
delity of the interface simulation. Note that interface agents must read their mailbox, perform an asset add
upon request, and return the success/fail status of the add to OSS (SAC) and the master Platform Manager.
In the unlikely event that an asset drop is requested, the interface agent should return an error status (i.e.,
requested asset is not currently configured in training session) to both the OSS (SAC) and master Platform
Manager.

It is anticipated that interface agents (for assets with SVM) will not have to do anything for Step Ahead while
simulating the interface.

When the "simulated interface" contains data that should be Datastored, the interface agent must register
each Datastore item with the DIS (via DIS-related packages). The interface agent must provide the software
to process the return-to-datastore data from its mailbox.

When the "simulated interface" contains data that should be Safestored, the interface agent must register
each Safestore item with the DIS (via DiS-related packages) as well as with the SVM communication soft-
ware. Interface agents must update these safestore terms at a minimum of once a second (at 1 hertz). The
interface agent must provide the software to process the return-to-safestore data from its mailbox.

Upon entering TERM INATE mode, an interface agent should stop simulating the asset interface. (Essentially,
the interface agent should quit.) There is no requirement for an interface agent to shutdown its parent asset
when the asset is not configured in the training session.

4.8.3.1.3 Malfunctions

When the "simulated interface" contains data that is affected by malfunctions, the interface agent must regis-
ter each malfunction with the DIS (via DIS-related packages). An interface agent must provide the software
to effect the malfunction in the simulated interface. An interface agent should inform the lOS when a malfunc-
tion request (for the simulated interface) cannot be serviced.

In the event that some malfunction is processed by both the interface agent (during interface simulation) and
its parent asset (when configured in the training session), the interface agent shall issue that malfunction re-
quest to its parent asset.

Maybe malfunctions shouldn,t be handled (anything really done) by interface agent when it is simulating the
asset interface: Why should an interface agent care about malfunctioning something in a low-fidelity interface
??

Maybe the interface agent (for a parent asset with SVM) won't have to deal with malfunction logic: the lOS
may not allow selection of malfunctions which are hosted (belong to) an asset with SVM which isn _tconfigured
into the training session.

4.8.3.1.4 User-Requested Data Entry

V

54

Whenthe "simulated interface" contains data that can be over-written by an instructoror operator (via user-
requested data entry), the interface agent must register each item (targeted for a controlled value override)
with the DIS (via DiS-related packages). An interface agent must provide the software to enter the user-sup-
plied data (from its mailbox) to the simulated interface. An interface agent should inform the lOS when an
enter value request cannot be serviced.

4.8.3.2 Effecting Pass-Thru Interface

4.8.3.2.1 Communication

The interface agent shall use the SVM communication software to communicate with other partitions. The
communication paths do not need to be set up at this point, since they were set up during the startup phase.

4.8.3.2.2 Moding

All mode transition commands (including requested mode and mode-specific parameters) shall be sent di-
rectly from the master Platform Manager to the asset's Platform Manager; the interface agent is not involved
with this message transfer. (Note that each asset with SVM shall have a Platform Manager.)

The portion of the interface agent that is periodic (the partition portion) shall respond to modes (just like a nor-
mal partition). The interface agent's particular interface modelling responsibilities depend on the required fi-
delity of effecting the pass-thru interface. Note that interface agents must read their mailbox, perform an as-
set drop upon request, and return the successJfailstatus of the drop to OSS (SAC) and the master Platform
Manager. In the unlikely event that another asset add is requested, the interface agent should return an error
status (i.e., requested asset is not currently configured in training session) to both the OSS (SAC) and master
Platform Manager.

It is anticipated that interface agents (for assets with SVM) will not have to do anything for Step Ahead while
effecting a pess-thru interface.

Since models within the asset shall register Datastore and Safestore terms (local to that asset), the interface
agent will not have to do anything for Datastore or Safestore. While effecting a pass-thru interface, the inter-
face agent will not have to update its "simulated interface" data terms.

4.8.3.2.3 Malfunctions

For an asset with SVM, the interface agent is not required to register malfunctions (as long as the interface
agent does not have to malfunction the "simulated interface").

In the event that some malfunction is processed by both the interface agent (during interface simulation) and
its parent asset (when configured in the training session), the interface agent shall issue that malfunction re-
quest to its parent asset, upon request by the lOS.

4.8.3.2.4 User-Requested Data Entry

For an asset with SVM, the interface agent is not required to register data items targeted for a controlled value
override.

4.8.3.3 Adding Asset

The master Platform Manager (Asset Manager), upon command from the OSS, will issue an "Add Asset" re-
quest to the interface agent. This request will identifywhich asset instance (i.e., which unique asset) should
be added intothe trainingsession. An asset may be added only during FREEZE and RUN modes. Note that
prior to issuing the "Add Asset" request, the master Platform Manager will have ensured (with OSS SMaCT
or SaC help ?) that the asset has successfully completed its Startup Activity (includingthe PROGRAM ELAB-

55

ORATION,SETUP/REGISTERI/O,andCREATEDATAsteps)andthatit'scommunicating on the RTSN.
The master Platform Manager shall also be responsible for ensuring that an asset add will not occur during
a Datastore operation. The interface agent should be s_mulating tSe asset interface at this time.

Responses of interface status (Asset Add successful, Asset Add failed, etc.) during an Asset Add shall be sent
from the interface agent to both SaC and the master Platform Manager (Asset Manager).

When adding an asset during run, one-way communication is first established with the asset. Data is passed
to the asset so that it can initialize itself with the ongoing simulation. When everything is synchronized and
it is time tojoin the asset to the simulation, the communication becomes two-way and the interface agent acts
as a pass-thru for the data transfer.

When a new asset is being added, there may be a need for a"controls not in agreement'capability, thiswould
involve the lOS, the interface agent, and the actual asset. This capability would allow the asset to be "in config-
uration" prior to being added so that a large jump would not be detected when they were actually added (if
the asset was not near the current simulated configuration). [Aside: according to SETteam, we will ignore
the contro/s not in agreement capability.]

4.8.3.4 Dropping Asset

The master Platform Manager (Asset Manager), upon command from the OSS, will issue a "Drop Asset" re-
quest to the interface agent. This request will identifywhich asset instance (i.e., which unique asset) should
be dropped from the training session. An asset may be dropped only during FREEZE, RUN and TERM INATE
modes. The master Platform Manager shall be responsible for ensuring that an asset drop will notoccur dur-
ing a Datastore operation. The interface agent should be effecting a pass-thru interface at this time.

Responses of interface status (Asset Drop in progress, Asset Drop successful, Asset Drop failed, etc.) during
an Asset Drop shall be sent from the interface agent to both SaC and the master Platform Manager (Asset
Manager).

V

V

56

-V

4.8.4 INTERFACE AGENT FOR ASSET WITHOUT SVM

4.8.4.1 Simulating Interface

4.8.4.1.1 Communication

The interface agent shall use the SVM communication software to communicate with other partitions. No
moding of the parent asset is performed during the asset interface simulation.

During the startup phase, the interface agent must set up all communication paths (for simulation of the inter-
face as well as effecting a pass-thru interface) before beginning its simulated interface behavior. This allows
for a quick (and controlled) behavioral change into the pass-thru interface behavior when the parent asset
is added.

4.8.4.1.2 Moding

The portion of the interface agent that is periodic (the partition portion) shall respond to modes (just like a nor-
mal partition). The interface agent's particular interface modelling responsibilities depend on the required fi-
delity of the interface simulation. Note that interface agents must read their mailbox, perform an asset add
upon request, and return the success/fail status of the add to OSS (SAC) and the master Platform Manager.
In the unlikely event that an asset drop is requested, the interface agent should return an error status (I.e.,
requested asset is not currently configured in training session) to both the OSS (SAC) and master Platform
Manager.

It is anticipated that interface agents (forassets without SVM) will not have to do anything for Step Ahead while
simulating the interface.

When the "simulated interface" contains data that should be Datastored, the interface agent must register
each Datastore item with the DIS (via DIS-related packages). The interface agent must provide the software
to process the return-to-datastore data from its mailbox.

When the "simulated interface" contains data that should be Safestored, the interface agent must register
each Safestore item with the DIS (via DIS-related packages) as well as with the SVM communication soft-
ware. Interface agents must update these safestore terms at a minimum of once a second (at 1 hertz). The
interface agent must provide the software to process the return-to-safestore data from its mailbox.

Upon entering TERMINATE mode, an interface agent should stopsimulating the asset interface. (Essentially,
the interface agent should quit.) There is no requirement for an interface agent to shutdown its parent asset
when the asset is not configured in the training session.

4.8.4.1.3 Malfunctions

When the "simulated interface"contains data that is affected by malfunctions, the interface agent must regis-
ter each malfun_on with the DIS (via DiS-related packages). An interface agent must provide the software
to effect the malfunction in the simulated interface. An interface agent should inform the lOS when a malfunc-
tion request (for the simulated interface) cannot be serviced.

The lOS shall send malfunction requests to the interface agent (in accordance with the malfunction's DIS reg-
istration). During RUN and FREEZE modes, the interface agent shall read its mailbox and effect malfunction
(for the simulated interface) as required.

In the event that some malfunction is processed by both the interface agent (during interface simulation) and
its parent asset (when configured in the training session), the interface agent shall issue that malfunction re-
quest to its parent asset.

4.8.4.1.4 User-Requested Data Entry

When the "simulated interface" contains data that can be over-written by an instructoror operator (via user-
requested data entry), the interface agent must register each item (targeted for a controlled value override)

57

withthe DIS (via DIS-related packages). An interface agent must provide the software to enter the user-sup-
plied data (from its mailbox) to the simuiatedinterface.

The lOS shall send enter value requests to the interface agent (in accordance with the data item's DIS regis-
tration). During RUN and FREEZE modes, the interface agent shall read its mailbox and process the enter
value requests (as allowed by the peculiar capabilities provided by the asset without SVM). The interface
agent shall inform the lOS when an enter value request (for the simulated interface) cannot be serviced.

4.8.4.2 Effecting Pass-Thru Interface

4.8.4.2.1 Communication

The interface agent shall use the SVM communication software to communicate with other partitions.

During the startup phase, the interface agent must set up all communication paths (for simulation of the inter-
face as well as effecting a pass-thru interface) before beginning its simulated interface behavior. This allows
for a quick (and controlled) behavioral change into the simulated interface behavior when the parent asset
is dropped.

4.8.4.2.2 Moding

When an asset without SVM is integrated, its interface agent must deal with mode transition logic: it should
know how to "mode" its parent asset. In a sense, the interface agent acts as a pseudo-Platform Manager
for the asset.

During INITIALIZATION (including Self Init and System Init) the interface agent shall receive initializationdata
from its mailbox and apply it to the host-to-parent transfer buffers (as appropriate). Thus, the interface agent
shall stimulate asset so that it receives and processes the in!!!aliza_ondata unti!the asset reaches a steady
state.

During FREEZE (and HOLD and STEP AHEAD), the interface agent must keep the asset running (either con-
tinue data transfers, or command the asset to freeze). In some cases, additional messages may be sent to
trickasset into its "freeze" logic. Despite the method used, the interface agent should take care of all special
processing to ensure that the asset is frozen when the _'ainlng session enters FREEZE.

The interface agent must register all necessary DATASTORE terms with the DIS. These terms should be
terms within the asset's pass-thru interface or derived from data within the asset's pass-thru interface.

During RUN, the interface agent should communicate with its asset as required to effect the pass-thru inter-
face. On a FREEZE to RUN transition, the interface agent should take care of all special processing to ensure
that the asset begins interface processing when the training session enters RUN mode.

If required, the interface agent must register all necessary SAFESTORE terms with the DIS. Note that it is
not generally expected that assets without SVM will have safestore data.

4.8.4.2.3 Malfunctions

The interface agents must register all malfunctions for its parent asset. This is necessary since the parent
asset is unable to register malfunctions by itself. Each malfunction must be registered with the DIS.

The lOS shall send malfunction requests to the interface agent (in accordance with the malfunction's DIS reg-
istration). During RUN and FREEZE modes, the interface agent shall read its mailbox and malfunction the
asset as required. The interface agent must know howto effect malfunctions on itsparent asset. The interface
agent shall inform the lOS when a malfunction request cannot be serviced.

4.8.4.2.4 User-Requested Data Entry

The interface agent must register each data item (targeted for a _nt_Olled value override) with the Dis. This
is necessary because the parent asset is unable to register these terms by itself.

V

58

The lOS shall send enter value requests to the interface agent (in accordance with the data item's DIS regis-
tration). During RUN and FREEZE modes, the interface agent shall read its mailbox and process the enter
value requests (as allowed by the peculiar capabilities provided by the asset without SVM). The interface
agent shall inform the lOS when an enter value request cannot be serviced.

4.8.4.3 Adding Asset

The master Platform Manager (Asset Manager), upon command from the OSS, will issue an "Add Asset" re-
quest to the interface agent. This request will identify which asset instance (i.e., which unique asset) should
be added into the training session. An asset may be added only during FREEZE and RUN modes. Note that
prior to issuing the "Add Asset" request, the master Platform Manager will have ensured (with OSS SMaCT
or SaC help ?) that the asset has successfullycompleted its Startup Activity (whatever this means for the asset
without SVM) and that it's communicating on the RTSN. The master Platform Manager shall also be responsi-
ble for ensuring that an asset add will not occur during a Datastore operation. The interface agent should be
simulating the asset interface at this time.

Responses of interface status (Asset Add successful, Asset Add failed, etc.) during an Asset Add shall be sent
from the interface agent to both SaC and the master Platform Manager (Asset Manager).

When adding an asset during run, one-way communication is first established with the asset. The interface
agent shall deal with foreign connections, as required. Data is passed to the asset so that it can initialize itself
with the ongoing simulation. When everything is synchronized and itis time to join the asset to the simulation,
the communication becomes two-way and the interface agent acts as a pass-thru for the data transfer.

When a new asset isbeing added, there may be a need for a "controls not inagreement" capability, thiswould
involvethe lOS, the interface agent, and the actual asset. This capability would allow the asset to be "inconfig-
uration" prior to being added so that a large jump would not be detected when they were actually added (if
the asset was not near the current simulated configuration). [Aside: according to SET team, we will ignore
the controls not in agreement capability.]

4.8.4.4 Dropping Asset

The master Platform Manager (Asset Manager), upon command from the OSS, will issue a "Drop Asset" re-
quest to the interface agent. This request will identify which asset instance (i.e., which unique asset) should
be dropped from the training session. An asset may be dropped only during FREEZE, RUN and TERMINATE
modes. The master Platform Manager shall be responsible for ensuring that an asset drop will not occur dur-
ing a Datastore operation. The interface agent should be effecting a pass--thru interface at this time.

Responses of interface status (Asset Drop in progress, Asset Drop successful, Asset Drop failed, etc.) during
an Asset Drop shall be sent from the interface agent to both SaC and the master Platform Manager (Asset
Manager).

If a hardware device is attached, the interface agent may need to shutdown that device as part of the asset's
drop procedure.

J

",,._j

59

4. 9. Asynchronous I/0

Asynchronous I/O provides real-time disk i/o operations for real-time models. Disk i/o operations are usually
time consuming operations. The calling model must wait for the i/o operation to complete before itcan contin-
ue processing. In a real-time simulation, such i/o delays cause overruns to occur and can not be tolerated.
However, asynchronous i/o permits real-time models to 'post' i/o operations to a shared memory area. A

partition in the asynchronous processor which is not bound by real-time time constraints processes the
posted i/o operations. The real-time model making the request picks up the result of the i/o request on a sub-
sequent execution. For the model, the time consumed for i/o operations is that for memory to memory data
transfers which is much more efficient than memory to/from disk data transfers.

Asynchronous i/0 permits a real-time model to open a file for read access or write access, not both simulta-
neously. The data is accessed as in stream i/o. Sequential readstwrites of data in terms of bits,bytes is per-
formed. The model is responsible for file format and data type information.

Real-time application models requiring disk access use the services of the Realtime_lo package. Real-
time_lo operations post L/orequests in a shared memory buffer area. Several models, within the same or
different CPUs, may make real-time i/o requests. Built into CPU 0 is Async_lo_Partition. Async_lo Partition
scans the shared memory buffer area for i/o requests and processes them appropriately (see figure 4.9-1).

Models requiring disk i/o should with package Realtime_lO. For each file that is to be operated on simulta-
neously, the model should Register a buffer area specific to the file in Set_Up. Update should be called in
each simulation mode until a Status of Registered is received. Once the buffer for a file has been registered,
the file may be opened (Open) or created (Create). Update should be called until a Status of Opened or
Created is returned. Before data is read, a check should be made to ensure There_Is_Data_For the read and
that the End_Of_File has not been reached. The Read may then be performed. Again Update should be called
before the next call to any Realtime_lo service. Similarly, for a write, a check should be made to ensure
There_Is_Room_For the data to be written in the buffer area for this file. The Write may then be performed
and a call to Update made before another Realtime_lo operation is made. The file may be closed (Close) or

Shared Buffer Area

CPU-0 (Async)
CPU-X (Realtime)

AsynclO Partition
Model

Realtime IO

Disk
Part of AsyncIo operations

II Figure 4.9-1 Asynchronous I/O Overview V

6O

v

kJ

kj

deleted (Delete) following the completion of all requested read or write operations. Once a file has been
closed or deleted, the Realtime_lo object may be used to operate on another file.

The Async_lo_Partition processes i/o operations posted by the Realtime_lO package. Async_lO_Partition
executes at 1 hz. Thus, several i/o requests may have been posted by real-time models between
Async IO Partition executions. Async IO Partition scans the shared memory buffer areas and processes
any posted i/o operations. The response to a Realtime_lo call is not completed until Async_lO_Partition has
executed. A requesting model may have to call Realtime_lo.Update several times before it receives a com-
pleted status. However, Reads may be done by the real-time model until its buffer area is depleted without
an execution by Async IO Partition; similarly,writes may be performed until the buffer for the file is full without
an execution by Async_lO_Partition.

The Realtime_lo package spec follows:

with System;

with Io_Exceptions;

package Realtime_Io is

--I

type FileType is limited private;

--I

type File_Mode is (In_File, Out_File);

--I

type File_Size is (Small, Large); -- estimated buffer size needed

--I

type File_Status is (None, Error, Registering, Registered, Creating,

Created, Opening, Opened, Writing, Written,

Reading, Read, Closing, Closed, Deleting, Deleted);

--I Register: allows use of other Realtime Io routines.

----I

--] *** Register must be the first Realtime IO routine ***

--J *** called. It must be called during Set_Up. ***

procedure Register (File : in out File_Type;

Mode : in File Mode :- Out_File;

Size : in File Size := Small);

--I Update: allows Realtime_IO to update the File object.

--I *** Update must he the first Realtlme_IO routine ***

--t *** called in a given period for all modes other ***

__[**t than Set_Up. ***

.. ----...... ----.--

procedure Update (File : in out File_Type);

--I Destroy: Kills an instance of File_Type.

--J *** Must call Register to use this instance again. ***

...

procedure Destroy (File : in out File_Type);

... w

--I Create: creates a disk file of the supplied Name.

..

61

procedure Create (File : in out File_Type; Name : in String);

--t Open: opens a disk file of the supplied Name.

... .---

procedure Open (File : in out File Type; Name : in String);

--I Close: closes the currently opened file.

........................ ----._ ..

procedure Close (File : in out File_Type);

--} Delete: deletes the currently opened file;

...

procedure Delete (File : in out File_Type);

--l Read: reads data from the currently opened file.

................................... -------

procedure Read (File : in out File_Type;

Address : in System.Address;

Size In Bits : in Natural);

--i Write: writes data to the currently opened file.

...................................... _

procedure Write (File : in out File_Type;

Address : in System.Address;

Size In Bits : in Natural);

--I Selector Functions

function Mode (File : in File_Type) return File Mode;

function Name (File : in File_Type) return String;

function Status (File : in File_Type) return File_Status;

function End Of File (File : in File_Type) return Boolean;

function There Is Room_For (File : in File_Type; Number Of Bits : in Natural) return Boolean;

function There Is Data For (File : in File_Type; Number Of Bits : in Natural) return Boolean;

--I Exceptions this package can raise

...

Name Error : exception renames Io_Exceptlons.Name_Error;

Use Error

Status Error :

Mode Error :

Devlce Error :

End Error

Data_Error :

Mismatch Error

exception renames lo_Exceptions.Use_Error;

exception renames Io_Exceptions.Status_Error;

exception renames Io_Exceptions.Mode_Error;

exception renames Io_Exceptions.Device_Error;

exception renames Io_Exceptions.End_Error;

exception renames Io_Exceptions. Data_Error;

: exception;

private

type State;

t>_e File_Type is access State;

end Realtime_Io; -- package spec

62

-- Abstract: This package provides a real-time interface for models wanting

-- real-tlme write capabilities.

-- Warnings: Async Io Partition and Realtime_Io are co-programs.

-- Realtime_Io loads data into a shared buffer_area and

-- Async Io Partition processes that data.

...

k_.i

83

5. NON-REAL-TIME SECTION

5.1. Overall Structure

II <To be finalized in later revision>

Non-real-time (NRT) components are constructed in a manner similar to real-time (RT) components. Since
the NRT system doesn't require the RT Thread Executive, messaging mechanisms are a little more relaxed
(see section 5.4.1). Missing from NRT components are requirements to have "Update" or "Re-
quest_State_Change" operations or Interface Definition Packages. Updating of components is accom-
plished entirely by the controlling component (Operational Component) calling operations of subordinate
instances (See Fig 5-1 m Structural View of an Operational Component).

5.2. Classes and Instances

II <To be finalized in later revision>

Like the previous section, all instances exist via creation from ADTs or Generic ADTs.

5.3. Inheritance and Composition

ii <To be finalized in later revision>

Both inheritance and composition of objects have played a large role in the analysis of our systems. To convert
this effort to Ada, we must address the needs of efficiency and maintainability, as well as the need to satisfy
object-oriented approaches.

Composition is fairly straightforward, needed classes are "WlTHed", then objects are declared within the
structure of the newer class.

Inheritance is another matter completely. There are several documented forms of accomplishing inheritance
using Ada -- each has their advantages and disadvantages.

The approach used by Grady Booch [Booch 91]is what we will be using for the SSVTF. Although more wordy
that other approaches, it lends itself to the easiest maintenance (and easiest migration should we go to Ada
9X, the next version of Ada). There are several other methods to accomplish inheritance, and it is worth inves-
tigation by the curious. For further reading on alternate approaches to inheritance, see [Atkinson 91], [Hirasu-
na 92], [Perez 88], or [Seidewitz 92].

Grady Booch states, "In practice, we find it common to design as if inheritance were possible, then use a vari-
ety of implementations to fake it if the language does not directly support inheritance." [Booch 91] This is ex-
actly the case for SSVTF using the current version of Ada. In order to support inheritance in it's simplest form,
we will use packages built from the class structures (or possibly generic class structures) defined in section
5.5 "Templates and Guidelines" along with "pass-through" calls. See Appendix III, Create operation, Les-
son_Class package for an example of "pass-through" calling.

5.4. Operational Components

II <To be finalized in later revision>

Operational Components represent the "main" program in Ada. This is typically an ASM (called from a proce-
dure) that controls all instances of classes - much like the real-time Partition.

5.4.1 Communicating with Other Operational Components/ParUtlons

II <To be finalized in later revision>

There are three mechanisms by which Operational Components may communicate: file exchanging, utilizing
the real-time interface, or POSIX lnterprocess Communication. Each mechanism has it's benefits and draw-
backs, which will be explained in detail in the next sections.

64

5.4.1.1FileExchanging
<Tobepublishedinnextrevision>

5.4.1.2Utilizingthe Real-Time Interface
<Tobepublishedinnextrevision>

5.4.1.3POSIXInterprocessCommunication
<Tobepublishedinnextrevision>

5.5. Templates and Guidelines

The following example is intended to be used as a prototype template for building ADTs in non-real-time sys-
tems:

with Std_Eng_Types;

package Non_Real_Time_Template_Class is

package SET renames Std_Eng Types; -- Simplifies Parameter names

type Valve State is (Open, Closed);

type Object is limited private; -- limited private is preferred.

-- private may be used,

-- unprotected types require SRB approval

-- ************************* Modifiers ***************************** --

procedure Create (Instance : in out Object);

-- AVOID using generics if this form can be used to parameterlze

the object.

procedure Destroy (Instance : in out Object);

procedure Set Valve (Instance : in out Object;

To : in Valve_State);

procedure Set Pressure (Instance : fn:out Object;

To : in SET.Psl);

-- ************************* Selectors ***************************** --

-- NOTE: These are only examples. Note that all operations here

-- return primitives. A primitive is either a non-numeric

-- type defined in package Standard, a previously declared

-- enumerated type within this specification, or a type

-- defined inside the package Std_Eng_Types.

function Valve Is Open (Instance : in Object) return Boolean;

function Pressure Of (Instance : in Object) return SET.Psi;

private

type State;

type Object is access State; -- Note that the "attributes" of the object

-- are invisible in the specification!

end Non__Real_Time_Template_C!ass;

65

Operational Component

I POSIX
Interprocess
Comm

(if necessary)

I RT

Thread
Exec

(If necessary)

I

I

r

(ControlHn=
Class Instances _ Class Instances

lCI lCl_q C
J Y I I I \

' I "t I J

Figure 5-1 -- Structural View of an Operational Component W

66

_.v j

\'%_j

6. BIBLIOGRAPHY

[Atkinson 91] Atkinson, Colin, _;_2jp,_t-Oriented Reuse. Concurrency and Distribution, pages 183-228.
ACM Press, NY, NY; 1991.

[Booch 91] Booch, Grady, Object Oriented Design with ADDlications, pages 443-470. Benjamin/Cum-
mings Publishing Co., Menlo Park, CA; 1991.

[Gross and Stuckey, 1990] Gross, David C. and Stuckey, Lynn D., Jr., Ada T.voes: The Cornerstone of
Simulation Modeling. (Source?).

[Hirasuna 92] Hirasuna, Michael, 'lJsing Inheritance and Polymorphism with Ada in Government Spon-
sored Contracts", _ Volume 12, Number 2, pages 43-56.

[Perez 88] Perez, Eduardo Perez, "Simulating Inheritance with Ada", _, Volume 8, Number 5,
pages 37-46, 1988.

[Seidewitz 92] Seidewitz, Ed, "Object-Oriented Programming with Mixins in Ada", _ Volume
12, Number 2, pages 76-90.

V

V

67

v

7 APPENDIX I - ADA STRUCTURAL TEMPLATES

The following templates show the general Ada structural form for the class structures and partitions.

7.1 Class Template

The following example is intended to be used as a template for building ADTs in real-time systems. The ADT

package exports an object of type "Objecf' and operations on that object. The operations are divided into 4

major categories - create, request state change, update, and selectors. The create is used to elaborate/ini-
tialize an instance. Request state change procedure(s) provide the capability of aperiodically modifying an

instances state (such as the insertion of malfunctions or providing reset values). The Update procedure(s)
iterate the instance of time. The selectors provide access to values held within the internal state of the

instance

i J

'-..._j

with Std_Eng_Units;

package <name>_Ciass is

package Seu renames Std_Eng_Units; --Simplifies parameter names.

type Object is limited private; --Limited private is preferred.

type Commands is (Rese<, Malfl, Mall2, etc) ;

__ ******************************* Modifiers ********************************

procedure Create (instance : in out Object;

Opt_Config_Varl : in Seu.Feet;

Opt_Config_Var2 : in Seu. Psi;

Parent : in String);

procedure Request_State_Change

([nstance : in out Object;

Command : in Commands;

Input_l : in Seu. Feet := 0.0;

Input_2 : in Seu. Psi :: 0.0);

-- Used to modify the state of the instance. Operation is performed

-- aperiodica!ly (i.e. applying a malfunction).

procedure Update (Instance : in out Object;

Delta_Time : in Seu. Seconds;

Input_One : in Seu. Feet;

Input_Two : in Sou. Psi);

function Is_Se!ectorl (Instance : in Object) return Boolean;

function Is_Selector2 (Instance : in Object) return Seu.Feet;

private

type Object is record

State_Var_l :Seu. Feet := 0.0; --Note: Always supply

State_Vat_2 :Seu. Psi := 1.0; -- default values.

State_Vat_3 : Boolean := False;

end record;

--I

--! Abstract

---I

: This is a general template form for a class structure. Class

structures should have this form in general when implemented.

The actual class may have different routines, but each class

should have Create, RequestState_Change, Update, and selector

routines that basically follow this pattern. This pattern will

provide consistency for the software implementation of class

I-I

--' Warnings : None.
P

package body <name>_Class is

-- **

procedure Create [Instance : in out Object;

Opt_Config_Varl ,: in Seu._eet;

Opt_Config Vat2 : in Seu. Psi;

Parent : in String) is

begin

null; -- setup/init code goes here.

end Create;

**

procedure Request_State_Change

(Instance

Command

Input_l

Input_2

begin

case Command is

when Reset => --reset code goes here.

when Malfl => --mall I insertion goes here.

when Malf2 => --mall 2 insertion goes here.

when ...;

end case:

end Request_State_Change;

: in ouc Object;

: in Commands;

: in Seu,Feet := 0.0;

: in Seu. Psi := 0.0} is

__ **

procedure Update (Instance : in out Object;

Delta_Time : in S_u. Seconds;

Input_One : in Sou,Feet;

Input_Two : in Sou,Psi) is

begin

null; --update code goes here.

end Update;

**

function Is_Selectorl (Instance : in Object) return Boolean is

begin

return Instance,State_Vat_3;

end Is_Selectorl;

**

function Is_Selector2 (Instance : in Object) return Seu. Feet is

begin

return Instance. Stage_Vat_l;

end Is_Selector2;

end <name> Class:

OIIfiG|N_L PAGE ._
OF _ QUKI'/_

I-2

\

-,,.,j

7.2Class Template With Computed Period

I

The following class template is similar to the class template shown above except for the addition of a com-
puted period capability. This capability allows an instance to be configured to run at a slower harmonic rate
than the parent and at a relative period offset from the parent. This structure may be required if varying rate
objects are placed under one rate-monotonically scheduled partition. This should be used in exceptional
cases only. Note that this form will cause the partition modeler to perform manual period-leveling within the
scope of the partition. The worst case period must then be used for RMS time allocations.

Two data types are provided in "Timer_Services_Class" (8.5) that support this option -"Rates" and "Peri-
od Offsets". In the "Create" operation of the class s_'ucture, three parameters are shown -"Subrate", "Peri-
od-Base_Time", and "Period_Offset". "Subrate" specifies the rate relative to the parent base rate that the
instance should update. The default value is "full" so that if the user does not want to use subrate scheduling,
nothing has to be encoded and the instance will work normally. Any value passed in other than "full" will enable
the subrate scheduling feature. "Period_Base_Tim e" is the base period rate of the parent (i.e the RMS sched-
uled period of the partition in seconds). "Period_Offset" is the Nth period relative to the parent base period
that the instance should update. This number is valid from 1 to (1/rate) of the subrate (i.e. 2, 4, 8, 16, 32, or

64).

For example: Assume a partition's base RMS period is 25 Hz (40 ms). If an object instance within the partition
needs to run at a period of about 6 Hz (160 ms) or "quarter" rate, then the instance would be created using
the following code segment:

Class.Create [[nstance => Instance,

Subr_te => Quarter,

?ericd Base_Time => 0.04,

Period_Offset => 3);

The period offset of 3 would cause this instance to update on the third period of every consecutive 4 period
cycles from the parent. ** Note that internally the class does not update using a counter (count 1..4, on 3
execute) - the update is performed based on delta time. This addresses the concern that if the parent "jumps
ahead in time", the object will update based on that jump time, not the base period and count. The concept
of passing delta time still applies completely.

For this template, the partition must run at the fastest rate required by the entire system. A service package,
Timer Services_Class (8.5), is used to provide the mechanism to run class instances defined by the partition
at a slower, harmonic relative rate. Using this mechanism, there are no issues at the first level of class com-
position below the partition level. However, for composition elements past the first level, several scheduling
and timing issues arise. The recommendations are that only the first level below the partition be subsche-
duled, and that if odd scheduling rates are required, the model should be flattened to address the real-time
execution concerns.

with Std_Eng_Units;

with Timer_Services_Class;

package <name>_Class is

package Seu renames Std_Eng_Units; --Simplifies parameter names.

package Services renames Timer Services_Class; --Simplifies names

type Object is limited private; --Limited private is preferred.

tyl_e Commands is {Reset, Malfl, Mall2, etc);

procedure Create (instance : in out Object;

Opt Config varl : in Seu. Fee_;

Opt_Config_var2 : in Seu. Psi;

Parent : in String;

I-3

--s_2raEe scheduling o_Ei=n parameters: --

Sulfate : in Services.Rates := Services. FJl[:

Period_Base_Time : in $eu.Seconds := 0.0:
, . | _ _-
:eri._d__:_set : in Servizes. Period_Offsets :: I);

private

type Object is record

Timer : Servi=es.Cbject; --Subrate schedule instance

end record:

end <name>_C!ass;

..

-- Abstract : This form of the Class structure allows instances to run at

-- slower harmonic rates from the calling model. This form will

-- allow an instance to run slower than the parent and at a

-- specified period offset from the parent. Note that the

-- instance must be able co complete within the period of the

-- parent! Note also that at Create, the timing parameters are

-- defaulted to update at the same (Full) rate of the parent.

--i Warnings : None.

===

===

package body <name> Class is

**

procedure Create (Instance : in out Object:

Opt_Config Varl : in Seu.Feet;

Opt Config_Var2 : in Seu. Psi;

Parent : in String;

Subrate : in Services.Rates := Services. Full;

Period Base Time : in Sou. Seconds := 0.0;

Period Offset : in Services. Period_Offsets := i];
begin

-- Create the timing part,

Services.Create (Timer => Instance.Timer,

Subrate => Subrate,

Period_Base_Time => Period Base_Time,

Period_Offset => Period_Offset);

-- setup/init code goes here.

end Create;

procedure Update (Instance : in out Object;

Delta_Time : in Seu,Seconds;

Input One : in Sou. Feet;

Input_Two : in Seu. Psi) is

begin

-- Update the timing data.

Services.Update (Timer => Instance.Timer,

Delta_Time => Delta_Time);

-- Update the rest of the data if it is time.

if Services.Time_To_Update (Timer => :ns_ance.Timer) then

-- Use Services.Actual_Delta_Time (Timer => Instance.Timer)

-- to get the change in time.

V

I-4

null; --update code goes here.

end if;

end Update;

end <name>_Class;

7.3 Partition Template

The following template shows the basic form of a partition. The first package shows the partitions interface
definition (message) output package.

with Std_Eng_Units;

package <name>_Interface_Defn is

package SEU renames Std_Eng_Units;

type Message_l is

record

Valuel : SEU.Volts;

Value2 : Integer;

Value3 : SEU.Amps;

end record;

_ype Ml_Ptrs is access Message l;

type Message 2 is

record

Value4 : SEU.Psi;

Value5 : SEU.Feet;

Value6 : Natural;

end record;

type M2_Ptrs is access Message_2;

end <name>_Interface_Defn;

: This is a general template form a partition's interface definition

package. Note that there can be i message per package, multiple

interface definition packages per partition.

with <name> Interface_Defn;

package <name>_Partition is

end <name>_Partition;

.. --

----I

--[Abstract _ This-is a general template form for a partition package.

--I warnings z None.

--I

---I ..

with Std Eng_Units;

with Mailbox,

Message,

Generic_Model;

with <name>_Class;

-- SVM Mailbox System

-- SVM Message System

-- SVM Thread Exec

-- some class

package BODY <name>_Partition is

I-5

-- PacKage Renames

package SEU renames Std Eng Units;
|

-- Message Pointers

Mesg_l_Id : Message.One To_Many.Out Msgs;

Mes__l : <name>_Interface_Defn. Mi__trs;

Mesg_2 id : Message.Many To_One.Ou%_Msgs;

Mesg_2 : <name>_Interface_Defn. M2 Pets;

-- Internal Partition Class Instances

My_Instance : <name>_Class.Objecc;

-- Internal Partition Data

.........................

Delta Time : Set.Seconds;

Elapsed Time : Set.Seconds := 0.0

Partition_Name : Scring(l..16) := "<name>_Parcicion";

Mailbox Id : Mailbox.Mailboxes;

Stabilized : Boolean := False;

My_Var : Integer;

procedure Set_Up;

procedure Create_Data;

procedure Self_Init;

procedure Syscem_Inic;

procedure Run;

procedure Freeze;

procedure Hold;

procedure Term;

package Thread_Exec is new Generic_Model.Periodic

(Name => Partition_Name,

Rate => Generic_Model.P40hz,

Execute_Set_Up_Model => Set_Up,

Execute_Create Data_Model => Create_Data,

Execute_Self_IniC_Model => Self_Init,

Execute_System_Init_Model => Sys_em_Inic,

Execute_Run_Model => Run,

Execute_Freeze_Model => Freeze, --none, RUN may be used.

Execute_Hold_Model => Hold,

Execute_Terminate_Model => Term);

procedure Process_Mailbox is separate;

procedure _ate_Inputs is separate;

procedure_a_e_O_£puts is separate;

procedure _ite_Some_Object is separate:

procedure _e Somemore_Objeccs is separate;

procedure l_--ie__Particion is separate;

procedure Re_later_IO is separate;

procedure Set_Up is separate;

procedure Crea_e_Data is separate:

procedure Self_Init is separate;

procedure Syscem_Inic is separate;

procedure R_n is separate;

procedure Freeze is separate;

procedure Hold is separate;

procedure Term is separate;

end <name> Partition;

V

V

I-6
O_CltNAi. PAGE if;

OF POOR QUALITY

_j

-- Abstract : This is a _;eneral temviate form for a partition body.
i

-.-z

-- Warnings : None.

with Safestore_Mailbox;

with Safes_ore_Msg_ids;

wi_h Mail_Msg_Types;

separate (<name>_Partition)

procedure Process_Mailbox is

Num_Msgs : Natural := 0;

Safestore_Value : <safestore_data type>;

function Get_Safestore_Value is new

Safestore_Mailbox.Value(Data_Type => <safestore_data_type>) ;

begin

-- Get

-- get all of the mail from mailbox

Num_Msgs := Mailbox. Num_Mail_Msgs (Mailbox_Id :> Mailbox_Id) loop

for i in i ,. Num_Msgs loop

Mailbox.Get (Mailbox_Id :> Mailbox_Id,

Mail_Msg_Type :> Msg_Type);

-- do case on the type of mail message

case Msg_Type is

when Mail_Msg_Types.Ret To Safestore :>

-- after type of message is determined, the message must be split to place the

-- data area into the local pointer.

Mailbox. Split_Safestore_Msg (Safestore_Msg => <safestore_message>,

Mailbox_ID => Mailbox_ID);

-- get the data

Safestore_Value := Get_Safestore_Value(Msg => <safestore_message>);

when others =>

null;

end case;

end loop;

-- Send ** NOT NEEDED IN EVERY PARTITION **

Ssg_Type :a_ty_)e_o__mail_message_to_send>;

-- do case on the type of mail message

case Msg_Ty_ ie

when Mail_Msg_Types.Ret_To_Safestore =>

-- build the message

Mailbox.Build_Safestore_Msg (Safestore_Msg => <safestore_message variable>,

Mailbox_ID => Mailbox ID);

-- now send the mail message

Mailbox. Put (Partition_Prefix => <identifies_receiving_partition>,

Mailbox_Id => Mailbox_Id);

when others :>

null;

end case;

e_d Process_Mailbox;
...

OF ,OOR Qu .L 'rV I-7

separate (<name>_Partitlon)

pr._cedure Update_rnputs is

' Num Of Msgs : Natural := O;

beg_n

-- normal (one-to-manyl.

-- get time consistent message

Message. One To M_ny.3e_ (In Msg_Id => <message_identifier>};

-- get time consi_ten_ message along with the zlme that the message was sent

Message.One To Many. Get (In_Msg_id => <message identifier>,

Msg_Time => <simulation_zlock time>);

-- get the latest message that was sent by the producer

-- Note:

-- This operation does not provide time consistent message

-- retrieval. The time deltas between the messages received

-- will vary depending upon the relative execution order of

-- the producer and consumer

Message.One_To_Many. Get_Latest

(In_Msg ld => <message_identifier>,

Msg_Time => <requester's_current_geriod start_time>);

-- special (many-to-one)

Num_Of Msgs :=

Message.Many_To_One.Number_Of_Msgs_To_Get (In_Msg Id :> (message_identifier>) ;

For i in l..Num Of Msgs loop

Message.Many_TQ_One. Get

(In_Msg Id => <message_identifier>);

<process_message>;

end loop;

end Update_Inputs;

... --

.... _--------_--_----_ --

separate (<name>_Partition)

procedure Update_Outputs is

begin

-- To send messages for other partitions to use:

-- for one-to-many messages

Message.One To Many. Put (Out_Msg_Id => <message identifier>);

-- for many-to-one

Message.Many_To_One. Put (Out_Msg Id => <message_identifier>};

end Update_Outputs;

............. ------_ ..

.............. _--_---- ...

separate (<na_,Pgr t i_ion)

procedure Upda[__e__So__Object is

begin _i

null; -- Whatever

end Update_Some_Object;

...

...

separate (<name>_Partition)

procedure Update_Somemore_Objects is

begin

null; -- More whatever

end Update_Somemore_Objects;

O_QtNAi_ PAGE 15

(TF POOR QUALITY

V

V

v

1--8

separate (<name>_Partition)

procedure initialize_Model is

begin

<name>_Ciass.Request_State_Change(Instance => <name>_[nstance_!,

Command => Reset):

<name>_Class.Request_Sta¢e_Change(Instance => <name>_Instance_2,

Command => Reset);

<name>_Ciass.Request_Sta_e_Change(Insoance => <name>_!nstance_N,

Commend => Reset);

-- Register Partition Mailbox

Mailbox.Register_Mailbox (Partition_Prefix

Mailbox_Id

=> <identifier_of_registering_partition>

=> <identifies_the_mailbox>);

-- Identify the messages to be sent to other partitions

-- (output messages from this partitions perspectivel

-- Each output message will require a REGISTER TO_SEND_MSG routine

...

-- normal {one-to-many)

Message.One_ToMany. Register_To_Send_Msg

(Out_Msg_Id => <identifies the message>,

Partition_Prefix => <identifier_of_registering_partition>,

Msg_Dis_Id => <DIS id of_message_to_be_sent>,

Msg_Bit _Size => <message size_in_BITS>,

Execution Rate => <worst_case_delivery_rate>,

Msg_Ptr_Addr => <local_pointer_to_the_message>);

-- special (many-to-one)

Message. Many To One. Register_To_Send_Msg

(Out_Msg_Id => <ident i fies_the_message>,

Partition_Prefix => <identifier_of_the requesting_partition>,

Msg_Dis_Id => <D I S_id_o f _mes sage_t o be_sent >,

Msg_Pt r_Addr => < 1 oc a I_/9oi nt er_t o_t he_message>)

.. ----.

-- Identify the messages to be received from other partitions

-- (input messages from this partitions perspective)

-- Each input message will require a REQUEST TO_RECV MSG

.... ----J _

-- normal (one-to-many)

Message.One_To_Many.Register_To_Recv_Msg

(In Msg_Id => <identifies_the_messagem,

Partition_Prefix => <identifier_of the_requesting_partition>,

Msg_Dis_Id => <DIS_id_of_message_to_be_received>,

Execution_Rate => <rate at which receiving partition executes>,

Msg_Ptr_Addr => <local_pointer_to_the_message>);

-- special {many-to-one)

Message.Many To One.Regester_To_Recv_Msg

(In_Msg_Id :> <identifies_the_message>,

Partition_Prefix => <identifier_of_the requesting_.partition>,

I-8

Msg_Dis_!d => <DIS_id_f message_to_re_sent>,

Msg_Bit _Size => <message size_in BITS>,

Queue_Size => <worst case_queue_size>,

Msg_P{r_Addr => <local_poin_er Eo_t_e_messa_e>) ;

end Regis_er_IO;

...

-_ ...
wl_h DIS, <name>_Defs;

separate [<name>_Partition]

procedure Set_UV is

begin

--Create instances of classes.

..............................

<name>_Class.Create(...) ;

.............. - ..

-- Link actual variables names to the logical DIS terms.

...

DIS.Connect_Term (Term => <name>_Defs.<variable_name>, -- Term ID

Address => <variable_name>'address); -- Variable's Address

DIS.Connect Term (Term => <name>_Defs.<variable_name>, -- Term ID

Symbol => "<variable_name>"); -- Variable's Name

-- Initialize the model(s) in this Partition.

Initialize_Model:

-- Register inputs and outputs.

..............................

Register_IO;

-- normal {one-to-many)

-- for each one-to-many input message CREATE_MSG is required

Message.One_To_Many.Create Msg (In_Msg_Id => <identifies the_message>);

-- for each one-to-many output message CREATE_MSG is required

Message.One_To_Many. Create_Msg (Out_Msg_Id => <identifies_the_message>);

-- For each o neF_o-m_ny output message, init the buffer with "good" data.

-- This is _s_=in case another partition were to try and "read" from this

-- buffer _enlures no constraint errors because of no initialization.

Message.One_To_ny.put (Out_Msg_Id => <identifies_the_message>I;

-- special [mmny-to-one)

-- for each many-to-one input message CREATE_MSG is required

Message.Many_To_One.Create_Msg (In Msg_Id => <identifies_the_message>);

-- for each many-to-one output message CREATE MSG is required

Message.Many_To_One.Create_Msg (Out Msg_Id => <identifies_the_message>);

end Create_DaEa;

.. ___

separate (<name>_Partition)

procedure Self_Init is

V

1-10 ORiGiNAl. PAGE IS
OF POOR QUALITY

k_i

-- Th_s routine will be =ailed after so_e t'/_._e _%f _n_zzallzazlon da=a has been

-- read frcm an initialization file and _laced in=_ the a_ropria=e _ailbox.

-- ?he _ara.meter, initialization Type _s _seJ =o !Jentlfy =he tyve of self-inic

-- =eln_ requested i.e., a full IC or a state ad_us=r, en=. See section 4.2.2 for

-- mere _nfor_mc!on.

if Thread_Exec.A Fuil_lc_is_Required _hen -- means we are doin_ a f_ll_ic initialization

-- see section 4.4.2

Ini=iallze_Model;

end if;

-- Each partition will read the mailbox data avid populate local variables co

-- their new values. It will also perform any other necessary internal

-- initialization.

-- NOTE: This is a one-pass initialization -- no iterating!

Process_Mailbox;

-- Setup flags used during System_Init

Stabilized := False;

Elapsed_Time := 0.0;

-- Update to the next mode.

I

• -- This iS to be called when the partition has completed self-init processing

Thread_Exec.Ready_To_Transition;

end Self_Init;

...

separate (<name>_Partition)

procedure System_Init is

begin

-- This routine will be called after Self_Init is complete.

-- Partitions will be able to iterate in this mode until stable conditions

-- have been reached,

Delta_Time :: Thread_Exec.Delta_Time;

Process_Mailbox;

Update Inputs;

Update Some Object;

Update_Somemore_Objects;

Update_Outputs;

-- Upcla_ __l%e _im_r used Co stabilize this model

if not S_II_*_ _hen

Ela_11_.Ti]l_ := Elated_Time ÷ Delta Time;

if EI_ Ti_m >= 5.0 then

Thr_a__l_xec.Ready_To__Transition:

end if;

end if;

end Syscem_Inic;

...

.. _ --

separate (<name>_Partition)

procedure RUN is

begin

-- ANY PROCESSING REQUIRED BY THIS PARTITION WILL BE PLACED IN H_E SOMEWHERE

Delta_Time := Thread Exec.Delta_Time;

O_{NNL PAGE !_ "

O_ I_,-K)RQUALITY

1-11

-- ANY PROCESSING REQUIRED BY THIS PARTITION WILL BE PLACED IN HERE SOMEWHERE

-- Pardi=ions will still iterate, however integration constants wil" De sen

-- no zero. Overruns will be detected in zhis mode. Messages can passed

-- and malfunctions entered by IOS.

Del_a_Time :: Thread_Exec.Delna - _e;

ProcessMailbox:

Update_Inputs;

Updane_Some Object;

Updaze_Somemore ©bjeccs;

Upda_e_Oucpucs;

end FREEZE;

...

...

separate (<name>_Parcicion)

procedure HOLD is

begin

-- ANY PROCESSING REQUIRED BY THIS PARTITION WILL BE PLACED IN HERE.

-- GENERALLY, ONLY PARTITIONS NEEDING TO PERFORM:

-- i. [/O TO KEEP DEVICES FROM DROPPING OFF-LINE

-- 2. SPECIAL PROCESSING FOR ASSET ADD/DROP (INTERFACE AGENTS)

-- NEED TO PROVIDE SPECIAL ROUTINES FOR THIS MODE.

-- NO MESSAGES WILL BE PASSED IN THIS MODE

-- NO .MALFUNCTIONS ENTERED FROM IOS.

null:

end HOLD;

...

separate (<name>_Par_ition)

procedure TERM is

begin

-- ANY S_ _OC_SING REQUIRED BY THIS PARTITION WILL BE PLACED IN HERE

null;

end TERM:

7.4Generic Partition Template

The following template shows the differences between a normal partJUonand a generic partition. This stTuc-
lure basically makes a class.like structure out of an RMS--scheduled parlJtJ¢-

wich DIS;

generic

Parcition_DIS_Id : in

package <name>_Par=ition;

DIS.variable_id;

V

I

V

I-I2

-__j

k.j

I

|

8. APPENDIX II -REAL TIME INTERFACE PACKAGES

8.1. Genedc Model

...

-- genmodi_s.a

..

-- thl_ _azka;e provides generic packages instantiated by applications

-- [or scZedui_ng.

wizh 35d_Eng_Unizs:

with RssZypes;

wi_h Simulation_Clock;

package Generic_Model is

-- periodic rates supported are 40, 30, 25, 20, 10, 5, 2, and 1 Rz

type Periodic_Rate is new Rt.Execution_Rate range Rt.Pd0hz .. Rt. Plhz;

generic

package

Name : in String;

Race : in Periodic_Type;

with procedure Execute_Set_Up_Model;

with procedure Execute_Create_Data_Model;

with procedure Execute_Self_Init_Model;

with procedure Execute_System_Init_Model;

with procedure Execute_Run_Model;

with procedure Execute_Freeze_Model;

with procedure Execute_Hold_Model;

with procedure Execute_Terminate_Model;

Storage_Bits : in Integer := 10240 * 8;

Max_Dis_Terms : in Integer := 400;

Periodic is

-- subprograms for Thread Exec characteristics

function Delta_Time return Seu. Seconds;

function Rate._Of_Execution return Rt.Execution_Rate;

-- subprograms for partition moding

function A_Full_Ic_Is_Required return Boolean;

procedure Ready_To_Transition (CoD_%__Ex_ : {n Boo|_ := F_);

package Clock renames Simulation_Clock;

use Clock;

function G_M_T return Clock.Time:

Eunction S_G_.M_T return Clock.Time;

er_ Perlodic;

-- a]peri_ic budgeted rates are 40, 30, 25, 20, 10, 5, 2, and 1 Rz

ty_e _iodic_Rate is new Rt.Execution_Rate range Rt.Ad0hz .. Rt.Alhz;

generic

Name : in String;

Rate : in Aperiodic_Type;

Iterations : in Integer;

Vector : in Integer;

with procedure ExecuteSet_Up_Model;

with procedure Execute_Create_Data_Model;

with procedure Execute_Self_Init_Model;

with procedure Execute System_Init_Model;

with procedure Execute_Run M_del;

with procedure ExecuteFreeze_Model;

T

11-I

I

!

|

wi_h pr%cedure Execu_e_Hold_Mcdel;

wi_h Dr_3cedure Exe_ute_Termlna_e_M,_del;

_tcraGe_Bi_s : in integer := [024_ • 8;

_azka_e A_eri3dic is

-- subprogram for Thread _xec zhara,zzer_su_cs

function Ra_e Of Execuuion return Rt.Execut_on Rate;

-- t_me functions re_urn latest _ize from SimClock

vaz<a_e Clock renames Simulation_Clock;

use Ziock;

funculon] M T re_urn Clock. Time;

function S G M T return Clock.Time;

end A_eri_dic;

............................ _ ...

-- asynchronous partitions execu=e in background

generic

Name : in S=ring;

Delay_Time : Seu.Seconds;

wi=h procedure Execute Se__Up_Model;

wi_h procedure Execute_CreateData_Model:

with procedure Execute_Self lni= Model;

wiEh procedure Execute_Sys=em lnit Model;

wiuh procedure Execu=e Run Model;

with procedure Execute_Freeze_Model;

wlth procedure Execu=e_Hold_Model;

wlth procedure Execu=e_Terminate_Model;

Storage Bi=s : in Integer := 10240 • 8;

package Asynchronous is

-- subprograms for Thread Exec characteristics

function Rate_Of_Execution return Rt._xec-utfon_Ra_e}

procedure Ready_To_Transition (Continue_Exec : in Boolean := False);

procedure Chan_e_Delay_Time (Time : in Seu. Seconds);

end Asynchronous;

end Generic_Model;

V

11-2

ORIGINAl. PAGE
OF POOR Q_._t_:..!T'V

k_J

8.2. Message

w::n Dis, _ts_Types, Std_Eng_Uni:$, Simulation_Clock,

Message_[nternai_Tyves, System;

7ackaGe Message is

............................ Excevtions

-- ?he feli3wing exception is raise if an error occurs while

-- se:_ng up :he messaging system. If this exception is raised

-- the messaglng system may not function properly.

Message_System_Setup_Error : exception:

-- The following exception is raised if there is an unrecoverable

-- error in the messaging system'. If this error is raised the

-- message system may not function properly.

Message_Internal_Error : exception;

-- The following exceptions are raised if the message can not be

-- successfull reglsterd or created.

Register_Message_Error : exception:

Create_Message_Error : exception;

-- Package One_To_Many should be used for all general communication needs.

-- Ic supports one sender sending to one or more receivers. It provides

-- time homogeneous and time consistent data based on the relative rates

-- of the sender and receiver(s) if the Get operation is used co retrieve

-- messages. If the Get_Latest operation is used it provides the latest

-- (most recentl message that was sent by the producer.

package One_To_Many is -- Normal Communication

type Out_Meg is limited private;

type In_Meg is limited private;

............................ Exceptions

-- The following exception is raised by the Get operation if the

-- time consistant message that is co be received by the caller

-- [based upon its execution rate) is nolonger in the message

-- buffer. This condition will arise if the caller is executing

-- slower than the lowest supported rate, or if it has has an

-- overrun which causes it to be executing slower than the lowest

-- supported rate.

Message_Not_Found : exception;

................. called by the producer

-_- _tll operation must be called by the producer during the

-- l_IIte{_I/O submode for each message that is co be sent,

_:OC__re Register_To_Send_Meg

(Out_Msg_Id : in out Out_Msg;

Partition_Prefix : in Dis.Component_Id;

Msg_Dis_Id : in Dis.Message_Id;

Meg_Bit_Size : in Natural;

Executlon_Rate : in Rts_TylDes.Execution_Rate;

Msg_Ptr_Addr : in System.Address);

-- This operation must be called by the producer during the

-- Create_Data submode for each message that is co be sent.

procedure Creace_Mag (Out_Mag_Id : in out Out_Mag};

-- The Put operation is called by the producer to send a message

procedure Put (Out_Msg_Id : in out Out_Meg);

|

O_35NAL PAGE

OF POOR QUALITY
11-,3

................. called by zhe re zeiver_s_

-- This operation _us= _e called by =he receiver during zhe

_- Register_I/C submode for each message that is to be received.

procedure Register_To_Recv_Msg

(in Msg_id : in out In Msg;

Partizion Prefix : in Dis.Component_id;

Msg Dis_Id : in Dis.Message_id;

Execution_Rate : in Rts_Types.Execution_Rate;

Msg Ptr Addr : in System. Address):

-- This operation must be called by the receiver during the

-- Create_Data submode for each message that is to be received.

procedure Creace_Msg (In_Msg Id : in out In_Msg);

-- The Get operations retrieve time consistent messages relative to

-- the rate of the consumer. The message retrieved will be the

-- most recent message produced during _he consumers previous

-- period.

procedure Get (In_Msg_Id : in out In_Msg) ;

procedure Get (In_Msq_Id : in out In_Msg:

Msg_Time : out Simulation_Clock.Time);

-- The Get_Latest operations retrieve the most recent message

-- produced (relative to the rate of the producer).

-- NO_E:

-- These operations do not provide time consistent message

-- retrieval. The time deltas between the messages received

-- will vary depending upon the relative execution order of

-- the producer and consumer.

procedure Get_Latest (In_Mag_Id : in out In_Msg);

procedure Get_Latest (In_Msg Id : in out [n_Msg;

Msg_Time : out Simulation_Clock.Time);

.... privete

private

package Mit renames Message_Internal_Types;

pragma Inline (Put);

pra_ma Inline (Get) ;

pragmm Inline (Get_Latest) ;

_ecord

Buffer_Pit : Mi=.Msg_Buffer_Ptr;

Desc_Ptr : Mi=.Otm_Mmg_Desc_Ptr;

Tag Ptr : Mit.Otm MIg_Tag_Ptr;

partition_Ptr_2_dr : System.Address;

Routing_Table_Index = Intender := 0;

Period : Rts Types.Execution_Rate :=

Rts Types.Execution_Rate'Pirs=_

end record;

type In_Msg is new Msg:

type Out_Ms_ is new Mmg;

end One_To_Many;

11-4

z

O_3tNAL PAGE r_

OF Poor QUALITY

-- ?ac.<age Many_To_Cne should De used only for sve,z!al :ase :c_unL.za:i<n.

-- All messages sent to _he receiver are queued _n FZFC order. The message

-- received is _o_ based on the razes of the sender and receiver, ins:ead

-- z_e receiver receives all _essage sent. This oommunica=ion method

-- snould be used when a single receiver receives the same _essa_e =_

-- _cre t.han one producer or when a single receiver needs to receive ail

-- _essages sent in FIFO order. When the receiver registers _o reeceive

-- a _essage a queue size must be specified. The queue size should be

-- _ecermined based u_on ewo fat=ors. ?irst, the numJDer of Vossible senders

-- and second, zne relative execution rates of the senders and _he receiver.

-- if _he receiver is executing faster _han or at the same rate as the

-- senders, the queue size must be at least as large as two times the number

-- of senders. If the receiver is executing slower than the senders the

-- following formula can be used to calculate the queue size:

__ [(senders rate / receivers rate) x 2] x #senders.

-- For example, if the receiver is executing at 10Hz with three senders

-- executing at 40 Hz the queue size should be [(40/10) x 2] x 3 = 24.

package Many To_One is -- Special Case Communication

package Mit renames Message_Internal_Types:

type Out_Mag is limited private;

type In_Msg is limited private;

-- 512 has been chosen as the max queue size, no particular reason, just

-- a guess for now.

subtype Queue_Sizes is Mit.lnternal_Queue_Sizes range 0 .. 512;

............................ Exceptions

-- The following exception is raised by Put when the queue is full

Queue_Full : exception;

-- The following exception is raised by Gec when there are no messages

No_Messages : exception;

................. called by producers of message

-- This operation mus_ be called by the producers during the

-- Register_I/O suDmode for each message that is to be sent.

procedure Register_To_Send_Msg (Out_Msg_Id : in out Out_Msg;

Partition_Prefix : in Dis.Component_Id;

Msg_Dis_Id : in Dis.Message_Id;

Msg_Ptr_Addr : in System.Address);

-- This operation must be called by the producers during the

-- Create_Data submode for each message that is to De sent.

_o_ure Create_Meg (Out_Msg_Id : in out Out_Meg);

-- _e operation will return true if the queue for OuC_Msg_Id

-- II full

fum_tion Queue_Is_Full (Out_Msg_Id : in Out_Meg) return Boolean;

-- The Put operation is called by the producers to send a message

procedure Put (Out_Msg_Id : in out Out_Meg);

................. called by receiver of message

-- This opera_ion must be called by the receiver during the

-- Aegister_I/O submode for each message that is to be received.

-- See the description at the begining of the Many To_One package

-- to determine the queue size.

procedure Register_To_Recv_Mag (In_Msg_Id : in out In_Meg:

O_,=LN&L PAGE _3

OF POOA QUALITY
11-5

_mr_itlon_?refix : in Dis. Som_onen_ Zd;

Msg_Dis Id _ in Dis.MessaGe_S_;

Msg_Bi:_Size : in Natural:

Queue__ize : in _ueue Sizes;

MsG _tr_Addr : in Sysuem. Address_;

V

-- This _er_=:on -ust be :ailed by the receiver during the

-- Crea=e gata su ie for each message that is to be received.

procedure Zreaze_" (in_Msg Id : in out fn_Msg) ;

-- This operation may be called by =he receiver to determine the

-- number of partitions registered to send a particular message.

function Number_Of_3enders (In_Msg_ld : In_Msg) return Natural;

-- This operation may be called by the receiver to determine the

-- =he number of ,messages availaDle to get.

function Number_Of_Msgs_To_Get (In_Msg_Id : ln_Msg] return Natural;

-- The Get operations will retrieve the next message in the FIFO queue.

procedure Get (ln_Msg_Id : in out In_Msg);

procedure Get (In_Msg Id : in out In_Msg;

Msg_Time : out Simulation_Clock.Time);

.... private

private

pragma Inline (Get);

Dragma Inline (Put);

pragma Inline (Number_Of Msgs_To_Get] ;

-- Record for SGI

type Msg is

record

Buffer_Pit : Mit.Msg_Buffer_Ptr;

Oesc_Ptr : Mit.Mto_Mmg__Desc_Ptr;

Tag_Pit : Mi=.Mto_Msg_Tag_Ptr;

Partition_Ptr_Addr : System.Address;

Routing_Table_Index : Integer := 0;

Queue_Size : Mit. Internal_Queue_Sizes := 0;

end record;

type In_Mmg is new Mmg_

Ouu_Mmg im new Msg;

end Mmny___Omm;

-- PacKa_ I_mote is not to be used for general purpose communication

-- or for Darti=L_n =o partition communication. It is intended to be used

-- used by RTS, .=efface Agents, and in other special cases (IOS, OSS)

-- for communication across the lan.

-- All messages sent to the receiver are queued in FIFO order. Each

-- receiver effecuivly has its own queue.

-- When =he receiver registers to receive

-- a message a queue size must De specified. The queue size should be

-- determined based upon two factors. First, the number of possible senders

-- and second, the relative execution rates of the senders and the receiver.

-- If the receiver is executing faster than or at the same rate as the

V

11-8

-- _enlers, ;he _ueue size _ust be at]east as iar;e as two times the nurser

--o_ 3enders. if _ne receiver is executing slower than the senders the

-- _=LL_wing formula :an be used C_ calzulate the 7ue.e size:

__ "[senders Kate ,' receivers raze; x 21 x #senders.

-- F;r example, i_ the receiver ts exetu_ing at 1OHz with three senders

-- execi_ing at 40 Hz ;he _ueue size should be [[45/I0] × 2_ x 3 = 24.

pas<a]e Remote _s -- STecial Case Zommunlcation

pazkage Mi= renames Message_in_ernal_Types;

tyve Ouc_Msg is Limited private;

type Zn_Msg is limited private;

-- 512 has been chosen as the max queue size, no particular reason, just

-- a guess for now.

subtype Queue_Sizes is Mit.lnternal_Queue_Sizes range 0 .. 512;

............................ Exceptions

-- The following exception is raised by Put when the queue is full

Queue_Full : exception;

-- The following exception is raised by Get when there are no messages

No_Messages : exception;

................. called by producers of message

-- This opera_ion must be called by the producers during the

-- Register_I/O submode for each message that is to be sent.

procedure RegisterOo_Send_Msg

(Ou__Msg_Id : in out Out_Msg;

Partition_Prefix : in Dis.Component_Id;

Msg Dis_Id : in Dis.Message_Id;

Msg_Bit_Size : in Natural;

Queue_Size : in Queue_Sizes;

Execution_Rate : in Rts3ypes.Execution-Rate;

Msg_Ptr_Addr : in System.Address);

These operations are called to unregister messages. They

provide che capability for multiple senders and receivers

to register to send or receive a message without knowing

who the true sender or recieve will be. Once the true sender

or receiver is determined, the others unregister there messages.

NOTE: These operations must be called before the Join_Session.

operation is called!!! They are not to be used after inter-asse_

co_mTuncation has been established.

u.. _is_er an out message. (Un-Register_To_Send_Msg)

_ure Unre_ister_Msg (Msg_Id : in out Out_Msg);

-- Unregister an in message. (Un-Register_To_Recv_Mmg]

procedure Unregister_Msg (Msg_Id : in out In_Msg);

-- These two operations provide the capability for a sender

-- or receiver to re-register to send or receive a message

-- after un-registering it with one of the above Unregister

-- operations.

-- NOTE: These operations will not allow the sender or

-- reciever to send or receive messages across the LAN.

-- It will only let them start sending or receiving the

-- message locally. It is intended to be used by an asset

11-7

-- after ic has teen ir,_pped and _s star.lai:ne and _heref3re

-- does not wish to send Dr receive _essa;e across %no [an

-- but does need =o send or receive t_em n,=w :_a_ i_ is

-- standa!one.

-- Rereglster an out message. !Re-Register Tc Send Msg_

rocedure Reregis:er Msg (Msg[d : in out Out_Msg_;

-- Reregls:er an in message. (Re-Register_To Recv_Msgl

procedure Rereglster_Msg (Msg_[d : in out in_Msg) ;

-- This operation must be called by the producers during the

-- Create Data submode for each message thaz is co be sent.

procedure Create_Msg (Out Msg_Id : in ouc Cuc_Msg) ;

-- This operation will return true if the queue for Out Msg_Id

-- is full

function Queue_Is_Full (Ou=_Msg_Id : in Out_Meg) return Boolean;

-- The Put operation is called by _he producers to send a message

procedure Put (Ouu_Msg_Id : in out Out Meg);

................. called by receiver of message

-- This operation must be called by the receiver during the

-- Regis%er i/O submode for each message that is to be received.

-- See the description at the begining of the Many To_One package

-- to determine _he queue s_ze

procedure Register_To_Recv_Mmg (In_Mag_Id : in out In_Meg;

Partition_Prefix : in Dis.Component_[d;

Mag Die_Id : in Dis.Message_Id;

Mag_Bit_Size : in Nauural;

Queue_Size : in Queue_Sizes:

Msg_Ptr_Addr : in System.Address);

V

-- This operation muse be called by :he receiver during _he

-- Create_Da_a submode for each mes9 -e chac is co be received.

procedure Create_Mag (In_Msg_Id : _ _ In_Meg);

-- This operation may be called by the receiver to determine 5he

-- the number of messages available to get.

function Number_Of_Msge_To_Get (In Msg_Id : In_Meg] return Natural;

-- The Get operations will retrieve the next message in the FIFO queue.

procedure Go% (In_Mmg_Id : in out In_Mag);

p z1_:ed_e Get (In_Mag_Id : in out In_Meg;

-- • Mig_Time : ou% Simulation_Clock.Time);

.... privaue

privare

pragma Inline (Get) ;

pragma Inline (Pu_) ;

pragma Inline (Number Of_Msgs_To_Get) ;

-- Record for SGI

type Meg is

record

Buffer_Pit : Mit.Mag_Buffer_Ptr;

11-8

ORV3iNAL PAGE

OF POOR QUALITY

_esc_Ftr : Mi:.Remc:e_Msq_:esc_P:r;

Ta=_?tr : Mie.Re:e=e_Msg_Cag_?tr;

p_r=itton_F:r_Addr : 3ys=em. Address:

Rousing_Table_index : l:=eger :: 0;

_ueue__ize : Mis.internal__ueue_Sizes := O;

My_Ready_Re_,ove_!ndex : Posi=ive :: I;

end record;

=y_e !n_Msg is new Msg:

=,/_e 5u=_Msg is new Msg;

end Remote;

-- This package contains controlling operations only to be used by rts.

-- The router needs special interfaces because it cannot create a Msg_Id

-- for each message that it puts and ge_s from the software backplane.

-- I= is just a pass thru from =he RTSN to the software backplane and

-- visa versa.

package Control is

-- The s_atus values for Join_Session and Drop_From_Session

=ype Config_Status is (Success, Pending, Error);

............................ Exceptions

-- The following exception is raised by Put when =he queue is full

Queue Full : exception; -- raised by Put when the queue is full

-- The following exception is raised by Get when there are no messages

No_Messages : exception; -- raised by Get when there are no messages

-- This procedure is to be used by =he router to create a

-- reflected message.

procedure Create_Msg (Msg_Dis_Id : in Dis.Message_Id);

-- This operation will return true if the queue for Msg_Dis_ld

-- is full

function Queue_Is_Full (Msg_Dis_Id : in Dis.Message_Id) return Boolean;

-- This procedure is called by the Router to put a remote message

-- into the swbp after receiveing if from the lan.

procedure Put [Msg_Dis_Id : in Dis.Message_ld;

Msg_Addr : in System.Address);

-- This procedure is to be used by the router to determine

-- the number of remote messages in a message queue to be

-- sent out over the fan.

fum:_ion Number _0 f _Msgs _To_Ge t

: (Mmg_Dis_Id : Dis.Message_Id) return Natural;

_.%M procedure is called by the Router to get a remote message

_- _m =he swbp to send i= out over the fan.

pro_zedure Get (Mmg_Dis_Id : in Dis.Message_Id;

Msg_Addr : in System.Address);

-- This command instructs the software backplane to set up

-- communication wi_h a session. It should be called after

-- _he Setup and Create Data submodes =o establish inter-asset

-- communication.

procedure Join Session (Session : in Std_Eng_Units.Sessions);

-- This command instructs the software backplane to drop

-- communication with the session.

procedure Drop_FromSession;

11-8

OF #bOOR QU_.LI'r_'

-- This operazl.gn will retarn lhe s_atus _f =he iasz Join _essi_n

-- or Drop_Trom_Sess_gn ,:o_and.

function Status rezurn Conf_g_Sta_us;

-- This operation wii: _etermine if tie r_essaGe can be a reflected

-- _essage. it will =beck _he size of the message agians= zhe

-- Ehe amount of ref!ec_ed _e.mcry lefz. It will also check the

-- _yT._e of nhe T_essage. Currenzly only _ne-T_-Many r_essages zan

-- be reflezterd.

function This_Message_Can_Be_Reflec:ed

(Msg_Dis_id : in Dis.Message_Id_ re_urn Boolean;

-- This operation is called by _he Router to prepare a remote message

-- to be sent remote. It should be called for a specific remote

-- message when _he firs= asset that receives the remote message

-- joins the session.

procedure Setup_To_Send_Msg_Remo_e (Msg_Dis_Id : in Dis.Message_Id);

-- This operation is called by the Router when a remote message

-- that is being sent remote no longer needs to be send remote.

-- lu should be called for a specific remo_e message when the

-- last asset that requires the message drops from the session.

procedure Stop_Sending_Meg_Remote (Msg_Dis_Id : in Dis.Message_Id) ;

-- This command shutsdown the sofcware backplane

procedure Shutdown;

private

pragma Inline (Get);

pragma Inline (Put);

pragma Inline (Number_Of_Msgs_To_Get);

pragma Inline (Status);

pragma Inline (This_Message_Can_Be_Reflected);

end Control;

-- This package contains the communication interface for black boxes on

-- the RTSN. It will provide operations _o register, create, send, and

-- possibly receive messages. These opera=ions are different than those

-- in One-To-Many and Many-To-One because _here may be special forma_s

-- required in order to communicate with a black box.

package Black_Box is

package Mit renames Massage_Internal_Types;

=_;_ Comaand Statumes is (Success, Pending, Bad_ld, Busy, Error);

t_ Command_Ids is private;

_'Z_eriLaoe_States is (Enabled, Disabled);

--- S12 ham been chosen as the max queue size, no particular reason, just

-- • _uese for now.

subtype Queue_Sizes is Kit.lnternal_Queue_Sizes range 0 .. 512;

type Comm Types is (Stream, Dgram);

type Networks is (Rtsn, Op);

type Out_M_g is limited private;

type In Meg is limited private;

................. called by the producer

-- This operation must be called by _he producer during the

-- Register_I/O submode for each message that is to be sent.

O_G_NA!. PA_ IS

OF POOR QUALITY

-- Zz will register the message wi-h the software :acKplane

-- and estaDllsh the communization link wi-h the black box.

precedure Regis _e r_Io_Send,_Msg

(Cuc_Msg_'d : in ouc Out_Msg;

Par_ition_Preflx : in _is.Component_Id;

Msg_3is_[d : in Dis.Message_Td;

Msg_Bit_Size : in Natural;

Execution Rate : in R%s Types.Executlon_Rate;

Msg Ptr_Addr : in System. Address;

Receiving_Node : in Std_Eng_Units.Nodes;

Corns_Type : in Corns_Types;

Network : in Networks := Rtsn) ;

-- This operation must be called by the producer during the

-- Create Data submode for each message that is to be sent.

-- It will allocate the buffers in the sofrware backplane for

-- the message.

procedure Create Msg (Out_Msg_Id : in out Out_Msg);

-- The Put operation is called by the producer to send a message

procedure Put (Our_Msg_Id : in out Out_Msg);

................. called by receiver of message

-- This operation must be called by the receiver during the

-- Register_I/o submode for each message chat is to be received.

procedure Register_To_Recv_Msg (In_Msg_ld : in out In_Msg;

Partition_Prefix : in Dis.Componenc__;

Msg_Dia_Id : in Dis.Message Id;

Mmg Bit_Size : in Natural;

Queue_Size : in Queue_Sizes:

MBg_Ptr_.Addr : in System.Address;

Sending Node : in Std_Eng_Units.Nodes;

Corns_Type : in Corns_Types;

Network : in Networks := Rtsn);

-- This operation must be called by the receiver during the

-- Create_Data submode for each message tha_ is to be received.

procedure Create_Msg (In_Msg Id : in out In_Msg);

-- This operation may be called by the receiver to determine the

-- the number of messages available to ge_.

function Number__Of Msgs_To_Gec (In_Msg_Id : In Magi return Natural;

-- The Get operations will retrieve the next message in the FIFO queue.

procedure Get [In_Msg_Id : in out In_Msg);

....................... called by eithor

$ _-!! _e c_m_ands can be called to command the software backplane _o

- _o_ tertian operations associated with communication with a

-_- _4M:k box. The commands return command id which uniqely identify

-- t_ command. Status of the command can be obtained by calling

-- the satatus function and passing it the id of the command on

-- which s_atus is desired. The status will be one of the following:

-- Success - the command has completed successfully

-- Pending - the command is in progress

-- Bad_Id - no command associated with this id

-- Busy - a command is already in progress to this node

-- Error - the command has noC completed successuflly

-- Only one co,_and can be outstanding to a node at a _ime.
If

multiple commands are issued all but the first will be ignored

and status calls will return with busy. These commands mus_

be re-issued after the previous commands complete.

O_GiN_£. PAGE IS

OF P_'V2_RQUf, LITY

II-11

-_'s =:,-_and will 3pen _md c_nf_Ture =he =,3mmunlcat_n _ink wi=n
-- ..._

-- the Diac_ =ox. :m shoui_ no= =e =ailed an=il the back box _s ready

-- to corl_,uni=a=e.

_unction Spen_Comm <Node : in 3ud_Enq_Un_zs.Ncdesl re_urn Zomm, and_]!s:

-- This :ommand wii" :13se the co_._unlcazion link wi=h the

-- D[azk Dox.

func_iDn Cicse_Zomm [Node : in Std_Eng Units.Nodes: re_urn Co_-nand_]ds;

-- This 0_eraticn will re_urn the status of the command associated

-- with the :ommand [d.

function Co,T_and_S=atus {Command_[d : in Command_ids)

rezurn Command_Statuses;

-- These commands return the state of the black box node interface

function interface_Stare

(Node : in S_d_Eng_Units.Nodes) return Interface_States;

function Interface is_Disabled

(Node : in Scd_Eng_Units.Nodes) return Boolean;

function Interface Is_Enabled

(Node : in Std_Eng_Units.Nodes) return Boolean:

private

pragma

pragma

pragma

pragma

pragma

pragma

pragma

pragma

pragma

[nline (Get);

Inline (Put);

Inline (Number_Of_Msgs_To_Gec);

Inline (Open_Comm);

Inline (Close Co_m);

Inline (Command_Status);

Inline (Interface_State);

inline (Interface_Is_Disabled);

Inline (Interface_Is_Enabled);

type Command_[ds is mew Natural:

type Msg is

record

Buffer_Ptr : Mit.Msg_Buffer_Ptr;

Desc_Pcr : Mit.Mto_Msg_Desc_Ptr;

Tag_Ptr : Mit_Mto_Msg Tag_Ptr;

Parcition_Ptr_Addr : System. Address;

Routing Table_Index : Integer := O;

Period : Rts_Types.Execucion_Rate :=

_- Rts_Ty_es.Execut[on_Rate'First;

-e rec.ord;

_ Is_Mmg is new Msg:

type Out_Ms_ is new Msg;

end Black_Box:

end Message:

... -------------

--I Abstract: This package provides the _ypes and operations necessary to

__[in_erface with the _ssaging system.

--I Warnings: This package depends on the use of shared memory and shared

--I semaphores. The semaphores are only used during initialization,

--I not during runtime.

O_tQINAL PAGE

V

!

11-13

8.3. Mailbox

with Message_[n_ernai_Tyves, 3is, System, En:er_Ma_izcx,

3afes_3re_Mailbox, Malfunction_Mailbox, Me;a_MaliDcx, 3_d _ng_Types ;

7azkage Mail bc_ is

_azkage Mi= renames Message_Internai_TyTes;

pac<a;e _e_ renames S=d_Eng_T_/pes:

............................ Conszan_s

-- The size of a mail message

-- 2k storage units long - jus_ a guess for now

Max_Mai!box_Msg_Size : conszant Natural := 2048;

............................ Exceptions

-- Not used

Not_A_Prefix : exception:

-- Raised by Register_Mailbox if an exception occurs. Or if the

-- Com_onent_Id supplied for the parameter 'My_Partition_Prefix'

-- is not a partition prefix. That is, the Component Id was not

-- registered (Dis.Register_Component) with Prefix set to True.

-- When ever possible a message will be logged giving details as

-- to why this exception was raised.

Register_Mailbox_Error : exception;

-- Raised by Get_User_Defined_Msg_Type, Get_User Defined Msg, and

-- Get Next_Msg_Type if they are called on an empty mailbox

Mailbox_Empty : exception;

-- Raised by Put_User_Defined_Msg if the desination meilbox is no_

-- found _.:ot registered).

Mailbox_Not_Found : exception;

-- Raised by Put_User_Defined_Msg if a user defined mail message

-- is too large.

Mailbox_Message_Too_Large : exception;

-- Raised by Pu_ User Defined_Msg if the mailbox does not have enough

-- memory to send the message.

Mailbox_System_Out_Of_Memory : exception;

-- Raised if the mailbox system cannot startup correctly.

-- raise___he _ilbox syltem may not function correctly.

Mailbox_¢%__Error : exception;

-- Rai_,_¢M mailbox Cystem cannot shutdown correctly.

Mailbox_1_a%IZ(_Error : exception;

If this is

-- Raised by Register_Mailbox if there is an uncrcoverable internal

-- error in the mailbox system. If %his error is raised, the mailbox

-- system should be considerd erronous.

Mailbox_Internal_Error : exception;

.................... Types

type Msg_Types is (Rou_er, Return_To_Safestore, Recurn_To_Datastore,

Malfunction, Enuer, Mega, User_Defined);

for Msg_Types use (Router => -7,

Return To Safestore => -6,

H

11-14

Re__urn To :a:as_o=e :> -5,

Ma[.fu.nctloI'. => -4,

EF.=er ° :> -],

Mega :> -2,

_se.__e.- .e- :> -

f:r Hsg_Ty_es'Size use 32;

cy'ge "nternal_Msg_Type is limited private;

:y!ze Y3ilbcxes is limited private;

.................... called by owner of mailbox

-- This operation registers a mailbox it must be called in order to

-- send or receive mail messages. It should be called during the

-- Register I/O submode.

procedure Register_Mailbox (My_Partition_Prefix : in Dis.Component_Id;

My_Mailbox_Id : in out Mailboxes);

-- Returns true if mail messages are present, false if not.

function Mail_Is_Present (My_Mailbox_Id : in Mailboxes} return Boolean;

-- Returns the number of mail messages currently in the mailbox.

function Num_Mail_Msgs (My_Mailbox_Id : in Mailboxes) return Natural:

-- Ge_s the type of the next mail message in the mailbox. This is

-- the first step in retrieving a mail message. After the tyl_e has

-- been determined the appropriate Get operation can be called, or

-- if the type is User_Defined then the Get User Defined_Msg_Type

-- operation can be called•

function Get_Next_Msg_Type (My_Mailbox_Id : in Mailboxes) return Mag_Types:

-- Operations to get the next message from the mailbox

procedure Get_Safestore_Msg (Safestore_Msg : out

Safestore Mailbox. Safestore_Mag;

My_Mailbox_Id : in out Mailboxes};

procedure Get_Malfunction_Mag (Malfunction_Msg : out

Malfunction_Mailbox.Malfunction_Msg;

My_Mailbox_Id : in out Mailboxes);

procedure C-e__Enter_Mag (Enter_Msg : out Enter Mailbox. Enuer_Msg;

My Mailbox_Id : in out Mailboxes);

procedure Get_Mega_Mag (Maga_Mag : out Mega_Mailbox.Mega_Mag;

My_Mailbox_Id : in out Mailboxes);

-- This operation ii to be used by the Router to get messages from its

-- mail_z. Acklress_For__Msg is the address for the locatin at which

-- the wl_HJa_ should be placed. This location must be capable of

-- hol__l n_l _isage of Max_Mailbox_Msg_Size (declared in this

-- pack_m). Del__Partition_Prefix is the original destination of

-- the mmll mmlsage. Mmg_Type is the type of the mail message.

-- My_Mailbox_Id is the routers mailbox id.

procedure Get_Router_Mag (Address_For_Mag : in System.Address;

Dest_Partition_Prefix : out Dis.Componenu_Id;

Msg_Type : out Internal_Mag_TyI>e;

My_Mailbox_Id : in out Mailboxes);

-- USER DEFINED MESSAGE SUPPORT --

-- The Get_UserDefined_Mag_Type and Get UserDefined_Msg operations

-- provide support for receiveing user defined mail messages. When

-- possible the above predefined mail messages typel should be used

-- because they ensure that the sender and receiver are using the

II-15

Off FOOR QUALITY

I

same messa;e =_e, There are ai_o s_;pcr= ;a:kages ;rcvided ==

aid in using ma_l message cf :he pre,_eflned =y_es. if :his ;ener:=

r_u=ines are used it _s up =o =no =set =._ ensure =ha= =he sender _=d

receiver a_-ee 3n the s_ruczure _f t_e tall _essage.

if =he Ge-_Ne,__M_il_Ms__Tl-- _ func=izn returns User__eflned as =he

t'/_..e of the next messaqe i the m_ilbox and if ic is possible for

_he _aiiDcx _D receive more _nan Dne tyve of user defined message

lSen Ehe 3et_User_Defined Msg_TyDe o_eratlon must be called _o

determine wnlzh user defined message is in the mailbox. After

Ehls has been determined, _hen the appropriate instantiation of

'3eE_User_Defined Msg can be called _o re=rieve the message from

the _ilbox.

-- Ge_s _he type of the user defined mail message.

generic

type User Defined_Meg_Types is (<>);

func=ion Get_User_Defined_Msg_Type

(My_Mailbox_Id : in Mailboxes) reourn Uaer_Deflned_Msg_Types;

-- Gets _he user defined mail message.

generic

type User_Defined_Mail_Meg is private;

procedure Get User_Defined_Meg

(User Defined_Meg : out User_Defined Mail_Meg;

My_Mai!box_Id : in ou_ Mailboxes);

................. called by sender of mail message

-- Sends a mail message _o _he specified partition.

procedure Pu% Safestore_Msg (SafeS_Ore_Msg : in

Safee_ore_Mailbox.Safes_ore_Msg;

Dear_Partition_Prefix : in Dis.Componenn_id);

procedure Pu¢_Malfunction Msg (Malfunction Meg : in

Malfunction Mailbox. Malfuncuion_Msg;

Dear_Partition_Prefix : in Dis.Com_onen__Id};

procedure Pu__En_er_Msg (Enter_Meg : in Enter_Mailbox. Enter Msg;

Dest Partition_Prefix : in Dis.Componenu_Id);

procedure Pu_ Mega_Msg (Mega_Msg : in Mega_Mailbox.Mega Ms_;

Desk_Partition_Prefix : in Dis.Componen__id);

procedure __Ds_Mag (De_Meg : in Mega_Mailbox.Mega_Mag;

__ Dear_Partition_Prefix : in Dis.Component_Id);

-- This _a_ion is =o be used by the Router to send mailbox

-- messa_[I _ _rit'ion's mailboxes. Address_of Meg is the address

-- of _he _! mmeage. Max_Mailbox Meg_Size storage units will be

-- =aken fz_m _his address and send _o _he destination mailbox for

-- Dest_Par=i_ion_Prefix. Mail_Meg_Type is the type of the mail

-- message that is being sen=.

procedure Put_Rou=er_Msg (Address_Of_Msg : in System.Address;

Meg_Type : in In=ernal_Msg_Type;

Dest_Partitlon_Prefix : in Dis.Componen=_Id);

-- USER DE _ED MESSAGE SUPPORT --

-- The Put_Jeer Defined_Meg operation is used _o send a user defined

-- mail message. When possible _he above predefined mail messages types

-- should be used because :hey ensure that the sender and receiver are

-- using the same message type. There are also support packages provided

-- to aid in using mail message of the predefined _ypes. If _his generic

II-18

-- .-e.=e-ver agree on the struc=ure of the mail messaqe.

gene._ -: i

type User__efined_Ma!l-Msg is private:

-_ype User_Defined_MsG_TYP eS is !<>i ;

pr _cedure put_User_De f i ned_Msg

(Maii_Msg_Tyv. e : in User_Defined_Msg_Types;

User_Defined_Msg : in User_Defined_Mai!_Msg:

_es-__?articlon_Prefix : in Dis.Component Id);

r3aeLne is lsed, iz is up to _he user no ensure z_a_ =he sender an!

-- Shucsdown the mailbcx messaging system.

procedure Shutdown;

Not to be :alled by partitions.

k_J

.... private

private

pragma Inline (Mail_Is_Present);

pragma Inline (Num_Maii_Msgs);

pragma lnline (Gec_Safestore Msg);

pragma Inline (Gec_Ma!function_Msg);

pragma lnline (Get_Enter Msg);

pragma lnline (Get_Mega_Msg);

pragma Inline (Get_Router_Msg);

pragma Inline

pragma lnline

pragma Inline

pragma Inline

pragma Inline

(puc_Safestore_Msg);

(pu=_Malfunc_ion_Msg);

(Put_Enter_Msg);

(Put_Mega_Msgl;

(Put_Rou_er_Msg);

-- Storage_Units per word (32 bi_s)

Word : constant := 32 / System. Storage_Unit;

type Inuernal_Msg_Type is new Se_.Integer_32;

type Message is new Mi=.S_orage_Uni=s (I .. Max_Mailbox_Msg_Size);

Message'Size = 2048 * 8 = 16384

for Message'Size use Max Mailbox_Msg_Size * System.Storage_Uni=;

type Headers is

record

Dea__Par=ition_Prefix : Dis.Componenc_Id;

Mmg_Type : Internal_Msg_Type;

MBg_Size : Natural := 0;

emd record;"

for HeadQZl

record at mod 4;

Dest_Partition_Prefix at 0 • Word range 0 .. 63;

Msg_Type a_ 2 t Word range 0 .. 31;

Msg_Size at 3 . Word range 0 .. 31;

end record;

for Headers'Size use 64 _ 32 + 32; --tVER

type Mailbox_Message is

record

Header : Headers;

Mag : Message;

end record;

H-I7
O_Q;N_& P,_.GE P3

POOR QUALITy

fcr Mailbox_Message use

record at ._od 4:

Header au ,3 • Word range O .. 127:

Msg a_ 4 • Word range 3 .. 1639_;

end record:

_or Ma_lbox_Message'Size use [26 * [6384; --,VER

_yTe Mailbcx_Message_F'-r is access Mailbox Message:

-- Record for SGI

type Mailboxes is

record

Buffer_Put : Mi_.Mailbox_Buffer_Ptr;

Desc_Ptr : Mic.Mazlbox_Desc_Ptr:

Tag_Ptr : Mic.Mailbox_Tag_Ptr;

Routing_Table_Index : Natural := 0;

end record;

-- Frequently us _izes

-- Size allocated for mailbox messages

Mailbox_Message_Size : constant Natural :=

Message'Size / System. Storage_Unit;

-- Size of a mailbox message plus its associated header

Message_Plus Header_Size : constant Natural ::

Mailbox_Message_Size * Headers'Size / System.Storage_Unit;

-- Size of the message header

Msg_Header_Size : constant Natural :: Heade#s'Size / System. Storage_Unit;

-- Size of the message type in the header record (it's an integer)

Mag_Type Size : constant Natural := Integer'Size / System. Storage_Unit;

end Mailbox;

--I Abstract: This package provides the ty_)es and operations necessary to

--I

--1

---[

--I Warnings:

--I

interface with _he mailbox communication system. Each mail

message must be of a specific type (ie. Safestore, Malfunction,

Enter, ecc) . The sender and receiver use this type to identify

the kind of message so chat they know how to deal with it (how

to Duild it and how to split it), This package provides support

for momm predefined mail message ty_es such as: Safescore,

_ifunction, and Enter. These are co_a_on messages chat will be

fr ._ently and by many parcitiorls. Senders and receivers that

_beI® mall massage types are guareented to be using the same

_a tylpem for the messages. This package also provides support

_or "user defined" messages that mre not widely used or shared

betwQen many partitions. There are three generic subroutines which

provide support user defined messages: Build_User_Defined_Msg,

Get_User_Defined_Meg, and Split_User_Defined_Meg. They are

instantiaced with the user defined messag_ tylDes. It is up to

the users to e_sure chat the sender and _ : _iver agree on the

structure and data type of user defined :a_, messages.

This package depends on the use of shared memory and shared

semaphores. The semaphores are only used during initialization,

not during runtime.

There are two restrictions placed on the type used for User_Def-

11-18

_ ined_Msg_Ty_.es. First, :he :7;e :us: have a s_ze :_ 32 :;is.

-- To insure this a length clause she'lL! te used

-- [ex. for Ty_e'Size use 32;_ . Sec:_nl, ?he values :f ::e :_/v._e
i

-- must be positive. This means that if _n enumeration t'_e is

-- _sed its li_terals musc no_ De _ven ne,_a_Lve vai_es wi:: a

__ represen_azlon clause.

__ This _ackage depends upon compa:ibi[ity between 3ystem. Address

__ and _he value of an access zyve. [c uses Unckecked_Conversion

-- to convert from x'Address :o an access _ype.

...

k.j

ORDINAL. PAGE I'S
OF POOR QUALITY

11-19

8.3.1 Enter_Mailbox
with Dis, S_d_Eng2yt=.es;

_a=i<age Enzer_Maii:_3x is

pazkage 3ec rena.T_es 3:d_Eng_Ty%ies;

-- _a:a -yve for -OS Enzer _'ai!bcx messages

type En:er Msg is private: -- Initialize and lOS Enter data

generic

=ype Data_Type is prlvate;

procedure Create (Msg : in out Enter_Msg;

[d : Dis.Term_Id;

Value : Data_Type:

Index : Integer := 0) ;

procedure Create_R6 (_g : in out Enter_Msg;

Id : Dis.Term_Id;

Value : Set.Real_6;

Index : Integer := 0);

procedure Crea_e_Rl5 (Msg : in out Enter Msg;

Id : Dis.Term_Id;

Value : Sec.Real_lS;

Index : Integer :: 0);

procedure Create_I8 (Msg : in out Enter_Msg;

Id : Dis.Term_Id;

Value : Set.Integer_8:

Index : Integer := 0);

procedure Create_If6 (Msg : in out Enter_Msg;

Id : Dis.Term_Id;

Value :Set. Integer_16;

Index : Integer := 0);

procedure Crea:e_[32 (Msc _ in out Enter_Msg;

I h .s.Term_Id;

V. : Set. Integer_32;

In..l% : Integer := 0);

procedure Create_String

(Msg : in out Enter_Msg; Id : Dis.Term_Id; Value : String);

function Id (Msg : Enter_Mmg) return Dis.Term_Id;

function _r_lex (Mmg : Enter_Msg) return Integer;

generi_z -

cy_¢a__ is private:

function VI_L%Ie (M_g : Enter_Msg) return DataType;

function Value_R6 (Msg : Enter_Msg) return Set.Real 6;

function Value_Rl5 (Msg : Enter_Msg) return Set.Real_f5;

function Value_f8 (Msg : Enter_Msg) return Set.Integer 8;

function Value_If6 (Msg : Enuer_Msg) return Set.lnteger_16;

function Value_!32 (Msg : Enter Msg) return Set.lnteger_32;

function Value_S_ring (Msg : Enter_Msg; Length : Natural) return String;

.... prSce_ure-Poke (Msg : Enter Msg);

Id Not Pound : exception;

-- raised when Poke is called with an identifier chat

-- has not been registered at the local level.

V

W

11-20

Z__Not_=onneczed : exception:

-- raised when Poke is _alLed with an identifier _a:

-- has noc been connecned wt:h an address.

Toc_Large : excep_icn_

-- raised hy Create _f the da_a ty_e is _00 bit :o fi_

-- in the value buffer,

priva:e

-- secret

end Encer_Ma_ Ibox;

OI_IGINAL PAGE IS
OF POOR QUALITY

11-21

8.3.2 Malfunction_Mailbox
wf-, _. Z_is, 3_d_Eng Tv_es,

va-ka;e _Lfunctlon_Mai'-bcx :s

vackaGe Se_ renames S_d_Eng_Ty_._es;

-- Data -y_e for Malfunction mailDox messages

:ylce Ma/funczi,-n_Ms_ is prlva_e: -- Malfunction Messages

procedure Crea_e _Msg : in ou_ Malfunction_M_g;

Id : Dis.Malfunction_Id;

On_Or_Off : Se_.On_Cff := Set.On;

Scale : Set.Real_f5 := 0.0;

Bias : Set.Real_f5 := 0.0:

Option_Value : Natural := 0);

function Id (Msg : Malfunction_Msg) re_urn Dis.Malfunction_Id;

generic

type Discrete Type is (<>);

function Option (Msg : Malfunction_Msg) return Discrete_Type;

function Option_Value (Msg : Malfunction_Msg) re_urn Natural;

function P1 (Msg : Malfunccion_Msg) return Set.Real_f5;

function P2 (Msg : Malfunction_Msg) return Se:.Real_lS;

function State {Msg : Malfunc_ion_Msg) return Set.On_Off;

procedure Poke (Msg : Malfunc_ion_Msg);

Bad Size : exception;

-- raised by generic Selector or Discrete if the generic actual

-- parameter (enumeration type) is not 8, 16, or 32 bits long

private

-- protected from sight

end Mal funct ion_Mai Ibcx;

II-22

8,3.3 Safestore_Mailbox

_a=<a;e 3ales;ore_Mailbox is

-- =aza zy_ze for Re=_rn-_o-Safes_re mai1=cx messa;es

=vve Safestore_Msg is privaze; -- Re=&rn =o Safestore da_a

=y_e 3y=e =s range O .. 255;

f_r 8yte'_ize use 8;

cycle Value_Buffer is array (Positive range <>) of Byte:

procedure Create (Msg : in out Safestore_Msg;

[d : Dis.Message Id;

Value : Value_Buffer);

function Id (Msg : Safescore Msg) return Dis.Message_Id;

generic

type Data_Type is private;

function Value (Msg : Safes_ore Msg) return Data_Type;

Too_Large : exception;

-- raised by Create if the data type is too big to fit

private

-- invisible

end Safes_ore_Mailbox;

% ,

Oll_INAL PAQE !_

OF POOR QUALITY

11-23

8,3.4 Mega_Mailbox
with _is, Std_Eng_Ty_es;

package Mega Mail_,3x is

pazka_e Set renames 3zd_Eng_Ty-les:

Max Entrles : constant := 60;

zYPe Mega_Msg :s prO_rate; -- For many ,'_.e,m_ _" - value] se_s at once.

-- The sender of the Mega_Msg must call Create _efore appending anything

-- <o :he Mega Msg. After sending it, _he sender should call Clear.

procedure Create (Msg : in out Mega_Msg);

procedure Clear [Msg : in out Mega Msg):

generic

type Data_Type is private;

procedure Append (Msg : in out Mega_Ms,

Id : Dis.Term_Id;

Value : Data_TYl3e} ;

procedure Append_R6

(Msg : in out Mega_Msg; [d : Dis.Term_Id: Value : Se_.Real_6) ;

procedure Append_Rl5

(Msg : in out Mega_Msg; id : Dis.Term Id; Value : Set.Real 15);

procedure Append_I8 (Msg : in out Mega_Msg;

Id : Dis.Term_Id;

Value : Se_.Integer_8):

procedure Append_If6 [Msg : in out Mega_Msg;

I_ : Dis.Term_Id;

Value : Set.Integer 16);

procedure Append_I32 (M.sg : in out Mega Msg_

[d : Dis.Term_Id;

Value : Set.lnceger_32);

procedure Append_S_ring

(Msg : in out Mega_Msg; Id : Dis.Term_Id; Value : String);

-- co avoid the exception Too_Large

function Appendable (Msg : Mega_Msg; Bits : Integer) return Boolean:

-- mos_ of the -query-/Oselector • opera_ions operate on the "current entry'.

-- All e_F]_eI__ Im a rae_a message arrive as "valid'. An entry is

-- invali_ _ _king it or asking for its value.

-- "Poke,_¥____*._ll only poke valid entries.

procedure POke (I_ : in out Mega_Msg; Only_If_Valid : Boolean := True);

-- poke the cul'Ten_ entry; if it is already invalid, it will not

-- be poked, unleii Only If_Valid is set to false. Then it will

-- be poked anyway.

procedure Poke_All (Msg : in out Mega_Msg);

-- poke all valid entri-_s

-- invalidate an entry _- you don't want it poked.

-- Zero means the curren_ entry.

p[pc@dure Invalidate (Msg : in out Mega_Msg);

function Number_O__Entries (Msg : Me_a_Msg) return Natural3

procedure First (Msg : in out Mega_Msg);

II-24

r:cedure Nex {_ : in ou: Mega_Ms_: :

pr=cedure Go2o !Msg : in ,ouc Mega_Ms_;

ld : Dis.Ter__id;

Found : out Boolean);

function At_End {Msg : in Mega_Msg_ re_urn BooLean;

-- function [d does not invalidate an entry.

fun,z:ton :d (Msg : Mega_Msq) re_urn :is.Term_Id;

-- re=r_eving a value invalidates i=s entry, these will not De

-- _oked automatically by Poke or Poke All.

generi:

type Da_a Type is private;

procedure Value (Msg : in out Mega_Msg; Data : ou_ Data_Type);

procedure Value_R6 (Msg : in out Mega_Msg; Data : out Set.Real 6) ;

procedure Value_Rl5 (Msg : in out Mega Msg; Data : out Sec.Real_lS);

procedure Value_IS (Msg : in out Mega Msg; Data : out Set. Inceger_8);

procedure Value_If6 (Msg : in out Mega_Msg; Data : out Set.Integer_f6);

procedure Value_L32 (Msg : in out Mega_Msg; Data : out Set.Intender_32);

procedure Value String (Msg : in out Mega_Msg; Data : out String);

-- be sure the string variaDle is the correct length

Not_Created : exception;

-- raised by Append if the Mega_Msg has noc yet been initialized

-- using Create.

Too_Large : exception;

-- raised by an Append if the data type is too Dig to fit in the

-- remaining portion of the Mega_Msg.

Too_Many_Entries : exception;

-- tried to append more than Max_Entries entries.

End_Error : exception;

-- tried to advance beyond the end of the Mega_Msg.

private

-- ya can't touch this

end Mega_Maiibox;

OR3GINAL PAGE IS
OF POOR QUALITY

II-R5

84' DiS

wi=n S_d_Eng_Ty_es;

_acka;e 2Ls fs

packa;e 3e: renames 3=u_Eng_Tyves;

The _=_ _ackage is an "ob_ec_ manager'. The managed object is

_he D_stributed [dencifler Spec (DIS} cable. The package

provides a num/cer of abstract data tylces _or the objects which

populace the DIS tree in the body.

APT Definition Handle

Componenc_iD private Component_Mandle

Term ID private Term Handle

Message_[D private Message_Handle

Type ID private Type_Handle

TypeTag open (enumeration)

Malfunction_iD private Malfunction_Handle

The DIS must be searched once to get an identifier's handle,

-- which points to _he node where the data is located. Then all

-- access to that identifier's data must use the handle; this reduces

-- the number of searches. Dis identifiers (objects with '_ID' suffix)

-- are unique and distributable among different main programs and

-- network nodes; the handle may only be used in the concext of the

-- main program in which the conversion has been performed.

-- Here is an example of a hierarchy of identifiers that can be

-- placed into the DIS.

-- Roboaics (Co,¢)onent_ID)

-- SPDM (Component_ID, prefix => true)

-- Fail (Malfunction_ID)

-- SSRMS (Componen__ID, prefix => = e}

-- Joint_l_Yaw (Term_ID)

-- Joint_l_Roll (Term_ID)

-- _ (Component_ID)

-- Ro!iType (Type_ID)

-- Yawpype (Type ID)

-- Environment (Component_ID)

-- USAD (Component_ID}

-- _ (Component_ID]

-- _ (Componen__ID)

-- j_ PJ_D (Component_ID, prefix :> true)

-- - Tank (Component_ID array, 6)

Temp_Senso r

Fail_Ten_p_Sensor

S_orage_Leak

Current_Pressure

Valve_Module

RocketAssembly

Rocket_Engine

Cat_Bed_Fail

Heater_Fail

Thruster

Cat_Bed

Prop_Valves

Chamber_Pressure

(Term ID array, 3)

(Malfunction_!D array, 3)

(M_ifunction_ID);

(Term_ID)

(Component_ID)

(Component_ID, prefix => _rue)

(Component_ID multiple, 6)

(Malfunction ID array, 2)

(Malfunction_ID)

(Component_ID array, 13)

(Component_ID)

(Component_ID)

(Term_[D)

11-26

-- The identifiers are entered into the 5:3 oy _aking _azkages

-- [z_i:ed __efs [_r._nounced "deals" :siz}: _acKaGes, as in

-- U_AC_Defs or Rocket_Englne_Defs} whi:h conform %0 a sec of

-- rules and :all the Reglszer functigns. See the examples for

-- low %hess _acka_es 1oo_.

:y_e ::mV.:zenc_Zd _s _r_vate;

Null_Component : cons:ant Component Id;

cy_e Component_Handle is private;

Null_Comp_Hand[e : constant Component Handle;

type Term_ld is private;

Null_Term : constant Term_Id;

tyve Term_Handle is private;

Nuii2erm Handle : constant Term_Handle;

Max_Total_Terms : constant := i00_000;

subtype Term_Index is Se_.Natural_32 range 0..Max..Tocal_Terms;

type Type_id is private;

Nuil_Ty_e : constant Type_!d;

type Type_Handle is private;

Null_Type_Handle : constant Type_Handle:

type Message_!d is private;

Null_Message : constant Message_Id;

type Message_Handle is private;

Null_Msg_Handle : constan_ Message_Handle;

type Malfunction_Id is private;

Null_Malfunction : constant Malfunction Id;

type Malfunction_Handle is private;

Null_Mall_Handle : constant Malfunction_Handle;

-- Type_Tag [s used in Register_Type

type Type_Tag is {Null_Tag, -- placeholder

Integer_Tag, -- 32 bit integer

Short_Tag, -- 16 bit integer

Byte_Tag, -- 8 bit integer

Float_Tag, -- 32 bit float (SET.Real_6)

Double_Tag, -- 64 bi_ float (SET.Real_IS)

Character_Tag, -- a single character

String_Tag, -- a fixed-length string

Enum_Tag); -- for enumeration types

type UIeT il (Look: -- IOS readable

Look_Enter, -- IOS readable & writable

Initialize); -- datastored & initialized term

type Uier_Limt i6 array (Positive range <>) of User;

Look_Only : constant User_List := (i => Look);

Look_Initialize : constant User_List := (Look, Initialize);

Look_Encer_:nitializs : constant User_List := (Look_Enter, Initialize);

Null_Address : constant System.Address := Eunuchs.Null_Address;

type Address Array is array (Positive range <>) of System.Address;

Null_Address_Array : constant Address_Array := (i .. 0 => Null_Address);

k_/
type Value_List is array (Natural range <>) of Natural;

Null_Value_List : constant Value_List := (i .. 0 => 0);

OI_iG_NAL PAGE P8
OF POOR QUAtI1W

-- S:a_ic c_erati:ns _n the 3IS.

-- ?he _IS is ;reared with sta:_: informatu_n usln_ _he 'Re_s_er'

-- r_uzlnes belcw. This sta:ic inf_r_a:ion inc[u!es _entzf!ers

-- fcr eb_ec_s, ty_zes, and ma[functi:ns, as well as _escr:p_or

-- inf_rTation associated with these en_tzes [suzh as _arameters

-- that are :c te used for _a[functicn routines!. The static

-- _nf_rTation in :he DIS is consistent _n all pla:f_rms and in all

-- appliza:i,?ns [_ncl_ding all off-llne a_plicati,_ns} as long as

-- everyone is using the same version of the DIS. The DIS is

-- augmented with dynamic infzr_T_=ion a= runtlme through =he use

-- of the ,Connect' facilities.

function Register_Component (Parent : ComDonent_Id;

Name ': S_ring: -- length <= Max Comp_Name

Prefix : Boolean := False;

Length : Natural := 0;

Labels : String := °') return Component_id;

-- The Negister_Component operation crea_es a node for a new level

-- in =he DIS :ree at the position indicated by the Parent parameter.

-- The Length para_meter must be used to register multiple components

-- which have the same contents. This allows a single Defs package

-- to register multiple copies of a set of identifiers. In this case,

-- the Defs package can be said to resemble a record definition, and

-- the 3omponent ID array can be said to resemble an array of records.

-- A 'prefix' is a Component_ID which is registered with the Prefix

-- parameter set to True. A prefix is required in the 'ancestry' of

-- any Term_ID or Malfunction_ID. Also, a prefix' s 'descendants' may

-- not include any other prefix ConK_onent_IDs. These rules are

-- enforced by the DIS _hrough the exception Prefix_Error. A prefix

-- identifies a single mailbox; all Terms IDs and Malfunction_IDs are

-- delivered to their respective partitions via the mailbox that is

-- identified by the prefix under which they were registered.

function Register_Term (ParenE : Component_Id;

Name : String; -- length <= Max Id_Name

The_ype : Type_Id;

Users : User_List :: Look_Enter_Initialize:

Length : Natural := 0;

Labels : String := "'I return Term_Id;

-- Register_Term requires a Type_ID to indicate how the daca

-- is to be interpreted. A Term_ID array is an aggregate of

-- Term_ID's which have the same type. A Term_ID array

-- is registered by supplying a Leng=h parameter > 0. If a

-- labels parameter is su_plied, _he labels will be used to

-- inner,he Term_ID array.

functioml_Imter_Mmssage (Parent : Component_Id;

Name : String: -- length <= Max_Id_Name

Bits : Natural;

Safestore : Boolean := False) return Message_Id;

-- A Messaqe_ID is very similar =o an Term_!D but is

-- only used for software backplane messages. This

-- routine must always be supplied with a number of

-- bits. No type information is supplied. A flag

-- :ndicates whether or not the item is to be retrieved

-- for safestore. Bits is _he size of the message in bits.

function Register_Type (Parent : Component_Id;

Name : String; -- length <= Max_Id_Name

The_Tag : Tylpe_.Tag;

Size : Natural := 0;

OitJQihLAI.. PAQI[!_

OF' POOR QUALITY

11-28

k_J

k_/

Low_Bound : Szrlng := "';

High_Bound : SErin_ := """

Values : Vaiae_Lis_ := Nuil_Vaiue__is=;
|

LaPels : String :: "'_ re__urn T'/l_e_Zd;

-- Type_IDs provide -he aDility to interpret _ata accessed

-- wi-_h Ter'_["_s. Each Reqister_Term muse be accompanied Dy

a Tyve_ID _arameter, Each Type_lD is registered using a 'tYPe

=-ag' which indi-,aEes which class of type it will Delong to.

For =ag: Required: Optional:

Null Tag (error)

lnteger3ag

Short_Tag

ByteTag

Float_Tag

Double_Tag

Character_Tag

String_Tag Size

Enum_Tag Labels

Low or High bound

Low or High bound

Low or High bound

Low or High bound

Low or High bound

Low or High bound

Size, Values

When registering a Type_lD for 8, 16, or 32 bit integers (Byte_

-- Tag, Short_Tag, and Integer_Tag respectively), single or double

-- precision floating points (Float_Tag and Double_Tag), or single

-- characters (Character_Tag), a Low or High bound may be supplied.

-- Low and high bounds must be in the proper numeric or character

-- order, and must have the correct format (which depends on the tylDe

-- tag -- byte, integer, short, float, double, or character).

-- Labels must be supplied for Enum literals. The Labels

-- parameter specifies a list of names conforming to Ada syntax

-- separated by commas.

-- Size must be supplied for String_Tag'd tylpes. It is

-- optional for enum tag'd types (the defaul_ is 8 bits).

-- Size is the number of characters for string tag'd items

-- and the number of bits for tylDes with Enum Tag. For

-- strings, Size must not be greater than Max_String.

-- Values are the representational aspect of enumeration

-- cypes; if no list is provided, the default ('?OS)

-- numbering (0,1,2) is used; otherwise, each enum _alue

-- is stored.

-- l_M_im_ratlon of S_ring_Tag'd Type_lDs requires a Size

-- (the_ of characters in the string, as with registering

=

-- __/1_m 0_ _num_Tag muse be supplied with a Labels parameter

-- (the DXm Wlncm to see Ada-like identifiers separated by commas for

-- all "labels" parameters). Optionally, =he number of bits that

-- objects of this type use can be specified (the default number is

-- eight bizs), as well as a lisc of values =hat ,_tches to the

-- enumeration representation of the Ada _ype (this is not necessary

-- for enumeration types with no rep spec). These three parameters

-- (bliss0 labels, and values) can be obtained by instantiating a

-- generic call Enum_Functions which accepts the Ada enumeration

-- tylDe as an actual parameter. This is provided so that Ehe user

-- can avoid hard-coding lists of labels and values _hat duplicate

-- the ones provided in the type declaration and rep spec. (Enum

-- Functions can also be used to get a label list from an enumeration

11-29 Oa/_iN_L PD,OE tS

OF POOR QU_,L_T¥

-- ='/v._e f_r -ailin G _=her 3IS func=L_n ta'- have iatel ":s- par_-

-- meters).

-- To re_ister an array with "he E_=, use =he Reqis=er_Term

-- func=ion with a Length Farame-er. This will =rea=e a set

-- _f 3[S identifiers; a _.en_Eh = 0 crea-es only one. All of

-- -_.e -erms En_s :reaEed will have the same cylDe or =ag.

-- Y:Du ,-an s-mula=e recerd =y_es with the DIS also. [n

-- s_Eua=icns that --all for an "array of records", you can define

-- a compcnen= id array: the Term IDs in the "_Defs" package

-- "-Dr =hat -omponen_ would be analogous to Ada record components.

-- You can also create a generic package with Term_IDs in i_; if _he

-- package has a generic object parameter of type DiS.Component_ID,

-- and _his is used as the "ParenE" of the Register • calls, _hen the

-- package can be ins_antia_ed in the "_Defs" packages anywhere in your

-- DIS hierarchy.

-- The Sstf_Defs package registers Type IDs for the \da types

-- _hat are declared in the Std Eng_Types and Scd_Eng_U=_-s packages.

-- For partition data that is declared of Ehese types, you _ay use

-- the Ss_f_Defs Type_IDs directly, or you may register subtypes based

-- on those Type_IDs. It is best to use subtypes with well-chosen

-- sub-ranges, so tha_ the IOS user can easily manipulate values to

-- De entered.

-- Register an integer-based subtype

function Register_Subtype (Parent : Component_Id;

Base : Type_Id;

Name : String := "'.

Low_Bound : Se_.In_eger_32;

High_Bound : Se_.Inceger_32) return Type_Id;

-- Register a float-based subtype

function Reglster Subtype (Parent : Component_Id;

Base : Type_Id;

Name : String := "°;

Low_Bound : Se_.Real_lS;

High_Bound : See.Real 15) re_urn Type_Id;

-- Register a character-based subtype

function Register_Subtype (Parent : Component__d;

Base : Type_Id;

Name : String := "';

Low Bound : Character;

High_Bound : Character) return Type_Id;

-- The_e f_ion_ are used _o register new Type_[ds which are derived

-- from _rQ1_o_4_ly're_is_ered Type_Iris, which are called "base" Type Ids.

-- Any __._ wi_h tag Byte_Tag, Short_Tag, Integer_Tag, _loat_Tag,

-- Double..T_, or Character_Tag can be used as a base Type_Id. Base

-- Type_I_ wi_h inappropriate tags will raise Tag_Error.

-- Since the only reason _0 register a tyDe using _hese functions is to

-- provide different bounds for a previously registered Type_Id, the

-- Low_Bound and High_Bound parameters are not optional. The bit size

-- of -.._e new Ty_e_[d is the same as that of _he base Type Id.

func- Register_Malfunction (Parent : Componen__Id;

Name : String: -- length <= Max_Id_Name

Options : Type__d := Null_Type-

P1 Name : String := "';

Pl_Low : Set.Real_f5 := 0.0;

11-30

V

V

ORIGINAL PA(_ I_
OF POOR qUALII"V'

k_/

Pl_Hi_h : 3e_-..Reai_15 :: 0.0;

?'-_T!Ge : Tyve_I_ := Null_Type"

F2 >Ta=e : S=ring := "';

P2_Low : Set.Real_f5 := 0.0;

?2_High : Set.Real_iS :: 0.0;

P2_Ty_e : Type_ld :: Nul!_Ty_e;

Store : Boolean := True;

Length : Natural :: 0;

Labels : String := "'_ re=urn Malfunction_id;

-- There are four kinds of malfunctions:

-- Simple: _a.k.a. paramecerless) This is registered

-- by supplying no Options or Pl/P2 related

__ parameters.

-- Options: This is registered by supplying a type id

__ for the Options parameter. It must be Enum_Tag'd.

-- Pl: This is registered by supplying a string for

__ Pl_Name and a type id for Pl_Type. P1 Low

-- and Pl_Migh can be supplied to give different

_- bounds to the parameter that override the low

-- and high limits of Pl Type. The name of the

__ Pl_Type is used as the "units" displayed on IOS.

-- Pl_P2: This is registered in the same way as a PI

__ malfunction; rules and options for the P2_

-_ parameters are the same as for a Pl_ parameters.

-- The Store flag indicates whether or not a malfunction is

-- datascored & intitialized. It defaults to true; do not

-- set it to false; in fact, do not set it at all, since this

-- parameter will be deleted in the near future. Setting it

-- to False raises Registration_Error.

-- To register an array of malfunctions, set Length • 0.

-- Labels may be supplied as an optional parameter; if

-- present, the number of labels supplied must be equal co

-- the Length value.

generic

cy_e Enum is (<>);

package Enum Functions is

-- The Emum_Functions package can be instantiated with any

-- _ enllmmration type, so that the information needed by

-- _1%11 lllMllster_Tylpe function for EnumTag ty_es can be

-- _e_r_e_o(1 ahtometically. Instantiating this package does
=

-r_.l_Z gl_y the DIS table.

function Labels return String;

function Num Labels return Natural;

function Size return Natural;

function Values return Value_List;

end Enum_Yunctions;

-- The Report procedure produces a file which divulges the

-- inner secrets of the entire DIS. The Load procedure

-- brings such a file into the DIS, populating it without

-- elaborating • Defs" packages.

11-31 O_'_NAL PAGE

Off POOR QUALITY

:r_-:edure _e_cr= ,T=_File ; i:rin_;

Users : User L_-: :: L¢,=k, Lc:< En:er, Zni:!al_=e':

Expand : _cclean :: Falser;
i

-- Load will fall if t:e file := se ":a_ed has -.o_ teen

-- :rea--ed with a :_vleze user ilst 'a- users s_ecified_,

-- ._r _f -he version number in =he file does not ma_ch the

-- rurren- vers'_on number {=ne Dis _,_aintains a version nu_%ber

-- fir the Load/Re.tort routines_, . The exception is Load_Version Error.

-- File_List => =r_e means From_File -s no= itself a repor¢

-- file, but contains a list of report files. Load ErrDr is

-- raised if the Load file is ,_-orrup= or created improperly.

-- Load_Name_Error is raised if a load file does not exist.

procedure Load :From_File : String: File_List : Boolean := True);

-- supply the version number of the Load/Report routines.

function Report_Version return Natural;

-- Registration & general exceptions

Syntax_Error : exception;

-- A2_ identifier name or a label name has improper Ada

-- syntax or exceeds the limit for number of characters

-- (Max_Comp_Name for components, Max Id Name for other IDs,

-- and Max_Label_Name for labels; these constants are defined

-- toward the end of the visible par= of _his package spec).

-- Raised by:

-- Register_ routines (_he Name parameter)

-- Register_Componen_ (arrays -- the Labels parameter)

-- Register_Term (arrays -- the Labels parameter)

-- Register_Malfunction_Array (arrays -- the Labels parameter)

-- Register_Type (for tylpes with Labels)

Format_Error : exception;

-- An improperly formatted string was given for a low

-- or high bound {e.g. a low bound for an integer tag'd

-- id is given as "0.0"), or a Labels parameter has

-- improper format.

-- Raised by:

-- Register_Type

Tag_Error : exception;

-- A tylDe _ag was used incorrectly (for example,

-- no length parameter was supplied with String_Tag).

-- Raised by:

-- Register_Type

-- T_pe_ID query routines (String_Length, Label_Index, Values,

-- Label_Value, Value_Index, LowBound, High_Bound,

- - _ Number_Of_Label s)

-- _m_er_MI]_func_ion (if Options parm is not Enum Tag'd)

-- _im_er_Subtype (if the base type is incompatible with the

-- bounds parameters, e.g., the base type has a floating

-- _in= tag, but the bounds are integers).

-- Connect_Term (using Symbol parameter, if registered symbol

-- has a type incompatible than the DIS Type ID's Tag).

-- Connect_Malfunction (using Symbol parameters, if a

-- registered symbol's type is not compatible with

-- the type tags required for _he DIS Malfunction_rD) .

Subtype_Error : exception;

-- The bounds given for the subtype are not a proper sub-range of

-- the bounds of the base -ype.

-- Raised by:

-- Regis t er_SubtYlOe

11-32 ORIGINAL PAGE IS

OF Poor OUAUTY

V

J

j

Re_zszra:!on Error : excepcisn;

-- A Malfunc=ion_iD is being registered, but ncn-compa:ible parameters

-- are being supplied to i:. For example, an 5p:ions parameter [s

-- being supplied as well as a Pl_Name parameter. Or a P2_Name

-- ts being supplied bu_ noc a Pl_Name. Or Store _s set to False.

-- Kaised by:

-- Regis:er Malfunction

Enum 3_ze Error : exception;

-- Enumera:ign .sbjects are not 8, 16, or 32 bits.

-- Raised by:

-- Register Type

-- Enum_Func=ions package instantiations

Size_Error : exception;

-- The size, in bits, retrieved from _he symbol map for Connect_Term

-- of Connect_Malfunction is different than the size supplied to the

-- DIS (via Register Type) for the data associated with %he symbol.

-- Raised by:

-- Connect_Term (using Symbol parameter)

-- Connect_Malfunction (using Symbols parameters)

Connect Error : exception;

-- The parameters supplied as Symbol strings to Connect_Malfunction

-- do not match the parameters given to Register Malfunction, e.g.,

-- the Malfunction_Id was registered as an Options mall, but a symbol

-- was supplied for the Pl parameter to the Connect routine. Or a

-- Connect_Malfunction routine was called which required either an

-- array of Malfunction_lDs or a single one, and the other was

-- supplied to it.

-- Raised by:

-- Connect_Malfunction (using Symbols parameters)

-- Connect_Malfunction

-- Connect_Mall_Array

Id No__Found : exception;

-- An identifier specified as par_ of a request was not in the DIS.

-- When conver_ing a string to an ID or handle, it is often caused

-- be a misspelling; it is also of the result of not "with"-ing the

-- - Defs ° package that contains the identifier, or not loading a

-- Dis repor_ file.

-- Raised by:

-- Register_ routines (the Parent was not found)

-- Handle

-- Convert

-- Prefix_Com_

No_Prefi_z _eption;

-- The°_ti_ler _iven to a Prefix_Comp function is not

-- a,_,_._,_ with anM Component_ID prefix.

-- _f_ _,
-- l_'e fix_Comp

Length_[TrOt : exception;

-- The number of labels given for a component,

-- term, or malfunction array r_istration

-- does not match the Length parameter.

-- Or the Size parameter used for registering

-- a Scring__Tag'd item is grea_er then Max_String.

-- Raised by:

-- Regi ster_Component

-- Register_Term

-- Register_Mal function

_- Register_Type

ORtGtNAL PAGE

OI _ POOR QUAL!TY

(for arrays)

(for arrays)

(for arrays)

(for string_tag)

11-33

Limi-__Error : excel-ion;

-- The _aximum number _f identifiers bass teen =e_[s-ered

-- ur.der -he curTent Parent compcnent. The maximum is

-- different for each "_7_e of iden'_ifier, and =he limits

-- are represen_-ed by the constants Max_Comvonen=s, Mmx_Terms,

-- Max Type. = , Mmx_Messages, and Max_.Ma.func=i._ns.

-- Ralsed by:

-- Regls=er_ lunch-ions

No_Labe!s : exze_ion:

-- A label-query routine was called but no labels

-- were regis=ered wi=h the iden".ifier.

-- Raised by:

-- Index functions (Comp_, Term_, & Malfunction_ Handles)

-- Label functions

-- Labei_[ndex

-- La be 1 _Va I ue

Label_No%_Found : exception;

-- The requested label was not found in the list

-- of labels associated with the identifier.

-- Raised by:

-- Convert routines for Component, Term, and Malfunction identifiers

-- Index functions (Comp_, Term_, & Malfunction_ Handles}

-- Label functions

-- Label_Index

-- Labe I _Va I ue

Value_Not_Found : exception;

-- The value given for an enumeration associa=ion

-- is not in the value lis=, or the index given

-- for an id array or a multiple component is no=

-- in the proper range.

-- Raised by:

-- Val ue_I ndex

-- Label (Tylze_Handl e)

Index_Error : exception;

-- An index g_ven for a Component, =erm, or malfunction

-- array or for an Enum_Tag'd type identifier, is out of bounds

-- Raised by:

-- lots of things

No=_Array : excep=ion;

-- The operation requires the handle supplied to be

-- pointing to an iden=ifer that has been registered as an

-- array (i.e., the Leng=h parameter was registered > 0).

-- Also, fai_ by CorLnect._Term if a Term_Id was passed in

-- which +_'+Dot represent _he first element of a Term_Id

-- arrag_O_=_All i, True.

__
-- all ro%1=i_ which require a handle for a term, mall,

-- or componen= array.

-- Connect_Term

Prefix_Error : exception;

-- A Componen=_ID is being regis=ered as a Prefix, but one

-- of it's ances=ors is already a prefix; or, a Term_ID or

-- Malfunction_Id is being registered, but no ances=or

-- component in the Paten= is a Prefix.

-- Raised by:

-- Regis _er_Com_onent

-- Register_Term

-- Register_Malfunction

11-34

OR',GINAL PAGE IS
OF POOR QUALITY

V

k.j

Dupllcate_Error : exception;

-- At. identifier has been registered with the same hare

-- as another under =he same component parent, l_ is not
J

'_ _ "_ for instance,
-- _ermissab!e Eo have more than 9_e _e.m_,_,

-- :ailed #X_Z" registered under _he same parent that already

-- _as • Term_lD regisEered zalled "XYZ'. However, a Term_ld

-- an a Message Id (e.g.) can both be registered under zhe

-- same =_mponen= parent, and have the same name. Also, a

-- ?erm_ld .:ailed "XYZ" may be registered even if another

-- "XYZ" Term_[d has already been registered under a differen_

-- parent. Only the full name must be unique for a particular

-- kind of identifier.

-- Raise by:

-- Regis_er_Comlmonent

-- Register_Term

-- Register_Type

-- Register_Message

-- Register_Malfunction

Load_Version Error : exception;

-- A report file being read via the Load procedure has

-- a different version number than the current Report version

-- number which the Dis maintains internally. This is the

-- number returned by the Report_Version function.

-- Raised by:

-- Load

Load_Name Error : exception;

-- A load file (either the file name given to the Load procedure

-- or a file name in a list of files) does not exist.

-- Raised by:

-- Load

Load_Error : exception;

-- The Load procedure ,has detected _hat its input file has

-- an incomplete list of Users in its first line--the list

-- must contain all of the users in the cor[ect order; or,

-- the file (or a file in the file l_st] does not exist; or,

-- the file has badly formatted lines or is incomplete in

-- some way,

-- Raised by:

-- Load

Null_Error : exception;

-- A null identifier or handle was supplied.

-- Raised by:

-- moet query routines

-- _vi_&te. Next routines

-- Ope_o-m on Component_ID and Component_Handle objects.

proced_ CTiate_Symbo I s

(The_ConE;onent : in out Component_Id; Parent : String);

-- Convert's String argument muse contain an Alphanumeric version

-- of the ID (°Robotics.SPDM.Arm(2)°) •

procedure Convert (String_Component : String;

The_Component : out Component_Id;

The_Handle : out Component_Handle);

function Convert (String_Component : String) return Component_Id;

function Convert (String_Component : String) return Component Handle;

function Handle (Of_Component : Component_Id) return Component_Handle;

function Image (Of_Component : Component_Id) return Str_ng;

function Value (Of_S_ring : String) return Component_Id;

11-35
OR_iNf_L PAGE

OF POOR QUAt.ITY

func-_ign _"'" v _-

f=nction The Name [The_/:_Fc=en= : 25_,:r.enc Handle_ re_urn S;rzng;

fun,z-Lon 2re,ix _The_]_m_nen- : Cc_vcnen'_Hand_-e_ rezurr. 2,_[ean;

f_nczlon Nu_er_Cf Levels The_iom._onenz : Comronen-. _._'_', return Natural;

runt- '_c.n 3uDcom_Dnenz

The_Zo_cr.en: : :zmponen__:_; Com_cnenz_Num : Na_-urai)

rez&rn :c:_cnent_id;

-- ?_nc-i__ns -__a-_ work _n :om_onent arrays. If c,_.e Com_onen_

-- vassed -o -Sese [s no_ an array, -_en Not_Array is raised.

-- The func-_zon ;d_Array -_ells whether a component is one or not.

function _'d_Array ',The_Com_.onen_ : Componen__Handle_ re_urn Boolean;

function Length {The_Array : Component_Handle) re_urn Natural;

function Label _The_Array : Component_Handle. index : Natural := 0)

re_urn String;

function Index (Of Array : Component_Handle; Label : Strin_ := "')

return Positive :

function In_Array (The_Componen_ : Componen__Id; The Array : Component_[d)

return Boolean;

function Coml_onen_ ',Of_Array : Component_[d; Index : Positive)

return Component Id;

function Com_onen_ (Of_Array : Componen__!d; Label : String)

re_urn Componen__Id ;

function ComlDonent (Of_Array : Coml_onent Handle; Index : Positive)

return Component_Handle ;

function __omponen_ (Of_Array : ComlDonen__Handle; Label : String)

ret urn Componen_ Handle ;

type Comp_Id_List is array (Positive range <>) of Componen__Id;

_ype Comp_Handle List is array (Positive range <>) of Component_Handle;

function Ge_ Prefixes re_urn Comp_Id_Lis_;

function Ge__Prefixes return Com_ Handle_List;

function Build {Comp_List : C: D_Id_Lis_)

The Build function creates a Component_Id by "concatenation ° of

rela_ed Component_Ids. The following rules apply:

•) The comvonents listed mus_ be rela_ed as ancestor/decendan_.

•) They must be in order of ancestor/descendant (e.g. great-

great-great-grandparent, grandparent, child).

•) Intermediate levels of the lineage may be skipped.

_) This function does not enforce _hese rules, since i_

would be too expensive time-wise to look up %he data.

return Component_[d;

-- The prefix name is _he name given _o a prefix when Connec_ Prefix

-- is called. The Par_i_ion_Id is added _o a prefix by _he Dis when

-- Conne__Prefix is called. Par_i_ion_Id returns 0 if Connect_Prefix

-- ham __ _m called for the component.

function_ef_x_.Na_ (The_Com_onen_ : Component_Handle) re_urn S_rlng;

func_ion1_i_ion__d (The_Componen_ : Component_Handle)

retur_ _._nteger_32;

Subcomponen___rror : exceDtion;

-- if the Component Num ar<_ument is larger than the

-- numDer of levels that make up a component or there

-- are no suDcomponents.

-- O_era=ions on Term_ID ob._ez=s.

procedure Crea_e_Symbols (The_Term : in out Term_id; Parent : s_rin_);

-- Convert's String argument mus_ contain an Alphanumeric version

-- of ohe ID ('Robo_ics.SPDM.Arm(2}.Join__l_Yaw').

11-36 ORIGINAL PAGE

OF POOR QUAUTV

%
k_/

k,//

;rccei-re Convert ',_ g_. :

The Term : ou: Term_ld;

The_Handle : ._ _rm_._a_,,._e, ;
J

; ion Conver: (String Term : 3:rlng; re:urn Verm_ld;

f_mc=_:n Conver: iS:rlng_Term : S:r_m_; return Term_Handle;

f=n:==_n Handle _C__Term : Term_id! return Term_Hand!e;

fjnc:ion :.mage _Of_Term : Term_ld) return String;

f._=::i_n Value ,-._,_...._ng : S_ring) return Term_id;

funcEicn

fanc:ion

function

function

function

function

Build ,:_mp : Compenent_id; Term : Term_Id} return Term_Id;

The_Component (The_Term : Term_Id) return Compoment_Id;

Fuii_Name (The Term : Term_Id) return Scring;

The_Name (The_Term : Term_Handle) return String;

The_Type (The_Term : Term_Handle} reCurn Type_Id;

The_Type (The_Term : Term Handle) return Type_Handle;

-- Lookable returns True if the term was registered with Look

-- or Look_Enter in che user list. Enterable returns True if

-- the Term was registered wiEh Look_Enter in the user list.

function Users (The_Term : Term Handle} return User_List;

function Lookable (The_Term : Term Handle} return Boolean;

function Enterable (The_Term : Term Handle) return Boolean;

function InitializaDle (The_Term : Term Handle) return Boolean;

-- o_erations on Term_ID arrays

function Id_Array (The_Term : Term_Handle) return Boolean:

function Length (The_Term_Array : Term_Handle) return Natural;

function Label (The_Term_Array : Term_Handle; Index : Natural := 0)

return String;

function Index {The_Term_Array : Term_Handle; Label : Strin_ := "')

return Positive;

function In_Array

{The_Term : Term_Id; The_Term_Array : Term_Id) return Boolean;

function Term (The_Term_Array : Term_Id; Index : Positive) re_urn Term_Id;

function Term (The_Term_Array : Term_Id; Label : String) return Term_Id;

function Term (The_Term_Array : Term_Handle; Index : Positive)

return Term_Handle:

function Term {The_Term_Array : Term_Handle; Label : String)

return Term_Handle;

-- Index operations.

procedure Add_Index (The_Term : Term_Handle; Index : Set.Natural_32);

function The_Index (The_Term : Term_Handle} return Term_Index;

-- If _he Term_ID hal no_ been "Connect"-ed, the Read Address

-- function returnB Null_Address.

functign]_mad_Addreli (The_Term : Term_Handle) return System.Address:

functioQ _fix_Co_ (The_Term : Term_Id) return Component_Id;

-- Operl_onm on Message_ID objects.

procedure Create_Symbols (The_Message : in out Message_Id; Parent : String);

-- Convert's String argument must contain an Alphanumeric version

-- of the ID (-Robotics.SPDM.Arm(2}.IF_Packetl').

procedure Convert (String_Message : String;

The_Message : out Message_Id;

The_Handle : out Message_Handle);

function Convert (String_Message : String) return Message_Id;

function Convert (String_Message : String) return Message_Handle;

function Handle (Of_Message : Message_Id) return Message_Handle;

function Build (Comp : Component_Id: Meg : Message_Id) return Message_Id;

OF pOOR QUALrPt

11-37

f_ncczon :._age '=f_Message : Messa_e_:_ rez_rn Szrinq;

f_nc=_:n Value _=f String ; S_rln,_i re:_rn Me_sa_e_[d;

f_nc:Lon

f_nc_ion

The_Ccmpcnen_ (The_Message : Message Z_: re:urn Compcnen:_iJ;

Fu_l_Name (The_Message : Mes_a;e_:d! return 3_ring;

T:e_Name [The_Message : Message_Handlel return S_ring;

Size (The_Message : Message_Handle! re_urn Na:ural;

Safes=ore iThe_Message : Message_HandLe) re_urn Boolean;

function Freflx__Dmp (The_Message : Message_[dl return Compcnent__d;

-- O_erations 9n Type_iD objec=s.

procedure Create SymDols {The_Type : in ouc Type_Id; Paren_ : String);

-- Conver_'s String argument must contain an Alphanumeric version

-- of the ID (-Robotics. Position_Vector').

procedure Convert (String_Type : String;

The_Type : out Type Id;

The_Handle : out Type_Handle);

function Convert (String_Tyl_e : String) return Type_Id;

function Convert (String Type : String] return Type Handle;

function Handle (Of_Type : Type_Id) return Type_Handle;

function Build (Comp : Component_Id; Typ : Type_Id) return Type_Id;

function Image (Of Type : Type_Id) return S_ring;

function Value (Of_$_ring : String) re_urn Ty_e_Id;

function

function

function

function

function

funczion

function

The_Component (The_Type : TylDe_!d) return Componen__Id;

Full Name (The_Type : Type_Id) return String;

The_Name (The_T_fpe : Type Hand!e! _return String;

The_Tag (The_Type : Type_Handle) return Type Tag_

Is_Subtype (The_Type : Type_Handle) return Boolean;

String_Length (The_Type : Type Handle) return Natural;

Size (The_Type : Type_Handle) return Natural;

-- The following functions are useful for Enum_Tag'd Type IDs; they

-- provl _ access to the information related co Labels, 'Poe-like

-- indexes, and representation values. A "Label" is a string that

-- s_ands for an enumeration literal. An "Index" is a numeral that

-- represents the position of a literal within the enumeration list

-- [the kind of value returned by Enum_Type'Pos(Liceral)]. A "Value"

-- is the representation numeral supplied with an enumeration

-- representation clause. Because Enum_Type'Pos starts with zero (0),

-- the DIS uses zero as the index _o the first element of the

-- enumeration type_i_; the label list array starts its index as zero

-- also. ThiI contraI_I with the indexes for labels of term, component

-- and m_!.func_ion identifier arrays, which s_ar_ at one.

-- o La_ Z_ a String value given an number which (I} is

-- uee_ _ an Index into a lis_ of label strings, if no Value_Lis_

-- was -_lie_ during Register_Type; or (2) is used as a Value

-- if a Value_LiI_ _s supplied.

-- o Label__ndex returns a 'Poe-like Index for enum tag'd _ypes.

-- o Label_Value returns a 'Pos-like Index if _he Type_ID

-- was registered without a Value_List _arameter° or the appropriate

-- representation value id there is an associated Value List.

-- o Value_Index returns a 'Poe-like Index given m Value.

-- o Values returns a Value_List entity which is ndexed from zero.

-- The enum type's 'Pos value directly accesse_ _ =_e corresponding

function Number Of Labels (The Type : Type Handle) return Natural;

function Label (The_Type : Type Handle; _ndex : Natural) return String;

function Labellndex

V

II-_8

k.j

(The T,_e : Ty!=e_Handle: La_e! : 3:r_ngl return Natural:

function La_ei_Va!_e

(The_Ty_ge : T?_2e_Handle: La:e_ : S:riag_ relur: Na:ural:

runt:ion Value_lr_ex

(The3y_e : Tyl=e_Handle: Value : Na:urai' re=urn Natural:

fanc=_on Values (The_Tyve : Ty_e Handlel re¢urn Value_List;

function L:=w_Bound (The T_e : Tyge_Hazdlel return Seu.ln:eger_32;

function High_Bound [The Tyl=e : Ty_e_Handlel recur= Se:,lnteger 32:

function Low _ound (The Type : Type_Handle) recur= Sea.Integer 16;

ffunccion High Bound (The_Type : Type_Handle) return Set.Integer 16:

function Low Bound (The Type : Type Handle) reaurn Set.ln¢eger_8;

func¢ion High Bound {The Type : Type Handle) return Sec.ln¢eger 8;

function Low Bound (The_Type : Type Handle) return Set.Real 6;

function High_Bound (The_Type : Type_Handle) return Set.Real_6;

function Low Bound (The Type : Type Handle) return Set.Real 15;

function High Bound (The Type : Type Handle) return Set.Real 15;

function Low Bound (The Type : Type Handle) return Character;

function High Bound (The_Type : Type_Handle) return Character:

-- Operations on Malfunction_ID objects.

procedure Create_Symbols

(The_Malf : in out Malfunction_Id; Paren_ : String);

-- Convert's String argument must contain an Alphanumeric version

-- of the ID ('Robotics.SPDM.Fail').

procedure Convert (String_Mall : String;

The_Mall : out Malfunction_Id;

The_Handle : out Malfunction_Handle);

function Convert (String__Malf : String) return Malfunction_Id;

function Convert (String_Mall : String) return Malfunction_Handle;

function Handle (Of_Mall : Malfunction_Id) return Malfunction_Handle;

function Build (Comp : Component_Id; Mall : Malfunction_Id)

return Malfunction_Id;

function Image (Of_Mall : Malfunction_Id) return String:

function Value (Of_String : String) return Malfunction_ld;

function The_Componen_ (The_Mall : Malfunction_Id] return Component_Id;

function Full_Name (The_Mall : Malfunc_ion_Id) return string_

function The Name (The_Mall : Malfunction_Handle) return String;

type Mall_Kind is (Simple_Malf, Options Malf, Pl_Malf, Pl_P2_Malf);

function Kind (The_Mall : Malfunction_Handle) return Mall Kind;

function Optior__Type (The_Malf : Malfunction_Handle) return Type_Handle;

functiom Options_Address

:_i (The_Mall : Malfunction_Handle) return System.Address;

func_Q_ ___ (The Mall : Malfunction_Handle) return String;

functiO_ _L._, (The_Mall : Malfunction_Handle) return Set.Real_f5;

function P___igh (The_Mall : Malfunction_Handle) return Set.Real_lS;

function Pl_.Type (The_Mall : Malfunction Handle] return Type_Handle;

function Pl_Address (The_Mall : Maifunct[on_Handle) return System.Address:

function P2_Name (The Mall : Malfunctlon_Handle) return String:

function P2_Low (The_Mall : Malfunction_Handle) return Set.Real_lS:

function P2_High (The_Mall : Malfunction_Handle) return Set.Reai_15;

function P2 Type (The_Mall : Malfunction Handle) return Type Handle;

function P2_Address (The_Mall : Malfunction_Handle) return System.Address;

function ActiveAddress

(The_Mall : Malfunctlon Handle) return System.Add:ess;

..... _ _ _,.3 ll-3g

fu=,z=ion S::red iThe_Ma:f : Malfunc=:_n_Handlel re_urn Boolean;

function ld_Array _The_Malf : MalfunctiDn_Eandlel return Boolean:

f ancti,_n Length _The Mall_Array : .Malfunc2i©n__andle_ return Positive;

function Label The Mall_Array : MaLfunczl_n_Handle; _ndex : Natural := 0_

re_urn Str_n_;

function Index [The M_lf Array : MalfuncEion_Handle; Label : String := ''E

return Positive;

function in_Array

(The_Mall : Malfunct_on_id; The_Mall_Array : Malfunction_id)

return Boolean;

function Mall (The Mall Array : Malfunction_Id; Index : Positive)

return Malfunction Id;

function Ma!f (The_Mall_Array : Malfunction_Id; Label : String)

return Malfunction_Id;

function Mall (The Mall_Array : Malfunction Handle; Index : Positive)

return Malfunction_Handle;

function Mall (The_Mall_Array : Malfunction_Handle; Label : S_rlng)

re_urn Malfunction_Handle;

function Pre__x_Comp (The_Malf : Malfunction_Id) re=urn Component_Id;

-- Connect facilities (_ynamic augmentation of the DIS)

-- The DIS is augmented with dynamic inforn_a=ion at run time. This

-- includes such things as the addresses of data i=e,_ =ha_

-- are to be associated with identifiers and locations of models

-- in the network.

-- This adds address information =o the iden=ifier: connect_Term adds

-- an address to a single term registered with =he DIS, However,

-- these Connects are also used for Term_Id arrays that map _o an

-- Ada array. If Connect_All is True (default) and Term represents

-- an ID array, only the address of the first element in =he Ada array

-- need be supplied. The rest of the addresses will be calculaced

-- by =he DIS. This will only work if the Ada array is contiguous in

-- memory and the component addresses can be calculaCed using the

-- address of the first. Connect_All is ignored if the term supplied

-- does not represent an ID array. If it is False, even if the Term

-- ID supplied represents an ID array, only one address & term will be

-- connected by the routine.

procedure Connec:_Term [Term : Term_Id;

Address : System.Address;

Connect_All : Boolean := False);

-- An alternate version of Connect_Term uses the symbol map

-- strinQ tO d_rive the address. IC works exactly like _he straight

-- addr_ _rmlon, including its behavior for Term_ID arrays.

procedure (_m*:=__erm (Term : Term_Id;

Symbol : S_ring;

CorL_ect_All : Boolean := False);

-- Use this routine when the Term ID array maps to a set of Ada terms

-- that are not contiguous in memory i_ such a w_y that Connect_Term

-- can simply calculate all of the appropriate addresses usin_ the

-- first one. The array of addresses must be the same length as the

-- previously registered term array.

procedure Connect_Term_Array

(Term_Array : Term Id; Addresses : Address_Array);

-- Connecting a malfuncCion means supplying the addresses for the

-- parameters associated with the mall. These are =he addresses of:

-- i) the PI parameter,

11-40

ORIGINAL PAGE !_

OF POOR rrY

V

\
-- 2) _ne ?2 parameter,

-- 3) =he llscre'_e options _arameter, and

-- 41 "-he malfunction active fla_

-- Use the version of Connecs_Malfunc_ion call below which permits

-- the use of symbols. An address or symbol mus_ be supplied for

-- al' 5he parameters _ha_ a._ply co a _ar_zcu[ar rm'-func_ion. For

-- exa_le, if "-here is a Pl _arameter but no P2 parameter associated

-- wi:h a _a[functlon, and a Connec_ call is made for that malfunction,

-- -here .Tus_ _e an address or symbol for the flrsc elemen_ in :he

-- array a._.d a Nuli_Address and null symbol string for _he second

-- element. In a[l cases, an address or symbol is required for the

-- active flag. Connect_Error is raised if _hese rules are violated.

:ype Malf Addressable is (Pl_Addr, P2_Addr, Options Addr, Active_Addr};

type Malf Addresses is array (Malf_Addressablel of System.Address;

-- This procedure is obsolete. Phase i_ out and

-- use the version below instead.

procedure Connect_Mal function

(The_Mall : Malfunction__d; Addresses : Mall_Addresses);

-- You can connect any malfunction parameter using a symbol or

-- using an address. If you suDply a sSanbol for a particular

-- parameter, you may not supply an address, and vice versa.

-- However, you may supply a symbol for one paran_ecer and an

-- address for a different parameter.

procedure Connect_Mal function

(The Mall : Malfunction _d;

Active_Symbol : S_rin_ :: "";

Pl_Symbol : String := "';

P2_Symbol : String := "';

Options_Symbol : String :-- "°;

Active_Address : System.Address := Null_Address;

Pl_Address : System.Address := Null_Address;

P2_Address : System.Address := Null_Address;

Gptions_Address : System.Address := Null_Address);

-- This call is not very useful; it doesn't seem _o save much

-- coding over _he Connect_Malfunction call, is probably error-prone,

-- and doesn't have the advantage of checking agains_ da_a in _he

-- symbol table. It may be phased out in _he future.

procedure Connect_Mal f_Array

(The_Mall_Array : Malfunc_ion_Id;

Active_Addresses : Address_Array;

Options_Addresses : Address_Array .3 Null_Address_Array:

Pl..Addresse_ : Address_Array := NullAddress_Array;

P2_Addresses : Address_Array := Null_Address_Array) ;

-- Ad_ %(M:_on information (node and process ID)

-- to _ _r_ent identifier.

procedure _m_e__Prefix (To_Comp : Component_Id; Prefix_Name : String);

-- Constants and magic numbers.

-- The maximum String length for String_Tag'd __IDs.

Max S_ring : constant := 40;

-- The maximum number of component levels.

Max_Levels : constant := 7;

-- The maximum number of identifiers tha_ can be registered

-- per level.

Max_Components : constan_ := 255;

11-41

Max_Terms : -_ons=an_ :: 65535:

Zm×_Ty_es : constan_ := 255;

Max_Messages : cons=an_ :: 255;
P

Max_Ma'-fu._,ctlons : constant := 255;

-- The DIS identifier 3=ring length cens=an=s.

-- _a=h DiS identifier can be represen-_ed in =we ways: as a

-- s=rLng or as a set of integer values. The Register functions

-- provide the integer-set version =o ",he registering application.

-- Each identifer =y_e has a Convert function which takes a String

-- value and produces an identifier type value {the integer-set).

-- The Full_Name func'_ion takes an iden=ifier value and produces a

-- String value. Examples of identifier s_ring for,Tats are:

-- comp_id, comp_id, term_id

-- comp_id.comp_id(3) . type_id

-- comI__id, comp_id, term_id (Left_Engine)

-- comp_id.comlD_id(2).comp_id(NW)._erm_id

-- comp_id.comp_id.comp_id msg_id

-- Each Component _D in the string can be up to Max Comp_Name

--characters long. Each of the other identifiers can be up to

-- Max_[D_Name characters long. Subscripts can be as long as

-- Max_Label_Name characters.

Max_Label_Name : constant := 30; -- max length for label names

-- this includes enumeration labels, and subscript labels for

-- identifier arrays (component, term, and malfunction types).

Max Comp_Name : constan_ := 20; -- max length for component id names

Max_Id Name : constant := 40; -- max length for other id names

Max_Malf_Name : constant := Max_Zd_Name - 2;

-- Register_Malfunctlon tacks on a '_x' suffix to mall-related terma

Max Subtype_Name : constant := Max [d_Name- 3;

-- Register_Subtype tacks on a '_xx' suffix to the base tyl_e name

Max_Full_Name : -nstant ::

(Max_Levels) _(Max_Comp_Name + i) _ (Max_Label_Name ÷ 2)]

Max_Id_Na_ _ (Max_Label_Name . 2);

-- Max length for fully qualified identifier names.

-- Leave enough room for max levels of components. Each

-- com_>onent can be Max_Comp_Name . i (for the period) plus

-- the Max Label_Name + 2 (for _he parentheses). And then

-- Max_ID_Name chars for the lowest level of identifier plus

-- Max_Sa_l_Na_ . 2.

-- Pack_-_wi_ 9 is used by tools t.ha_ need to traverse _he

-- memor-_-z_iden_ DIS tree.

package Mww_te im

-- Get _he head DIS handle.

function Head return Component_Handle;

(simplest form)

(indexed by l..Length)

{indexed, user-def labels)

<mix 'n" match 'era)

_up to Max_Level Co_ponent_[Ds)

-- Ge_ _he handles for the child lists.

function Comp Children (Comp : Component_Handle)

ret urn Component_Handle ;

function Type_Children (Comp : Component_Handle) re_urn Type_Handle;

function Term_Children (Comp : Component_Handle) return Term_Handle;

function Msg_Children (Comp : Component_Handle) re_urn Message_Handle;

function Malf_Children (Comp : Component_Handle)

return Mal funct ion_Handle ;

V

11-42 ORIGINAL PAG_E IS

POORQ ,UW

k.j

-- 3ec :he "nex:" handle in list. "Next" looks a: Drily the flrsz

-- handle of an ID array; "Nex:i" looks at all handles.

function Nex: _Comp : Component_Handle_ rsturn /omponenz_Handle;

function

f_nction

runt:ion

funczion

func_lon

f_n_:zion

f_nc:ion

Nex:l (Comp : Component_Handle) return Component_Handle;

Next (Typ : Type_Handle) return Type_Hand!e;

Next _Term : Term_Handie_ return Term Handle;

Nex:i (Term : Term_Handle) return Term_Handle;

Next [Msg : Message_Handle: return Message_Handle;

Next :Ma[f : Malfunction_Handle) return Malfunction_Handle;

Next! _Malf : Malfunction_Handle) return Malfunction_Handle:

-- Don't try to go past the end of a !isc, or you'll get the

-- Null_Error. Compare handles returned from Navigace's routines

-- to the NulI_<ID_Type> Handle constants declared at the top

-- of the DIS package spec.

end Navigate;

private

-- hidden from sight

end Dis;

-- Abstract:

-- Warnings:

The DIS is used to create a set of logical names for

off-line and inter-model data references. The DIS

internal data-base can be loaded in one of two ways:

through the elaboration of packages defining identifiers,

or Dy loading a file which contains the previously-

stored state of the DIS• The first method is for

real-time models, the second is for off-line tools.

Models connect their data variables to the DIS logical

names with the "Connect" routines.

Be sure to follow all the rules for DIS °_Defs" package

creation. The DIS assigns identifier values in a strict

order indepentent of the elaboration order of the _Defs

packages; this scheme only works if the rules are followed.

_.,..jf

ORIGINAL PAGE P3
OF POOR QUALITY 11-43

8.5. SSTF_Defs

wi=h Dis, std_En__Types, S_d_Eng_Uni=s:

package Ss_f_Defs is

package 3e_ renames S_d_Eng_Ty_es;

-- The top-level "Component_IDs"

Robotics : cons=ant Dis.Component_Id :=

Dis.Regis=er_ComVonent (Dis.Nu!l_ComDonent, "Robo¢ics");

Environmen_ : constant Dis.Component_Id :=

Dis.Register_Componenu (Dis.Null_Comvenent, "Environment');

Usad : constant Dis.Comvonent_Id := Dis.Register_Component

(Dis.Null_Component, "Distributed'_ ;

Usav : constant Dis.Com_onent_Id :=

Dis.Register_Component (Dis.Null_Co_>onent, "USAV'};

Obcs : constant Dis.Component_Id :=

Dis.Register_Component (Dis.Null_Component, "C3CS");

Visual : constant Dis.Component_Id :=

Dis.Register Component (Dis.Null_Comvonent, "Visual");

Nts : constant Dis.Com_onen__[d :=

Dis.Register_Component (Dis.Null_Com_onen_, "NTS");

RtS : constant Dis.Co,_onent_rd :=

Dis.Register_Componen_ (Dis.Null_Component, °RTS');

[oe: constant Dis.Component_Id :=

Dis.Register_Component (Dis.Null Co,_onent, "IOS');

Ops_Tools : cDnstant Dis.Componen__Id :=

Dis.Register_Component (Dis.Null_Component, "Ops_Tools');

Sac : constant Dis.co_nent_Id :=

Dis.Register_Component (Dis.Null_Component, "SAC');

-- The top-level -Type_IDl" (and type tags renamed from DIS).

!

DackaGe Bf is new Dis.Enum_Functions (Boolean);

Boolean : constant Dis.Type_Id :=

Dis =egister_Type (Dis.Null_Com_x_nen_, "Boolean', D :m Tag,

LaDels => Bf.Labels,

Size => Bf.Size):

N

V

Character : constan¢ Dis.Ty_e_Id :=

Dis.Register_Type (Dis.Null_Component, "Character', Dis.Character_Tag,

Low_Bound => (i => Ascii.Nul), -- ascii 0

High_Bound => (I => Ascii.Del)); -- ascii 127

Graphic_Character : conmtant Dis.Type_Id :=

Dil._a_ez_SubtyVe (Dis.Null_Component,

:_: Base => Character,

_--- Name => "Graphic_Character',

= Low_Bound => ' ', -- blank

High_Bound => '~'); -- tilde

-- Logical types for the Fortran guys: use the Boolean labels.

Logical_l : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Co_onent, "Logical_l', Dis.Enum_Tag,

Labels => Bf.La=els,

Size => 8);

Logical_2 : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, "Logical_2", Dis.Enum_Tag,

Labels :> Bf. Labels,

Size => 16);

Logical_4 : constant Dis.Type_Id z=

11-44

% /

Dis.Reg!s=er_Ty_e [Dis.Nul__C_m_¢men:, "Lc, girai_4 °, Dis.Enum_Tag,

Labels => 3f.La_els,

Size,:> 32);

-- Standard Engineering TYl:es

integer_@ : constant Dis.Type_Id ::

3Ls.RegLszer_Tylze CDis.Null_Componen:, "integer_B*, Dis.Byte_Tag);

Nacur_[__ : constant Dis.Tyve_ld :=

Dis.Register_Ty_e CDis.Null_Component, "Natural_8 °, Dis.Byte_Tag,

Low_Bound => "0") ;

Positive_8 : constant Dis.Type_Id :=

Dis.Register_Type {Dis.Null_Component, "Positive_8 °, Dis. Byte_Tag,

Low_Bound => "I');

In=eger_16 : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, -Integer_f6*, Dis.Short_Tag);

Natural_f6 : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, °Natural_f6", Dis.Short_Tag,

Low_Bound => "0");

Positive_f6 :conscant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, -Positive_f6 °, Dis.Short_Tag,

Low_Bound => "i');

!nteger_32 : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, "Integer_32", Dis.lnteger_Tag);

Natural_32 : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, "Natural_32", Dis.lnteger_Tag,

Low_Bound => "0°) ;

Positive_32 : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_ComDcnent, OPositive_32", Dis.lnteger_Tag,

Low_Bound => °I°);

Real_6 : constant Dis.Type_Id :=

Dis.Register_Type [Dis.Null_Component, "Real_6", Dis.Float_Tag);

Real_f5 :constanc Dis.Type_Id :=

Dis.Register_Type (Dis.Null Component, "Real_lS", Dis.Double_Tag);

-- other types from SET

package Af is new Dis.Enum_Functions (Set.Active_Inactive);

Active Inactive : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, -Active_Inactive', Dis.Enum_Tag,

Labels :> Af.Labels,

Size => Af.Size);

package A!_ is new Dis.Enum_Functions (Set.Actual_Sensed);

Actual__get_14_ : constant Dim.Type_Id :=

Dim._i_er_Type (Die.Null_Component, -Actual_Sensed', Dis.Enum_Tag,

-- " Labels => Ast.Labels,

Size => Ast.Size);

package Aut is new Dis.Enum_Functions (Set.Attached_Unattached);

Attached_Unattached : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component,

OAttached_Unattached", Dis. Enum_Tag,

Labels => Auc.Labels,

Size => Auc.Size);

package Avf is new Dis. Enum_Functions (Set.Available_Unavailable);

AvailaDile_Unavailable : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component,

• Availabile_Unavailable ° , Dis.Enum_Tag,

11-45 OR_:ttN_L PAGE ,_

La:els :> Avf. Labels,

Size :> Avf.3ize);

V

Facka_e Bzf is new Dis. Enum ?unctions _3e_.Busy_No__Busy);

Busy_No:_B_sy : cons_an_ Dis.Type [d :=

_:s.Register_Ty_e (Dis.Null_Component, "Busy_No__Busy', Dis. Enum_Tag,

Labels => Bzf. Labels,

Size => Bz ; 3ize) ;

package _nc: is new Dis.Enum Functions (Se=.Closed_Noc_Closed) ;

Ciosed_Ne__Cl_sed : constant Dis.Type_Id :=

Dis.Register3y_e (Dis.Null Component, "Closed_Not Closed', Dis. Enum Tag,

Labels => Cnct.Sabels,

Size :> Cnct.Size);

package Un_ is new Dis.Enum_Functions (Se_.Connected_Unconnected);

Connected_Unconnected : constant Dis.Type_Id :=

D:_.Register_TylDe (Dis.Null_Component,

• Connec_,__Unconnec_ed,, Dis.Enum_Tag,

Labels hi.Labels,

Size = .Size);

package Cf is new Dis.Enum FL _zions (Se_.Complete_Incomplete);

Comple_e__ncomplete : constant Dis.Type_Id :=

Dis.Register_Type

(Dis. Null_ComI_onent, "Co,fete_Incomplete', Dis.Enum_Tag,

Labels => Cf. Labels,

Size =) Cf.Size) ;

package Ef is new Dis. Eium_Punctions (Set.Etttlpty_Not_EmP£yi;

Empty_Not_Empty : constan_ Dis.Type_Zd :=

Dis.Register Type (Dis.Null_Componen_, "Empty_Not_Empty', Dis.Enum Tag,

Labels => Ef. Labelm,

Size => Ef.Size);

V

package Ent is new Dis.Enum_Functions (Set.Enabled_Disabled);

Enabled Disabled : constant Dis.Type_Id ::

Dis.Register_Type (Dis.Null_ComDonen_, "Enabled_Disabled', Dis.Enum_Tag,

Labels => Ent.Labels,

Size => Enc.Size) ;

package Gnf is new Die. Enum_Functions {Set.Go_No_Go);

Go_No_Go : constant Dis.Type_Id ::

Dis.Register_Type (Dis.Null_Component, "Go_No_Go", Dii. Enum_Tag,

Labels => Gnf. Labela,

Size => Gnf.Size);

package _i! _ewDis. EnumFunctions (Set.ln_Tune_Not_In_Tune);

In_Tune____T%u_ : constant Dis.Type_Id :=

Oie._ter_Ty1_e

(D_l.l_all__Com_o_enc, "In_Tune_Not_In_Tune', Dis.Enum_Tag,

Labels => Tf. Labels,

Size => Tf.Size);

package Ioc is new Dis.Enum_Func_ions (Set. Input_Output);

Input_Ou_pu_ : constant Dis.TyE__Zd :=

Dis.Register_Type (Dis.Null_Component, "Inpu_Output-, Dim.Enum_Tag,

Labels => lot.Labels,

Size => lot.Size);

package Inc is new Dis.Enum Punctions (Sec. Ios_Nominal);

[os_Nominal : constant Dis.Type_Id _=

Dis.Register_Type (Dis.Null_Com_nent, "Ios_Nomlnal', Dil. Enum_Tag,

11-46
ORDINAL PArlE IS

OF POOR QUALITY

\ F

Laze'_s :> fnc. Labels,

Size => [no.Size'. ;

acKage Gnf is new D1s. Enum Funcc_-°ns (Se'.On_Gff_;

_Dn 5ff : constan __ _is.Typ. e_[d :=

-__s.Register_TYl:e [Dis.Null_Com_onenc, "On_.Dff", Dis. Enum_Tag,

Labels => Cnf.LaDels,

Size => Onf.S!ze) ;

7

package :Pf is new :is.Enum_Func_ions (See.Open_Closed) ;

Gpen Closed : constant Dis.Type_fd ::

Dis.Register_Type (Dis.Null Component, ,Open Closed', Dis.Enum3ag,

Labels => Opf.Labe!s,

Size => Opf.Size) ;

package Ont is new Dis.Enum_Functions (Set.Open_Not Open) ;

Open_Not_Open : constant Dis.Type_fd :=

Dis.Register_Type [Dis.Null_Component, -Open_Not Open', Dis.Enum_Tag,

Labels :> One.Labels,

Size => Ont.Size) ;

package OvC is new Dis.Enum_Func_ions (See.Override_Not_Override)"

Override_Not_Override : constant Dis.Type_Id :=

Dis. Register_TYpe (Dis.Null_Component

• Override_Not_Override", Dis. Enum_Tag,

Labels :> Ovt.Labels,

Size => Ova.Size) ;

package Pdf is new Dis.Enum Functions (See.Pending_Not_Pending) ;

Pending_Not_Pending : constant Dis.Type Td :=

Dis.Register_TYpe (Dis. Null_Component,

-Pending_Not Pending', Dis. Enum_Tag,

Labels => pdf.Labels,

Size => pdf.Size);

package Pf is new Dis.Enum_Functionm (See.Present_Absent);

Present Absent : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, -Present_Absent", Dis.Enum_Tag,

Labels => pf. Labels,

Size => Pf.Size);

package Rsc is new Dis.Enum_Functions (Set.Reset Not_Reset)"

Reset_Not_Reset : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, -Reset_Not_Re ec', Dis.Enum_Tag,

Labels => Rst.Labels,

Size => Rst.Size) ;

package i_f ie new Dis. Enum_Functions (See.Right_Wrong);

Right_Wr_ • constant Dis.Type_Id :=

Dis._8_:er_TY_e (Dis.Null_Component, -Right_Wrong", Dis.Enum_Tag,

Labels :> Rf.Labels,

L- _ Size :> Rf.Size);

package Sb= i_ new Dis.Enum_Functions (Set.Scale_Bias);

Scale Bias :constanc Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, -Scale_Bias', Dis.Enum_Tag,

Labels :> Sbc.Labels,

Size => Sb=.Size);

package Syt is new Dis.Enum_Functions (Set.Sync_Not_Sync);

Sync_Not_Sync : constant Dis.Type_!d :=

Dis.Register_Type (Dis.NuliComponent, -Sync_Noc_Sync', Dis.Enum_Tag,

Labels => Syt.Labels,

Size => Syc.Size) ;

11-47

_az_age U_¢ _s new _s.Enum_Funcznnns [Sez.Uni3cked Lccked_:

Unlocked_Locked : cons_an_ Dis.TvPe_]d :=

Dis.Register_Type _Dis.Null Component, ,Unlocked_LocKed o, D_s.Enum_Tag,

Labels => Ui=.Labels,

Size :> Ul_.Size_;

-- String :'/_es

Asse:s : conszan_ _is.Tyv. e_ld ::

Dis.Reglszer_?y_e

_Dis.Null_Component, "Assets', Dis.String_Tag, Size :> 12

Nodes : constant Dis.Type_ld :=

Dis.Register_Type

(Dis.Null_Co._ponent, "Nodesf, Dis. String_Tag, Size :> 12)

Sessions : constant Dis.Type_Id :=

Dis.Register_Type

(Dis.Null_Component, "Sessions', Dis.String_Tag, Size => 12);

-- Standard Engineering Units

-- Mostly consists of "renames" of earlier Type_IDs. Note that the

-- string displayed for such renamed entities is the name given for

-- the original type identifier, which is not the same as the Ads

-- name below.

-- Time types

Seconds : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_C0mponent, "Sec0ndsi, 0is'Fioat_Tag);

Microseconds : constant Dis.Type__d :=

Dis. Register Type (Dis.NullComponent, "Microseconds", Dis.Float_Tag);

Milliseconds : constant Dis.Type_Id :=

Dis.Register Type (Dis.Null_Component, "Milliseconds-, Dis.Float_Tag);

Minutes : cons_an_ Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, "Minutes', Dis. Float_Tag};

Hours : constan_ Dis.Type_Id :=

Dis.Register Type (Dis.Null_Component, "Hours', Dis.Float_Tag);

Days : constant Dis.Type Id :=

Dis.Register Type (Dis.Null_Component, "Days', Dis.Float_Tag);

Days_Dp : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, "Daym_DP", Dis.Double_Tag);

-- Physical types (are you the ... ?)

Meters : constant Dim.Type_Id ::

Dis.Rqiscer_Type (Dis.Null_Component, "Meters', Dis.Float_Tag}:

Meters._Dp : ¢ol_sta/_: Dis.Type_Id ::

Dis.Rm_=_stez_Type (Dis.Null_Component, "Meters DP-, Dis.Double_Tag);

Square_z_ : constant Dis.Type_Id ::

Dis.ReqlsterType (DisoNull_Com_onent, "Square_Meters', Dis. Float_Tag);

Cubic_Meters : cons_an_ Dis.__Id :=

Dis.Register_Type (Dis.Null Component, "Cubic_Meters-, Dis. Float_Tag);

Meters_Per_Second : constant Dis.Type Id :=

Dis.Register_Type (Dis.Null_.Componen_,

°Meters_Per_Second', Dis. Floa__Tag);

Meters_Per_Second Dp : constant Dis.Type_Id :=

Dis.Register Type (Dis. Null_Componen_,

"Meters_Per_Second_DP-, Dis.Double_Tag);

Meters_Per Second_Squared : constant Dis.Type_[d :=

Dis.Register Type (Dis.Null_Component,

"Meters_Per_Second Squared', Dis. FloatTag);

V

11-48 OI_IGINAL PAGE I_

OF POOR @ JALITY

k_J

Meze_s_?er_3eccnd 3quared_:P : conszan: :zs.i'Aze_[d ::

Dis._eqis:er_Tyl:e :Dts.Nuil_iompcnenu,

• Me:ers_Fer_iec%nd_Squared D_", Dis.:ouDie_Tag!
i

Rec_;r¢cal -Me_ers : censzan: Dis.TYl:e_[d :=

D_s.Regis:er_Ty!:e _Dis.Nuii_Componen:,

"Recfprocal_Me:ers', Dis.F[oa:_Tag_;

K_[_gra_s : c&ns:ant Dis.Tyl:e Id ::

D[s.Req_s:er_?y_.e :_is.Null_Componen_, "Kilograms', Dis. Float_Tag;

Kilograms_Kelvin : :onszant Dis.Type_[d :=

Dis.Regis_er_TFpe (Dis.Null_Componenz,

• Kilograms_Kelvin', Dis. Float_Tag} ;

Kilograms Square_Me,or : constant Dis.Type_:d ::

Dis.Register_Type {Dis.Null_Component,

"Kilograms_Square_Meter", Dis.Float_Tag);

Kilograms_Per_Cubic_Meter : constant Dis.Type_[d ::

Dis.Register_Type Ibis.Null_Component,

-Kilograms_Per_Cubic_Meter', Dis.Float_Tag);

Kilograms_Per_Cubic_Meter_Dp : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component,

-Kilograms_Per_Cubic_Meter_DP", Dis.Double_Tag);

Cubic_Meters_Per_Kilogram ; constant Dis.Type Id :=

Dis.Register_Type (Dis. Null_Component,

• Cubic_Meters_Per_Kilogram", Dis. Float_Tag):

Joules : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, "Joules", Dis.Float_Tag);

Joules_Per_Kelvin : constant Dis.Type_[d :=

Dis.Register_Type (Dis.Null_Component,

"Joules_Per_Kelvin', Dis.Float_Tag);

Joules_Per_Kilogram_Kelvin : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component,

•Joules_Per_Kilogram_Kelvin', Dis.Float_Tag];

Moles : constant Dis.Type_Id :=

Dis.Register Type (Dis.Null_Component, "Moles', Dis.Float_Tag);

Moles_Per_Cubic_Meter : constant Dis.Type_Id :=

Dis.Reqiszer Type (Dis.Null_Component,

-Moles_Per_Cubic Meter", Dis.Floa__Tag);

Newtons : constant Dis.Type_Id :=

Dis.Register Type (Dis.Null_Component, "Newtons", Dis. Floa__Tag) ;

Newtons_Dp : constant Dis.Type_Id :=

Dis. Register_Type (Dis.Null_Component, "Newtons_DP', Dis.Double_Tag);

Newton_Meters : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, -Newton_Meters", Dis.Float_Tag);

Newton_M_terl_Pp : constant Dis.Type_Id :=

Dis ._±l_er_Ty;)e (Dis.Null_Component,

• Newton_Meters_DP", Dis .Double_Tag) ;

Newto_..Nm=er : constant Dis.Type_Id :=

Dil_:[l_er_Type (Dis.Null_Component,

• Newtons_Square_Meter', Dis.Float_Tag);

Newtons Per_Meter : constant Dis.Ty1:e_Id :=

Dis.Re_ister_Type (Dis.Null_Component,

• Newtons_Per_Meter', Dis. Float_Tag);

Pascals : cons:an: Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, "Pascals', Dis.Float_Tag};

Pascals_Per_Second : constant Dis.Type_Id :=

Dis. Register_Type (Dis.Null_Component,

°Pascals_Per_Second', Dis.Float_Tag];

Degrees : constant Dis.Type Id ;=

Dis.Register_Type (Dis.Null_Component, ,Degrees', Dis.Float_Tag);

11-49
ORJGtNAL PAGE I_

OF POOR QUALITY

_e_rees__p : cens=an_ Dis.Tyve_ld :=

Dis.Register_Ty_e [_s. Nuii_Componen=, "Ce;rees__?', _is.2.Duble_Ta;[:

Cegrees_Per_Second : .zons_anE Dis.Ty_e_ld :=

_-.RegisterTylze..= [_is.Nuli_tomccnen_,.

"Cegrees_?er 5ez:nd', _is. Float_Tag);

_e;rees_Per_Sec=nd_2p : cons=ant Dis.Tyl_e_ld :=

_is. ReGis=er_Ty_e [_is.Nuil_Com_cnenc,

"Cegrees_?er_Se.=ond_DP', Dis.Double Tag);

_egrees _er_iecend_iquared : constant Dis.Tyve_=_ :=

_is. Re_iszer Tyve _2is _ll_Component,

"C, -ees_Per_Second_Squared', Dis.Float_Tag) ;

Degrees_Per_Second_Squared_Dp : constant Dis.Type_!d :=

Dis.Register2y_e {Dis.Nuii_Componen=,

"Degrees_Per_Second_Squared_DP', Dis.Double Tag);

Radians : constan¢ Dis.Type_ld :=

Dis.Register_Type [Dis.Null_Component, "Radians', Dis.Float_Tag];

Radians_Dp : constan< 2is.Type_Id :=

Dis.Register Type .Dis.Null_Component, "Radians_DP', Dis.Double Tag);

Radians_Per_Second : constant Dis.Type_rd ==

Dis.Register_Type (Dis.Null_Component,

"Radians_Per_Second', Dis.Floa__Tag);

Nadians_Per_Second_Dp : cons=ant Dis.Type_Id :=

Dis.Register_Type (Dis.".il_ComI_onen_,

• Ra/_ans_Per_Second_DP', Dis.Double_Tag):

Radians_Per_Second_Squared : constant Dis.Tyl_e_Id :=

Dis.Regiscer_Type (Dis.Nuli Componen=,

"Radians_Per_Second_Squared', Dis.Float Tag):

Radians_Per Second_Squared_Dp : cons=anc Dis.Type_l_ :=

Dis.Register_Type (Dis.Null_ComlDonent,

"Radians_Per_Second_Squared_DP', Dis.Double__Tag) t

Steradians : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Nuli_Componenc, "Steradians', Dis.Float_Tag);

Steradians_Per_Second : constant Dis.Type__d :=

Dis.Register_Type (Dis.Null,Coml_onen_,

• Steradians_Per_Second", Dis. P!oac_Tag};

Steradians_Per_Second_Squared :constanc Dis.Type_Id :=

Dis.Regiszer_Type (Dis.Null_Componen=,

"S_eradians_Per_Sec_ _ Squared', Dis.Float_Tag);

Wat=s : constant Dis.Ty_. _ Zd :=

Dis.Register_Type (D -.Null_Component, ' _t_s', Dis.Float_Tag);

Kilowatts : cons=an= DL - _pe_Id :=

Dis.Register Type ("_ull Component, "Kilowatts-, Dis. Float Tag);

Watts_Per_Square_Meter)nstan= Dis.Type_Id :=

Dis.Register_Type (D_=.Null_Componen_,

"Watts_Per Square_Meter', Dis.Float_Tag);

Wa_ts_Pe_,_eradlan : co_1_an_ Dis.Tylme_Id :=

Dis._ter__ (Dis.Null_Cor_onen_,

_-.- "Wa_ts_Per_Steradian', Dis.Float Tag) ;

Wa_ts Per,_re_Mm=er_Steradian : constant Dis.Type _d :=

Dis.Re_i_er__ (Dis.Null_Coml)onent,

"Wat_s_Per_Square_Meter_S=eradian ° , Dis.Float_Tag);

-- English _ypes

Inches : constant Dis.Ty_e_Id :=

Dis.Register_Type (Di /_ll_Cor_>onent, "Inches", Dim.Floa__Tag};

Inches_Dp : constant Dis ._e_Id :=

Dis.Register_Ty_e (Dis.Null_Component, "Inches_DP", Dis.Double_Tag);

Square Inches : constant D_s.Type_Id :=

Dis.Register Type (Dis.Null_Component, "Square_Inches", Dis.Float_Tag);

Cubic_Inches : constant D_s.Type_Id :=

Dis.Register_Type (Dis.Null_Component, "Cubic_Inches", Dis. Float_Tag);

11-50 ORIG_NAL PAG_ I_
OF POOR QUALITY

k._j

k_w

Feet : .=ons=an_ _Ls.Tylze_id :=

Dis.Register_Tyl:e _Dis.Nuii_Compcnen_, "Fee=', Dis.Float_Tag);

Fee___p : constant Dis.Type_ld :=

_ _ Dls._ouboe_,a_,Dis.Register_Type [Dis.Null Component, "Feet DP', " _ _ _ -' ;

Square Feet : conszan_ Dis.Tyve_id :=

Cis._egist_r_Typ. e _Dis.Nu[l_Componenc, "Square_Feet", Dis.Float Tag);

Sqaare_Feet_DP : cons=anE Dis.Type_id :=

2is.Regis=er_Type iDis.Null_Componen=, "Square_Feet_DP', Dis.Double Tag] ;

Cubic_Feez : conszan_ Cis.Tylze_ld :=

Dis.RegLszer_Ty_e _Dis.Nuil_Componen_, "Cubic_Feet", Dis.Float_Tag);

Cubic_Feet_Dp : constan_ Dis.Type_Id :=

D_s.Register_Ty_e [Dis.Null_Component, -Cubic_Feet_DP', Dis.Double_Tag] ;

Fee,_Per_Second : conszanc Dis.Type_ld :=

Dis.Register_Type [Dis.Null_Component, ,Feet_Per_Second', Dis.Float_Tag};

Feet_Per Second_Dp : constant Dis.Type_ld :=

Dis.Register_Type (Dis.Nu!l_Componens,

-Fee=_Per_Second_DP', Dis.Double_Tag};

Fee,_Per_Second Squared : constant Dis.Type_Id :=

Dis.Register_Type {Dis.Null_Component,

• Feet_Per_Second_Squared', Dis. Float_Tag);

Feet_Per_Second_Squared_Dp : constant D_s.Type_Id :=

Dis.Register_Type (Dis.Null_Component,

-Feec_Per_Second_Squared_DP', Dis.Double_Tag);

Miles : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, "Miles', Dis.Float_Tag);

Miles_Per_Hour : constant Dis.Type_ld :=

Dis.Register_Type {Dis.Null_Component, "Miles_Per_Hour', Dis.Float_Tag);

Nautical_Miles : constant Dis.Type_Id :=

Dis. Register_Type (Dis.Null_Component, -Nautical_Miles', Dis. Pioat_Tag};

Nautical_Miles_Per_Hour : constant Dis.Ty_e_Id :=

Dis.Register_Type {Dis.Null_Component,

• Nautical_3(iles_Per_Hour', Dis.Floa___Tag);

Gallons : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null Component, mGallons', Dis. Float_Tag);

Gallons_Per Second : constant Dis.Type_Id :=

Dis.Register_Type [Dis.Null_Component,

-Gallons_Per_Second', Dis.Float_Tag);

Quarts : cons=an= Dis.Type_Id :=

Dis.Register_Type [Dis.Null_Component, "Quarts', Dis.Float_Tag);

Pounds_Mass : consEant Dis.Type_Id :=

Dis.Register_Type {Dis.Null_Component, -Pounds_Mass', Dis.Float_Tag);

Pounds Mass_Per_Second : constant Dis.Type_Id :=

Dis.Re_iscer__ (Dis.Null_.ComponenE,

• Pounds_Mass_Per_Second', Dis.Float_Tag};

Slugs : __O_In_ Dis.Type_Id _=

Dil,_il_er_TMPe (Dim.Null_Component, "Slugs', Dis.Float_Tag);

Slugs_D_ _ant Dim.Type_ld :=

Dil._m_er_Type {Dis.Null_Component, "Slugs_DP °, Dis.Double_Tag);

Tons : ¢Onltam= Dil.__Id :=

Dis.Re_imter_?y_e (Dis.Null_Component, -Tons', Dis.Float_Tag);

Pounds_Mass_Per_Cubic_Inch : constant Dis.Type_Id :=

Dis.Register_Type (Dis.NullComponent,

• Pounds_Mass_Per_Cubic_Inch', Dis.Float_Tag);

Pounds_Mass_Per_Cubic_Foot : constant Dis.Type_!d :=

Dis.Register_Type (Dis.Null_ComDonent,

• Pounds_Mass_Per_Cubic._Foo_', Dis.Float_Tag];

Pounds_Mass_Per Cubic_Foo%_Dp : constant Dis.Type_ld :=

Dis. Register_Type (Dis.Null_Component,

• Pounds_Mass_Per_Cubic_Foot_DP", Dis.Double_Tag);

II-51

ORJG|NAL PAGE !_

OF POOR QUALITY

p_-_nds_Mass_Square_Fc¢_ : z:nszanc _is.Ty:c_e_[d :=

_is.Register Ty_e _s. Nu[[_Zcm_cnen_,

"?o_nds_Mass_Square_F._,_", _i$.Fi_az_Tag;:

S_s_Square_Foo_ : ccnszan_ Dis.Ty_e_[d :=

_!s.Regis_er_Tvve _Dis.Null Component,

• Si_gs_Square_Foot", Dis. Fisa_ Tag_ ;

Siu_s Square_F¢c___p : constant Dis.Type [d :=

Cis._egister_Type _Dis.Nuli_Cemponens,

"Si_gs_Square_Fooc_DP", Dis.Double_Tag_;

Pounds_Force : cons_an_ Dis.Type_Ed :=

DisoRegis_er_Ty_e _Dis.Null Component, "Founds_Force", Dis. Floa__Tag);

Pounds_Force_Dp : constant DisoType_[d :=

Dis.Register_Type (Dis.Null_Component,

"Pounds_Fo#ce_DP _, Dis.Double Tag);

B_us : cons[an5 Dis.Type Zd :=

Dis.Regiszer_Type (Dis.Null_Componen_, °BTUs', Dis.Floa__Tag);

B_us_Per_Secc_d : cons_an_ Dis.Type Id :=

Dis.Reglster_Type {Dis. Null_Componen_, "BTUs_Per_Second", Dis.Float_Tag);

Btus_Per_Square_Foo_ : consCan_ Dis.Type_Id :=

Dis.Register Type (Dis.Null_Component,

• BTUs Per_Square_Foot', Dis. Floa_ Tag):

Btus_Per_Square_Fooc_Dp : constant Dis.Type_!d :=

Dis.Register Type (Dis.Null_Component,

• BTUs_Per_Square_Fooc_DP', Dis.Double_Tag);

Btus_Per_Square__ooc_Per_Second : constan_ Dis.Type Id :=

Dis.Register_Type (Dis.Null_Comc>onenc,

°BTUs_Per_Square_Fooc_Per__Second', Dis.Floa__Tag);

Bcus_Per_Square_Foot_Per_Second_Dp : constant Dis.Type Id :=

Dis.Register_Type (Dis.Null_Component, _:

"BTUsPer_Square_Fooc_Per_Second_Dp', Dis.Double_Tag);

Calories : constant Dis.Type_[d :=

Dis.Register_Type (Dis.Null_Component, "Calories', Dis. Float_Tag);

Calories_Per_Second : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component,

"Calories_Per_Second ", Dis.Float_Tag);

Foot_Pounds_Force : constant Dis.Type Id :=

Dis.Register_Type (Dis.Null_Component,

• Foot_Pounds_Force", Dis.Floac_.Tag);

Foot Pounds_Force_Dp : constan_ Dis.Type_Id ::

Dis.Register Type (Dis.Null_Componen_,

"Foot_Pour_ds_Force_DP', Dis.Double_Tag);

Foo__Pounds_Force Seconds : conmCanc Dis.Type_Id :=

Dis.Re_is_er_Type (Dis.Null_Componen_,

• Foo___ou_ds_Force_Seconds", Dis.Floa__Tag);

Foo__Poumdbl__rce_$econds_Dp : cons_an_ Dis.Type_Id ;=

Dis.R_mCer_Tylp_ (Dim.Null_Component,

"Pooc_Pounds_Force_Seconds_DP', Dis. Double_Tag);

Horsepower t corm_ant Dis.Type "_ :=

Dis.Re_Im_er_Type (Dim.Null c::ponenc, "Horsepower', Dis. Ploac_Tag);

A_mospherem :constanc Dis.Type_Id ;=

Dis.Register_Type (Dis.Null Component, "Atmospheres °, Dis. Float_Tag];

Atmospheres_Per_Second : constan_ Dis.Type_Id :=

Dis.Register_Type IDis.Null Component,

• Atmospheres_Per_Second ° , Dis.Floa__Tag);

Inches_Mercury : constant Dis.Type Id :=

Dis.Re_ister_Type (Dis.Null_Component, "Inches_Mercury', Dis.Ploa__Tag);

Psi : cons_an_ Dis.Type_Id := Dis.Register Type _,

(Dis.Null_Component, "PSI', Dis.Float_Tag);

Pounds_Force_Per_Square_Foot : cons_an_ Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component,

V

11-52

k_1

k../

,Pounds_Force_?er_Square_?oc=', CLs.Fioaz2ag,;

?¢unds ?orce_Per_3quare_Foo__DP : cons=ana Dis.Tyl:e_Zd ::

Z_s.Regis=_r_Tvve {Dis.Nuli Component,

,?ounds_?Drce_Per_iquare_Foo=__P', _is._ouble_Tag) :

-_ TemFera__'_re tyves

Kelvin : cons=ant Dis.Tyl=e_ld :=

_s.Reg_s=er_?yve [Dis.Nuii_Component, "Kelvin', Dis.Float_Tag);

Celsius : constan= 3is.Tyl=e_Id :=

2is.Register_Type {Dis.Null_Componen=, "Celsius", Dis.Float_Tag);

Fahrenheit : conszan= Dis.Type Id :=

Dis.Regis=er_Type (Dis.Null_Component, "Fahrenheit', Dis.Float_Tag);

Ranklne : cons=ant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, -Rankine', Dis.Float_Tag);

-- Luminance types

Candelas : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, "Candelas', Dis.Float_Tag); •

Candelas_Per Meter_Squared : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component,

• Candelas_Per_Meter_Squared', Dis.Float_Tag);

Lumens : constant Dis.Type_Id :=

Dis.Regiscer_Tylze (Dis.Null_Component, "Lumens', Dis.Floa__Tag) ;

Lux : constant _is.Type_Id := Dis.Register_Type

(Dis.Null_Component, "Lux', Dis.Float_Tag);

Radiance : constant Dis.Type_[d :=

Dis.Register_Type (Dis.Null_Component, -Radiance", Dis.Floa__Tag);

Radiant_In_ensi_y : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component,

• Radiant_Intensity', Dis.Float_Tag);

-- Electromagnetic types

Amps : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, "Amps', Dis.Float_Tag);

Amps_Per_Square_Meter : cons_an_ Dis.Type_id :=

Dis.Regis=er__Type (Dis.Null_Coml_onent,

,Amps_Per_Square_Meter ° , Dis.Float_Tag);

Amps_Per Meter : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null Com]_nent, -Amps_Per_Meter', Dis.Float_Tag] ;

Columbs : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, "Columbs', Dis.Float_Tag);

Frequency : cons_an_ Dis.Type_Id :=

Dis.Register_"_ (Dis.Null_Component, "Frequency', Dis.Float_Tag);

Frequency_D_ : ¢onl_an_ Dis.Type_Id :=

Dis._!_rimter_Ty_e (Dis.Null_Component, -Frequency_DP', Dis.Double_Tag);

Faracll t _ooltant Dis.Type_Id :=

Dis.l_l_m_eZ_Ty_e (Dis.Null_Component, "Farads', Dis.Float_Tag];

Henrie_ _ _onltant Dis.'__Id :=

Dis.Reglmter_Ty_e (Dis.Null_.ComDonent, "Henries', Dis.Float_Tag);

Hertz : constant Dis.Type Id :=

Dis.Register_Type (Dis.Null_Component, "Hertz', Dis. Float_Tag];

Impedeance : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null Component, ,inK0edeance- , Dis. Float_Tag);

Ohms : constant Dis.Type_rd _=

Dis.Register_Type (Dis.Null_Con1_onent, "Ohms", Dis.Float_Tag);

Siemens : constant Dis.Type Id :=

Dis.Register_Type (Dis.Null Com_oonent, -Seimens', Dis. Float_Tag);

Tesla : constant Dis.Type Id :=

Dis.Register_Type (Dis.Null_Co_nent, "Tesla', Dis. Float_Tag);

Weber : constant Dis.Type_Id :=

II-53
O_G_NAL PA_£ _S

OF POOR QUALITY

__is.._egis _er_UyT_e i _is .';ul :_-_om_cnen -

Vol:s : r_onszanc 21s.T'/ve_'-d :=

_is. Regls[er_Ty_e __is. NUl l_Zcmp_nen_

Kv,z[_s : cons_anz Dis.Type_:d :=

Zls.Regiszer_Tyl:e [Dis.Nuli Com_onen_

"Wezer', _Ls.F'_za-_Tag_ :

"Vol-_s', Dis.Fisa-_Tag} ;

-- Misce[aneeus :y_es

_ecizels : zcns-anz Dis.Type_Id :=

Dis.Regls=er_T'/ve (Dis.Null Component, "DeclDels", Dis.Floau Tag);

Decibels_Dp : :ons=an_ Dis.Type_Id :=

Dis.RegisEer_Type _,Dis.Nuli Component, "Decibels_DP", Dis.Double_Tag);

Rpm : cons=an_ Dis.Type ld := Dis.Register_Tylze

• (Dis.Null_Componen_, "Rpm', Dis._loa= Tag) ;

Non_Dimensional : constan= Dis.Type_Id :=

Dis.Register_Type [Dis.Nu!l Componen=, "Non_Dimensional-, Dis.Float_Tag};

Non_Dimensional_Dp : cons_an= Dis.Type_Id :=

Dis.Register_Type (Dis. Nul l_Componen=,

• Non_Dimensional DP', Dis .Double Tag) ;

Kiloby=es : constant Dis.Type_ld :=

Dis.Regis=er_Type (Dis.Null_Component, "Kilobytes', Dis.Floa=_Ta_);

Megabytes : constant Dis.Type Id :=

Dis.Regis=er_Type (Dis.Null_Component, "Megabytes", Dis.Float_Tag):

-- Enumeration =y_es

package Spt is new Dis.Enum Functions (Std_Eng_Uni_s.Shapes);

Shapes : constant Dis.Type_!d :=

Dis.Register_Type (Dis.Null_Componen_, "Shapes', Dis.Enum_Tag,

Labels => Sp_.Labels,

Size => Spc.Size};

end Sscf Defs;

11-54
Poor uAurY

k_J

8.6. Timer_Services_Class

The _mer_Services_Class is a service package that is used to support classes that wish to run at a slower,

harmonic rate of the partition, Timer Services_Class must be used=as shown in the Class Template with

Computed Period (7.2). Within a given period, the service procedure Update must be called before the selec-
tor functions]3me To_Execute and Actual_Delta_Time are valid.]3me To .Execute must be true to get a
valid, non-zero, time from the Actual_Delta_Time function. The current implementation of Timer_Ser-

vices_Class is listed below.

with Std_Eng_Uni_s:

package Timer_Services_Class is

package Seu renames Std_Eng_Units: --Simplifies parameter names.

type Rates is (Full, Half, Quarter, Eighth, Sixteenth, Thirty_Second, Sixty_Fourth);

subtype Period_Offsets is Natural range i..64;

cype Object is limited private; --Limited private is preferred.

procedure Create (Timer : in out Object:

Subrate : in Rates := Full:

Period_Base_Time : in Seu. Secondm := 0.0;

Period_Offset : in Period_Offsets := I};

procedure Update (Timer : in out Object;

Delta_Time : in Seu.Seconds);

__ ttteeetettttt**tteee*t_ttee_t Selectors ttttttte*tttt**ett_tettwteett*t

function Time_To_Update (Timer : Object) return Boolean:

function Actual_Delta_Time (Timer : Object) return Seu.Sec0nds;

function Get_Child_Rate

(Parent_Rate : Rates;

Rate Off_The_Parent : Rates) return Rates:

private

type Object is

record

Period Time : Seu.Secondm := 0.0;

Timer : Seu.Seconds := 0.0;

Timer_Offset : Seu.Secondm := 0.0;

Delta_Tiros : Seu.Secondm := 0.0;

Ti__U_date : Boolean := False;

end _N_
end TimerJle__Class ;

.......... .t_ ...

--l Abstracc : This clams provides the timer services needed to run class

--I instancem at a slower, harmonic relative rate of the partition

----t

--i Warnings : None.

.................................. -- ..

11-55

9. APPENDIX III - QUESTIONS AND ANSWERS:

9.1. Ada Structural Components:

1. Why is SSVTF defining and encouraging the use of a defined and consistent Ada struc-
tures (classes, partitions)?

Experience has proven that for large object-oriented real-time Ada programs, it is important to clear-
ly define and consistently implement the software to assure success. Ada is a general purpose lan-
guage that can be used in a variety of ways. Haphazard use of Ada constructs in a so-called object-
oriented design methodology can easJly defeat the point of what makes OOO a benefit. Adding In
real-time and simulation constraints can worsen the impact. The most logical approach is to define
what Aria structures support the requirements and design methodology and then consistently apply
them over the entire project. These structures provide the basis for the design. However, they are
not meant to be overly res_'ictJve - if there are good reasons to move slightly outside the standard
and the overall design goals are not corrupted, then no problem. In most cases, the design standard
will be improved in these cases.

2. Why are there partitions?

Regardless of what your - _sign is, at some point, the final class instances must be created some-
where - usually in an Aria _--ainprogram or ASM. For a real-time, distributed syst_'n, large progr!Ltns
must also be divided into self-contained manageable chunks that can be easily configured into;jibe
system. Those chunks are -equivalent to CIs on SSVTE Ada mains could be the chunks, but mdUns
are usually too large, restrictive, and brittle. Non-robust communication methods usually rer_ire
modelers to assume certain build configurations (what model is on what cpu). SVM was built to pro-
vide a seamless interface to support distributed processing so models could run on a "virtual single
machine". The best level to provide this service was at the partltJonlevel - the level below the Ada
main. In addition, Acla9x will support par'dtionsand this will make Ssv'rF closer to the future Ada
standard. Par_tions therefore are not an SVM particular requirement - they are a reality.

3. When do you make an Ada main? How many partitions in an Ada main?

For the target machine, Ada mains will be constructed out of 1 or more partitions. The number of
partitions _thin an Ada main depends on the RMS rate and execution _me requirements of each
parti_on. In general, modelers do not need to worry about this.

4. What is the criteria for choosing partitions for a Cl? Can there be too many or too few?
How large can a partition be (lines of code and execution time)?

A C I can be made of 1 or more partitions, a partition could represent several Cts, or a set of Cl require-
mente oould be divided amongst many pa_ti0ns. The first situation is the most common. A better
way t__lllif_ about partitions is that they represent a logical assembly of objects representing some-
thingin_jle_reel "_ork:l. They may be real-world objects themselves like a star tracker, or they are
a _ of objects that perform a real-world capability like a hydraulics system. The determina-
lionon what kl too many or too few depends on the syst=_nitselfand a compromise between the vari-
ous real-time constraints. As a note, the more partitions there are, the more overhead processing
is required to schedule and to send messages. Eventually, there will be timing values measuring the
overhead. AJsonote that par'dtions,ingeneral, shouldassume a time lagof oneperiod fordata. There
are options to sequentially data between partitionsrunning on the same cpu and same rate (see mes-
saging system), but this is not the norm. Large partitions on the other hand could result invery large,
monolithic models that are hard to manage and cumbersome to use 3asically, a CI should be de-
signed such that is is decoupled and easy to work with. The modeler must strike a good balance.

A partition must be able to execute on a single cpu. The currant estimate is 10 SMIPS/processor.
As for size, it varies widely but a good number is between 5-20 KSLOCS per partition (average).

II1-1 ORIGINAL PAGE m

OF POOR qUALITY

5. How is a class represented in Ada?
Classes are constructed as Ada abstract data type packages. See appendix I.

I

6, Do all class structures need create, request_state_change, update, and selectors?

Update is required since the models usually do something over time. Request_State_Change is
needed for object initialization or aperitif change state requests (like malfunctions). Selectors are
usually needed to extract state data from the object unless the OUT parameters are used in the Up-
date routine. It is preferred to use selectors. Create is optional sinceit supports 1 time instance con-
figuration. Using Create to configure a class is equivalent to crea_ng an Ada generic class Create
is called during program elaboration.

NOTE: Using these specific names (Update, Request_State_Change) are not critical (but recom-
mended). Other names (such as Initialize for Request_State_Change) are ok. The important point
is the meaning of these procedures - class structures should be consistent in implementation. For
example, the Initialization procedure must support singular state changes as the Re-
quest_State_Change procedure does. There can be more (or less) procedures actually implement-
ed as long as the structural meaning is retained.

7. Why are local variables In a partition's body? Why are there no parameters in partition

body routines?

Local variables in the partitionbody are either the state of the partition(along with the class instances
declared there), or they are temporary values that are used to holdintermediate transitions of ex_rnei
data to class data parameters or to holdOUT parameters from classes. In many cases, it is unavoid-
able not to have these parameters. Using selectors in class structuresreduces the number of these
variables.

There can be procedures withparameters in the body of the partition. The "parameterless" proce-
dures are simply groupings of object connections for maintainability and modularity concerns. It ap-
pears (and is true) that these procedures are working off of common date in the partition body, but
placing the logic of these routines within a single update routine can make for a very long procedure.
Modeler discretion is required.

8, Can lone variables be declared in a partition's spec or class specs or bodlss (outside the

private type)?
No, never. Doing so wouldcause bad sidHffectS in that global data wouldbe created in the system.
In partitions, lone variables in the spec imply that someone is going to read them. Since partitions
never WITH (reference) other partitions directly, this would invalidate the whole point of building a
seamless distributed system (creating a full-fledged mess). Lone variables outside the class private
type (but defined in the class) is equivalent to creating global data. Doing this invalidates the whole

o(objeot-_iented design. Side-effects would include models that work stand-alone but fail
on _ Integrated sire or exhibit peculiarities during integrated operations (data being changed arbi-
trarily). (Note _at local data variables declared in procedure declaration sections are valid since they
exist only during the life of the procedure call.)

9, Why
here?

are there DiS objects in Interface definition packages? Aren't only "types" allowed

True, types are only allowed here. The DIS object however provides a unique ID for a message. A
unique ID is required to dynamically connect partition messages during set--up (senders must say
which message they are outputtJng,and receivers must state whet message they want to receive.
The DIS id is the "way" they identify the specific message). This object Is not global data since it is
never read or written to - rather, it is used to set up a unique ID for the message during set-up only.

ORIGINAL PAGE PS

OF POOR QUALITY
111-2

10.Should messagerecords have default values in interfacedefin[tlon packages?

No. Mul_ple distributed elaboration will cause the messages to reset multiple _mes. Also. the mes-
saging system design cannot take advantage of default values (since pointers are never allocated).
Messages are first initialized during the self, nit mode by the defining partition (the sender).

11. Why are there access types In Interface_Darn packages?

Two reasons. (1) The software backplane is a general messaging system. It is not (and should not)
be dependent on the data types sent by partitions. Pointers of the access types are used to point
to the memory of the partition's message area as an address. Knowing the message size, the back-
plane can send messages generically (bytes) from one pa_tJon to another. (2) For efficiency rea-
sons, the pointers defined inthe partitionbody can be manipulated (in some cases) instead of actually
copying data. Messages are _'uly sent, but the most optimal method can be performed by the back-
plane.

Note that pointers of the access types are never allocated (using the NEW construct). SVM uses the
pointers as address pointers only.

12. Can class data types be WITHed into Interface_Darn packages, or do all Interface types
have to be in the Interface_Darn package or SEUP3ET?

Classes should not be WITHed in Interface_Defn type packages. This would tie the whole sys}_
together from the top to the bottom causing compilalJonproblems and would be very non-resiOent
to change. Try to keep interface data atomic using SEU types. If a class defines its own type, lett_
partition convert it if it ends up in the interface.

13. Why are access pointers used in non rwl-time and records used in rasl-time in defining
class abstract data types?

The advantage of using access types for the limited pdvatetype is that the attributes of the object
can be deferred to the body. The disadvantage is that the mem,ory for the variables are declared on
the heap during startup and are therefore not available in the 3ymboi map :_r real-time debugging.
Since r/t debugging is necessary, access types cannot be used.

14. Why doesn't the standard allow non-partition ASMs as a legal construct in addition to
the class structure?

This standard discourages the use of ASMs as a general programming structure for the following rea-
sons. (1) ASMs are Ada structures not normal in other OO languages. In these languages, classes
are like ADTs, period. (2) Developers tend to make ASMs talk to A,SMsdirectJy(which is not possible
with AOT ctau structures). This willeiiminatea possibiereuse withoutcode rnodiflcatJonand results
in aim bdtlle design. (3) If designers first think in terms of ADT classes, it has been proven that
bettr OO designs materialize. If the mind set is ASMs, then resulting deign usually isn't as robust
as it oa_ld have been.

There are cases however where ASMs are the best soiu_on. In those cases, the standard does not

discourage their use.

15. Why aren't class structures defined as goner! SM's?

Generic ASMs do make good class sU'ucturesexcel: : attheyare Ada-apecific (non--standard class
structures). In addition, there is a certain inefficiency withAda generics that can be significant if used
too much. The standard discourages genedc ASM clas_ pri_ri/yto-_:ck-with CurrentOO technol-
ogy and to give us a fightingchance to fit the processing of the t_ainerinto the purchased computer
systems.

V

111--3

Note that generic ADTs are reasonable structures if classes are to be generalized. Again. generics
should be used judiciously (don't go overboard). Note that it takes longer to develop a genenc class
than a specific class (experience has shown) - make sure they are worth it.

16. Can Ada tasking be used for real-time applications?

No (unless there is an extremely good reason). Ada tasking conflicts with the RMS real-time schedul-
ing activities SVM will not be able to control the task and sequence other models correctly. If tasks
are used, they most likely will have to run in their own UNIX process (further complicating RMS and
the load configuration). Tasking in general should be used only when _'uly necessary - using the
cons_'uct for the sake of using it will only lead to unnecessarily complex designs.

17. How do we test a partition In standalone? Can we use the Rational?

Not yet, but there is an effort underway to support par_tJon testing on the Rational.

",.,.._.j

9.2. Executive Sequenclng and Modlng:

1. How do I run my model In real time?

Section 4.1 describes how a model runs in real-time under SVM. Basically, a pa_tion instantiates
a package called "Periodic" from the "Generic_Model" package (appendix II, pg 66) and provides the
update rate (in hz) and mode routines applicable to the partition (run, freeze, hold, etc.). From that
point on, the thread executive calls the partition's mode routines at the appropriate time and _ the
properrate.

2. How does a model (partition) get the time or delta time to be used when updating the state?
What is the unit of time (seconds, microsecs, millisecs)?

The unit for time is defined in SEU as "seconds" (real number). Classes and parti_ons should use
this type for defining update times. Time itself can be obtained two ways. When a partition instan-
tiates a thread executive from the package "Periodic" in the "genehc model TM (see appendix II,), a vari-
able "Delta_Time" becomes available. This is the delta time based on the period time of the thread
executive (i.e. 0.100 for 10hz, 0.033_333 for 30hz). It will always equal this interval. If SGMT orGMT
is needed, the part_tionmay call the selectors G_M_T or S_G_M_T also in the "Periodic" package
specification. This returns the period-relative GMT/SGMT time for the partition. Period-relative
means that the clock with respect to the using pa_tion ticks at the rate of the partition (i.e. 100ms
or 33.33ms increments for 10hz or 30hz respectively). Note that reading the actual time (i.e. to the
current microsecond) from the par'dtionis not generally provided since with RMS, the model execu-
tion may slide around in the period producing inconsistent time values. Period relative time is the only
consistentdock for the par_tion. For special cases, however, instantaneous time can be made avail-

3. How do'mode routines execute? ,

The instantia_onof the"Periodic" package of the "Generic_Model" takes ageneric formal parameters
the partition's mode routines. The thread executive created from the instantiationcoordinates its acti-
vitieswith a SVM m aster executive and then executes the correct mode procedure at the correct time.

4. How do I chose the rate the partition runs at?

The rate of a partition is based on the response required by the model. Response should be the
minimum rate (slowest) based on how the student will perceive the reai-_me behavior. If the student
can't perceive the difference between 30 hz and 10 hz for the particular model, use 10. Response
requirements also depend on the hardware. The model must run fast enough to service hardware

111-4

(otherwise, the hardware may enter a fault mode). The modeler shouTdbe aware of the execution
rate differences (and its implication to data flow) between producer partitions and consumer parti-
tions. Execution rates for the partitions do not have to be harmonic, but data may appear to be
irregular between non--harmonic partitions. In the example below, a 25Hz partition consumes data
produced by a 40Hz partition; the data is taken from the producer's period that has completed im-
mediately before the beginning of the consumer's period. The producer executes eight times to every
five executions of the consumer, and so produced data is skipped in a pattern repeating every 200
milliseconds.

2_'Iz {ontunwI_'I/A._._.TI/IL\'_¥//J l l I'//AB l l I/'//J I i ik\\l I i IL_i ! I ik\\l

4a-lz prod_lr

I I
milllucondl 0 200

5. How do I determine how much fidelity to build into a model?

Fidelity is dependent on what the student or instructor want to see inthe way of data and the amount
of functionality required. The fidelity of the model should be the minimum required to support the
training. For example, if a student cannot detect the effects of a valve in transition (opening or clos-
ing), then a full fidelityvalve simulation is not needed. A simple open/closed model is adequate. If
the transition causes effects based on the transition that are detectable, a higher fidelity model may
be needed. Strive for the minimum required fidelity, With a good objectized design, the model fidelity

can always be easily increased.

6. Can objects run slower than partition?

Yes. However, the intent is to have an entire partitionexecute at • given rate (as a whote). For special
circumstances (due to execution cost), modelers may slow dovm objects defined by a partition - the
reduced rate must be a harmonic (1/2, 1/4, 1/8, etc.) of the partition rate. Modelers will have to bal-
ance the partition across the partitionperiods and execution must stay withinpa_tion period intervals
(all execution must complete within the partition worst case RMS time allocation per period). Refer-
ence Appendix I, 7.2 (class template with computed period) for an example structure. Modelers may
use other mean_ 'o sub-echedule (internal jump -lists), but the above approach is the recommended
approach

7. Why i= the partitions Interface definition WlTHed in the epe¢ Instead of the body?

By convention only. If you look at the partition spec, you can see what interfaces it externally refer-
antes. If the external inl_faces are W1,'FHedin the body, they willmix withall the WITHe of the internal
classes and other packages.

9.3. M_ •

1. How do _'= (model) communicate?

Partitkxla communicate only via the software backplane via the SVM intwface packages Message
and Mailbox. Par_tions define message structures in "lnte(fece Darn"packages.

2. When do I use one-to-many?

M_3_ ;eal-world interfac_ _ (electrical widng, pipes, busses, electrical signals, e'c.) use the 1-to-
rt y messaging appro_ ._. This approach should be used when the produ,_r outputs a message

_ny receiver can receive, 1-to-many can be 1-to-1. _--_----_ _ _ = "

3. When do I use many-to-one?

111-5
_NAL PAGE !15

OF POOR QUALI"FY

"-..._./

r

Many-to-1 is used when a par_tion has many inputs all of the same message type. For example.
many producers supply load back to the electrical system. The electrical system defines the type and
the,producers use that type to send the message to the electrical system par_tJon. The messages
are queued so none will be missed.

4. When do I use mailbox?

The mailbox should only be used for command and control (non real-world interfaces). Normally,
parti_ons will only read their mail, not send it. The lOS will use mail extensively to send malfunction
requests.

5. Can transaction processing run under SVM and RMS?

Not easily (actually no). RMS assumes that models execute at a given periodic rate for a set time.
RMS theory can then guarantee the periodic updates. A transac_on process has an inconsistent
cycle time (event based) and runs tillit'sdone (not abidingby the pedodlc cycle rules). This willcause
the other RMS models to miss their deadlines. Merging the two execution models (RMS, transaction)
together is very non trivial, opens up cpu performance, cpu allocation, end UNIX process and OS
issues, end results in a brittle software design. It can be done, but _D'd rather avoid it.

9.4. Genedc Partition:

1. If s model is designed as s partition and is a generic system, what options are there_for

reducing the duplication of code?

In special cases, the modeler can define a partition using a generic. This allows multiple parti'_s
to be created from a single code module. Reference _ generic partition write-up in this document

9.5. DIS

1. Why Is DIS necessary?

In order to "see" data on the lOS or gather data for datastore, there must be a capability to map logical
names to physical variables and a way to uniquely id the variables, tn addition, there is a requirement
for no off-line tools. The DIS provides this capability and a few more features like providing unique
message ids and pa_tion iris. DIS is "part of the code" therefore no off-line tools are needed - the
symbol mapping will always be updated with the loads.

2. How does lOS get access to data variables in system?

Via the DIS identifiers and a DIS feature called "look" that can gather data via its address. The lOS
maps lOS page variables to DIS names, sends a request to SVM to see the symbol, and SVM returns
the bytes that make up the symbol.

3. How d0_Rmd _ =let variables for engineering debug? Are DIS variables used for this

type of _ng snalyels?

The RTSC ,&decompiler vendor will provide a real-time debugger. DIS variables can be used for
engineenng analysis, but modelers should not add non-lOS DIS parameters just for this purpose.
The DIS has a reasonable limit on the number of variables it can register.

9.6. Datastore:

I. Why Is data extracted using peek operstlons but brought back by uslng me, box? The
msllbox approach Is cumbersome, why not poke the data back Into the addresses?

Peek operations will not harm the model and the model does not have to do anything extra except
for registering datastore data in the DIS to support this approach. The mailbox is used for inputsbe-

ORIGINAL PAGE IS

OF POOR qUP4.IW

111--6

causenotallthe state of the objects is datastored Updating a partial state via apoke operation (back-
door) will cause problems. The mailbox allows the model to logically apply datastore data via "Re-
quest_State_Change" class operations.

There are sSIIsome issues with the approach that are being worked out. This area w_llbe tuned and
simplified in the future.

V

2. Why can't partitions define records for datastore terms Instead of each individual term?

The instructor and RECON need to see the ASCII names of the datastore terms (and other associated
information). Extracting binary records will not support this activity. In addition, if the load changes,
datastore binary records may be altered causing an odd failure on return to datastore (if the partition
overlays the record representation onto the binary datastore file).

3. What data should be datastored?

Only independent variables. Variables that can be obtained or derived from other partitions' output
data or internal independent data should not be in the datastore. Models should keep the terms at
a minimum. Currently, Ssv'r'F is limited to around 40,000 terms. This issue still needs work.

9.7. Interface Agent:

1. SVM allows transparent connections between partitions, but between assets an interti!ce=
agent is required, why?

The software backplane can route messages to other assets without interface agents. However,
there are special requirements on SSVTF regarding assets because they can be added, dropped,
simulated, or stimulatedl S_ething mus[exist toprOvide these mod_ii(_ functions. Also, when con-
necked to heterogeneous platforms, the interface agent must make sure the bytes are ordered cor-
rectly. Moding of the asset must also be managed. See the write-up on in=erfacaagents.

111-7

% /

10. APPENDIX IV-EXAMPLE CODE (NON-REAL-lIME)

: Lesson_Class-- ":ni: Name

-- A.cs: rac t

--, Exce_Eions

--_ Warnings

--_

--I Author

--I

--i DeparEment

--i Revisions

--I

--I

--I

--i

-- i O-Spec

--I

--I Copyright

: Controls a set of Lectures, Data_RecorLings, C_ntrol_Laws,

and an Exit_Test to achieve one or more [earning objectives.

Uses an interactive Control_Panel _o permi= the student to

=onErol the Lesson progress.

Request o r_no __Au_ ho r i zed

: None.

: Gary Young

: TSC.SSVTF.Computer_Svstems.Sof_ware_Engineering

Date Author

4-30-92 Bill Wessale

--Added Header

6-i-92 Gary Young

Added Selector and Modifier sections

Implemented Selectors : Script_Id, Version,

Active_Object_ID, Next_Object_ID, Current_Step,

Percent_Complete, Prerequisites

JSC-32xxx, Section 5

Developed by CAE-Link under the Training Systems Con_rac_

for _he Johnson Space Center (JSC) of the National

Aeronautics and Space Administration (NASA). All rights

reserved.

with Std_Eng_Types;

package Lesson_Class is

type Object is limited private;

ty_e Object_Id is (Tbd);

type Prerequisi_e_Lis_ is (Tbd);

package Set renames Std_Eng_Types;

subtype Steps is SeE.Positive range I .. 500;

-- *****-*********** Modifiers ************************

procedure Creace (Instance : in out Object);

procedurq Dem_y (Inm_an_e : in out Object);

procedu_;_wi_ (I_cance : in out Object);

proced_'_ _ (Inmtance : in Object);

proceduri-_rt (Inmtance : in Object; File_Name : in String);

procedure Import (_nmtance : in out Object; File_Name : in String);

procedure

procedure

procedure

procedure

procedure

procedure

procedure

S_art (Instance : in out Objectl;

Pause (Instance : in ou_ Object);

Resume (Instance : in ou_ Object];

Backspace (Instance : in ou_ Object; Number Of_Steps : in Steps);

Skipahead (Instance : in out Object; Number_Of_Steps : in S_eps};

Kill (Instance : in out Object);

Repor__S_a_us (Instance : in Object);

procedure Activity_Complete (Instance : in out Object);

function Script_ld (Instance : in Object} re_urn S_ring;

function Version (Instance : in Object) re=urn String;

IV-I

func:=_n Ac:=ve_ib_ec:_:i i_nsaance : [n .=b]ec:: re:u'rn:JD_ec:_:d_

func:ion Next_3bjec=_=d _Ins_ance : _n ?b;ec:; re=urn Zb:e::_:d:

funcz!_n :urrent_i_ep {ins:ante : _: :k:e,zt: re::_rn ?os=::;e;

rune:ion _er:enc_Comple_e _:nstance : :n 3b]ec= re:urn _c_=_ve;

func:=on PrarequisiLes (instance : _n Sb]ec:_ re:urn ?rerequls=ze_Lis:;

pr:va:e

:ype 5_a:e;

:y_e]b_ec: .s access State;

end Lessen :lass;

-- Unit Name

--J Author

--r

--i Departmen_

--_ Revisions

---!

-- O-Spec

-- CopyrighE

-- 199=

: Lesson Class

: Gary Young

: TSC.SSVTF.Compu_er_Systems.Sofcware_Engineering

: Date Author

4-30-92 Bill Wessale

--Added Header

: JSC-32xxx, Section 5

: Developed by CAE-Link under the Training Systems Contract

for the Johnson Space Center (JSC) of _he National

Aeronautics and Space Administration (NASA). All rights

reserved.

with Training_Script_Class;

package body Lesson_Class is

_ype Script_Designator is (Tbd);

type Version_Designator is (Tbd);

type Sta_e is

record

Scr[p_ : Training_Scrip__Class.Object;

Cur.end_Mode : Se_.Mode := Se_.Ini_ialize;

Scrip__!d : Script_Designator := Tbd;

Version : Version_Designator := Tbd;

Active_Object Ids : Objec__Id := Tbd;

Next_Object_Id : Objec__Id := Tbd;

Curren__S_ep : S_eps := i;

Percent_Complete : Set.PercenE := 0;

Prerequisites : Prerequisite_List := Tbd;

end record;

procedure C_ea_e (Instance : in out Objectl is

begin _

Trai_..__Clamm.Create (Instance => Ins_ance.Scrip_) ;

-- _ni___e _he Current_Mode component

end Crea_e_u=

procedure Z_eCroy (I_ance : in ou_ Object) is

be_;in

Training_Scrip_ Class.Dee_roy (Instance => Instance. Script);

end Desu roy"

procedure Revise (Instance : in ou_ Object) is

begin

Trainin<-*cript_Class.Revise (Instance => Instance.Scrip_);

-- Rev :he Current_Mode component

end Revise

procedure Browse (Instance : in Object) is

begin

Training_Scrip__Class. Browse (Instance => Instance.Script);

IV-2

V

V

OiIBGINAL PAGE" I_

OF POOR QUALITY

\

-- i_izz_iize z_e]_rent_Mode z_mpcnezc

e_d Browse;

Tr_nlng_Script_ilass.Ex_or_

'instance => instance.Eerier, File_Name => File_NareS;

-- A_end the i_rrenz_Mode eo the file

end Expert;

rszedure l.-Vcrz [Zns_ance : in out Object; File_Name : in String_ is

ee_n

Tra!ning_Scri_% Class.lmport

!instance => instance.Script, File_Name => File_Name)

-- inpu_ the Current Mode

end im_or=;

procedure Start (instance : in out Object) is

begin

Training_Script_Class. Start (Instance => Instance.Script ;

-- Change 5he Current_Mode component to the appropriate mode

end Start;

procedure Pause [Instance : in out Object) is

begin

Training_Script_Class.Pause (Instance => Instance.Script];

-- Change the Current_Mode component to be Paused

end Pause;

procedure Resume (instance : in out Object) is

beg_n

Tralning_Script_Class.Resume (Instance :> Instance. Script};

-- Change the Current_Mode component to the appropriate mode

end Resume;

procedure Backspace (Instance : in out Object; Number_Of_Steps : in Steps) is

begin

Training_Script_Class. Backspace (Instance => Instance. Script,

Number_Of_Steps => Number Of_Steps);

end Backspace;

procedure Skipahead (Instance : in ou_ Object; Number_Of_Steps : in Steps) is

begin

Training_Script_Class.Skipahead (Instance :> Instance.Scrip=,

Number_Of_S_eps => Number Of_Steps);

end Skipahead;

procedure Kill (Instance : in out Object) is

begin

Training_Script_Class.Kill (Instance :> Instance.Script};

-- Change the Current_Mode component to Killed

end Kill;

procedure Report_Status (Instance : in Object) is

begin

Trainin__Scrip=_Class.Report_Status (Instance => Instance. Script);

-- Re_r_ m:a:um on the Current_Mode here

end Repor___atum;

procedure _*_Ivity_Complete {Instance : in out Object) is

begin

Trainin__$cript_Class.Ac=ivity_Complete (Instance => Instance. Script);

-- Change the Current Mode component to be Completed.

end Activity Complete;

function Script Id (Instance : in Object) return S_ring is

begin

return Script_Designa_or'Image (Instance.ScriDt_Id);

end Script_Id;

function Version (Instance : in Object) return S_ring is

begin

return Version_Designator'Image (Instance.Version);

end Version;

O_G{NAL PA_E !'_

C_ POOR QUALITY

IV-3

f_nc_on Act!ve__b_e=t_i_ ilnstance :

_egln

return [nszanze.Act_ve__b_ec__[Js;

end Ac_ive Obje¢_ [_;

f_nczlcn Nex___bTez: [d i[_szance : _n]Z]ec=,

:eg[n

re[irn [nsz_n:e.Nex:_:bjecz_[d;

end Next_Cb_e:= :J;

func:iDn Current 3:ep _inszance : in Ob_ec%>

begin

re_urn instance.lurren__Step;

end g_rren: Step;

_unc:ion Percent_Complete _ins:ance : in Object}

begin

re_urn Instance. Percent_Complete;

end Percent_Complete;

function Prerequisizes (Instance :

begin

return Instance. Prerequisites;

end Prerequisizes;

end Lesson_Class:

%_ 3h'ecz, rez:rn [::ezt [d %s

|

rez_rn SD_ezt_id is

return Posieive is

return Posi:ive is

in Object) return Prerequisite_List is

V

u

IV-4

OIIEIOINAL PAGE

OF POOR QUALITY

11 Appendix V - Hydraulic System Example

The following is an example of a real world hydraulic system and its representation as a s_mul2ted soft-
ware system. This example will include design considerations based upon the SSVTF architecture as
outlined in this document,

11.1 Real World Hydraulic System

The hydraulic system provides pressurized hydraulic fluid to actuators that move the control surfaces and
raise and lower the landing gear. The system is controlled via the hydraulic control panel which provides
switches to control the system. The system sends signals to the hydraulic control panel so that the con-
trol panel can display the status of the system. The system receives power from the electrical system

Refer to figure 1 for a pictorial representa_on of the hydraulic system and related components Notice
that although the actuators, control surfaces, landing gear, hydraulic control panel and electrical system
are shown in the figure, they are modeled as separate entities The modeling of these external compo-
nents will not be done here. This example vail, however, model the interface to these entities.

Therefore, the hydraulic system includes the following components:

• Two fluid pressunzation assemblies that each include one motor, one gear box and
one pump

• Two valves

• Two accumulators

• One reservoir

• One reservoir quantity sensor

• Two pressure sensors

• A fluid distribution system

• Fluid return lines

11.1.1 Fluid Pressurization Assembly

A fluid pressurization assembly is a collection of mechanical devices that convert electrical power to hy-
draulic pressure. This assembly includes a motor, gear box and pump, each described as follows:

11.1.1.1 Motor

The motor uses electrical power to turn a shaft that drives the gear box. In providing power to the gear
box, the motor in turn produces a load on the electrical system.

The motor is powered on and off via a switch on the hydraulic control panel. The motor provides an in-
dication of whether it is on or off back to the hydraulic control panel.

11.1.1.2 Gear Box

The gear box Iransfers torque from the motor to the pump.

11.1.1.3 Pump

The pump pressurizes the hydraulic fluid provided by the reservoir. It also sends its operational status to
the hydraulic control panel.

11.1.2 Valve

A valve allows the isolation of the pressurization system from the distribution system. Since this valve is
electrically actuated it produces a load on the electrical system.

V-1

The valves in the hydraulic system are controlled via the hydraulic con_'ol panel. The valves provide the
hydraulic control panel with an indication of their posilJon, ranging from open to closed.

!

11.1.3 Accumulator

An accumulator _stype of damper that helps the hydraulic sy_:em maintain a constant pressure. It is di-
vided into a fluid side and a gas side separated by a movable diaphragm. Hydraulic pressure is absorbed
by the accumulator by allowing the fluid from the distribution system to push the diaphragm and increase
the gas pressure by lowering its volume When the pressure in the distribution system lowers, the pres-
sure of the gas in the accumulator pushes fluid back into the distribution system.

11.1.4 Reservoir

A reservoir is a storage container for hydraulic fluid.

11.1.5 Reservoir Quantity Sensor

A reservoir quantity sensor provides an indication of the level of hydraulic fluid in the reservoir,

The quantity sensor in the hydraulic system is electrically powered. It receives power from, and in turn
place a load on the electrical system, The quantity sensor provides a signal to the hydraulic control panel
so that the quantity of fluid in the reservoir can be displayed,

11.1.6 Pressure Sensor

A pressure sensor provides an indication of the hydraulic pressure in the distribution system.

Like the reservoir quantity sensor, the pressure sensors in the hydraulic system are electrically powered.
The pressure sensors provide signals to the hydraulic control panel so that the distribution system pres-
sure can be displayed.

11.1.7 Dlstrlbutlon System

A distribution system is a network of hydraulic tubing that distributes pressurized hydraulic fluid to the ac-
tuators.

11.1.8 Retum Llnes

Return lines return excess hydraulic fluid from the actuators and distribution system to the reservoir.

V-2

%
v

!

23

L

Q" i

(n

S

- lI _lmmmmm _-_

Figure I Real World Hydraulic System

V-3

11.2 =specification of the Software S_st-em

In order to crea*,e a software simulat:_- of a real world hydraulic system, all relevant components of the
real world system must be modeled, as well as any additional components to support the simulation. Two
such support components in this example are the lOS and the aural cue. More details on these two com-
ponents will be given later.

11.2.1 External Components

At this early point in the analysis, the system can be defined in terms of components that are internal (ac-
cumulators, distribu_on system, reservoir, etc.) and components that are external. The externals are as
follows:

• Control surfaces (includes control surface actuators)

• Landing gear (includes landing gear actuators)

• Electrical system

• Hydraulic control panel

• lOS

• Aural cue

Although this example will not give the details of the external models, it does specify the interfaces _o
these externals. Figure 2 shows the associations of the hydraulic system and its externals.

11.2.1.1 Control Surfaces

The real world control surfaces are moved by actuators which are connected to the hydraulic system.
The control surface actuators consume fluidbased on the pressure of the fluid providedby the hydraulic
system. The actuators also return fluid via the return lines. The interface between the hydraulic system
and the control surfaces will therefore provide a mechanism by which the hydraulic system can provide an
indication of the available pressure and the control surfaces can provide the actual pressure flow (in-flow)
and the return flow.

11.2.1.2 Landing Gear

Although the landing gear model would be aulte different than the control surfaces model, the interface
between the hydraulic system and the lanc=,,ggear is similar to the interface between the hydraulic sys-
tem and the control surfaces. The interface must provide a mechanism by which the hydraulic system
can provide an indication of the available pressure and by which the landing gear can provide the actual
pressure flow (in-flow) and the return flow.

11.2.1.3 Bectrical System

In addition to _ng power to other systems, the real world electrical system provides power to the
sensors, vaJv_ and motors in the hydraulic system. This is modeled in the software system via an inter-
face by which thinelectrical system provides the status (on or off) of each of the relevant circuitbreakers.
The interface must also allow the hydraulic system to provide the electrical system with the load that it
places on each of the corresponding circuits.

11.2.1.4 Hydraulic Control Panel

The real world hydraulic control panel commands the motor to power on and off and commands the
valves to open and close. The hydrauli",control panel also displays the status of the hydraulic system via
a selected set of parameters. These, :meters include pump and motor status (on or off), valve posi-
_on, indicated pressure and indicatec ervoir quantity. The interface between the simulated hydraulic
system and the simulated hydraulic control panel must provide a mechanism by which these parameters
are passed between the two.

V

V-4 ORIGINAl. PAGE IS

ol, I OR Ul'V

11.2.1.5 lOS

The lOS allows an operator to control the overall simulation. For this example, the operator may insert
malfunctions and display and modify certain object state variables.

11.2.1.6 Malfunctions

Table 1 presents a list of simulated malfunctions which effect the Hydraulic System CSCI.

Malfunction name De_cription AIIocetion

PUMP-#1 FAILURE Hydraulic Pump.

PUMP-#2 FAILURE

PRESSURE COMPENSATION
FAILURE #1

PRESSURE COMPENSATION
FAILURE #2

Pump #1 does not produce fluid
flow when prime mover is provid-
ing RPM.

T_

Pump #2 does not produce fluid
flow when prime mover is provid-
ing RPM.

Pump #1 cannot regulate pres-
sure. Pressure varies wildlywith
demanded flow. Possible water
hammer transients in circuit #1.

Pump #2 cannot regulate pres-
sure, Pressure varies wildly with
demanded flow. Possible water
hammer transients in circuit #2.

Hydraulic Pump.

Hydraulic Pump.

Hydraulic Pump.

VALVE #1 FAILURE Isolation Valve #1 is stuck in Hydraulic Distribution System.
_osilJon it was in at the time mal-
function was inserted.

VALVE #2 FAILURE Isolation Valve #2 is stuck in Hydraulic Distribution System.
position it was in at the time mal-
function was inserted.

PRESSURE SENSOR #1 FAIL- Pressure Sensor in circuit #1 Hydraulic Distribution System.
URE fails to indicate zero (0) psi.

PRESSURE SENSOR #2 FAIL- Pressure Sensor in circuit #2 Hydraulic Distribution System,.
URE fails to indicate over pressure.

MOTOR #1 FAILURE Electric Motor #1 fails to produce Hydraulic Pump Drive Unit.
RPM, but is not jammed.

MOTOR #2 FAILURE Electric Motor #2 fails to produce Hydraulic Pump Drive Unit.
RPM and is jammed.

CIRCUIT #1 LEAK 1 GPM leak in circuit #1. Hydraulic Distribution System

CIRCUIT #2 LEAK 5 GPM leak in circuit #2. Hydraulic Distribution System.

Table I Hydraulic System Malfunctions

11.2.1.7 Look and Enter Data

Table 2 presents a list of the Hydraulic System parameters which will be displayed or modified at the instruc-
tor's station or recorded by the Session Manager Subsystem for any purpose. Of these parameters, reservoir
quantity and pump flow may be modified by _e operator.

Parameter name Description

MOTOR #10N_)FF Report commanded on_offstatus
of motor #1.

MOTOR #2 ON\OFF Report commanded on\off status
of motor #2.

Allocation

Hydraulic Pump Drive Unit,

Hydraulic Pump Drive Unit.

V-5

MOTOR#t RPM
MOTOR#2RPM
FLUIDLEVEL
PRESSURE#1

PRESSURE#2

FLOW#1

FLOW#2

ReportcurrentRPMofmotor#1.
Reportcu[rentRPMofmotor#2.

HydraulicPumpDnveUnit.
HydraulicPumpDriveUmt.

Reportfluidlevelin reservoir. HydraulicDistribul]onSystem.
HydraulicDistributionSystem.Reportcurrentpressureincircuit

#1.

Reportcurrentpressure_ncircuit
#2.

Reportcurrentflowgeneratedby
pump#1.
Reportcurrent flow generated by
pump #2

Hydraulic DistTibut]on System,

Hydraulic Pump.

Hydraulic Pump.

VALVE #1 Report current openkclose status Hydraulic DistTibut_on System.
of isolation valve #1.

VALVE #2 Report current open,close status Hydraulic Dis_'ibut_on System.
of isolation valve #2.

Table 2 lOS Display parameter list for Hydraulic System

11.2.1.8 Aural Cue

The aural cue produces audio sounds of the mechanical devices that are being simulated. For this simu-
lation, the aural cue will produce motor sounds when a motor is on and pump sounds when a pump is on.
The interface between the hydraulic system and the aural cue therefore must provide a mechanism to
transfer these commands from the hydraulic system to the aural cue.

V-.6

,._._..-"

.,._j-

Aural
Cue

lOS

Hydraulic
ConU'oi

Panei

Comman ds_OperatJon_Of

Provide.,

Provide=

P rovides_Commands_To

Provides_Fluid To

Hydrlullc
sy_n

7

o,m

I _uid_From

Prowdes Fluid To "1

Figure 3 Hydraulic System External Associstion Dlagrsm

11.2.2 Internal Components

In terms of the object oriented analysis, the hydraulic system is viewed as an object composed of a
collection of lower order components that parallel the composition of the real world system. The decom-
position of the hydraulic system into these components is is shown in figure 4.

V-7

m. s,.

[3

(n

0 5"

"O _

3

-r

"9

_°

:i-. Fiiii:

m

m

m m

m m

m

m

!,

m m

u

m

m

Figure 4 Hydraulic System Object Decomposition

m m

m n

m

m m

m .

m .

_J

V

V

V-8

v

11.3 Transition to Design

In review, classes may be composed of 1) other classes, 2) attributes and operations or 3) a combi'_ation
of both. Objects may be 1) an instance of one or more classes 2) composed of other objects instantiated
at a lower level or 3) a combination of both.

Furthermore, since an object is an instance of a class, one or more objects can be created from a class.
An object instantiated from a class in effect creates a copy of the attributes so that the newly created ob-
ject takes on its own identity (i.e state), independent of all other instances of the same class. This sup-
ports the reuse principle. A class is said to be reused if more than one object is instanlJated from the
class.

After the components of the hydraulic system are identified, they are allocated as objects or classes, or
further broken down into sub-components. Generally, these components should modeled as a class to
facilitate reuse. If the abstraction doesn't already exist as a class, a new class is created and added to
the reuse pool. If the abstraction (or something reasonably close) does exist as a class, then the class is
reused and attributes and operations are added, if necessary.

11.3.1 Sensor Class

The simulation must support two pressure sensors and one quantity sensor. Since the two types of sen-
sors are similar, a general sensor class is created. The pressure sensors and quantify sensor are then
created by instantiating the sensor class with the relevant load units and sensed units.

11.3.2 Reservoir Class

A hydraulic reservoir class is created from a generic reservoir class much like the quantity and pressure
sensors are created from a generic sensor class, The hydraulic reservoir class is created by instantiating
the sensor c{ass with the desired volume, volume rate units and time units.

11.3.3 Ddve Unit Class

A drive unit class is constructed using lower level classes much the same way that the hydraulic pump class
was constructed. For thissimulation the motor of the drive unit is a DC type motor. Suppose that in the reuse
pool there exists an electric motor class with attributes of nominal_speed, nominal_torque, shaft_speed and
shaft_fail (boolean). Since a DC motor is a more specialized type of electric motor, inheritance is used to
create a DC motor class. The DC motor class inherits the attributes and operations of the electric motor class
and adds the attributesload, minimum_voltage, maximum_voltage, nominal._load,nominal_speed and nomi-
nal_torque. Refer tothe Elec_Motor_Class package specification on page V-17 and the DC_Motor_Class

package specification on page V-26.

11.3.4 Hydraulic Pump Class

A specialized prelmure compensating hydraulic pump class is created by combining the attributes and opera-
tions of an a0daipiston pump class, an actuator class and a centrifugal pump class. Because the resulting
hydraulicpump ¢llum isVery specialized innature, it serves to show that by using inheritance andcomposition,
it can be ¢onllllJmtKI _ basic buildingblock classes. The compositionof a hydraulic pump is shown in figure
6. Notice that an axial piston pump class is created by inheriting the a_ibutes and operations of a positive
displacement pump class and defining additional necessary a_ibutes and operations. The atVibutss of the
positive displacement pump class are summarized as follows:

• Displacement (Gallons)

• Efficiency (No Units)

• Flow Rate (Gallons Per Second)

• Total Piston Area (Square_Feet)

The axial pistonpump class a_ibutes include those inherited from. the positivedisplacement pump class plus

the following:

V--9

• Bias (Gallons Per Second)

• Delta_Flow (Gallons Per Second)

• Loss_Flow (Gallons Per Second)

• Pres_re (Psi)

• Scale (No Units)

• Torque (Foot_Pound_Force)

In this example an additional flow attribute is added to improve the fidelity of the simulaSon since the flow rate

attribute provided by the positive displacement pump class is overly simplified. Refer to the Positive_Dis-

placement_Pump_Class package &eecificalJon on page V-36 and the Axial_Piston_Pump_Class package
specification on page V-39.

!

!

!
L_ w_w

L, d

i,,....... i i i ,..F"_,_:__ .,,_ ,.l, llceOr'IIC_'c_'IPOIId,_'

Figure 5 Hydraulic Pump Composition Diagram

11.3.5 Other Clams

For this example, the accumulator, distribuOon system, valve and gear box classes will all be of the nor-
mal (non-generic) dus yariety.

In this design, II _lro((interpre_ng messages, updating objects, etc.) is handled on the partition level.
Figure 6 shovmthe real world hydraulic system as an abstract state machine (ASM) and its decomposi-
tion into classes (abstract data types or ADTs)

V-10

J

Notes

Figure 6 Hydraulic System Compo_tlon Diagram

11.4 Class Speclflcatlon

A class specification is implemented as an Ada package. A typical class specification for the SSV'I'F proj-
ect contains the following:

• Attributes in the form of a limited private record type

. Type declarations t_ support the modifiers

• Modifier specifications

, Selector specifications

• A II1ual description of the class

11.4.1 Attrlbutu

Attributes define the state of the object The a_ibutes are collected in a single Ada record type and are
made unavailable outside of the package by declaring the record as 'limited private', This allows an ob-
ject to be declared of the record type, but none of the atlributes defined in the record may be directly ac-
cessed where the object is declared. Instead, the atmbutes are accessed via modifiers and selectors.

11.4.2 Type Declarations

Types are declared in order to specify parameters that are passed into the modifier operations An exam-
pie for a swltch class is as follows:

V-ll

:/_e :::_ca.:is is ::ni:ia::ze, :n, 3ff, Fa!!l :

An input parameter is then specified using this type, such as:
I

.zr_ced,=-e Req,:es:_S,:_z.e_i:-.a:-,;e ----.s:_nce : :n o,,z. :_:ec:;

Request_StateChange can thenbe used toinitializetheswltch,change thepositiona_ibuteto'On'or
'Off,orcause theswitchtofail.

11.4.3 Modifier Specifications

Modifiers are Ada procedures that allow the state of the object instantiated from that class to be changed.
Modifier names should be in the form of an action verb. Request_State_Change (above) is an example
of a modifier Note that since one or more instances of the class may exist, the specific instance of the
class is passed to the procedure as an 'in out' parameter. This allows the modifier to have access to all
attributes defined for the class and also allows the modifier to change any a_ibutes of the class (hence
the name 'modifier').

11.4.3.1 Default Modifiers

The following modifiers should be specified for each class:

• Update

• Request_StateChange
• Create

11.4.3.2 Update

The Update modifier is called periodically to update the state of the instance of the class. The period of
the call is passed in as delta time since the previous update.

11.4.3.3 Request_State_Change

The Request_State_Change modifier serves a variety of purposes. The associated enumeration type
Commands allows the caller of Request_State_Change request that the instance of the class change its
internal state. For example, a valve may allow its position to be changed, or may allow a malfunction tobe inserted.

11.4.3.4 Create

The Create modifier is typically called once upon pa_lJon initialization. It serves to allow the instance to
be tailored in some way. In the case of an accumulator objecL minimum and maximum pressures and
volumes may be set. Note that the Create operation is analogous to Aria elaboration. Both are done
once upon initializaOon.

11.4.4 Selector Specifications

Selectors are/ida funcdons that return the current value of an attribute associated with the object instan-
tiated from mat clam. Selector names should be in the form of a noun. An example of a selector follows:

funcl:ion Posil:ion (Instance : in Object) return Se_.On Ness;

Again, since one or more instances of the class may exist, the specific instance of the class is passed to
the function. Since a selector cannot change the state of an object, the parameter 'Instance' is passed as
a read-only parameter using the 'in' qualifier. The selector returns the po-,utionof the switch (on or off).

11.4.5 Textual Deacription

The textual description of the class are in the form of Aria comments and contain items Such asidentifica-
tJon,description, author, revision history. Refer to the SSVTF Ada coding standards document for moreinformation.

V

V-12 OI!J_tNAL PAI3E 1'3

OF POOR QUALITY

11.5 Class Examples

11.5.1 The Accumulator Class

Based on the real-world characteristics of an accumulator as identified in the object oriented require-
ments analysis the attributes and operations of the accumulator may be listed as shown below.

Attributes

Flow Rate

Gas Pressure

Units

Gallons/Second

PSI

Operations

Modifiers

Gas Volume Cubic Feet

Fluid Volume Cubic Feet Update_State

Quantity Held Gallons

Minimum Gas Pressure PSI Selectors

Minimum Gas Volume Cubic Feet Flow Rate

Maximum Gas Volume Cubic Feet Quantity_Held

Minimum Fluid Volume Cubic Feet

Maximum Fluid Volume Cubic Feet

Create

Request_State_change

Table 3 Accumulator Attributes and Operations --,...=.-

From this listing of attributes and operations, a class specification (Ada package specification) is created,

as shown in Ada Unit 1 on page V-17.

11.5.2 The Pressure and Quantity Sensor Class

The simulation of the pressure sensor and quantity sensor are very similar in this example. Each sensor.
has an actual and nominal load placed on the electrical system. Each may be failed by the lOS and each
makes the sensed value available. The sole difference between the pressure sensor and the quantity

sensor is the units (i.e. type) of the sensed value (pressure in PSI and quantity in gallons). To take ad-
vantages of these similarities, a generic class is specified. In order to instantiate the generic, the instan-
tiation must supply the specific sensed value type (PSI or gallons) to create a more specific class. For the

purposes of this example, the actual and nominal load type will also be specifi'_a as a generic parameter

to the generic class,

Note that in this example the generic sensor class is used to create a new class for the pressure sensor
and a new class for the quantity sensor. While in Ada terms the generic class is instantiated with the ge-

neric actual parameters, an instance of the class in object oriented terms does not yet exist.

Attributes Units Operations

Bias Generic sensed units Modifiers

Load '-"- Generic load units Create

Nominal Load Generic load units Request_State_Change

Output Value Generic sensed units Update

Sensor Failed Boolean

Scale None Selectors

V-13

ElecLoad

Sensed_Output

Table4 Generic Sensor Attributes and Operations

From this listing of generic attributes and operations, a generic class specification (Ada generic package

specification) is created, as shown in Ada Unit 4 on page V-20.

11.6 The Hydraulic System Partition

The hydraulic system partition is an abstract state machine (ASM) implemented as an Ada package.

The partition can be thought of as the 'glue' or 'smarts' that holds the hydraulic system simulation togeth-
er. It is at this level that messages are received, interpreted and acted upon. Logic at the partition level is

responsible for routing relevant data to the lower levels. Likewise, the partition must provide data to the
outside world.

11.6.1 Hydraulic System Partition Interfaces

The hydraulic system partition communicates with the hydraulic control panel, electrical system, landing

gear, control surfaces, aural cue and lOS. In this example, the hydraulic control panel partition and the
electrical system partition provide interface definition packages for their respective interfaces. Interface
definitions between the hydraulic system partition and the other external systems are provided by the hy-

draulic system partition and maintained in the Hyd_Sys_lntfc_Defn package.

11.6.2 Hydraulic_System_Partition Package Specification

Since the partition does not export (in the Ada se_ any operations or data, the content of the partition pack-

age specification is minimal. By SVM convention, all of the partition's interface definitions, both internal and
external are 'withed' into the package specification. Although these packages could technically be 'withed'

into the package body, they are 'withed' here so that the partition's interfaces become more apparent.

11.6.3 Hydraulic_System_Partition Package Body

The hydraulic system partition package body contains the declarations that allocate memory for the hydraulic
system and instantiates the generic thread executive, Italso creates instances of generic classes and defines

local types.

11.6.3.1 Generic Class Instantiations

Three new classes are created via generic class inst_l_iations. A pressure sensor class and quantity sensor

class are instances of the generic sensor class. Also, a hydraulic reservoir class is instantiated from a generic
reservoir class.

11.6.3.2 Local Type Definitions

Since it is convenient to manage the components of the dual-redundant hydraulic system using two element

arrays, several array types are created. The index for these array types is an enumeration type defined as:

type Sys_l Sys_2 is (Sys_l, Sys_2);

These array types are used for creating class instances as well as defining data internal to the partition. Note

that since anonymous arrays are not allowed by the coding standards, these array types are necessary to

declare an array.

11.6.3.3 Message Pointers

Each message that is to be sent or received must have a unique identifier. The memory for these identifiers
is allocated (i.e. the data objects are declared) in the hydraulic system package body and are later initialized
in the Create Data mode routine.

V

V

V-14

11.6.3.4 Class Instances

Each major component (object) modeled in the simulation is an instance of a class. In Ada terms an object
is created by declarJng a data object using the 'Object' type provided by the corresponding class package.
The major components of the hydraulic system are the accumulators (2), distribul]on systems (2), drive units
(2), isolation valves (2), pressure sensors (2), pumps (2), reservoir and reservoir quantity sensor.

Using the accumulators as an example of dual components, the 'accumulator' data object is of the array type
'accumulators' The array type 'accumulators' is declared as:

_y_e AccumulaTors is array <SVS__,_Sys_2) of Accumulator_Class.Object;

The data object 'Accumulator' is declared as:
Accumulator : Accumulators;

Using _ese conventions, the accumulator objects take the form:

Sy,,tem 1 Accumulator: Accumulator (Sys_l)

System 2 Accumulator: Accumulator (Sys_2)

Using the reservoir as an example of a single component the 'reservoir' data object is declared as:

Reservoir : Hyd_Reservoir_Class.Objecc;

11.6.3.5 Internal Data

Since a partition controls all of the objects ccntained within it, it is often necessary to create partition-internal
data to manage the manipulation of of the objects.

This data may include temporary storage of data that links two or more objects. For example, total return flow
is internal data that is computed by summing the return flows from the landing gear and control surfaces as
received in messages from these external systems. The total return flow is later used to update the reservoir
quantity.

Internal data may also include identifiem used to help manage the partition in the simulation environment.
These identifiers include the parttion name as a string constant and the parlJtionID as a natural number.

A design decision was made to model the motor relays of the hydraulic system internal to the partition rather
that creating a separate relay class due to their trivial nature. This is done by creating the following data object:

Motor_Relay_Power : On_Off_A := (others=> Off);

where On_Off_A has been previously declared as (in the Orvc_Common_Types package):

type On_Off_A is array (Sys_1_Sys_2) of Sec.On_Ness;

This demonstrates another use of internal parlJ_ondata.

11.6.3.6 Creating Thread_Exec

Since the partition represents a singleexecutive thread, it must instantiate the generic package Generic_Mo-
del.Periodic to regmter the partition name, frequency and all of the partJtion'smode routines with the SVM
execu_ve.

POOR QUALIT'Y

V-15

Hydraulic System Partition '

mode tOuChes

RegisterJO
Create_Data
SeifJnit
Systlm_lrdt
Run
Hold
Term Ihroad e)_l)c

class installces

DllU, ibutlon Sysl_m (1&2.)
Drive Unit a(1&2)
Isolllllon VMvee(I&2)
Pressure Sm_r= (1&2)
Pumpe(l&2)
Qulinllty Senior
Reeervolr

Orlvo_UniLChlm Ssnsor_Clus

Hyd Sys_Intfc_Defn

4_ Hyd_Sys_!no'lcatornMscJs_>

I
Elec_Syl_lnth:_Defn

/

(Etec _owt Ms(_)

1 M

I
Hyd_Conlrol _Prod Jnffi=_Defn

I
Message DIS

D

Accumulator _Clau DIsm.sSon SysCm_am

I
I CrMte I

I_t_umt State Chanoe I

lU,=. I$_tem Pre_ure

I
Valve Clam Relfvo&_Clau

Hydrmlic_Pump _Clau

(all packages in ibis region are
'withed into _he partltJon)

Figure 7 Hydraulic System_Partition

V

V-16

Accumulator_ClassPackageSpecification

Object;

String := "''

Seu. Psi;

Seu. Psi;

Seu.Cubic_Feec;

Seu.Cubic_Feet;

Seu.Cubic_Feet;

Seu. Cubic_Feet) ;

Ada Unit I
w_ch ic__Enq_Units;

|
use 3_! Eng_Un:cs;

az;e Accumula:zr_Ciass is

packale Seu renames 3:d_Eng Units;

ty_e Db_ect is :imi:ed _riva:e:

cy_e Commands _s :[ni::_ilze, No_Pressure) ;

---- *********************** Modifiers *********************** --

procedure Create [Instance : in out

Parent_Name : in

Init_Press : in

Min_Gas_Press" : in

Min_3as_Vol : in

Max Gas Vol : in

Min_Fluid_Vol : in

Max_Fluid_Vol : in

procedure Request_State_Change (Instance
Command

Apply

Pressure

procedure Update (Instance : in out Object;

Pressure : in Seu. Psi; m

Del_a_Time : in Seu. Seconds);

-- ********************** Selectors ******,'************ --

: in out Object; I
: in Commands;

: in Boolean;

: in Seu. Psi := 4000.0);

function Flow_Rate (Ins[ante : in Object) return Seu.Gallons_Per_Second;

function Quantity_Held (Instance : in Object) return Seu.Gallons;

private

type Object is

record

Plow_Rate : Seu.Gallons_Per_Second := 0 0;

Gas_Pressure : Seu. Psi := 0 0;

Gas_Volume : Seu.Cubic_Feet := 0 0;

Fluid_Volume : Seu.Cubic_Feet :: 0 0;

Quantity_Held : Seu.Gallons := 0 0; •

Min_Gas_Press : Seu. Psi := 0 0;

Min_Gas_Vol : Seu.Cubic_Feet := 0 O;

Max_Gas_Vol : Seu.Cubic_Feet := 0 O;

Min_Fluid Vol : Seu.Cubic_Feet := 0 0;

Max_Fluid_Vol : Seu.Cubic_Feet := 0 0;

end record;

end Accumulator_Class;

..

-- Abstract: This package provides a real time simulation of a class

-- of hydreulic accumulator.

-- Warnlngl= None.

..

Commands for Re-

quest State_Change

procedure

I Allows in stance

constants to be

set.

Used to apedodicaily request

a state change.

Called penodically to update
the state.

d Selecto¢$ to get state

vaJues maint_ed by

object.

The list of attributes for this class

Outside of this dMs, _ese attributes

can be modified only via the given

modllers and selectors specified

above. This is enforced by dedanng
the record type as Umitod private.

ORiCtiNAL PAGE m
OF POOR QUALITY

V-17

AdaUnit2 Accumulator_ClassPackageBody
7ac.<a_e _odl Acz_mu_a_r_C_.ass is

-- #t • t***wwwtt_t_t**tt.ttt t t.ttt** _w_.t _.,twwwt w,

_- Re._t Sym_uoi_ ,used by _"reacel

pr=-_edure ._e_cr=_iy.v_Dols [instance : in out Cb-ec-;

Parent Name : _n String_

-- ****'*'''*''*''*" Modif'-ers "''*****-*,-,*,*****

procedure _"rea-e {Ins=ance : in out

Pa rent_Name : in

[nit_Press : in

Min 3as_Press : in

Mi n_Gas_Vo I : in

Ma x_Ca s_Vo I : i n

Min__luid_Vol : in

Max Fluid_Vol : in

begin

is sevara_e;

Object;

String := -,.

Seu. Psi;

Seu. Psi;

Seu.Cubic_Fee_;

Seu.Cubic Feet;

Seu.Cubi¢ Feet;

Seu.Cubic_Fee_) is

Report Symbols i[nstance => Instance, Parent_Name :> Parent_Name);

Instance.Gas_Pressure :: [nit_Press;

Instance.Min_Gas_Press :: Min Cas_Press;

Instance. Min_Gas_Vol :: Min_Gas_Voi;

Instance.Max_Gas Vol ;= Max_Gas Volt

£ns_ance.Min Fluid_Vol := Min_Pluid_Vol;

Instance.Max Pluid_Vol := Max_Fluid Vol;

Need _unction here to convert gas pressure to gas volume &

fluid volume

end Create;

-_ ***it _**t eft. tt,e,t.t t et****e,t,t t.t** e,t,_t t,t.

procedure Request S_ate_Change (Instance : in ou_ Object:

begin

case Command is

when Initialize =>

Command : in Commands;

Apply : in Boolean;

Pressure : in Seu. Psi := 4000.0) is

instance.Gas_Pressure := Pressure;

Add function here to determine gas volume & fluid for this new gas

pressure

is

re:-rn Seu. GallonS Per_Second is

when No Pressure :>

null;

end case;

end Requemt_$tate_Change;

procedure _e (Instance : in ou_ Object;

Pressure : in Seu. Psi:

Del_a_Time : in Seu. Seconds)

begin

-- NOTE: This procedure is greatly simplified.

ins_ance.Ga_ Vressure := Pressure;

Ins_ance. Fl_ Fate := 0.025;

end Update:

-- **'*'*_*'**_*#"'"'#**" Selectors _*_***_*_*o ,,
•

function Flow_Rate (Instance : in Object)

begin

e.---.----

Locai to package body This is

used to enter _ass at_butes

into the symbol table The lOS

then has direct ("backdoor _)

access to the a_ibutes.

V-18

,,._i"

end

rezurn Inszance.Fi_w_Ra_e;

end ?i_w_Raze;

_n ?b_ec%) returnf:&nc_ion _ua_i_y_Heid '[ns%ance :

be_tn

re_rn [ns_ance._uan_i_y_He!d;

end _uanz_y_Hei_;

Accumula_or_31ass:

Seu.gallons is

Ada Unit 3

wi_h Sy_ol_Map:

separate !Accumula_or_Class)

procedure Report_Symbols (Ins=ance

begin

-- No symbols Eo repor_

null;

end Report_Symbols;

Accumulator_Class.Report_Symbols Separate Procedure

: in ou_ Object; Parent_Name : in String) is

... - -

--I Abscrac:: This separate reports symbols to the symbol map.

--I

--I Warnings: If no symbols are _o be reported, _his separate could

--I be deleted.

.. -

lOS does not access any armbutes of
• e accumulator claim. Report_Sym-
bols cam be removed wherethe peu_-
tion is optimized. See the valve class
for an example of reported at_bute_

ORIG'INAL PAGE IS

OF POOR QUALITY

v-Ig

Generic_Sensor_Class Package SpecificationAda Unit 4

;ener_:

cyFe }Ion_Dim_Uni=s is dig::s <>; a

_az_a;e 3e_eri:_3en_or_:_ass ks

=y_e Cb_ezt _s [imL=ed prlva_e;

=y_e Commands is iSensor_Fail, Sensor_Incorrect) ; m

__ *********************** Modifiers *********************** --

procedure Crea=e {Instance : in ouc Object;

Parent_Name : in String := "'-

Nominal_Load : in Load_Units);

procedure Request_Scare_Change (Instance : in out Object;
Command : in Commands;

Apply : in Boolean;

V

l

T he generic formal paraz_eters. The ac-

tuaJ parameters are specified when this

package is instan_ated.

I The sensor may be com-

manded to fa_l or read in-

correctly.

Scale : in

Bias : in Sensed_Units

. procedure Update (Instance : in out Object;
Power Avail : [n Boolean;

Sensed_Input : in Sensed Units) ;

___ e********************* Selectors ******************** --

function Elec_Load {Instance : in Objectl recu_n Load_Units;

function Sensed_Output (Instance : in Object) return Sensed_Units;

private

tyl_e Objec_ is

record

Bias

Load

Nominal Load

Cutput_Value

Scale

: Sensed_Units := 0.0;

: Load_Units := 0.0;

: Load_Units := 0.0;

: Sensed_Units := 0.0;

: Non_Dim_Units := 1.0;

Non_Dim_Units := 1.0;

:= 0.0);

Sensor_Failed : Boolean := False;

end record;

end Generic Sensor_Class;

.......................... --...

--I Abstract: This package provides a real _ime simula=ion of a class

--i of generic sensors.

--i

--I Warnings: pragma Inline used in body.

..

Note _at the

remaining pot-
lion of lhe pad(-

SlX,anca-
lion io Identical

a nom_

(non-_c)
packagespedfi_
ca_on

:1 ;3.'-;: OI_tlNAL PAGE tS

:[:j_":, _ _ QUALITY

V-20

Ada Unit 5 Generlc_Sensor_Class Package Body
|

_a:<a_e bod'l _ener:-_Sensor_C_ass is

--_veri:aded Cveratcrs

func-_,n "," Lef'_ : in Non_Dim UniEs; Riqht

re-urn Sensed_Uni-s _s

Cegin

re_urn '_Sensed_Units (Left! • Right) ;

end "*";

pragma Inline ["*");

: in Sensed_Units)

-- Report_Symbols (used by Create)

procedure Report_Symbols (Instance : in out Object;

Paren_ Name : in String) is separate;

__ *********************** Modifiers *********************

procedure Create (Instance : in out Object;

Parent_Name : in S_ring := "';

Nominal Load : in Load_Units) is

begin

Report_Symbols (Instance => Instance, Parent Name => Parent_Name);

Instance. Nominal_Load := Nominal Load;

end Create;

procedure Request_S_ate_Change (Instance : in out Object;

Command : in Commands;

Apply : in Boolean;

Scale : in Non_Dim_Units := 1.0;

Bias : in Sensed Units := 0.0) is

begin

case Command is

when Sensor_Fail =>

Instance.Sensor Failed := Apply;

when Sensor_Incorrect =>

Instance.Bias := Bias;

Instance.Scale := Scale;

end case;

end Reques__State_Chan_e;

procedure _ce (Instance : in out Object;

Power_Avail : in Boolean;

Sensed Input : in Sensed Units) is

begin

if Power_Avail and noc Instance.Sensor_Failed then

Instance.Output_Value

Instance.Load

else

Instance.Output_Value := 0.0;

Instance. Load := 0.0;

end if;

end Update;

:= Instance.Scale * Sensed_Input + Instance.Bias;

:= Instance.Nominal_Load;

Default ini_aJiza-

t]on aJlows user

to only pass in

necessary cklt_L

ORi_i'lN_i. PAGE f_
O_r POOR QUAL)TY

After next update sensor

will output zero.

After next update, sensor will

output accordng to _is new

scale and bia_

Senso¢ vatue af-

fected by values

from Request_

Slate_Change.

V-21

f_nc_n Eiec_Lcad _Zns_ance : :n Ct_e_; re_urn Lcad_Uni_s is

re_%rn _ns_ance. Lcad_;

end Eiec Lead:

function Sensed__u_u_ _[ns_ance : in Cb_ec_) re_urn Sensed_Units is

begin

re_urn _ns_ance.Ou_pu__Value) ;

end Sensed_Ou_pu¢;

end Generic_Sensor__lass;

Ada UnK 6 Generlc_Sensor_Class.Report_Symbols Separate Procedure
wi_h _mbc__M_ap;

separate (Generic_Sensor_Class)

procedure Report_Symbols (Instance : in out Object; Parent_Name : in String)

begin

-- No symbols to report

null;

end Repor= Symbols;

..

--I Abstract: This separate reports symbols to the symbol map.

--I

--_ Warnings: If no symbols are _o be reported, this separate could

--_ be deleEed.

..

is

OI_tlNAL PAC3E
OF" POOR QUALITY

V-22

AdaUnit 7 Elec_Motor_ClassPackageSpecification
wl-h i-_ __Eng_Uni _s "

w:=h S- __Eng_Types :

ise 3- __Ez.g_Uni_ s :

use Si_-_-"-ng Types:

ra=<a;e _lec_Mocor_-_iass -s

ac=_ge Seu renames Std_Eng_,"nits:

package Seu renames S_d_Eng Types;

zYve Sbject is limited priva:e;

-ype tom, hands is (Motor_Fail) ;

---- *********************** Modifiers *********************** --

procedure Create (Instance : in ou_ Object:

Parent_Name : in String := "';

Nominal_Speed : in Seu. Radians Per_Second;

Nominal_Torque : in Seu. Foo__Pound_Force) ;

procedure Request_State_Change (Instance : in out Object;

Command : in Commands;

Apply : in Boolean) ;

procedure Update (Instance : in ou_ Object;

Torque : in Seu. Foo_ Pound_Force;

Power_Avail : in Boolean) ;

function Shaft Ou:put (Instance : in Object) return Seu. Radians_Per_Second;

private

type Objec_ is

record

Nominal_Speed : Seu.Radians_Per_Second := 0.0;

Nominal_Torque : Seu. Foot_Pound_Force := 0.0;

Shaft Speed : Seu. Radians_Per Second := 0.0;

Shaft_Fail : Boolean := False;

end record;

end Elec_Mo_or_Class;

..

--i Abstract: This package provides a real time simulation of a class

--I of electric motor.

--I Warnings: pragma Inline used in body.

..

ORIGINAL PAGE IS

OF POOR qUALITY

V-23

AddUnit 8 Elec Motor_ClassPackageBody
I

Fa.:_a;e b_dy E!ec_Mc:_r__Lass =s

-- Everlta_ed >Ter_;;rs

f_nc;_:n "'" iLef_ : 3eu.Radians_Per_Sec_,nd; RiGht : Zeu.Ncn_Dimensi_nal_

re;urn 3eu.Radians_Per Second is

begin

return Seu.Radians_Per_Second (Set.Real_6 _Left) * Set.Real_6 (RiGht)}:

e_d "'';

_rag_a inline ('*';;

-- Report_SymDols (used by Crea_e)

procedure Report_SymDols {Instance : in out Object;

Parent_Name : in S%ring) is separate;

__ **,***************** Modifiers ****************************

procedure Crea_e (Instance • in out Object;

Parent_Name : in String := "';

Nominal_Speed : in Seu.Radians_Per_Second;

Nominal_Torque : in Seu. Foo__Pound_Force) is

begin

ReporE_Symbols (Instance => Instance, Parent_Name => Parent Name);

-- Initialize s_ate to motor off and not failed

Instance.Nominal_Speed := Nominal_Speed;

Instance.Nominal_Torque := Nominal_Torque;

e_d Create;

procedure Request_State Change (Instance : in out Object;

Command : in Commands;

Apply : in Boolean) is

begin

case Command is

when Motor_Fail =>

Instance.Shaft_Fail := Apply;

end case;

end Request_Stage_Change;

procedure U_e (Instance : in ou_ ODject;

Torque : in Seu. Foo__Pound_Force:

Power_Avail : in Boolean) is

Sf_l : _u._1on_Dimensional ;

begin

-- Based on torque load, available power and shaft status, determine shaft speed

if (Torque <= Instance.Nominal_Torque) and

Power_Avail and {not Instance. Shaft_Fail) then

Sf_l := 1.0 - Seu. Non_Dimensional (Torque / Instance.Nominal_Torque);

else

Sf_l := 0.0; -._ :

end if; %_ _,_!!_ _:_._ -[i

Instance.Shaft_Speed := Instance.Nominal_Speed * Sf i;

V-24
OF POOR Ou/u.ll'Y

2

-_ecur.-. ::::sc_-_.-e. Shafr-_S_eedl ;

e._._ E_ec_M.c%or_C_ass;

Ada Unit 9 Elec_Motor_Class.Report_Symbol$ Separate Procedure
wizh 3y,_o ! _Map ;

separate (Elec_Mc _or_Class J

procedure Report_Sy.T_o!s {Inscance: in out Object; Parent_Name : in String}

begin

-- No symbols to report

nul I ;

end Report_Symbols;

..

--I Abstract: This separate reports symbols to the symbol map.

--_ Warnings: if no symbols are to be reported, this separate could

--_ be deleted,

.. --------

is

J

OIiB(_NAL PAGE tS

O_ POOR QUALfTY

V-25

Ada Unit 10 Dc Motor_Class Package Specification
wi_n _'e,- Vc=3r _ass;

ise S_ Eng_fn_:s:

_acKaje _z_Mct=r__lass is

pa=kage Er]is renames Eiec_Mozor Class:

packaqe Seu renames Sti_Eng__ni=s;

=ype Cb_ec_ is limited prlva:e:

type Cct_-_ands is _Motor_Fail) ;

__ *********************** Modifiers *********************** --

procedure Crea_e (Ins[ante : in out Object;

Parenu_Name : in String :: "';

M_x Voltage : .n Seu.Volts;

Min_Voltage : _n Seu.Volts;

Nominal_Load : Ln Seu. Amps;

Nominal_Speed : in Seu.Radians_Per_Second;

Nominal_Torque : in Seu.Foo__Pound_Force);

procedure RequesE State_Change [Instance : in out Object;

Command : in Commands;

Apply : in Boolean);

procedure Update (Instance : in ou_ Object;

Delta_Time : in Seu. Seconds;

Torque : in Seu. Foot_Pound_Force;

Avail Power : in Seu,VolCs);

__ ***********t********** Selectors ******************** --

function Load (Instance : in Object) return Seu.Amps;

function Shaft Output (Instance : in Object) return Seu.Radians_Per Second;

private

type Object is

record

E!ec_Load

Elec_Motor

Max_Voltage

Min Voltage

: Seu. Amps :: 0,0;

: Em_Cls.Objec%;

: Seu.Volts :: 0.0;

: Seu. Volts := 0.0;

Nominal Load : Seu.Amps := 0.0;

Power_On : Boolean := False;

end record;

end Dc_Motor_Class;

..

--I Abstract: ThiJ package provides a real time simulation of a class

--I o_ DC motors based On a simple electric motor.

-- I Warningm: Mo_.

Class used wi_in this class, The DC

Motor dam inherits Ihe attributes and

operations of _e Electric Motor dass

V

V-26

k_/

Ada Unit 11 Dc_Motor_Class Package Body
package body Dc_Motor_Class is

__ ***

-- Report Symbols (used by Create)

procedure Report_Symbols (Instance : in out Object;

Parent_Name : in String := "") is separate;

-- ************************** Modifiers ***************************

procedure Create (Instance = in Out Object;

begin

Parent_Name : in String := "";

Max_Voltage = in Seu.Volts;

Min Voltage = in Seu.Volts;

Nominal Load : in Seu.Amps;

Nominal_Speed : in Seu.Radians_Per_Second;

Nominal_Torque = in Seu. Foot_Pound_Force) is

Report_Symbols (Instance => Instance, Parent_Name => Parent_Name);

Instance. Max_Voltage := Max_Voltage;

Instance. Min_Voltage := Min_Voltage ; 4

Instance.Nominal_Load := Nominal_Load;

-- Create electric motor instance

Em_Cls.Create (Instance => Instance.Elec Motor,

Parent_Name => Parent_Name & ".Motor',

Nominal_Speed => Nominal_Speed,

Nominal_Torque => Nominal_Torque);

end Create;

---- ***

procedure Request State_Change (Instance : in out object;

Command : in Commands;

Apply : in Boolean) is

begin

case Command is

when Motor Fail =>

Em_Cls.Request_State_Change (Instance => Instance.Elec_Motor,

Command => Em_CI s. Motor_Fai i,

Apply => Apply);

end case ;

end Request_State_Change;

__ ***

procedure Update (Instance , in out Object;

Delta Time = in Seu. Seconds;

Torque | in Seu. Foot Pound Force;

Avail Power : in Seu.Volts) is

begin

-- Motor is operational when power is: (min volts <= avail power <= max volts)

Instance. Power_On := (Instance.Min_Voltage <= Avail_Power) and

(Avail_Power <= Instance.Max_Voltage) ;

-- Determine shaft speed based on power status and torque load

Em_Cls.Update (Instance => Instance.Elec_Motor,

Torque => Torque,

Power_Avail => Instance. Power_On) ;

-- Return constant load if powered, otherwise return 0.0

-- NOTE: This process could be replaced by a specific function which could

-- vary the returned load based on the input voltage, torque load and

-- shaft speed.

Create provides user spe-

cified constants to the

instance of the DC motor.

V-27

if Instance. Power_On then

Instance.Elec_Load := Instance.Nominal_Load;

else

Instance.Elec_Load := 0.0;

end if;

end Update;

__ ************************ Selectors ******************************

function Load (Instance : in object) return Seu.Amps is

begin

return (Instance.Elec_Load);

end Load;

__ ***

function shaft Output (In _nce z in object) return Seu.Radians_Per_Second

begin

return (Em_Cls. Shaft_Output (Instance.Elec_Motor));

end shaft Output;

end Dc_Motor_Class;

Ada Unit 12 Dc_Motor_Class.Repod_Symbols Separate Procedure

with SymbolMap;

separate (Dc_Motor Class)

pr_e_dure Report Symbols (Instance _ in out Object;

Parent_Name : in String _= "") is

begin

null;

end Report_Symbols;

--I Abstractz This separate reports symbols to the symbol map.

--I Warnlngsz If no symbols are to be reported, this separate could

--I be deleted.

is

Shaft_Output is an attribute of
the Electric Motor class and is

made available at the DC Mo-

tor class via this pass through

selector.

V

V-28

Ada Unit 13 Gear _Box_Class Package SpecificaUon
i

w_:h __EnG_Uni_s;

se S!_Eng_Uni:s;

_acka;e 5ear_Bcx_31_ss is

;az_a;e Seu renames Std_Eng_Units;

:Y!2e Gbzect :s [:m::e5 private:

zy_e Commands is {lear_Seizure);

__ *********************** Modifiers *********************** --

procedure Crea_e !Instance : in out Object;

?arenc Name : in String := "=;

Max Torque : in Seu. Foot_Pound_Force};

procedure RequesL_Scate_Change (Instance : in out Object;

Command : in Commands ;

Apply : in Boolean);

procedure Update _Instance : in ouC Objec=;

Delta_Time : in Seu.Seconds:

Torque : in Seu. Foot_Pound_Force;

Supply_Speed : in Seu.Radians_Per_Second};

__ ********************** Selectors ******************** --

function Torque_Load (Instance : in Object) return Seu.Foot_Pound_Force;

function Shaft_Output (Instance : in Object) return Seu.Radians_Per_Second;

prlva_e

ty!_e Object is

record

Max_Torque_Load : Seu.Foot_Pound_Force := 0.0;

Torque_Load : Seu. FooC_Pound Force := 0.0;

Shaft_S_eed : Seu.Radians_Per_Second := 0.0;

Seized : Boolean := False;

end record;

end Gear_Box_Class:

..

--i Abstract: This package provides a real time simulation of a class

--_ of gear box used for transmission of rotation speed.

--I

--I Warnings: None.

..

k_./
ORIGdNAL PA_E I_

OF POOR QUAUTY

V-29

AdaUnit14 Gear_Box_ClassPackageBody
_a=kage bedy]ear_Sox__iass _s

-- Report_Sy_c!s '.sed by =rear*)

. _ _ .ep --_-Y - "ns=ance : in ou_ Cbjec:;

?arent Name : in Strlng; is se_ara=e;

__ ,,.,.**.*********''* Modifiers *****'********************

procedure Crea_e {ins=ante : in ou_ Object;

?arent Name : in String := "';

Max_Torque : in Seu. Foot_Pound_Foroel is

begin

Report Symbols [Instance => Ins=ante, Parent_Name => Parent_Name);

instance.Max_Torque_Load := Max_Torque;

end Create;

procedure Request_State_Change (Instance : in out Object;

Command : in Commands;

Apply : in Boolean) is

begin

case Command is

when Gear_Seizure =>

instance.Seized := Apply;

end case;

end Request_Stage_Change;

procedure Update (Instance : in out Object;

Delta_Time : in Sou. Seconds;

Torque : in Seu. Foot_Pound_Force;

Supply_Speed : in Seu.Radians_Per_Second) is

begin

-- Based on shaft statuz=, determine shaft speed and torque load

if not Instance.Seized then

Instance,Shaft_Speed := Supply Speed;

ins_ance.Torque_Load := Torque;

else

Instance.Shaft_Speed := 0.0;

Instance.Torque_Load := instance.Max Torque_Load;

end if;

end Update;

__ ***********t.e************** Selectors ***********************

runt:ion Torq%__Load (Instance : in Objectl return Sou. Foot_Pound_Force is

begin

return (Instance.Torque_Load);

end Torque_Load;

function Shaft_Output (Instance : in Object) return Seu.Radians_Per_Second is

begin

return (Instance. Shaft_Speed);

end Shaft Ou¢_t;

end Gear_Box Class;

Aria Unit 1S Gear_Box_Class.Report_Symbols Separa_ Procedure

V

V-30

LS

k..__ / ORIGINAl- PAG_IEIS

OF POOR QUALITY
%

V-,.'31

Ada Unit 16 Drive_Unit_Class Package Specification

wi:h -:--:_Eng-Tv_ e_ :

w::n F_cd_Eng_Jn: t _ ;

wi:n Dc_ Mct %r-3"-ass ;

wl--r.]ear- 5cx-:/as_ :

use _%d_Eng Ty_es;

&Me S__Eng_Un-t s :

_a.KaG e Drive_Unit_ClaSS is

_acKage Set renames std_Eng_Tylces;

_ackage Seu renames Std_Eng_UnitS;

type Object is limited private;

tylce Corn/hands is (_earbox Seizure,

-- No output from _earbox,

Motor_Fa[!) ; -- No output from motor

*********************** Modifiers *********************** --

• in out Object;

-grocedure Create (Instance
Parent_Name • in String := ";

Gearbox_Max_Torque : in Seu. Foot_Pound_Force);

procedure Request State Change (Instance : in out Object;
- - Com1_and : in Commands;

Apply : in Boolean);

procedure update [Instance : in out Object;
Avail power : in Seu.VolCs;

Delta_Time : in Seu. Seconds;

Torque : in Seu. Foot_Pound_Force);

********************** Selectors ******************** --

function _lec Load (Instance : in Object) return Seu.Amps;

function Motor_On (Instance : in Object} return Boolean;

function Shaft _peed (Instance : in Object] return Seu.Radians Per_Second;

prlva:e

:,/ve Object is

record

Motor : De_Motor_Class.Object;

Gear_Box : Gear_Box_Class.Object;

Motor_Status : Set.On_Off := Set.Off;

end record;

end Drive_Unit_Class;

Jl

--t Abstrac¢." This package provides a real time simulation of a class

of co_qponentS consisting of an electric motor and a

gear box.

--I Warning: None. _

.....................................

This d=sS con-

sists of more

than one class.

._ _ _ z

V-32

ORIGINAL PAGE IS
OF POOR QUALITY

k.j Ada Unit 17 Drive_Unit_Class Package Body
package body Drive_Unit Class is

-- Motor Data from NASA document NASA-91-1135, "Spec for Acme Elec Motor

-- Co. Type XYZ-123A Electric Motor".

Motor Load : constant Seu.Amps := 1.0;

Motor_Max_Speed : constant Seu.Radians_Per_Second := 628.0; -- 6000 rpm

Motor_Max_Torque = constant Seu. Foot_Pound_Force z= 300.0; 4

Motor Max Volts : constant Seu.Volts := 15.0;

Motor Min Volts : constant Seu.Volts z= 8.0;

__ ***

-- Report_Symbols (used by Create)

procedure Report_Symbols (Instance : in out Object;

Parent Name : in String) is separate;

-- ************************* Modifiers ***************************

procedure Create (Instance : in out Object;

Parent Name = in String := "";

Gearbox_Max_Torque : in Seu.Foot_Pound_Force) is

begin

Report_Symbols (Instance => Instance, Parent_Name => Parent_Name);

Dc Motor Class.Create (Instance => Instance.Motor,

Parent_Name => Parent_Name & ".dc_motor",

Max_Voltage => Motor_Max_Volts,

Min_Voltage => Motor_Min_Volts,

Nominal_Load => Motor_Load, i

Nominal_Speed => Motor_Max_Speed,

Nominal_Torque => Motor Max_Torque);

Gear_Box_Class.Create (Instance => Instance.Gear_Box,

Parent_Name => Parent_Name & ".gear_hgY":

Max_Torque => Gearbox_Max_Torque);

end Create;

__ ***

procedure Request_State Change (Instance : in out Object;

Command : in Commands;

Apply : in Boolean) is

begin

case Command is

when Gearbox Seizure =>

Gear Box Class.Request_State_Change

(Instance => Instance.Gear_Box,

Command => Gear_Box_Class.Gear_Seizure,

Apply => Apply);

when Motor Fail =>

Dc_Motor_Class.Request_State_Change

(Instance => Instance.Motor,

Command => Dc Motor Class.Motor Fail,

Apply => Apply); --

end case;

end Request_State_Change; -----

__ ***

procedure Update (Instance : in out Object;

Avail Power = in Seu.Volts;

Delta Time = in Seu. Seconds;

Torque = in Seu. Foot_Pound_Force) is separate;

************************** Selectors ********************************

Class specific data used to

create other classes during
elaboration.

I
Data provided to class during J
elaboration to create other Iclass,

I Constant data provided ---L_-by class.

Data provided by class

create procedure,

Oi_GtNAL PAGE IS

OF POOR QUALITY

V-33

function" Elec Load (Instance : in Object) return Seu.Amps is

begin

return (Dc_Motor_Class.Load (Instance.Motor));

end Elec Load;

__ ***

function Motor On (Instance : in Object) return Boolean is

begin

return (Instance. Motor_Status = Set.On);

end Motor On;

__ ***

function Shaft_Speed (Instance : in Object) return Seu.Radians Per_Second is

begin

return (Gear Box Class. Shaft_Output (Instance.Gear_Box));

end Shaft_Speed;

end Drive_Unit_Class;

Ada Unit 18 Drive_Unit_Class.Repot_Symbols Separate Procedure

with Symbol_Map;

separate (Drive_Unit_Class)

procedure Report_Symbols (Instance : in out Object; Parent_Name : in String) is

begin

-- No symbols to report

null;

end Report_Symbols;

--I Abstract: This separate reports symbols to the symbol map.

--I

--I Warningsz If no symbols are to be reported, this separate could

--I be deleted.

V

Ada Unit 19 Drive_Unit_Class.Update Separate Procedure
separate (Drive_Unit Class)

procedure Update (Instance : in out Object;

begin

Avail Power z in Seu.Volts;

Delta Time z in Seu. Seconds;

Torque _ in Seu. Foot_Pound_Force) is

Update electric motor

Dc Motor_Class.Update

(Instance -> Instance.Motor,

Delta_Time -> Delta_Time,

Torque => Gear Box Class.Torque_Load (Instance. Gear_Box),

Avail_Power => Avail_Power);

-- Set motor Status fla__..-

if Avail Power >= 0.I then

Instance.Motor Status := Set.On;

else

Instance.Motor Status := Set.Off;

end if;

V

V-34

ORIGIINAE PA(_E !'8

_OF POOR QUALI'rY

V-35

Ada Unit 20 Posi_ve_Displacement_Pump_Class Package Specification
J

wi_n _ Zng_Types;

use S:__Eng_Unics:

ise Szd_Eng_Tyv.-es:

_acka_e ?_s_ive_Di_Diacemen__?ump_Ciass is

_azka_e Seu renames S_ Enq_Unizs

azkage Se renames Std_Eng Ty_es

_ylce Object is [imized privaze;

ylDe Commands is ,Se _,clency,

-- ********************** Modifiers ************************ --

procedure Create (Instance : in ou_ Object;

Parent_Name : in S:ring := "';

Efficiency : in Seu.Non_Dimensional := 1.0;

Number_Of_Pistons : in Integer;

Piston_Area : in Seu. Square Feet);

procedure Reques_ S_a_e_Change (Instance : in ou_ Object;

Command : in Commands;

Apply : in Boolean;

Efficiency : in Seu.Non_Dimensional := 1.0);

procedure Update [fns_ance : in ou_ Object;

S_roke : in Seu.Fee_;

Ro_a_ion : in Seu. Radians_Per_Second);

function Plow (Instance : in Object) return Seu.Gallons_Per_Second;

priva:e

type Object is

record

Displacement : Seu.Gallons := 0.0;

Efficiency : Seu.Non_Dimensional := 1.0;

_Iow Rate : Seu.Gallons_Per_Second := 0.0;

Total_Piston_Area : Seu. Square_Fee_ := 0.0;

end record;

end Positive Displacemen__Pump_Class;

..

--I Abstract: This package provides a real _ime simulation of a class

°-_ of a hydraulic positive dispacemen_ pump.

----I

--i Warnings: pragma Inline in body.

V-36

k.j"

Ada Unit 21 poslUve_Displacement Pump Class Package Body

ty_e ForM_Per_Second is new Se_._ea__6:

__ ,_.,t.tt**tt,t_tt_*_t,t.*,t**tt*t*_t****t*ttQttt_w"'_Q_t**

-- Sveri:_ded _er_:Drs

f_nc_on "*" Left : in Seu.3allons: Righ_ : in Revs_Per_Second]

return Seu.3ailons_Per_Second is

_egln

re:urn _Seu.gallons_Per_Second {Set.Real_6 _Left} * Set.Rea__6 (Right)));

end "*" "

f Jnc_ion "*" [Left : in Seu. Galions_Per Second;

Right : in Sou. Non_Dimensional)

re_urn Sou.Gallons_Per Second is

begin

re_urn (Sou. Gallons_Per Second (Se_.Real_6 [Left] * Set.Real_6 (Right))];

end "*'"

function "'° (Left : in Sou.Square Feet; Right : in Integer)

return Sou. Square Feet is

begin

re_urn [Sou. Square Feet (Set.Real_6 [Left) * Set.Real_6 (Right)));

end "*'"

function "*" (Lef_ : in Sou. Square_Feet; Right : in Seu. Feet)

return Seu.Cubic_Fee_ is

begin

re_urn (Seu. Cubic_Feet (Set.Real_6 (Left} * Se_.Real_6 (Right)));

end "*';

pragma Inline *'*"};

-- Report_Symbols [used by Create)

procedure Report_Symbols (Instance : in out Object;

Parent_Name : in S_ring} is separate:

-- ********************* Modifiers **********************************

procedure Create (Instance : in ou_ Object;

Parent_Name : in String := '';

Efficiency : in Sou.Non_Dimensional := 1.0;

Number_Of_Pistons : in Integer;

Piston_Area : in Sou. Square_Feet) is

begl n

Report__mboll (Instance => Instance, Parent_Name => Parent Name);

Instance._fficlency := Efficiency;

Instance.To_al Piston_Area := Piston_Area • Number_Of_Pistons;

end Create;

procedure Request_Scare_Change

(Instance : in out Object;

Command : in

Apply : in

Efficiency : in

begin

case command is

when SoL_Efficiency =>

Commands;

Boolean;

Sou.Non_Dimensional := 1.0) is

ORtGINAL PAGE iS

OF POOR QUALIW

V-37

if Apply zhen

[_s=ance. Zffi:=ency :: Efficiency;

end if;

enl =ase:

end Reques__S=aze_Change;

pr:cedure U_da=e <_nstance : in out Object;

Stroke : in 3eu. Feet;

_otation : in Seu.Radians_Per_Second_ is

Speed Rps : Revs Per Second:

_isplacement_Ft_Cubed : Seu. Cubic Feet:

begin

-- Calculate Displacement in ga'_ns (I gallon = 0.133681 cubic_feet)

[ns_ance.Disp!aceme- :=

Seu.Gallon _(In_ _ce. l_Piston_Area * Stroke) / 0.133681);

-- Convert rota_ic _o re _per_ ._ond ->

-- rps = (rads/seci • (I rev/ 2(pi) rads)

Speed_Rps := Revs_Per_Second (Rotation " 0.159i55) ;

-- Based on displacement, torsional speed, and efficiency, determine flow rate

Ins=ance. Flow_Rate :=

(Instance.Displacement * Speed_Nps) * Instance.Efficiency;

end Update;

---- ***t_,t**t**te*_t*e*tttt Selectors ******************************

function Flow (Instance : in Object] return Seu.Gallons_Per_Second is

begin

return (Instance.Flow_Rate);

end Plow;

end Positive_Displacement_Pump_Class;

Ada Unit 22 poeiUve_Displacement_Pump_ClamkReport_Symbols Separate Procedure
with Sym]=ol_Map;

se_ara=e (Positive_Displacement_Pump_Class)

procedure Repor_ Symbols (Instance : in ou_ Object; Parent_Name : in String) is

begin

-- No sym]mols to report

null;

end Repor_ Syl_im;

--I Abstracc: Thl8 separate reports sy_R)ols to the symbol map.

--t warnings: If no symbols are to be reported, this separate could

--I be deleted.

..

H

V

ORIGINAL PAGE IS

OF POOR QUALITY

V-38

"_._j

Flow

LossFlow

Pd_Puml_

Pressure

Scale

To r¢[ue

end record;

Ada Unit 23 Axlal_Piston_Pump_Class Package Specification
_zzn _ Eng_T_';es;

wiz_. 3-! _ng UnzZs;

wLzn F:sLz_ve__is_iazement_?ump_Class;

_se 3:i_Eng_T'/_.es;

lse 3:__En__.n_zs:

vackag e _al pL3_on_?_mp__lass is

vazkage 3e_ renames S_d_Eng_Types;

_ackage Seu renames Std Eng Units;

_YVe Object is limited private;

ty_e Commands is _Mcdify_Efficiency, Set_Delta Flow); i

__ ,,****,,,,,********-*** Modifiers ,**,t********,,,,,****- --

procedure Create {[nscance : in ou_ Object;

Parent_Name : in String := "';

Number_Of_Pistons : in Integer;

Piston_Area : in Seu. Square_Feet) ;

procedure Request State_Change

(Instance : in out Object;

Command : in Commands;

Delta_Flow : in Seu.Gallons_Per_Second := 0.0;

Efficiency : in Seu.Non_Dimensional := 1.0);

procedure Update (Instance : in out Object;

Press : in Seu. Psi;

Rotation_Ra_e : in Seu. Radians_Per_Second;

S_roke : in Seu. Fee_);

__ ********************** Selectors ***************'**'* --

function Flow (Instance : in Object) return Seu.Gallons Per_Second;

function Pressure (Instance : in Object) return Seu. Psi;

function Torque (Instance : in Object) return Seu. Foot_Pound_Force;

private

ty_e Object is

record

Bias : Seu.Gallons_Per Second := 0.0;

Del_a_Flow : Seu.Gallons_Per Second := 0.0;

: Seu.Gallons_Per_Second := 0.0;

: Seu.Gallons_Per_Second := 0.0;

: Positive_Displacement_Pump_Class.Object; a

: Seu. Psi := 0.0;

: Seu.Non_Dimensional := 1.0;

: Seu.Foot Pound_Force := 0.0;

end Axial_Pietcuk_Pump_Class;

..

--I ADstract: This package models a hydraulic pump which uses an

--I axial piston arrangement to generate hydraulic pressure

--i based on rotational speed.

--l Warnings: None.

..

m

Commands used to

modify state data with Re-

quest_State_Change.

Request_State_Change

to provide m_func=on and

reset ¢ap_lity.

Use of ano_ef cla_s within

this clas_

%

ORI.31NAL PAf'_EIS

OF P(Y3R QUALITY

..... V-39

Ade Unit 24 Axial_Piston_Pump_Class Package Body
ac:<-_e bc,,iy Ax'-a-_._s'-¢n_?umv_Z _ass is

-- _verloaded Cceraccrs

f_nc::?n _*" :Lef: : in /eu.Non__imenslonal;

R_Jnz : _n Se_.3ailons Per_Second)

re:_rn Seu.3all_Dns_Per_Second is

begin

rezurn ISeu.Gaiions_Per_Seccnd (See.Real_6 (Ri;ht) * Set.Real_6 _Left)));

end ""';

function "*° (Left : in Sou.Non Dim, ensional; Right : in Seu. Psi)

return Sou. Psi is

begin

return (Seu. Psi (Se_.Real_6 (Right) * Set.Real_6 (Left)));

end °'';

pragma Inline ('*°):

-- Loss Flow Race Function

function Calc_Loss Flow (Pressure : in Seu. Psi;

Flow_Rate : in Sou. Gallons_Per_Second)

return Sou.Gallons Per Second is

Flow_Sf : Seu. Non_Dimensional;

begin

-- Need function here to produce the following flow_sf's:

-- Press Flow_sf

-- 400.0 0.001

-- 1680.0 0.01

-- 2800.0 0.i0

-- NOTE: For now, _se hard coded value of 0.05 (5% loss)

Fiow_Sf :: 0.0_;

return (Flcw_Sf * Flow_Race);

end Calc_Loss_Flow;

-- Calculate Torque Function

function Calc_Torque (Speed : in Seu.Radians_Per_Second;

Flow : in Sou.Gallons Per_Second)

return Sou. Foot_Pound Force is

begin

-- Need some sort of function to obtain torque based on flow rate & speed.

-- For now, ule conitant value.

return (15.0);

end Calo_Toz_e;

--- ***t***e.ttetttetee*e*tte***tt**tt*************************

-- Report Symbols (used by Create)

procedure Report_Symbols (Instance : in out Object;

Parent_Name : in String := °') is separate;

__ ********************** Modifiers **************************

procedure Create (Instance : in out Object;

Parent_Name : in String := "'"

Number_Of_Pistons : in Integer;

Piston_Area : in Seu. Square_Feet) is

begin

Report Symbols (instance => Instance, Parent_Name => Parenc__Name);

V

V-40
ORIGINAL PAGIE MS

OF POOR QUALITY

k.j

"_._j

k,__j"

_cs::ive Dis_Zazemenz_PumV_Ciass. Zrea;e

_]ns=ance :> [ns_ance. Zd__u_p,

?_rent Name :> Parent_}_ame & ".P__?u_F". 4

_4ummer_uf _:stons => Number Of ?!s_ns,

?:szon_Azea => Piston_Areal;

enf]feaze;

...,.. **t... **

r:ze.re Requesz_Sta:e_Change

ifnszanze : in out _ecZ;_w_

Cem_and : in Commands:

Delta_Flow : in Seu.Gal!oms_Per_Second :: 0.0;

Efficiency : in Seu.Non_Dimensional :: 1.0) is

begin

:ase Command is

when Modify_Efficiency =>

Positive_Displacement Pump Class.Request_Scare_Change

(Instance :> Instance. Pd_Pump,

Apply => True,

Command => Positive_Displacement_Pump_Class.Set_Efficiency,

Efficiency => Efficiency);

when Se_ Delta_Flow :>

InsEance. Delta_Flow := Delta_Flow:

end case;

end Request_State_Change;

prdcedure Update (Instance : in out Object;

Press : in

Rotation_Rate : in

Stroke : in

Loss_Flow : Seu.Gallons_Per_Second;

begin

Seu. Psi;

Seu.Radians_Per_Second;

Seu. Feec) is

-- Calzulace pump flow based on stroke and speed. Calculate loss flow

-- based on pump flow and system pressure. Total flow rate consists of

-- pump flow minus loss flow plus any IOS commanded flow del%a.

Positive_Displacement_Pump_Class.Update (Instance => Instance. Pd_Pump, l

Stroke => Stroke,

Rotation => Rotation_Rate);

Instance. Flow := Positive_Displacement_Pump_Class.Flow (Instance. Pd_Pump);

Loss Flow := Calc_Loss_Flow (Pressure => Press,

Flow Race => Inscance. Flow);

Instance.Flow := Instance. Flow - Loss_Flow + !nsEance.Delca_Flow;

-- Determine _o_[ue from coral flow race.

Instance.Torque := Calc_Torque

(Speed => Rotation_Race, Flow :> Instance.Flow):

-- Output pressure equals inpuE pressure.

Instance. Pressure := Press;

end Update;

-- ,******************** Selectors ********************* --

function Flow {Instance : in Object) return Seu.Gallons_Per_Second is :

begin

return (Instance. Flow);

end Flow;

-I

]
Create pedorrned for |
dass contained wi_in /this dass.

Malfunction passed to
dea8 contained in this
da_k

Update other class
from within this
dluiS.

Use state data from other dass
to caJcuiele state data for this
dm.

Function returnsd_ state data

O_G_NAL PAGE tS
OF_ POOR QUALITY d -3.

n,t=¢n ?ressure ilnstan_e : _ 3b_ec:[_e:_r_ Seu. Fsl is e

cegln

return _Instance.?ressure;;

end ?ressure:

funct=_n T==_ue (instance : in Objectl re_urn Se_.Fco__?ound_For:e _s

begin

return ,instance.Torque};

end Torque;

end _ia!__isEon_?u_p_Class;

Ada Un_ 25 Axlal_Piston_Pump_Class.Report_Symbols Separate Procedure
with Symbol_Map;

separate iAxial_Piston Pump_Class)

procedure Report_Symbols (Instance : in out Objecz;

Parent_Na,_e : in String := "') is

begin

-- No sym33ols to report

null;

end Report_Symbols;

..

--p Abstract: This separate reports symJ3ols to the symbol map.

--i Warnings: If no symbols are to be reported, this separate could

--l be deleted.

..

Function returns

class state data

Func_o_re_rns

dass _atecla_

V

V

V-42
OiM_NAL. PAGE IS

\ J

Ada Unit 26 Actuator_Class Package Specification
"w'_.-. 3z_ Er.g Un_-s;

w::n S: c_E-.,;_Tv_es ;

_:se 3:d En__Uni:s,

:se S_.d_En;_?v_es;

_azkage Ac:_a:3r_CLass :s

_acKa;e Seu renames 3:d_Eng_Units;

_a:kaqe Set renames 3_d_Eng_TylDes;

_yve Object is limited private;

_Yve Commands is _Se_-_Leak) ;

__ ,************-*,*** Modifiers *************************** --

procedure Create (Instance : in out Object; Parent_Name : in String :: "');

procedure Request_State_Change (Instance : in out Object;

Command : in Commands;

Leak_Rate : in Seu.Gallons_Per_Second):

procedure Update (Instance : in out Object;

Delta_Time : in Seu. Seconds;

Pressure : in Psi);

-- ********************** Selectors ********************* --

function Stroke [:nstance : in Object) return Se_.Fee_;

private

type Inches_Per_Second_Squared is new Set.Rea!_6;

type Object is

record

Leak_Rate : Seu.Gallons_Per_Second := 0.0;

Spool_Force : Seu. Pounds_Force := 0.0;

Friction : Seu. Pounds_Force := 0.0;

Spring_Force : Seu. Pounds_Force := 0.0;

Accel : Inches_Per_Second_Squared := 0.0;

VelociEy : Seu. FeeE_Per_Second := 0.0;

Position_Lim : Seu. Feet := 0.0;

Swash_Plate_Angle : Seu. Radians := 0.0;

Stroke : Seu. Feet := 0.0;

end record;

end Actuator_Class:

... --

--I Abstract: This package provides a real time simulation of a class

--I of hydraulic actuators.

--I Warnings: None.

..

V-43

Ada Unit 27 Actuator_Class Package Body

-- Re,or= Sy_oi_ ,u_ed _y Zreate_,

gr:cedure _e_or¢_y_ti3 ilnstance : in out Object;
Parent_Name : in SErlng_ is separaEe;

procedure $reate (instance : in out Object; Parent_Name : in String :=

Degln

Report_Symbols (instance => Instance, Parent_Name => Parent_Name) ;

end Create;

procedure Caicula_e Spool_Force (Instance : in out Object) is

begin

__ NOTE: Operational details have been omitted.

null;

end Calculate Spool_Force;

procedure Calcu!a_e_Accel (Instance : in out Object) is

begin

-- NOTE: Operational de_ails have been omitted.

null;

end Calculate Accel;

procedure CalculateFriction
instance : in ou_ Object; Press Inpu_ : Sen. Psi) is

begin

-- NOTE: OV _ 5hal details have been omitted.

null;

end Calcula_e_Fric=ion;

procedure Calculate_Velocity (Instance : in out Object) is

be_i n

-- NOTE: Operational details have been omitted.

null;

end Calculate_VelocitY;

procedure Calculate_Position (Instance : in out Object) is

begin

-- NOT_: Operational de_ ls have been omitted.

null;

end Calculate_Position;

procedure Ca!culate_Swa&__Pla_e_Angle (Instance : in out Object) is

-- N_E: O_era_iona_ details have been omitted.

• "_ is

V-44

_J

w

Frzzei_re _alculaze_3zr,_e Clnstance : in out 3b_ec:) is

-- NCTE: 3pera_icna_ _ezails have been _mlzzed.

end Calzula:e_Szr3Ke;

pr_,zedure Calcula_e_Adjustmen__Sprlng {Instance : in out Object) is

begin

-- NOTE: Operational de_ails have been omitted.

null;

end Calculate_Adjustment_Spring;

procedure Request_SEate_Change (Instance : in out Object;

Command : in

Leak RaEe : in

begin

case Command is

when Set_Leak =>

Instance. Leak Ra%e := Leak_Ra_e;

end case;

end Request_S_ate Change;

procedure Update (Instance : in ou_ Object;

Delta_Time : in Seu.Seconds;

Pressure : in Psi) is

Total_Force : Seu. Pounds_Force;

begin

Calculate_Friction (Instance => Instance, Press_Input => Pressure);

Calculate_Adjustmen¢_Spring (Instance => Instance);

Calculate_Spool_Force (Instance => Instance);

Total Force := Instance. Spool_Force -

Instance. Spring_Force - Instance. Friction:

Calcula_e_Accel (Instance => Instance) ;

Calcul&_e_Velocity (Instance => Instance);

Calcula_e__omi_ion (Instance => Instance);

Calcula_e_Swmmh_Pla_e_Angle (Instance => Instance);

Calculate_S_roke (Instance => Instance) ;

end Update;

funccion Stroke (Instance : in Objec%) return Seu.Feet is

begin

return (Instance. S_roke);

end S_roke;

end Actuator Class;

Ada Unit 28 Actuator_Class.Report_Symbols Separate Procedure

Commands;

Seu.Gallons Per Second) is

O_IOINAL PAGE IS
01_ POOR QUALITY

wi=n Symccl Ma_;

se_ar_=e [Ac=uator £lassZ

vr=cedure Revor=_Syr_cls finstance : in ,sut 3bjec=; ?aren= Name : :n 3=ring_

ce_in

--)_ sym_.Dis =o re,or=

null:

end _e_or: $ymmcls:

..

-- Abs=rac_: Th_s separate reporns symbols :o =he symbol map.

-- Warnings: If no symbols are to be repor[ed, _his separate could

-- De deleted.

..

'is

V

V

........ V-46
OikI_NAL, PAOAEPS
O_ PO(_ Q_JAtrr'Y

i%_..w /

Ada Unit 29 Cen_tfugal_Pump_Class Package Specification
with 3_5_Zn__Units:

w_=n 2_9_En__T'/]ces;

.se S;J_Enq_T'/_es;

varkage :en%rLf'=gai_Pump.glass is

_ackage Seu renames Std_Eng_Unizs;

pa=kage SeE renames Std_Eng_Types;

ty_e Object [s limited privaze:

__ ********************** Modifiers ************************ --

procedure Create (ins:ante : in out Object; Parent_Name : in String);

procedure Update {Instance : in out Object;

Delta_Time : in Sou. Seconds;

Supply_Speed : in Seu. Radians_Per_Second;

Fluid_Avail : in Boolean;

Consumed_Flow : in Sou.Gallons Per Second) ;

function Torque (Instance : in Object) return Sou. Foot_Pound_Force;

function Pressure (Instance : 0bjec_] return Sou. Psi;

function Consumed_Flow (Instance : Object) return Seu.Gallons_Per_Second;

private

type Objec_ is

record

Torque : Seu.Foo__Pound_Force := 0.0;

Press : Sou. Psi := 0.0;

Flow : Sou.Gallons Per_Second := 0.0;

end record;

end Zentrifugal_Pump_Class;

..

--! ADstrac_: This package provides a real _ime simulation of a class

--, of hydraulic centrifugal pumps which pressurize fluid

--i based on input shaft rotation speed.

--I Warnings: None.

..

_N._I PAGE" t_
OF POOR QUALITY

V-47

Ada Unit 30 Cenlrifugal_Pump_Class Package Body
_a:<a_e body Cen:rlfuga1_PumF_ _iass is

pr_,zed_re Ee_or:_Cy_:ols _Inszance : in ouc Sb_ec_;

Parent_Name : in 3_rlng := "'_ zs separate;

.********************** Modifiers **************************

procedure Crea_e [instance : in out _b_ect; Parent_Name : in String_ is

Zejin

Report SymDols [Instance :> Instance, Parent_Name => Parent_Name);

end Create:

procedure Update (instance : in out Object;

Delta_Time : in Seu.Seconds;

Supply_Speed : in Seu. Radians_Per_Second;

Fluid_Avail : in Boolean;

Consumed_Flow : in Seu.Gallons Per_Second) is

begin

-- Set flow race consumed [or output

instance. Flow := Consumed_Flow:

-- Function needed to convert supply speed, fluid availability and

-- delta _ime into pressure.

Instance.Press := 0.0;

-- Function needed to convert supply speed, fluid availability and

-- dei_a time into _orque.

Instance.Torque := 0.0;

end Update;

[unction Torque IInstance : in Object) re_urn Seu.Foo__Pound_Force is

begin

return (Instance.Torque);

end Torque;

function Pressure (Instance : Object) re_urn Seu. Psi is

begin

return (Instance. Press);

end Preemure;

__ *******teOQQQgQ_e_e._*e*e_**e******e**e**e**e**e*****_*e

function Co_u__Flow (Instance : Object) re_urn Seu.Gallons_Per_Second is

begin

return (Ins_ance. Flow);

end Consumed_Flow;

end Centrifugal_Pump_Class;

Ads Unit 31 Centrifugai_Pump_Clmm.Report_Symbola Sel:_rate Procedure
with Symbol_Map;

separate (Centrifugal_Pump_Class)

procedure Report_Symbols (Instance : in ouc Object;

Parent Name : in String := "') is

begin

V

V-48
ORtOtNAL PA_E IS

OF POOR QUALITY

J

oF _o_ Qu_rTy

V-49

Ada Unit 32 Hydraulic_Pump_Class Package Specification
|

w_:h Axi_l__is_on__ump_21ass:

w_n 2en_r_f_gai__um__C_ass;

with _and,Dm;

w_zh S%d_Eng_T?"ies;

w_n Stl £nj Units;

use S:d_Eng_Types:

use 3:d_Eng_Unizs:

vacKage Hydraulic_Fump_Class is

package Set renames Std_Eng_Types:

package Seu renames S_d_Eng Units;"

type Object is limized private;

type Commands is (Compensator_Fail, -- Erratic pressure flow from pump

Modify_Flow_Eat*, -- Scale pump flow ra_e

Pump_Fail); -- No flow when pump is driven

__ *********************** Modifiers *********************** --

procedure Create (_nstance : in out Object; Parent_Name : in String := "') ;

procedure Request_State_Change (Instance : in out Object;

Command : in Commands:

Apply : in Boolean;

Bias : in Seu. Non Dimensional := 0.0;

Scale : in Seu.Non_Dimensional := 1.0);

procedure Update (Instance : in ouc Object;

Del_a Time : in Seu. Seconds;

Fluid_Avail : in Boolean;

Shaft_Speed : in Seu.Radians_Per_Second;

SysEem_Pressure : in Seu. Psi);

__ ********************** Selectors *****************tt. __

function Consumed_Flow (Instance : in Object) return Seu.Gallons_Per_Second:

function Output_Flow (Instance : in Object) return Seu.Gallons_Per_Second;

function Pump_On (Instance : in Object) return Boolean;

function Torque (Instance : in Object) return Seu. Foot_Pound_Force;

private

type Object is

record

Actuator : AcEua¢or C!ass.Object;

Axial_Pump : Axial_Piston_Pump_Class.Object;

Cen_rlfugal_Fump : Centrifugal Pump_Class.Object;

Compel_lator_Fail : Boolean := False;

Colw1__Flow : Seu.Gallons_Per_Second := 0.0;

Flo_jilam : Seu.Gallons Per_Second := 0.0;

Flow_O_E : Seu.Gallons_Per_Second := 0.0;

Flow__C_le : Seu.Non Dimensional := 1.0;

Presm_Del_a : Seu. Psi := 0.0;

Pump_Sensor Failure : Boolean := False;

Pump_SEa*us : SeE.On_Off := Off;

Random_Id : Random. Handle;

Shaft Fail : Boolean := False;

Shaft_Speed : Seu.Radians_Per_Second := 0.0;

Torque ' : Seu. Foo__Pound_Force := 0.0;

end record;

end Hydraulic_Pump_Class;

--i Abstract: This package provides a real _ime simula¢ion of a class

--i of hydraulic pumps composed of an axial piston pump, an

This daes uses

Ihree o_er

dlusses.

V

V

V-50 ORIGINAL PAGE ffl

OF POOR QUALITY

OR_N.M. PAGE I_

OF POOR QUALITY

V-51

Add Unit 33 Hydraulic_Pump_Class Package Body
I

car_a_e c,_dy Hydra_: Pum_ _ass fs

-- _um_ Za_a 7rom NASA documen= _ASA-_-[CT_I, "S_ec for Acme Hydrau[ic ?umV

--Co. Ty:c._e abc-4=6b Hydr_ul!= ?'_mV'.

Num _.f P_stcns : conszan_ integer :: 6;

Sing[e_?_ston_Area : ronszant 3eu. Square Feet := 5.454[_E-3; -- I" !iam

-- Qverloaded Z_erators

function "*" (Left : in Seu.Non_Dimensicna!;

Right : in 3eu. Gallons_Per Second)

return Seu. Gailons Per Second is

Degin

return Seu.3a!ions_Per_Second [Set.Real_6 (Left) * Set.Real_6 (Right));

end "*''

function "*" (Left : in Seu. Ps!: Right : in Seu.Non_Dimensional)

return Seu. Psi is

begin

r_urn Seu. Psi [Se_.Reai_6 Left) * Se_._eal_6 (Right));

end "''

pra; .nline ['*');

-- Report_Symbols (used by Crea_e)

procedure Repor__Sym]ools (Instance : in ou_ Object;

Parent_Name : in String) is separate;

-- *********************** Modifiers ****************************

procedure Crea_e (instance : in out Object; Parent Name : in S_ring := "') is

begin

Report_Symbols [Instance :> Instance, Parent_Name => Parent_Name):

Actuator_Class.Create Instance => Instance. Actuator,

Parent_Name => Parent_Name & ".actual');

Axia. _scon__ump_Class.Create

(Ins=ante => instance.Axial_Pump,

Paren_ Name => Parent_Name & ".axial_pump',

Number Of Pistons => Num Of_Piscons,

Piston_Area => Single Piston_Area) ;

Centrifuqal Pump_C!ass.Create (Instance => Instance.Centrifugal_Pump,

Paren_ Name => Parent_Name & ".cent_pump');

Random. Initialize (The_Handle => Ins_ance.Random_Id);

end Crea£e;

procedure _Ml_Ua_l__Sta_e_Change (Instance : in ou_ Object;

Command

Apply

Bias

Scale

begin

case Command is

when Compensator_Fail =>

Inscance.Compense=gr_Pail := _

when Modify_Plow_Rate =>

Ins_ance. Flow Scale := Sea"

Instance. Flow_Bias := Seu

: in Commands;

: in Boolean;

: in Seu. Non_Dimensional := 0.0;

: in Seu.Non_Dimensional := 1.0) is

s_Per_Second (Bias):

V-52
ORIGINAL PAGE IS

OF POOR QUALITY

V

V

when _u__FaEl =>

fnscance. Shaf__Fall := AFF[Y;

D
enl case;

enfi _equesz_Scace_Z_ange;

._et.e,t_ee._eeee_ee_w_,_e*_t*eeete_tt_ettte_tk*_k*te_et_

procedure U_da=e _fns=ance : in out Sbjec=;

2e[:a_Time : in Seu.Seconds;

Fiuld Avail : in Boolean;

Shaft Speed : in Seu.Radians Per Second;

System__ressure : in Seu. Psi) is separate;

__ ***************************** Selectors **********************

func¢ion Consumed_Flow (fnstance : in Object)

return Sou.Gallons_Per_Second is

begin

return Centrifugal_Pump_Class.Consumed_Flow (Instance.Centrifugal_Pump);

end ConsumedFlow;

---- ***wt.ett_ewt.tttewt_et**t_.tmtt*w*t*********tt_**twttm_*_

function Output_Flow (Instance : in Object) return Sou.Gallons_Per_Second is

begin

return (Instance. Flow_Out);

end Output_Flow;

function Pump_On (Instance : in Object) return Boolean is

begin

return (Instance. Pump Status = Set.On);

end Pump_On;

function Torque _Instance : in Object) return Seu. Foo__Pound_Force is

begin

return [fnsoance.Torque);

end Torque;

end Hydraulic_Pump_Class;

Ada UnK 34 Hydraulic_Pump_Class.Report_Symbols Separate Procedure
with Symbols;

separate [Hydraulic_Pump_Class)

procedure Report_Sy_is (Instance : in out Object; Parent_Name : in String) is

begin

Symbols.Re_ister {Name => Parent_Name & ".Flow Out',

Base_Type :> Symbols.Real

Tick Address => Instance. Flow_Out'Address,

Tick_Size => Instance. Flow_Out'Size);

end Re_x_rt_Symbols;

... ,

--i Abstract: This procedure reports the flow attribute of the

--l hydraulic pump class to the symbol map.

--i

--_ Warnings: None.

..

Acla Unit 35 Hydraulic_Pump_Class.Update Separate Procedure

V-53

separate Hydrau_iz Pu_V_C[ass;

procedure Update [instance : _n _ut _-ezz:

_ei:a_T_me : in Seu. Sezonds;

Ft&_d_Avail : in _ooiean;

Shaft Speed : in Seu,Radians_Fer_Second;

9ys_em_Pressure : in Seu._s_ _s

begin

-- 2ezer_ne shaf_ steed based on suppled shaft speed and shaft sca_us.

if not instance.Shaft_Pail _hen

[nstance. Zhaft_S_eed := Shaf__S_eed;

else

instance. Shaft_Speed := 0.0;

end if:

-- Update Censrifugal Pump

Centrifugal_Pump Class.Update

(Instance => Instance.Centrifugal_Pump,

Delta Time => Delta_Time,

Supply_Speed => Instance. Shaft_Speed, m

Fluid_Avail :> Fluid Avail,

Consumed Flow => Axial Piston_Pump Class. Flow (Instance. Axial_Pump));

-- Calculate pressure difference between scavenge pump outpu_ pressure and

-- system pressure. Include effects of pressure compensator failure (if

-- required).

Instance. Press_Del_a := System_Pressure - Cen_rifugal_Pump_Class. Pressure

(Instance.Centrifugal_Pump);

if Instance. Press_Delta <= 0.1 then

Instance. Press_Delta :: 0.0;

end if;

if Instance.Compensator_Fail then

Instance. Press_Delta :=

[nstance. Press_De!ta *

Seu. Non_Dimensional (2.0 * Random. Float Value (Instance. Random_Id));

end if;

-- Update pressure compensation actuator

Actuasor_Class.Update (Instance => _nscance.Actuator,

Delta_Time => Delta_Time,

Pressure => Instance. Press_Delta);

-- Update Axial Piston Pum_

Axi a 1 _P i s ton_Pum__Class. Update

(Instance => Instance. Axial_Pump,

Press => Instance. Press_Delta,

Ro_a_iom__a_e => Instance.Shaft_Speed,

Stroke => Actuator Class.Stroke (Instance.Actuator));

instance. Flow_Ou_ := Axial_Piston_Pump_Class.Flow (Instance.Axial_Pump);

Ins_ance.F!ow_Out :=

Instance. Flow_Scale *Instance. Flow_Ou_ + Instance.Flow Bias;

Update oupu_ variables

[f Shaft_Speed >: 0.I _hen

Instance. Pump Status := Set.On;

else

Instance. Pump_S_atus := Se_.Off;

end if;

V-54

Update of dm uses state

variable_ inputs and output

of sta_ horn o_e_ dau.

OR_tNAL PAGE R5

OF POOR QUALITY

Use of state output functions
from other classes to deter-*

mine state data

[.

ORi_NAL PAGE IS

OF Poor QUALITY
V-55

Ada Unit 36 Distribu_on System_Class Package Specification
wi:n 3:__Zng_Unics;

wLnn 3t__En_ Tyl_es;

zse 35___ng_UniSs:

&so Szd Eng_??Tes:

_azka_e _istribu_Dn_Sys_em_iLass is

package Sou renames 3Ed_Eng_Units;

package Set renames Scd Eng_Ty_es;

cy_e _bjecn is limited private;

ty_e Commands is [Se:_Leak_ ;

*********************** Modifiers *********************** --

procedure Create (Zns_ance : in out Object;

Parent_Name : in String := "';

Press_Cons* : in Sou.Non_Dimensional) ;

procedure Request_State_Change (Instance : in out Object;
Command : in Commands;

Apply ; in Boolean;

Leak_Rate : in Seu.Gallons_Per_Second :=

0.25); -- 15 gal per min

procedure Update (Instance : in ou_ Object;

Delta_Time : in Seu. Seconds;

Consumed_Flow : in Sou.Gallons_Per_Second;

Supply_Flow : in Seu.Gallons_Per_Second);

- ********************** Selectors *We****tt*tt****** --

f,_nc_ion System_Pressure (Instance : in Object) return Sou. Psi;

private

type Objec_ is

record

Leak__ate : Sou.Gallons_Per_Second := 0.0:

Sys_Consn_n_ : Sou.Non_Dimensional := 0.0;

Sys_Pressure : Sou. Psi := 0.0;

end record;

end Discribunion_Syscem_Class;

_.__ ..

--I Abstract: This package :models the sys%em of pipes which distribute

--I hydraulic fluid between components.

--l Warnings: pragma Inline used in body

V

V

V-56
O_iGtiNAL PAGE tS

OF POOR QUALITY

AddUnit 37 Distribution_System_ClassPackageBody
a:k;e ccCy Distr_buc_,_n_Syscem__iass is

-- ,,**********,*-,,,* Cverloaded 3peracors *********************

_n.zc_Dn "'" :Left : Ln /eu.Non_Dimensional;

Rulnc : in Set. Gallons ?er Second_

return 3eu.;a[Ions_Per_Second is

c_.jtn

reEurn 3eu.3ailDns_Per_Second (3e_.Real__ (Lefc_ * Set.Real 6 !_ight)) ;

end "*';

ragma Inline ["*" ;

-- Report Symbols (used by Create)

procedure Report_Symbols ([nstance : in out Object;

Parent_Name : in String := "') is separate;

__ ************************** Modifiers *********************************

precedure Create _Instance : in out Object;

Parent_Name : in String := "';

Press_ConS* : in Seu.Non Dimensional) is

begin

Report_Symbols (Ins=ance => Instance, Paren=_Name => Parent_Name); e

Instance. Sys_Constant := Press_Cons*;

end Create;

procedure Request_State_Change

(Instance : in out Object;

Command : in Commands;

Apply : in Boolean;

Leak_Ra_e : in Seu.Gallons_Per_Second := 0.25) is

begin

case Command is

when Set_Leak =>

if Apply then

Instance. Leak_Rate := Leak_Rate;

else

Instance. Leak_Rate := 0.0;

end if;

end came;

end Requemt_S_ate_Change;

procedure Update (Instance : in out Object;

Delta_Tirae : in Seu. Seconds;

Consumed Flow : in Seu.Galions_Per_Second;

Supply_Flow : in Seu.Gallons_Per_Second} is

Total_Flow : Seu.Gallons_Per Second;

Delta_Press :Seu. Psi:

begin

-- Determine pressure change by flow rate into/out of system multiplied by

-- system constant.

Total Flow := Supply Flow - Consumed_Flow -Instance. Leak_Ra_e;

Delta_Press := Seu. Psi (Instance.Sys_Cons_ant * Total_Flow);

Reglstlr start data wi_ I
symbol map for um by

lOS.

V-57

--]a[:u[a:e new _ys:em ;ressure.

[nstance.3ys ?ressure := :_s:ance.Sys _ressure - 9elza_?ress;

P

end U;da:e;

func:i;n 3ys:em_?ressure [:ns:ance : in Cb_ec:_ re:urn Seu. Psi is

beg_n

rezurn i[_s:ance.Sys_?ressure) ;

end 3yszem_?ressure:

end DisErlbuEicn_3ysEem_Class;

Ada Unit 38 Distribution_System_Class.Report_Symbols Separate Procedure
wi_h _ymbols;

separace (DisEribuEion_System_Class)

procedure Repor__SymDois [_nstance : in ou_ Object;

Parent_Name : in String := °°) is

begin

Symbols.Register (Name => Parent_Name & ".System_Pressure',

Base_Type => Symbols.Real, l

Tick_Address => [ns_ance. Sys_Pressure'Address,

Tick_Size => Ins_ance,Sys_Pressure'Size);

end ReDor__Symbols;

..

--i Abstract: This procedure reports the system pressure a_riDu_e of

--] the distribution system class to the symbol map.

--I

--i Warnings: None

Clsss state dam regis-

tered w_ symbol map for

use by IOS.

V-58

!

Ada Unit 39 Generic_Reservoir_Class Package Specification

;eneric

_7_e VcL_Ra_e_Uni:s is digits <>; q

_/v._e Time_Unlzs is digits <>;

Max_Lea__Ra:e : in Vci_Rate Units;

_ackaGe Gener_c_Reserveir_Class is

_vve Object is limited private;

ty_e Commands is [Leak Malfunction, Se_ Q_y) ;

__ *********************** Modifiers *********************** --

procedure Create (instance : in out Object;

Pare_t_Nam_ : in String := "'-

Init Qty : in Volume_Units) ;

procedure Request_State_Change (Instance : in out Object;

Command : in Commands;

Quanti_y : in volume Units := 0;0);

procedure Update (Instance : in ouc Object;

Delta Time : in Time_Units;

Consumed_Rate : in Vol_Rate_Uni_s;

Returned_Rate : in Vol_Rate Units);

-- *-*******--*--***-**** Selectors ,tttttlt.tt,tt.tttt. __

function Fluid_Avail (Instance : in Object) return Boolean;

function Quantity (Inscance: in Object) return Volume_Units;

private

Eype Object is

record

Fluid_Avail : Boolean := False;

Qty : Volume_Units := 0.0;

Leak_Ra_e : Vol_Rate_Units := 0.0;

end record;

end GenericReservoir_Class;

..

--I Abstract: This package provides a real time simulation of a class

--I of hydraulic reservoirs.

--I

--I Warnings: This class should be instantiated with compatiable units

--I (i.e. gallons, qallons_Der_sec & seconds) Co prevent

--I incorrect calculations.

..

TotaJly genenc class No dependence

on SEU/SE'[Th, s could be instan-

tiated in English or met_c units. User

needs to ensure units are compatible

k.,_j _

V-59

Ada Unit 40 Generic_Reservoir_Class Package Body
ac<;e =od¥]ener_:_Reservcir_i_ass is

-- 3ver[_aded 3_eratcrs

• _Le_- : "/el _ate_Uni:s; Rich* : Ti:e Un_:s;

re,urn Vo[_:e_Uni:s is

_egln

return _Vc[u:e Uni:s _Left_ *Voiume Units _Ri_h:));

end "''"

-- Report _ymbols (used by Create)

procedure Report_Symbols (Ins:ante : in out Object;

Parent Na_e : in String) is separate;

-- *****************'** Modifiers **'***************''**'*'"

procedure Crea:e (Instance : in out Object;

Parent_Name : in Ssring := "'.

Inic_Qty : in volume Units) is

begin

Report_Symbe!s (Instance => [ns_ance, Parent_Name :> Parent Name);

Instance.Qty := [ni__Qty;

Ins_ance.Fluid_Avail := (Instance.Qty > 0.0); e

end Create;

procedure Request_Sca_e Change (Instance : in out Object;

Command : in Commands;

Quantity : in Volume_Units := 0.0) is

begin

case Command is

when Leak_Malfunction =>

if Instance. Leak_Rate >= 0.0 then

Instance. Leak_Rate := Max_Leak_Rate;

else

Instance. Leak_Rate := 0.0;

end if;

when Set Qty =>

In_tance.Qty := Quantity;

end came;

end Requemt_Staoe_Change;

procedure U_ace (Instance : in out Object;

Delta_Time : in Time_Units;

Consumed_Rate : in Vol_Rate_Units;

Returned_Ra_e : in Vol_Race_Units) is

Del:a Qty : Vo[ume_Jni_s;

begin

Delta_Q=y := (Returned Race - Consu_d Rate) * Delta_Time;

Instance Qcy := ins_ance.Qty + Del_a__ty:

if Ins_ance.Qsy <= 0.0 then

Inscance.Qcy := 0.0;

Stat_ vadalde based

on input parameters

from _I_ procedure.

OII_I_NAL PAGE P3

OF POOR QUALITY

V-60

y
end if;

Instance.Fluid Avail := not (Instance.Qty <= 0.0);

end Update;

-- ************************ Selectors ***************************

function Fluid Avail (Instance : in Object) return Boolean is

begin

return (Instance. Fluid Avail);

end Fluid_Avail;

__ ***

function Quantity (Instance : in Object)

begin

return (Instance.Qty);

end Quantity;

end Generic_Reservoir_Class;

return Volume Units is

Ada Unlt 41 Generlc_Reservolr_Class.Repon_Symbols Separate Procedure
with Symbols;

separate (Generic_Reservoir_Class)

procedure Report_Symbols (Instance : in out Object; Parent Name : in String)

begin

Symbols.Register (Name => Parent Name & ".Quantity",

Base_Type => Symbol_.Real,

Tick Address => Instance.Qty'Address,

Tick Size => Instance.Qty'Size);

end Report_Symbols;

..

--I Abstract: This procedure reports the quantity attribute of the

--I reservoir class to the symbol map.

--I Warnings: None.

..

Is

%%._f/

V-61

V

V

-- =

Ada Unit 42 Valve_Class Package Specification
With Std_Eng_Types;

with Std_Eng_Unlts;

use Std_Eng_Types;

use Std_Eng_Units;

package Valve_Class is

package Set renames std Eng_Types;

package Seu renames Std_Eng Units;

type Object is limited private;

type Commands is (Initialize, Freeze_Valve);

-- *********************** Modifiers *********************** --

procedure Create (Instance : in out Object; Parent_Name : in String := "");

procedure Request_State_Change (Instance : in out Object;

Command : in Commands;

Apply : in Boolean);

procedure Update (Instance : in out Object;

Close Cmd : in Set.On_Off;

Open_Cmd : in Set.On_Off;

Pressure : in Seu.Psi;

Power : in Seu.Volts;

Flow Rate : in Seu.Gallons Per Second);

-- ********************** Selectors ******************** --

function Pressure (Instance : in Object) return Seu.Psl;

function Flow Rate (Instance : in Object) return Seu.Gallons_Per_Second;

function Electrical Load (Instance : in Object) return Seu.Amps;

function Full Closed (Instance : in Object) return Boolean;

function Full_Open (Instance : in Object) return Boolean;

private

type Positions is (Open, In_Transition, Closed);

type Object is

record

Electrical Load : Seu.Amps := 0.0;

Flow Rate : Seu.Gallons Per Second := 0.0;

Movement_Efficiency : Seu.Non Dimensional := 1.0;

Power : Seu.Vol[s := 0.0;

Position : Positions := Closed;

Pressure : Seu.Psi := 0.0;

end record;

end Valve_Class;

..

--I Abstract: This package provides a real time simulation of a class

--I of hydraulic valves.

--I

--I Warnings: None.

..

• V-62

V

%_.,j'

Ada Unit 43 Valve_Class Package Body
package body Valve_Class is

__ ***

-- Report Symbols (used by Create)

procedure Report_Symbols (Instance : in out Object;

Parent Name : in String) is separate;

-- *********************** Modifiers *********************** --

procedure Create (Instance : in out Object; Parent_Name : in String :=

begin

Report_Symbols (Instance => Instance, Parent_Name => Parent_Name);

end Create;

__ ***

procedure Request_State_Change

begin

case Command is

when Initialize =>

Instance.Pressure

Instance.Flow Rate

Instance.Power

(Instance : in out Object;

Command : in Commands;

Apply : in Boolean) is

:= 0.0;

:= 0.0;

:= 0.0;

Instance.Electrlcal Load := 0.0;

Instance.Position := Closed;

when Freeze Valve =>

if Apply then

Instance.Movement_Efficlency := 0.0;

else

Instance.Movement_Efflclency := 1.0;

end if;

end case;

end Request State_Change;

__ ***

procedure Update (Instance : in out Object;

Close Cmd : in Set.On_Off;

Open_Cmd : in Set.On_Off;

Pressure : in Seu.Psi;

Power : in Seu.Volts;

Flow Rate : in Seu.Gallons Per Second) is

begin

-- NOTE: Valve operation details have been omitted

Instance.Pressure := Pressure;

Instance.Power := Power;

Instance.Flow Rate := Flow_Rate;

Instance.Position := Open;

end Update;

-- ********************** Selectors ******************** --

function Pressure (Instance : in Object) return Seu.Psi is

begin

return Instance.Pressure;

end Pressure;

-- freeze valve

-- unfreeze valve

.u) is

V-63

V

V

function Flow_Rate (Instance : in Object) return Seu.Gallons Per Second is

begin

return Instance.Flow_Rate;

end Flow Rate;

__ ***

function Electrical_Load (Instance : in Object) return Seu.Amps is

begin

return Instance.Electrical_Load;

end Electrical_Load;

__ ***

function Full Closed (Instance : in Object) return Boolean is

begin

return (Instance.Position - Closed);

end Full Closed;

function Full_Open (Instance : in Object) return Boolean is

begin

return (Instance.Positlon - Open);

end Full_Open;

end Valve Class;

Ada Unit 44 Vatve_Class.Repon_Symbols Separate Procedure
with Symbols;

separate (Valve_Class)

procedure Report_Symbols (Instance : in out Object; Parent_Name : in String)

begin

symbols.Register (Name => Parent_Name & ".Position",

Base Type => Symbols.Enum,

Tick-Address => Instance.Posltion'Address,

Tick Size => Instance.Position'Size);

end Report_Symbols;

..

--i Abstract: This procedure reports the position attribute of the

--l the valve class to the symbol map.

--I

--l Warnings: None.

..

is

V-64

Ada Unit 45 Elec_Sys_lntfc_Defs Package Specification
with Dis;

with Orvc Defs;

with Std Eng Types;

with Std Eng Units;

use Std_Eng_Types;

use std_Eng_Units;

package Elec Sys Intfc Defs is

package Set renames std_Eng Types;

package Seu renames Std_Eng_Units;

-- Circuit Breaker idents from NASA Space Station System Schematic,

-- Document NASA-SS-911-1234.

type Cb_Ids is (Cb I021_001

Cb 1021 002

Cb 1021 003

Cb 1021 004

Cb 1022 001

Cb 1022 002

Cb 1023 001

Cb 1023 002

Cb 1031 001

Cb 1032 001

Cb 1033 001

Cb 1033 002

-- Hyd Sys Motor Power sys 1

-- Hyd Sys Motor Power sys 2

-- Hyd Sys Motor Relay Power sys 1

-- Hyd Sys Motor Relay Power sys 2

-- Hyd Sys Isolation Valve Power sys 1

-- Hyd Sys Isolation Valve Power sys 2

-- Hyd Sys Pressure Sensor Power sys 1 & sys 2

-- Hyd Sys Quantity Sensor Power

-- Landing Light Power

-- Windshield Wiper power

-- UHF Radio Power

-- VHF Radio Power

Cb_i033_003); -- Radio Control Panel Indicator power

type Elec_Power is

record

Power : On_Off;

Voltage : Volts;

end record;

type Cb_Power is array (Cb Ids) of Elec_Power;

__ **

-- Electric Power Messages -> Power provided to consumers - one to many

__ **

type Elec_Power_Msgs is

record

Cb : Cb Power;

end record;

type Elec_Power_Msg_Ptrs is access Elec_Power_Msgs;

Elec_Power_Msg_Size : constant Integer := Elec Power Msgs'Size;

-- message identifiers

Elec_Power_Msg Id : constant Dis.Message Id :=

Dis.Register_Message (Parent => Orvc Defs.Electrical_System,

Name => "EleLPower_Msg_ID",

Bits => Elec Power Msg Size);

__ **

-- Electric Load Messages -> Load returned from consumers - many to one

__ **

type Elec_Load_Msgs is

record

Cb : Cb Ids;

Load : Seu.Amps;

end record;

type Elec_Load Msg_Ptrs is access Elec_Load_Msgs;

Elec_Load_Msg_Size : constant Integer := Elec_Load Msgs'Size;

-- message identifiers

Elec_Load_Msg_Id : constant Dis.Message Id :=

Dis.Register_Message (Parent => Orvc_Defs.Electrical System,

V-65

V

k.j

Name => "Elec_Load_Msg_ID _,

Bits => Elec_Load_Msg_Size);

end Elec_Sys_Intfc_Defs;

..

--L Abstract: This package contains the Electrical System Interface

--I Definition types.

--I Warnings: None.

..

k._j"

Ada Unit 46 Hyd_Control_Panel_lntfc_Defs Package Specification

with Dis;

with Orvc_Defs;

with Std_Eng_Types;

with Std_Eng_Units;

use std_Eng Types;

use Std_Eng_Units;

package Hyd_Control_Panel_Intfc Defs is

package Set renames Std_Eng_Types;

package Seu renames Std_Eng_Units;

__ ***

-- Motor Command Messages -> Output to Hyd Sys Electric Motors

__ ***

type Motor cmd Msgs is

record

Motor Cmd : Set.On_Off;

end record;

type Motor Cmd Msg_Ptrs is access Motor Cmd Msgs;

Motor_Cmd Msg Size : constant Integer :-

Motor_Cmd_Msgs'Slze;

-- message identifiers

Sys_l_Motor Cmd Msg_Id : constant Dis.Message_Id :=

Dis.Register Message (Parent => Orvc_Defs.Hydraulic_Control_Panel,

Name => "Sys_l_Motor_Cmd_MsgID",

Bits => Motor_Cmd Msg_Size);

Sys_2_Motor Cmd Msg_Id : constant Dis.Message_Id :=

Dis.Register_Message (Parent => Orvc_Defs.Hydraulic_Control_Panel,

Name => "Sys_2_Motor_Cmd_MsgID n,

Bits => Motor Cmd Msg_Size);

__ **

-- Valve Command Messages -> Output to Hyd Sys Isolation Valves

type Valve_Cmd_Msgs is

record

Vlv Close Cmd : Set.On_Off;

Vlv_Open Cmd : Set.On_Off;

end record;

type Valve_Cmd_Msg_Ptrs is access Valve_Cmd Msgs;

Valve Cmd Msg Size : constant Integer :-

Valve Cmd Msgs'Size;

-- message identifiers

Sy s 1 Valve Cmd Msg_Id : constant Dis.Message_Id :-

Dis.Register_Message (Parent => Orvc_Defs.Hydraulic Control Panel,

Name => "Sys_l_Valve Cmd Msg_ID", -

Bits => Valve_Cmd_Msg Size);

Sys_2_Valve Cmd Msg_Id : constant Dis.Message_Id :-

Dis.Register_Message (Parent => Orvc_Defs.Hydraulic_Control_Panel,

V-86

k_J

k..J

Name => "Sys_2_Valve Cmd_Msg_ID",

Bits => Valve_Cmd=Msg_Size) ;

end Hyd_Control Panel_Intfc_Defs;

..

--l Abstract: Thls package contains the Hydraulic Control Panel

--] interface type definitions.

--I Warnings: None.
..

Ada Unit 47 Hyd_Sys_lnffc_Defs Package Specification
with Dis;

with Orvc Defs;

with Std_Eng_Types;

with std_Eng_Units;

use Std Eng_Types;

use std_Eng_Units;

package Hyd Sys_Intfc Defs is

package Set renames Std_Eng_Types;

package Seu renames Std_Eng_Units;

__ ***

-- Aural Cue Messages -> output to Aural cue system for sounds

__ ***

type Aural_Cue_Msgs is

record

Pump_Noise_Sys_l : On_Off;

Pump_Nolse_Sys_2 : On_Off;

Motor_Noise_Sys_l : On_Off;

Motor Noise_Sys 2 : On_Off;

end record;

type Aural Cue Msg_Ptrs is access Aural_Cue_Msgs;

Aural Cue Msg Size : constant Integer :=

Aural Cue Msgs'Size;

-- message identifiers

Aural Cue Msg_Id : constant Dis.Message_Id :=

Dis.Register_Message (Parent => Orvc_Defs.Hydraulic System,

Name => "Aural_Cue_Msg_ID",

Bits => Aural Cue Msg_Size);

__ **

-- Hyd Sys Pressure Messages -> System Pressure provided to consumers

__ **

type Hyd Sys_Press_Msgs is -- one to many -> output to consumers

record

Press : Seu.Psi;

end record;

type Hyd_Sys Press_Msg_Ptrs is access Hyd_Sys_Press_Msgs;

Hyd_Sys_Press_Msg_Size : constant Integer :-

Hyd_Sys_Press_Msgs'Size;

-- message identifiers

Sys_l_Press_Msg_Id : constant Dis.Message Id :=

Dis.Register_Message (Parent => Orvc_Defs.Hydraulic System,

Name -> "Sys_l_Press_Msg_ID",

Bits => Hyd Sys_Press Msg_Size);

Sys_2_Press_Msg_Id : constant Dis.Message_Id :=

Dis.Register_Message (Parent => Orvc_Defs. Hydraulic_System,

Name => "Sys_2 Press_Msg_ID",

Bits => Hyd_Sys_Press_Msg_Size);

__ ***

-- Hyd Sys Flow Messages -> Flow rates returned from consumers

__ ***

V-67

k_J
type Hyd_Sys_Flow_Msgs is -- many to one -> returned by consumers

record

Press Flow : Seu.Gallons Per Second;

Return Flow : Seu.Gallons Per Second;

end record;

type Flow_Msg_Ptrs is access Hyd_Sys_Flow_Msgs;

Flow_Msg_Size : constant Integer :5

Hyd_Sys Flow_Msgs'Size;

-- message identifiers

Sys_l_Flow_Msg Id : constant Dis.Message_Id :=

Dis.Register_Message (Parent => Orvc_Defs.Hydraulic_System,

Name => "Sys_l_Flow Msg ID",

Bits => Flow_Msg_Size);

Sys_2_Flow Msg_Id : constant Dis.Message Id :=

Dis.Register_Message (Parent => Orvc_Defs.Hydraulic_System,

Name _> "Sys 2 Flow_Msg_ID",

Bits => Flow_Msg_Size);

__ **

-- Hyd Status Message -> Pump, Motor & Valve Status Returned to Hyd Control Panel

__ **

type Hyd_Status_Msgs is -- returned to hyd control pnl by hyd sys

record

Motor Status : Set.On Off;

Pump_Status : Set.On Off;

Valve_Sensed_Not_Full_Open : Boolean;

Valve Sensed Not Full Closed : Boolean;

end record;

type Status_Msg_Ptrs is access Hyd_Status_Msgs;

Status_Msg_Size : constant Integer :=

Hyd_Status_Msgs'Size;

-- message identifiers

Sys_l_Status_Msg Id : constant Dis.Message_Id :-

Dis.Register_Message (Parent => Orvc_Defs.Hydraulic_System,

Name _> "Sys_l_Status_Msg ID",

Bits => Status_Msg_Size);

Sys_2_Status_Msg_Id : constant Dis.Message_Id :-

Dis.Register_Message (Parent 5> Orvc_Defs.Hydraulic System,

Name => "Sys_2_Status_Msg_ID",

Bits => Status_Msg Size);

__ **

-- Hyd Sys Indicator Messages -> Status returned to Hyd Control Panel
__ **

type Hyd_Sys_Indicator_Msgs is -- returned to hyd control pnl by hyd sys

record

Sys_l_Press_Indlcated : Seu.Psi;

Sys_2 Press Indlcated : Seu.Psi;

Sys_Qty_Indicated : Seu.Gallons;

end record;

type Hyd_Sys_Indicator Msg Ptrs is access Hyd_Sys_Indicator_Msgs;

Hyd_Sys_Indicator_Msg_Size : constant Integer :-

Hyd_Sys_Indicator_Msgs'Size;

-- message identifiers

Hyd_Sys_Indicator_Msg_Id : constant Dis.Message_Id :=

Dis.Register_Message (Parent => Orvc_Defs.Hydraullc_System,

Name -> "Hyd_Sys Indicator_Msg_ID",

Bits => Hyd_Sys_Indicator_Msg_Size);

end Hyd_Sys_Intfc Defs;

..

--I Abstract: This package contains the Hydraulic System Interface

V_o8

_F

kj

V-89

Ada Unit 48 Hydraullc_System_Pa_lon Package Specification

with Hyd_Control_Panel_Intfc Defs;

with Elec_Sys_Intfc_Defs;

with Hyd Sys_Intfc_Defs;

package Hydraullc_System_Partitlon is

end Hydraulic_System Partition;

..

--I Abstract: This package contains the Hydraulic System Partition

--I specification.

--I Warnings: None.

..

• IEx_rnalpa_tion

inteffacedefinitions

Ada Unlt 49 Hydraullc_System_PaMhlon Package Body

with Dis;

with Hydraullc_System_Defs;

with Symbols;

with Message; I
with Mailbox; e

with Generic Model;

with Std_Eng_Types;

with Std_Eng Units;

with Orvc_Common_Types;

with Generic_Reservoir Class;

with Generic Sensor_Class;

with Accumulator_Class;

with Distribution_System_Class;

with Drive Unit Class; I

with Hydraulic_Pump_Class; m I
with Valve_Class;

use std_Eng_Types;

use std_Eng_Units;

package body Hydraulic_System_Partition is

-- Package Renames

package Set renames Std_Eng_Types;

package Seu renames Std_Eng_Units;

package Oct renames Orvc_Common_Types;

........................

-- Generic Instantiations

........................

package Pressure Sensor Class is

new Generic Sensor Class (Load Units => Seu.Amps,

-- - Non Dim Units => Seu.Non Dimensional,

SenSed_Units => Seu Psi),

package Quantlty_Sensor_Class is

new Generic_Sensor_Class (Load_Units => Seu.Amps,

Non Dim Units => Seu.Non_Dimensional,

Sensed Units => Seu.Gallons);

package Hyd_Reservoir Class is

new Generic Reservoir Class

(Volume Units -=> Seu.Gallons, I

Vol Ra_e Units => Seu.Gallons Per Second, ITime UniEs => Seu.Seconds7 -

Max Leak Rate => 0.0333333); -- 2.0 gallons per min

-- Local Types

SVM references

Class references

Instantiation of generic

classes for data types

Generic ctass instantJation
with conliguratJon object.

V-70

V

3

=

<_/

_:,Te _= =ff_A =s array TCcz.Sys___3ys_21 _f Se=..Cn_Sff;

_y_e V,_I=_A is _rray "Cc:.Sys_h_Sys_2_ of Seu.V,_its;

=7_e Rgm_A is array 'Cc[.Sys_i_/ys_2_ _Df Seu.Rgm;

tT_e'3_s A is array [Q,=t.Sys_l_Sys 2! o: 3eu.3allons_Fer_3econd;

=yve Az=u_ula_3rs is array _Oc=.Sys_l_Sys_2_ of Accumula=3r_Ciass.$b_ec=;

=y_e 3:_=r:_urlo__SYs% ems is array [Oc_,Sys_l_Sys_2' of

Dis_ribu:ion Sys:em C!ass.$bject;

<y[e _rive Un=_s ts array (Cct.Sys_l Sys_2] of Drive_Uniz_Class.Object;

=>_e ls_latlon_Valves is array (OcE.Sys i Sys_2} of Valve_Class.ObjecE;

[y_e _=mZs =s array [Cct.Sys l_Sys_2) of Hydraulic_Pum__Class.Object;

zy_e ?tess Sensors is array [Oct.Sys i_Sys 2) of

Pressure_Sensor_Ciass.Objecz;

-- Message Poin=ers

-- Outpuzs

Cb_102!_001_Load_Msg_[d : Message.Ou__Msg;

Cb_[021_00i Load_Msg : Elec_Sys_In_fc_Defs.Elec_Load_Msg_Ptrs;

Cb i02l_002_Load_Msg_[d : Message.Ou<_Msg;

Cb_1021_002_Load_Msg : Elec_Sys_[n_fc_Defs. Elec_Load_Msg_Ptrs;

Cb_1021 003 Load_Msg_Id : Message.Ou__Msg;

Cb 102l_003_Load_Msg : Elec_Sys_In_fc Defs.Elec_Load_Msg_P_rs;

Cb_1021_004_Load_Msg_Id : Message.Out_Msg;

Cb_1021_004_Load_Msg : Elec_Sys In_fc_Defs.Elec_Load_Msg_Ptrs;

Cb 1022_001_Load Msg_[d : Message.Ou__Msg;

Cb_1022_001 Load Msg : Elec_Sys_[n_fc_Defs.Elec_Load_Msg_Ptrs;

Cb_[022_002_Load Msg_Id : Message.Out_Msg;

Cb_1022_002_Load_Msg : Elec_Sys_In_fc_Defs.Elec_Load_Msg_Ptrs;

Cb 102__00[_Load_Msg_[d : Message.Ou__Msg;

Cb_1023_001_Load_Msg : Elec_Sys_Intfc_Defs.Elec_Load_Msg_Ptrs;

Cb 1023_002_Load_Msg Id : Message.Ou__Msg;

Cb 1023 002 Load Msg : Elec_Sys [ncfc Defs.Elec_Load Msg_Ptrs;

Aural_Cue_Msg Id : Message.Out Msg;

A_ral_Cue_Msg : Hyd_Sys_Incfc_Defs.Aural_Cue_Msg_Ptrs;

Sys_i_Press_Msg_.[d : Message.Ouc_Msg;

Sys_l_Press_Msg : Hyd_Sys_Intfc__Defs,Hyd_Sys_Press_Msg_Ptrs;

Sys 2_Press_Msg_Id : Message.Ou__Msg;

Sys_2_Press_Msg : Hyd_Sys_Incfc_Defs. Hyd_Sys_Press_Msg_Ptrs;

Sys_l_Scacus_Msg_!d : Message.Out_Msg;

Sys l_Scatus_Msg : Hyd_Sys_Intfc_Defs.Status_Msg_Ptrs;

Sys_2_Status_Msg Id : Message.Out_Msg;

Sys 2 Status Msg : Hyd Sys In_fc Defs.Status_Msg_Ptrs;

Hyd_Sys_In_icator_M_g_Id : Message.Ouc_Msg;

HydSys_[r_Lcator_Mm_ : Hyd_Sys_Entfc_Defs.Hyd_Sys_Indicator_Msg_Ptrs;

-- Inputs

Sys_l_Flow_Jm__l_ :Message. In_Msg;

Sys__Flow_Mmg : Hyd_Sys_Intfc_Defs.Flow_Msg_Ptrs;

Sys 2__low_Mmg__d :Message. In_Msg;

Sys_2_Fiow_Msg : Hy__Sys_In_fc_Defs.Flow_Msg_Ptrs;

Elec Pwr_Msg_Id : Message. In Msg;

Elec_Pwr_Msg : Elec_Sys_[ntfc_Defs.Elec_Powe__Msg_Ptrs;

Sys_l_Motor_Cmd_Msg Id : Message.ln_Msg;

Sys_l_Motor_Cmd_Msg : Hyd_Contr01_Panel_in_fc_Defs.Motor_Cmd_Msg-Ptrs;

Sys_2_Motor_Cmd_Msg_Id :Message. In_Msg;

Sys_2_Mo=or_Cmd_Msg : Hyd_Control_Panel_Intfc_Defs.Motor_Cmd_Msg-P_rs;

Sys_l Valve Cmd_Msg_Id :Message. In_Msg;

Sys_l_Valve_Cmd_Msg : HydContrql_Panel_In=fc_Defs.Valve_Cmd_Msg_Ptrs;

#......=.

Types used

intemaJly only by
th=spar_t_on

I

Declaration of the [

p_r_tion's external in- I

put/output messages I

V-71 G_NAL PAGE !_
OF POOR (_ALIt"Y

Sys_2_V_lve_:md_Msj_id : MessaTe.ln-MsG;

Sys_2_Valve_fr.d Ms_ : HYd- Zonzr°'--':=-nel-Incfc-]efs'V_ve-Zmd-Ms_--=rs;

!

in=eynal par:i:ion :Lass :_s:ances

....................................

- Ao-lmula=rs:

_is:_Sys : _isnri_u_iOn Syszems;

Or!re Unl: : _rive_Unlzs;

[so Vlv : !sela=ion_Valves:

press Sensor : press_Sensors;

PumV : pumps:
ua_tity Sensor Class.Object;

Qcy_Sensor : Q _' - -

Reservoir : Hyd Reservoir Ciass,Ob_ect;

.........................

-- Internal Partition Da_a

belt Time : Seu.Seconds:

EIav __Time : Seu. Seconds := 0.0;

Hyd _/s_Mbox : Mailbox. Mailboxes:

Part_tion_Name : constant s_rinQ := "HY draulic-Syscem";

Pid : Natural := 42;

Stabilized : Boolean := False;

Motor_Power : Volt A := (others :> 0.0);

Motor Relay_Power : On_Off_A :: (others => Set.Off);

Iso_Valve_power : Volt_A := (others :> 0.0);

Motor_Cmd : On Off_A :: (others => Set.Off) ;

Vlv_Close_Cmd : On_Off_A := (ochers :> Set.Off);

Vlv Open_Cmd : On Off_A := (others => Set.Off);

Motor_Speed : Rpm_A :: (others :> 0.0);

Motor_Status : On__Off_A := (others => Set.Off);

Pump_Status : On off_A :: (others :> Set.Off);

Tot_Return_Flow : Gps_A := (others => 0.0);

Ton_Press_Flow : Gps_A := (others => 0.0);

Num_Mbox_Empty_Exceptions : Natural :: 0;

|

procedure initialize_Outputs is separate;

procedure Report Symbols (Parent_Name : in String) is separate;

procedure initialize_Model is separate;

procedure ProcessMailbox is separate;

procedure Register_Io is separate;

procedure update_InputS is separate:

procedure Upda_e_Supply_.Components is separate;

procedure Update_Press_Components is separate;

procedure _e Outputs is separate;

procedure _te_Hydraulic_System is separate;

procedure S_M:_D_;

procedure Create_Data:

procedure Self_Init;

procedure System_Init;

procedure Run;

procedure Hold;

procedure Term;

package Thread Exec is new Generic Model.Periodic
- (Name => Partition_Name,

Rate :> Generic Model.Pl0hz,

Execute Set_Up_Model => Set_Up,

Execute_Create_Data_Model => Create_Data,

Execute self_:nic_Model => self_Init,

Execute System_Init_Model :_ System_Init,

Execute_Run_Model :> Run,

Execuoe Freeze_Model => Run,

Instances of classes - _e

modet's (parlJlJon's) state.

Temporary v_ue4 uNd 1o

trimstorm ds_ velues to

oxtomai interfim_.

partiliOn mode routines.
i

V

i

S_ _read e:_
s instlmtiation.

=

V-72

k_/
Exec4ce_UclS_Mcdel => Hold,

Execu-e_Terminate_Mcie I => Term) ;

V._=eJure 3et_f_ L_ sep_raae:

pr:_e_ure Create__ata Ls separate;

Vr_:ei&re 3elf_Znlz is separaze;

vr_ze:ure SyEtem_lni_ is separate;

procedure Run is separate:

VrD_7=5:ire Hold _s sevara_e{

Vrzce_are Ter_ is se_araze;

end :iydraulic_System_Parti_ion;

Ada Unit 50 Hydraulic_Syatem_PartiUon.Create_Data Separate Procedure
separate (Hydraulic_System_Partition) .

procedure Creace Data is

begin

..

-- For each message, CREATE_MSG is required

..

-- Crea_e each many-to-o_e output message

Message.Many_To_One.Create_Msg

Message.Many_To_One.Crea_e_Msg

Message.Many_To_One.Create_Msg

Message.Many To One.Create_Msg

MessaGe.Many To_One.Create_Msg

Message.Many_To_One.Create_Msg

Message.Many_To_One.Create_Msg

Message.Many_To_Cne.Create_Msg

Crea_e each one-to-many output

Message.One.To Many.Create_Msg

Message.One_To_Many. Create_Msg

Message.One__To_Many.Create_Msg

Message.One_To_Many.Create_Msg

Messa_e.One_.ToMany.Create_Msg

(Out_Msg_Id => Cb_1021_001_Load_Msg_Id);

(Out_Msg_Id => Cb_i021_002_Load_Msg_Id);

(Out_Msg_Id => Cb_1021_003_Load_Msg_[d);

(Out_Msg_Id => Cb_1021 004_Load_Msg_Id);

(Out_Msg_Id => Cb_1022_001_Load_Msg_Id);

(Out_Msg_Id => Cb_1022_002_Load_Msg_Id);

(Out_Msg Id => Cb_1023_001_Load_Msg_Id);

(OuC_Msg_Id => Cb_1023_002_Load Msg_Id);

message

[Out_Msg_Id => Aural_Cue_Msg Id);

(Out_Msg_[d => Sys_l_Press_Msg_Id);

(Out_Msg_Id => Sys_2_Press_Msg_Id);

(Out_Msg_Id => Sys I Status_Msg_Id);

(Out_Msg_Id :> Sys_2 Sta:us_Msg_Id);

Message.OneTo_Many.Create_Msg (Out Msg_Id => Hyd_Sys_Indicator_Msg_Id);

Initialize first output messages sent _o other partitions

Message.OneTo_Many.Create_Msg

Message.One_To_Many.Create_M-sg

Message.One_To_Many.Create_Ms_

Message.One_To_Many.Create_Msg

Message.OneTo_Many.Creace_Msg

end Create_Data;

Initialize_OutputS;

Create each many_to_one input message

Message._ To_One.Create_Msg (In_Msg Id =>

Message.MaZty_To_One.Create_Msg (In_Msg[d =>

Crea_e each one-to-many input message

(In_Msg_Id =>

(In_Msg_Id =>

(In_Msg_Id =>

(In_Msg_Id =>

(In_Msg_Id =>

Sys_l Flow Msg_Id);

Sys_2_Flow_Msg_Id);

Elec_Pwr_Msg_Id);

Sys_l_Motor_Cmd_Msg__d);

Sys_2_Mo_or_Cmd_Msg_Id);

Sys_l_Valve_Cmd_Msg_[d);

Sys_2_Valve_Cmd_Msg_Id);

--i Abstract: This procedure is an SVM mode routine that creates the

V-73 O_3_NAL PA_ m

OF PO0_ _At.r'l_

__ input and _u=puz messages _f the Hy_l_: Sys:em

Ada Unit 51 Hydraulic_System_Parti_on.Hold Separate Procedure
se_a:a:e -Hydr_u_i:_Sys=em,__a:ti_ion}

_roce3ure Hold is

begin

-- [n Hold, suspend norma[processing.

-- Cthec special actions (ie Step_A_head) would be performed here.

null;

end Hold;

................. :
--_ Abstract: Thls procedure is an SVM mode routine _hat is

__[periodically called while the simulation in 'hold'

.mode.

--_ Warnings: None.

Ada Un# 52 Hydraulic_Sy=tem Pm'tiUon.lniti_lize_Modei Separate Procedure
separate (Hydraulic _yscem_Partition)

procedure Initialize Model is

begin

-- Initialize partition data and all objects such tha_ _he partition

-- is in an initial conditions sta_e. The details are lef_ out in

-- this examIDle.

null;

end :nitialize_Model;

..

--i Abstract: This procedure initializes the Hydraulic System

--I including all of its components and partition da_a.

--I This procedure is called by Set_Up and also by

--I Self_[nit during a full initialization (Full_IC =

True).--I

---I

..

Ada Unit 53 le/dmull©_System_Pirtition.lnitlalize-Output= Separate Procedure
separate (}iMdr_tlllcSys_em__artition)

procedure initialize_Outputs is

begin

-- This routine sets the output messages to a default value during

_- initializations

Cb 1021_001_Load_Msg.Cb := Elec Sys Intfc Defs.Cb 1021 001;

Cb_1021 002_Load_Msg-Cb := Elec Sys In_fc Defs.Cb i021 002;

Cb 1021 003 Load Msg.Cb := Elec_Sys_Intfc_Defs.Cb_[02[_003;

Cb_1021_004_Load_Msg-Cb := Elec Sys InCfc_Defs.Cb- 21_004;

Cb_1022_001_Load_Msg.Cb == _lec Sys In_fc_Defs.Cb- 22_001;

Cb_i022 002_Load_Msg,Cb := Elec_Sys_Intfc Defs.Cb_ 722-002;

Cb i023 001_Load_Msg.Cb := Elec Sys In_fc Defs.Cb 1023 001;

Cb i023 002 Load Msg.Cb := Elec Sys Incfc Defs.Cb 1023 002;

Cb_1021_001_Load_Msg.Load := 0.0;

Cb 1021 002 Load Meg.Load := 0.0;

i

V-74

OIt|G|NAL PAGE l--

OF POOR Qu/u.rrY

k_j

7b_[S2[_233_L_ad Msg. Load := 3.0;

Z_ [32[__34_boad_Msg. Load := 3.0;

_ "322 36_ Load Msg.Lcad :: 3.0;

-' " _22_302 L¢ad_Msq.Load :: 0,0;

jD_2_23__Gi_Load_Msg. Lcad := 0,3;

Z¢_[623 ?!_2_Load_Msg.Load := O.O:

A, r]2 7_e_Msg.='_mg_Nolse_Sys_l := Set.Off;

A_ra2 ?_e_MsG.:.T__Noise_Sys_2 := See.Off;

A.ral_Tue_Msj.Mca:r_Noise_Sys_l := SeE.Gff;

Aarai_?ue_MsG.MCzor_Nc_se_Sys_2 := Set.Off;

Sys i Press_MsG.Press := 0.0;

Sys_2_Press Msg. Press := 0.0;

Sys_i_Saa¢us_Msg.Mo_or_Status := Set.Off;

3ys_[_H¢azus_Msg. Pump_Sca_us := Se¢.Off;

Sys_[Status_Msg.Vaive_Sensed_Not_Full_Open := True;

Sys_[_Status_Msg.Valve_Sensed_Not_Full_Closed := False;

Sys_2_S_a_us_Msg.Motor_Status := Se_.Off;

Sys 2_S%atus_Msg. Pump_Status := Set.Off;

Sys_2_Sta_us_Msg.Valve_Sensed_No__Full_Open := True;

Sys_2_S_a_us_Msg.Valve-Sensed-Not-Full-Open := True;

Hvd_Sys_Indicator_Msg. Sys_l_Press_Indicated := 0.0;

Hyd_Sys Indicator Msg. Sys 2_Press_Indicated := 0.0;

Hyd_Sys_[ndica_or Msg.Sys Qty_Indica_ed := 0.0;

Message.Many_To_One. Put (Out_Ms__Id => Cb_1021_001_Load_Msg_Id);

Message.Many_To_One. Put

Message.Many_To_One. Put

Message.Many_To_One. Put

Message.Many_To One. Put

Message.Many_To_One. Put

Message.Many To One. Pu_

Message,Many_Tc_One. Pu_

Message.One_To_Many. Put

Message. One To_Many. Put

Message.Qne To_Many. Put

Message,©ne_To Many. Put

Message.Cne_To_Many. Pu_

Message.One_To_Many. Put

end Initialize_Outputs;

(Out_Msg_Id => Cb_1021_002_Load_Msg_Id);

{Ou__Msg_Id => Cb_1021 003_Load Msg_Zd);

(Out_Msq_Id => Cb_1021_004_Load_Msg_Id);

(Ouu_Msg_Id => Cb_1022_001_Load_Msg_Id);

(Out_MsG Id :> Cb_1022_002_Load_Msg_Id);

{Out_Msg_Id => Cb 1023_001_Load_Msg_[d) ;

(Ou__Msg_Id => Cb_1023_002_Load_Msg_Zd);

(Out_Msg_Id => Aural Cue_Msg_Id);

{Ou__Msg_Id => Sys_l Press_Msg [d);

(Out_Msg_Id => Sys_2_Press_Msg_Id);

(Ou_ Msg_Id => Sys_l_Sta_us_Msg_Zd);

(Ou__Msg_Id => Sys_2 Status_Msg_Zd);

(Ou__Msg_Id => Hyd_Sys_Indicator_Msg_Id);

.. .--- - __-

--I Abstract: This procedure initializes all Hydraulic System

--I _ar_i_ion output messages and sends them out once.

--[

--I Warnin_m : None.

... ----- - ___

I

Ada Unit 54 Hydrsullc_System_ParUtion.Process_Mailbox Separate Procedure
with Mail_Msg Types;

with Enter_Mailbox:

with Malfunction_Mailbox;

with Safescore_Mailbox;

separate (Rydraulic System_Partition)

procedure Process_Mailbox is

-- The following are renames from _he Hydraulic System_Partition body:

-- package Set renames S_d gng_Types;

-- package Sou renames Std_Eng_Uni_s:

-- pacMage Oct renames Orvc_Common_Types;

Set output

messages

send output

messages

OR;G_NAL PAGE IS

OF POOR QUALITY
V-75

I

I

!

Fa-<a_e Hyd_Sys Dis =e-a_,es Hydraulic Sys-em_--ef3;

va=ka_e En=er renares En-er_Ma_l=.Dx:

va-_a_e Malf i_.ct_on renames MaLfUnc_:¢n_MaiiDox;

-- The f_l:=w_ng provisos v:sabill-y =c -no 3is Ter_ i2 equaii-y ¢_era-or:

func-uon "=" 'Lef-, RiCh= : Dis.Term_'d_ re--urn Boolean renames Dis.'=':

-- The follcwin._ pr=viJes vlsabili=y =o ".he Dis Mall I_ equaii=y o_erator:

function "=° [Left, Righ= : Dis.Malfunc=ion_Zd', re--urn Boolean

rer_ames 31s."=";

Msg_Ty_e : Mmilbox.Msg_Ty_es;

En=er_Msg : Enter. Encer_Msg;

Ma i f_Msg : Ma I func _ ion_Mai lbox. Ma I function_Msg ;

Datas_o re_Msg : Mega_Ma i 1 Do x. Mega_Msg ;

Enter_Id : Dis.Term Id;

Mall Zd :Dis. Malfunccion_Id;

Apply : Boolean;

[nvalid_Msg_Id : exception;

[rival id_Enter_Term : exception ;

Invalid Malfunction : exception;

function Sys_Id is new Malfunction_Mailbox.Selector [Oct.Sys_l_Sys_2);

begin

for I in i .. Maiibox. Num Mail_Msgs (Mailbox_ll => Hyd_Sys_Mbox) loop

-- Get _he type of _he next message

Msg Type :: Maiibox.Get_Next_Msg_Type(Hyd__ys_Mbox) ;

-- Process the mailbox message

case Msg_Type is

when Mailbox. Enter =>

-- Process the IOS Enter message

Mailbox.Ge__Enter_Msg (En_er_MSg => En_er_Msg,

My_Mailbox Id => Hyd 3ys_Mbox);

Enter_Id := En_er. Id (Msg => Enter_Msg);

if Enter_[d = Hyd_Sys_Dis.Fluid_Level then a_

-- Request reservoir quantity change. Pass in new qu ntity//_" c_10bJeC[toaffect
Hyd _Re servo i r_C i a s s. Reques __S _ a _ e_Cha nge _mlge

(Instance => Reservoir,

Command => Hyd_Reservoir_Class •Set_Qty,

Quantity => Seu,Gallons (Enter. Value_R6 CMsg => Enter Msg))) ;

elmif Enter Id = Hyd_Sys_Dis.Flow_Pump_l _hen

-- Req_lemt pump 1 flow rate c,hange. Pass in new rate.

Rydraul i c_Pump_C i a s s. Request _S t a t e_C ha nge

(Instance => Pump (Oct.Sys_l),

Comm_nd => Hydraul ic Pump_Cl ass. Modi fy_Flow_Rat e,

Apply :> True,

Bias :> Sou. Non_Dimensional

_ Encer_Msg))(Enter. Value R6 (Msg =>

elsif Enter_Id : Hyd_Sys_Dis.Flow_Pump_2 then

-- Request pump 2 flow rate change. Pass in new rate,

Hyd r a u I ic P u mp C I as s. Request _S C a t e_Cha nge

(Instance :> Pump (Oct.Sys_2),

Command :> Hydraul ic_Pump_C lass. Modi fy_Flow_Rate,

Apply :> True,

Bias :> Sou. Non_Dimensional

(En%er.Value_R6 [Msg => Enter_Msg))) ;

Request rate change

V-76

=-

OR_|NAL PAGL I'K

_ _ALI'T_r

k_/

I

else

no ocher en=er vai_e_ _re ex_ec_el

I,

raise inva__Enter_Ter_;

end if;

when Mailbex.Malfunc=ion :>

Pr%cess =he _alfuncticn message

Ma_lbcx.3et_Malfunction Msg[Malfunczion_Msg => Malf_Msg,

My_Mailbox_Zd => Hyd_Sys_Mbcx_ :

Get the DIS malfunction identifier

Mall ld := Malfunction.ld (Msg => Malf_Msg_;

Get the state of _he malfunction (On or Off) and convert

to a boolean =o pass to Request_Sta=e_Change procedures.

Apply := Malfunction. State (Msg => Malf_Msg) = Set.On;

if Malf_Id = Hyd_Sys Dis. Pump_No_Flow then

Process the hydraulic pump malfunction. Pass in which

pump {#l or #2).

Hydraulic_Pump_Class.Request_State_Change

(Instance => Pump (Sys Id (Msg => Malf_Msg)),

Command => Hydraulic_Pump Class. Pump_Fail,

Apply => Applyl ;

elsif Malf Id = Hyd Sys_Dis.Press_Comp_Fail then

Process the pressure compensator malfunction. Pass in which

compensator (#i or #2).

Hydraulic_Pump_Class.Request_Sta_e_Change

(Instance => Pump (Sys_Id [Msg => Malf_Msg)},

Command => Hydraulic_Pump_Class.Compensator_Fail,

Apply => Apply,

Bias => 0.0,

Scale => 1.0);

elsif Ma!f_Id : Hyd Sys_Dis.lso_Valve_Freeze then

Request zhe valve to freeze. Pass in which

valve {#I or #2} .

Valve_Class.Request_State_Change

(Instance :> Iso Vlv (Sys_Id (Msg => Malf_Msg)),

Comn%and :> Valve Class.Freeze_Valve,

Apply => Apply);

elslf Malf_Id = Hyd_Sys_Dis.Pressure-Sens°r-Fail then

Request _he pressure sensor co read incorrectly. Pass

in which sensor (#i or #2}, 5he error factor (scale) and

_he offset (bias).

premsure_Sensor_Class.Request_State_Change

(Inatance => Press_Sensor {Sys Id (Msg => Malf_Msg)),

Co,mland => Pressure_Sensor_Class.Sensor_incorrect,

Apply :> Apply,

Scale => Seu.Non Dimensional

(Malfunc¢ion. Scale (Msg => Malf_Msg)),

Bias => Seu. Psi (Malfunction. Bias (Msg => Malf_Msg))) ;

elsif Malf_[d : Hyd_Sys_Dis.Motor_Zero_Rpm then

Process the motor fail malfunction. Pass in which motor

(#I or #2).

Drive_Unit_Class.Request_State_Change

(Instance => Drive_Unit [Sys_Id (Msg => Malf_Msg)),
/

" _ _" Command :> Drive_Unit_Class.Motor_Fail,

Apply => Apply);

elsif Mall Id : Hyd_Sys_Dis.Dist Sys_Leak then

CR_GtN_L PAGE I'S

OF POOR QuALrrY

V-77

?rzcess :he CLszri_u:L°_ _y_:er tea-: _aLf_nc:Lt_- T_ss

Ln which d is:_ibu_z°z svsze_ i,__ :: ,2_ acd zne Leak

r_te. No_i,ze :hat _he leak r_e Ls V _ssed in as the

mai:u:_c_LOn biaS.
.=equesu SLate-- _hange

O_urzOU_iOn_Syscem-Ciass[sys 15 ;Msg :> MaLf_Msgi" ,
Dus__SYs

instance => D,s..:b.,t_on :ystem Class.Sez_Leak,

AV_ly => ApplY,

Leak_ate :> Seu.3alions_per-Seccnd
[MalfunCtion. Bias iMsg :> Maif_Msg))) ;

else

raise exception, no other malfunctiOnS are expected.

raise invaiidMalfUnctl°n;

end if;

when Mailbox.Re%urn_To_Da_ast°re =>

proceSS the return to datastore message

[Mega_MSg => Datas_ore-MSg,

Mailbox.Get Mega--Msg My Mailbox Id => Hyd_Sys_Mboxl ;

Get initiazation data from the mailbox and popula_e the model-

The details are left out in this example-

when others :>

raise exception, no other message ty_Des are expected

_aise inValid_Msg-ld;

end case;

end loop;

exception

when Mailbox'Mailbox-EmPtY :> Num M box Empty Exceptions + I;

Num Mbox Empty Exceptions := - - -

when others :>

null; __ allOW propagation of all other excep=ions

...........................end proceSS_Mailbox;

--I Abstract: This procedure receives and processes the mailbox
messageS. The HydraUliC System partition can receive

--I iOS enter or _ifunction _ilbox messageS- The

--} ;)artition does not send any mailbox _ssageS-

--I _alfunction leak rate is

--I

--I Wart%In_m: The distribution system leak
received via the the bi_ attribute of the of _he

--i _lfunction message-

--I The following exceptions are propagated beyond the

--_ scope of this procedure:

--! In_ralidMSg_id

_d Enter Term--I Inva!- - -

--I .nvmlid MalfunCti°n

Hydraulic System _ _tj_on.Segist_ Io Sepam_ Procedure
Ads Un_ 55 - -
with Orvc_DefS;

separate< ydraulicSys e ,r ition O UN'
procedure _egisuer_lO is

package Klec Sys_If renames Elec Sys_£ntfc--DefS;d_Sys int{c_OefS:

_ackage Hyd_Sys_If renames Hy_ _ ---_ panel IntZc_Defs;

_ackage Cntrl Pnl-lf renames Hyd_uont=u_-

V-78

I

Rece=ve__ue-e_Szze : cot.star.= := £,3:

e i n

!
-- .=.e_i_=er ?arzi"-ion Maii_cx

Ma=ic,cx. Eegis_er_Mazlbcx M7 Far-=_,on_=refix _-> _rvc]efs. Jydr_uli=_3ys=em,

My_Mazl_o×_:d => Hyc-_Sys_.-_bex; ;

-- P.e=;s=er -he _essa;es sent frem Lhe Hydraulic System co I

-- %_her par';-=--_ns 'ouc.cu_ messages_ . I
Message. Many_To_3ne •Regis=er Tc_Send_Msg

(.3u:_Msg Zd :> Cb i021 001 Load_Msg id,

?arci:ion_Prefix :> Orvc_De fs, Eiec c r ical_System,

Msg Dis__d :> Elec_gys_If. Elec_Load_Msg_Id,

Msg Ptr_Addr => Cb 1021_001_Load_Msg'Address) ;

Message. Ma ny_To_3ne. Regz st e r_To_Send_Msg

(Out_Msg_Id => Cb_1021 002_Load_Msg_Id,

?arcicion_Prefix => Orvc_De fs. Elec t rical_System,

Msg_Dis_Id => Elec_Sys_I f. Elec_Load_Msg_Id,

Msg Ptr_Addr => Cb 1021_002_Load_Msg'Address) ;

Message .Many_To_One. Regi s t e r_To Send_Msg

(Out_Msg__ d :> Cb_l 02 I_003_Load_Msg_Id,

Partition_Prefix => Orvc_De fs. Elec t r ical_System,

Msg_Dis_Id => Elec_Sys_I f • Elec_Load_Msg_Id,

Msg Ptr_Addr => Cb_1021 _003_Load_Msg' Address) ;

Mes sage. Ma ny_To_One. Reg i s _ e r_To _Send_M-sg

{Out _Msg_I d = • Cb_l 021 _004 _Load_Msg_Id,

Partition_Prefix => Orvc_Defs.Electrical_System,

Msg Dis_Id => Elec_Sys_I f. Elec_Load_Msg_Id,

Msg_Ptr_Addr = • Cb_102 l_004_Load_Msg' Address) ;

Mes sage. ManyTo _One. Reg i s te r_To_Send_Msg

(Ou__Msg_Id :> Cb_i022 001 Load_Msg_Id,

Partition Prefix => Orvc_Defs.Electrical_System,

Msg_Dis_Id => Elec_Sys I f. Elec_Load_Msg_Id,

Msg_P_r_Addr => Cb_1022_001_Load_Mag'AJddress) ;

Mess age. Many__To _One. Reg i s te r_To_Send_Msg

(Cut_Msg_[d => Cb_l 022_002_Load_Msg_Id,

Partition_Prefix => Orvc_Defs.Electrical_System,

Msg_Dis_Id => Elec_Sys_I f. El ec_Load_Msg_Id,

Msg_Ptr_Addr => Cb_1022_002_Load_Msg'Address) ;

Message. Many_To_One. Registe r_To_Send_Msg

(Oun Msg_i d => Cb_i023_001 Load_Msg_Id,

Partition Prefix => Orvc_Defs.Electrical_System,

Msg_Dis Id => Elec_Sys_I f. Elec_Load_Msg-rd,

Msg_Ptr Addr => Cb_1023_001_Load_Msg'Address) ;

Message •Many_To_One. Resist er__To_Send_Msg

(Ou%_Msg_Id => Cb 1023_002_Load_Msg_Id,

Partition_Prefix => Orvc_Defs. Electrlcal_System,

Msg_Dil_.I_ :> Elec_Sys_I f.Elec_Load_Msg-Id,

Msg_P_ r__ :> Cb_l 023_002 _Load_Msg' Add ress) ;

Message. O__To_Many •Regi ster_To Send_Msg

(Ou_ Msg_Id :> Aural_Cue_Msg_Id,

Part ition_Frefix => Orvc_Defs. Aural_Cue,

Msg_Dis_Id => Hyd_Sys_I f. Aural_Cue_Msg_Id,

MsG_B i t _S i ze = • Hyd_Sys_I f. Aura 1 _Cue_Msg_S i ze,

Exec ut ion_Race :> Thread_Exec •Race Of_Execution,

Msg_Pcr_Addr => Aural_Cue_Msg'Address) ;

Message. One_To_Many. Regis t er_To_Send_Msg

(Out_Msg Id => Sys_l Press_Mag_Id,

Par tition_Prefix => Orvc_De fs. Hyd raul it_Systems,

Msg_Dis_Id => Hyd_Sys_I f. Sys_l_Press Msg_Id,

Msg_Bi t_S i ze => Hyd_Sys_I f. Hyd_Sys_Press_Msg_Si ze,

Execu_ ion_Rate => Thread Exec ' Rate_Of_Execut ion,

Msg_Ptr_Addr => Sys_l Press_Ms G'Address) ;

Outputmessages

V-79 Ck;_3_NAL PAGE

Of_ POOR QUALITY

- _- =e_ _ _S_

Mes_a_e._ne,To-_a-zY :> 3ys 2__resS_Ms_-[i'

!_uz_Msg_[i

?_-:-_on prefix :> Crvc-De[s'HYir_&Luc-SYs_ems'
....... :> Hyd_3ys_[f-gY s-_-:ress-Ms_--_' -

uy _ Sy_ ?[ess-MSl_lSLZe'
Msj DLs_I_ => Hyd_Sys_[f •

Msj_Bit ilze :> Thread Exec.RatecSf_E xecut_°n'

_xecu_ion_Rate :> Sys_2_FresS Y_g'AddreSS);

Msj ?=r Adlr

=_g.szer To Se_d Msg
Message.One_To-Ma_y _ "_:> Sys_i S%atUs__sg-_,

_Cuc_Msg_id :> ©rvc DefS.Hydcauiic_System,

- - .3ys i 3tacuS Msg id,parnltion Prefix :> Hyd_Sys_if - - - -

Msg_Dis_[d :> Hyd Sys_[f.S_acus_Msg- Size'

MsG Bit_S ize :> Thread_Exec.Rate_Of-Executi°n'

Execution_Rate => Sys I Status Msg'AddreSS) ;

Msg_ptr_A ddr

Message.OneTo_Many.Register--T°-Send-MSg
=> Sys_2_Status_Msg-Id,

(Out_Msg_[d

Partition Prefix => Orvc_Defs.Hydraulic-System'
- > Hyd Sys If.Sys 2 Status Msg Id,= _ - - - - -

Msg Dis_Id => Hyd_Sys [f.Status_Msg-Size'

Msg Bit_Size => Thread_Exec.Rate_Of_ExeCUti°n'

Execution_Rate => Sys 2_Status_Msg'Addressl ;

Msg Ptr_Addr

One To Many.Register_To_Send-Msg _d
Message. - - = Hyd Sys Indicator Msg__ ,> _ -

(Out Msg_Id

Partition_prefix => Orvc-Defs'Hydraulic-System'

Msg Dis !d => Hyd-Sys-If'Hyd-Sys-Indicat°r-Msg-Id'
- - => Hyd_Sys_If.Hyd Sys Indicator_Msg_Size,

MsgBi__Size => Thread_Exec.Rate_Of-Execut_°n'

Execution_Ra_e :> Hyd_Sys_indicator_Msg'AddreSS);

Msg Ptr_Addr

__ Reigster the messages sent to _he Hydraulic System from

_- other partitions (input messageS).

Message.ManyToOne.Register-T°-Recv-Msg
=> Sys_l_Flow_Msg-Id,

(in_MSg_Id => Orvc Defs.Hydraulic_SY stem'

Partition_prefiX => Hyd_Sys_if.Sys_l_Flow_MSg- Id,

Msg_Dis_Id => Hyd_Sys_if.Flow Msg_Si ze,

Msg Bit_Size => ReceiVe Queue_Size,

Queue size Sys i Flow Msg,AddreSS);
Msg_p%r Addr => - - -

Message Many To One.Register_To_Recv-MSg
, .' - - :> Sys 2 F!ow_Msg-Id,

(In_Msg_Id :> Orvc_Defs.Hydraulic_Sy stem'

Partition_Prefix => Hyd_Sys_if.Sys 2_Flow_Msg- Id,

Msg Dis_Id => Hyd Sys If.Flow_Msg-Size'

MsgBit_Size => Receive_Queue_Size,

Queue size => Sys_2_Flow_Msg'Address) ;

Msg p%r_Addr

Message.OneTo_Many .Register-T°-Recv-Msg
:> Elec Pwr_MSg-Id,

(In_Mn__Id
Par%_ion_.Prefix :> Orvc Defs.Electrical_System'

= Elec Sys If.Elec power Msg Id,• _ - - - -

Ms g _.Dii__ d => ReceiveHertz-Rate,

Exec_Cio_t_Rate :> Elec Pwr_Msg' Address) ;

_g pt=_Aadr

Message.One To Many.Register To Recv Msg

Orvc Defs.Hydraulic Control Panel,

Par:ition prefix =>=> Cntrl Pnl If.Sys_i Mot0r_Cmd Msg Id,- _ - - - -

Msg_Dis_Id

Execution_Rate => ReceiVe Hertz_Rate,

Msg Ptr Addr => Sys_l_Motor_Cmd_Msg'_dreSS);

Messag e-One To Many.Register_To-Recv-Msg
- _ _ - - -

(in_Msg_Id :> Sys 2 Motor cmd Msg !d,

Partition Prefix :> Orvc Defs.Hydraulic-Contr°l-Panel'
=> cncrl_Fnl- If-Sys-2-M°t°r-Cmd-Msg-Id'

MsgDis_Id

Execution Rate > Receive_Hertz_Rate,
- Sys 2 Motor Cmd Msg,Address);

Msg_Ptr_Addr => - - - -

I inl_ t me_a_Is

Message.One To Many.Register To_Recv-Msg
=> Sys_! Valve_C_-Msg-ld'

(In Msg_Id

V-80

O_GtNAL PAGE IS

I

U
v

k_/

?ar_z_on_?reflx :> Srvc_Defs.Hydraul_c_Zon_ro2_?anei,

Msg_D_s Id => CntrZ Pn[If.Sys_2 Vatve_Cmd_Ms_ id,

Zxecuz!on_Race => Receive_Herzz Raze,

Msl ?zr_Addr ' => Sys_l_Valve_Zmd_MsG'Address_ :

Messa_e.Cne To_Many. Reqiscer_To_Recv_Msq

in_!_s_ [d => Sys_2_Valve_Zmd Msg_id,

?arzlzlon_Preflx

Ms__D_s[d

Exezi2[on__ate

MsG ?nr_Addr

end Reglster io;

=> Orvc Defs. Hydraulic Con_roi_?anel,

=> Cncrl_Pnl_[f.Sys_2_Valve__._d_Msg_Id,

=> Receive Hertz Race,

=> 3ys 2_Valve Zmd_Msg'Address_ :

--, Abstract: This procedure regisEers the input and oucpuz messages

--. of the Hydraulic System Partition.

--;

--; Warnings: None.

Ada Un_ 56 Hydraulic_System_Partl_on.Report_Symbols Separate Pr_edure

with SymDo_s:

separate (Hydrau!ic_System Partition]

prccedure Report_Symbols (Parent Name : in String) is

begin

-- register all complex variables needed by IOS chat were created in this partition

null -- this partition has only simple variables

end Report_Symbols:

..

-- Abstract: This procedure reports the motor speed and motor status

-- (as defined in the Hydraulic System Partition body) to

-- the symbol map.

-- Warnings: None.

..

Ada Unit 57 Hydmullc_Syatom_PartlUon.Run Separate Procedure
separate (Hydraulic_System_Partition

procedure Run is

begin

-- This routine provides normal partltion updates,

Delta_Time := Thread_Exec.Delta_Time;

Update_Hydraulic_System;

end Run;

..

--_ Abstract: This _rocedure is an SVM mode routine thac performs one

--I iteration of the Hydraulic System Partition. This n_de

--I routine is periodically called while the simulation is

--_ in 'run' mode.

--I Warnings: None.

..

Ada Un_ 58 Hydreullc_Syatom_PartlUon.Solf_Inlt Separate Procedure

separate (Hydraulic_System_Partition)

procedure Self_Inic is

begin

O_C_INAC P_E

C_ POOR QUALITY

V-81

zf Thre_j Exec.A_F.I_ [z_[s_RequLre d %_en

_ni=t_l=ze_Mcdei:

e_d _f;

Fro=e_s_Mailb°x;

[niZla[ize_]U=_uz_:

Stabilized :: False;

Eiavsed Time :: 0.0;

Thread Exec.Ready_?o- Transiti°n;

end Self_ini_;

__! AbstraCt: This procedure is an sVM mode routine that readies the

--! Hydraulic System _ _rticion for system intialization.

ii If the input pa=_-eter Full_it is true,
initialize_Mod= _s called to initialize the partition

-- data and all of .cs components-

--_ The stabilized flag is set to False to allow

-- model stabilization in tNe System Init procedure-

--I Upon completion, the model nofifies the executive chat

-- it is ready to transition.

-- no iterating!

--_ NOTE: This is a one pass initialization,

ii I Warnings: None

Ada Un_ 59 Hydrsulic_System_Psrtffion.Set-UP Separate Procedure

separate [Hydraulic_System_Partiti°n)

procedure Set_UP is

begin

-- Crea< _nces of classes.

n Oct.Sys l_Sys-2 loop
for -

Ac .mulator Class.Create

[Instance :> Accumulator {Index), (.

Parent Name => Partition_Name & ,.accumulator &
Oct.Sys_l_sys_2,i_g e (index) & ")"

:> 4000.0,
init_preSS

Min Gas_PreSS => lO00.O,

Min Gas_VOl :> 1.0,

Ma_L.Gas Vol :> 2.0,

Mi_luld..Vol :> 2.0,

MaX,91uld-Vol :> 3.5) ;

Distrltmltlon System Class.Create
:> Dist_SYS (indeX),

(inltanCe -.dist sys(" &

Parent_Name :> partition_Name & - •
Oct.Sys l_Sys 2,imag e (Index] & ") '

Press ConSt => 0.15) ;

_rLve Unit_Class.Create- :> Drive_Unit (Index), , &

_cance
rent_Name => Partition_Name & -.drive unit(

Oct.SYs_l_Sys_2,1mag e (IndeX) & ")"'

Jearbox Max_Torque => 250.0);

(Instance => Iso vlv (Index),
Partition_Name & ,.iso vlv(" &

Valve_Class.Create Parent_Name :> Oc_.Sys I Sys_2'Image (Index) & ")");

V

Pressure_SenSor_Class'Crea_e
=> Press Sens0r (IndeX),

(Instance

V-82

Parent Name => Partition_Name & ".press_sensor(" &

Oct.Sys l_Sys_2'Image (Index) & ")",

Nominal Load => 0.67);

Hydraulic_Pump_Class.Create

(Instance => Pump {Index),

Parent Name => Partition Name & ".pump(" &

Oct.Sys_l_Sys_2'Image {Index) & ")");

end loop;

Quantity_Sensor_Class.Create (Instance => Qty_Sensor,

Parent Name => Partitlon_Name & U.qty_sensor",

Nomina_ Load => 0.5);

Hyd_Reservoir_Class.Create (Instance => Reservoir,

Parent Name => Partition Name & ".reservoir",

Init_Qty => 5.25);

-- Initialize partition data and all objects.

Initialize_Model;

-- Report Partition level symbols

Report_Symbols (Parent_Name => Partition_Name);

-- Link variables to the DIS for reporting to lOS.

-- Connect simple variables created locally by their address.

Dis.Connect_Term (Term => Hydraulic_System_Defs.Motor 1 On Off,

Address => Motor_Speed(Oct.Sys_l));

Dis.Connect_Term (Term => Hydraulic_System_Defs.Motor 2 On Off,

Address => Motor_Speed(Oct.Sys 2));

Dis.Connect Term (Term -> Hydraulic_System_Defs.Motor 1Rpm,

Address => Motor_Status(Oct.Sys_l));

Dis.Connect_Term (Term => Hydraulic_System_Defs.Motor 2 Rpm,

Address => Motor Status(Oct.Sys_2));

-- Connect complex variables by their registered symbol name.

Dis.Connect Term (Term => Hydraulic_System_Defs.Fluid_Level,

Symbol -> "Hydraulic_System.reservoir.quantity");

Dis.Connect Term

(Term => Hydraulic_System_Defs.Pressure_Sys_l,

Symbol => "Hydraulic_System.dist_sys(sys_l) .system_pressure");

Dis.Connect Term

(Term => Hydraulic_System_Defs.Pressure_Sys_2,

Symbol => "Hydraulic_System.dist_sys(sys_2).system_pressure");

Dis.Connect Term (Term => Hydraulic_System_Defs. Plow_Pump_l,

Symbol -> "Hydraulic_System.pump(sys_l).flow_out");

Dis.Connect Term (Term -> Hydraulic_System_Defs.Flow_Pump_2,

Symbol -> "Hydraullc_System.pump(sys_2).flow_out");

Dis.Connect Term

{Term -> Hydraulic_System_Defs. Iso_Valve_Sys_l,

Symbol -> "Hydraulic_System.lso_valve(sys_l).position");

Dis.Connect Term

{Term => Hydraulic_System_Defs. Iso_Valve_Sys_2,

Symbol => "Hydraullc_System.lso_valve(sys_2) .position") ;

-- Register input�output messages

Register_Io;

-- Notify Thread Exec that have completed setup

Thread Exec.Ready To Transition;

end Set_Up;

..

--I Abstract: This is an SVM mode procedure that calls the 'create'

V-83
O_jG3NAI.. PAGE t_

OF POOR qLU_l't_

--I

---I

---I

----[

procedure for every instance of a class and 'connects'

the specified class attributes to the corresponding DIS

terms. After all objects are created, Initialize Model

is called to intialize objects and partition data.

Register_Io is called to register the input and output

messages of the Hydraulic Partition. Upon completion,

this procedure notifies the executive that the model

is ready to transition.

Ada Unit 60 Hydraulic_System_PaMRIon.System_ln. Separate Procedure
separate (Hydraulic_System_Partitlon)

procedure System_Init is

begin

-- This routine is called after Self Init is complete.

-- Partition is updated until stable, then reports in.

Delta_Time := Thread Exec.Delta_Time;

if not Stabilized then

-- Update Hydraulic System for 5 seconds to allow components to

-- stabilize at new conditions before reporting ready to transition.

if Elapsed_Time < 5.0 then

Update_Hydraulic_System;

Elapsed_Time := Elapsed_Time + Delta_Time;

else

-- When stable, set flag and report in to executive.

Stabilized := True;

Thread_Exec.Ready_To_Transition;

end if;

else

-- Once stabllzed, continue normal updates

Update Hydraulic_System;

end if;

end System_Init;

..

--I Abstract: This is an SVM mode procedure that perform the

--I Hydraulic System Partition system initialization by

--I repeatedly cycling the model to stabilize it.

----I

--f Warnings: None.
..

k_J

Ada Unit 61 Hydraullc_System_PaM#lon.Term Separate Procedure
separate (Hydraulic_System_Partition)

procedure Term is

begin

-- Actions required to terminate processes would be performed here. This

-- could include deallocating devices and closing files.

null;

end Term;

..

--I Abstract: This procedure is an SVM mode routine that is called to

V-84

V

V

k_/

Ada Unit 62 Hydraulic_Syatem_Pa_ition.Update_Hydraulic_Syatem Separate Procedure
separate _ydra_]i,:__ys_em_Far_ition_

.crDcedure -_da'e- _uY_a: "_c_3ystem is

:eqtn

-- ?r_cess MailDox zommands

Prczess_Mailbox;

-- Read indue messages

U_daze_inputs;

-- Update Pressurization Components (reservoir, drive units, pumps, etc)

Update_Press_Components;

-- U_date Supply Components (valves, distribution plumping, etc)

Update_Supply_Components;

-- Se_ Output messages

Update_Outputs;

end Update Hydraulic_System;

.. - ___

--I Abstract: This procedure performs the update of the Hydraulic

--l System Partition

--I Warnings: None.

..

Ada Un_ 63 Hydraulic_Syatern_PartiUon.Update_lnputs Separate Procedure
separate (Hydraulic System_Partition)

procedure Update_qn_uts is

begin

-- This routine gets the input messages

Message.One_To Many. Get (In_Msg_Id => Elec_Pwr_Msg_Id);

Message.Cne_To_Many.Ge= (In_Msg_Id => Sys_l_MonorCmd_Msg_Id);

Message.One_To_Many.Ge= (In_Msg_Id => Sys_2_Motor_Cmd_Msg_Id);

Message.One_To_Many.Get (In_Msgld => Sys_l_ValveCmd_Msg_Id);

Message.One_To_Many.Get (In_Msg_Id => Sys_2_Valve_Cmd_Msg_Id);

-- Determ_ =oKal flow razes consumed and returned by hyd components

Tot_Press__ow (Oct.Sys_l) := 0.0;

Tot_Press_Plow (Oct.Sys_2) := 0.0;

Tot_Re=urn Plow (Oc=.Sys_l) := 0.0;

Tot Return Flow (Oct.Sys_2) := 0.0;

for I in I .. Message.Many_To_One.Number_Of_Msgs_To_Get

(In_Msg_Id => Sys_l_Flow Msg_Id) loop

Message.Many_To One.Ge= [_n_Msg_Id => Sys_l_Flow_Msg_ld);

Tot Press_Flow (Oct.Sys_l) :=

To__Press_Flow (Oc_.Sys_l) + Sys_l_Flow_Msg. Press_Flow:

Tot Return Flow (Oct.Sys_l) :=

Tot_Press_Flow (Oc=.Sys_l) _ Sys_l_Flow_Msg.Re=urn Fiow:

V-85
O(_BNAL PAGE IS

OF POOR QUALITY

end _>:_;

,ln_Ms__l_ => 3ys 2_?l?w_Msg_lll l[,zp

Messa_e.Many_T__One.3e_ _in_Ms;_[d => Sys_2 ?l:w_MsG_l_ ;

Toz_Press__icw _Cct.Sys 2) =

To__Press_F_ew !Cc_.Sys_2 . Sys 2__ow_Msg. Press _i_w;

To_ ?ress_71ow _Cc5.Sys_2 - Sys_2_Fiow_Ms_.Return_Fiow;

end l¢op;

end U_da_e inputs;

..

--I Abstract: This procedure updates the inputs to the Hydraulic

--I System Partition

--I

--I Warnings: None.

..

V

Ada Unit 64 Hydraulic_System_Partition.Update_Outputs Separate Procedure
separate (Hydraulic_System_Partition)

procedure Update Outputs ix

begin

-- Set Circuit breaker id for each load message

Cb_1021_001_Load_Msg.Cb := Elec_Sys_Intfc Defs.Cb_1021_001;

Cb_!021_002_Load_Msg. Cb := Elec_Sys_Intfc_Defs.Cb_1021_002;

Cb_1021_003 Load_Msg. Cb := Eleh_Sys_In_fc_Defs.Cb_10_i_003}

Cb_1021_004_Load_Msg. Cb := Elec_Sys_Intfc_Defs.Cb I021_004:

Cb_I022 001_Load_Msg.Cb :: E!ec Sys_Intfc_Defs.Cb_1022_001;

Cb_lO22_002_Load_Msg.Cb := Elec_Sys_Incfc_Defs.Cb 1022_002;

Cb_1023_001_Load_Msg.Cb := Elec_Sys_Intfc_Defs.Cb_1023_001;

Cb_1023_002_Load Msg.Cb := Elec_Sys In_fc_Defs.Cb I023_002;

-- Set elec load values for components.

Cb_102!_00!_Load_Msg. Load ::

Drive Unic_Class.Elec_Load {Drive_Uni_ (Oct.Sys_l));

Cb 102!_002_Load_Msg. Load :=

Drive_Unit_Class.Elec_Load (Drive Unit (Oct.Sys_2)) ;

if Motor_Relay_power (Oc_.Sys_l) : Set.On then

Cb_1021_003_Load Msg. Load := 0.5;

else

Cb_1021_003_Load_Msg.Load := 0.0;

end if:

if Motor__elay__ower (Oc_.Sys_2) : Set.On then

Cb_1021_004_Load_Msg.Load := 0.5;

else

Cb_I021_004 Load_Msg. Load := 0.0;

end if;

Cb_I022_001Load_Msg. Load :=

Valve_Class.E!eccrical_Load (Iso Vlv (Oct.Sys_l _:

Cb_1022_002_Load_Msg. Load :=

Valve_Class.Electrical_Load (Iso_Vlv (Oc_.Sys_2));

Cb 1023_001_Load_Msg. Load :=

Pressure_Sensor_Class.Elec_Load _Press_Sensor _Oct.Sys_l)) +

Pressure_Sensor Class. Elec_Load (Press_Sensor (Oct.Sys_2));

V

" V--86

kj

% 7

% J
k._/

ib_l:23__@2_Load_MsG.L,:ad :: :uan:i:v_Sens:r_C[ass.Elec_Load i_y_Sens.sr_:

Sec sys=em pressure 'a,zzua- no_ sense_ fgr _se by hyi =_ponenzs

3ys_Z_?ress_MsG.Fress ::

.... . _ ,-c_._7 _.);_,=,rlbucion_Syszem_ZZass System ?resszre .[:is__Sys ',^ _ :,s _

37s 2 Fress_Mzg.?ress :=

2:_r_bution= _Sys_em-Ciass.Sys_em-Pressure _Disc_Sys ('Qct.Sys_2_ ;

-- 3e: system _ressure [sensed_ for DUt_UE to hydraulic control panel

Hyd_Sys [ndizazor_Msj. Sys_[_Press_[ndicazed ::

ressure/ensor 2[ass. Sensed_©u:pu: (Press_Sensor (Oc_.Sys_l)_ ;

Hyd_Sys_[ndicator_Msg.Sys_2_Press_[ndicaced ::

Pressure_Sensor_Class.Sensed_Outpu_ (Press Sensor [©ct.Sys_!)) ;

-- Sec sensed quantity value for out'put co hyd control panel

Hyd_Sys_[ndicazor_Msg. Sys _ty_Indica[ed :=

Quantity_Sensor_Class.Sensed_Output (Qty_Sensor);

-- Set isolation valve position discretes for output to Hyd Control Panel

Sys_l_Status_Msg.Valve_Sensed_Noc_Full_Open :=

nou (Valve_Class.Full_Open (Iso_Vlv (Oct.Sys_l)]);

Sys_l_Scatus_Msg. Valve_Sensed_Not_Full_Closed :=

(Valve_Class. Pull_Closed (Iso_Vlv (Occ.Sys_l)));

Sys_2_Scatus_Msg. Valve_Sensed_Not_Pull_Open :=

(Valve_Class. Full_Open (Iso_Vlv (Oc_.Sys_2)));

Sys_2_Scatus_Msg.Valve_Sensed_Not_Pull_Closed :=

(Valve_Class.Full_Closed (Iso_Vlv (Occ.Sys 2)));

-- Set motor and pump status discretes for output to hyd control panel

Sys_l_Status_Msg.Motor_Stacus := Motor_Status (Oc_.Sys_l) ;

Sys_l_Scatus_Msg. Pump_Scatus := Pump_Status (Occ.Sys_l);

Sys_2_Status_Msg.Mocor_Status := Motor_Status (Oct.Sys_2);

Sys_2_Scatus_Msg. Pump_Status := Pump_Status (Oct.Sys_2) ;

-- Set Discretes for output to aural cue (sound) system

Aurai_Cue_Msg. Pump_Noise_Sys_l := Pump_Status (Occ.Sys_l) ;

Aural_Cue_Msg. Pump_Noise_Sys_2 := Pump Status (Occ.Sys_2);

Aural Cue_Msg.Mo_or_Noise_Sys_l := Mocor_Status (Oct.Sys I) ;

Aural_Cue_Msg. Mocor_Noise_Sys_2 := Motor_Status (Oct.Sys_2);

Put messages

Message,Many_To_One. Put

Message.Many To_One. Put

Message.Many To One. Put

Message.Many_To__One. PuC

Message.Many_To_One. Put

Message.Many_To_One. Put

Message.__To_One.Put

Message.Many_To_One. Put

Message.One_To_Many. Pu_

Message. One_To_Many. Put

Message.One_To_Many. Put

Message.One_To_Many. Put

Message.One_To_Many. Put

Message.One_To_Many. Put

end Update_Outputs:

(Ou__Msg_Id => Cb_1021_001_Load_Msg_Id);

(Out_Msg_Id => Cb_1021_002_Load_Msg__d);

(Out Msg_Id => Cb_1021 003 Load_Msg_Id);

(Ouc_Msg_Id :> Cb_1021_004_Load_Msg_Id);

(OuC_Msg_Id => Cb_1022_001_Load_Msg_Id);

(Out_Msg_Id => Cb_I022 002_Load_Msg_Id);

(Out_Msg_Id => Cb_1023_001_Load_Msg_Id);

(Ou_ Msg_Id => Cb_1023_002_Load_Msg_Id);

(Ouc_Msg_Id => Aural Cue_Msg_!d);

(Ouc Msg_Id :> Sys_l_Press_Msg_Id) ;

[Ouc_Mag_Id => Sys 2_Press_Msg _d) ;

(Ou__Msg_Id => Sys_l_Status_Msg__d);

(Ou__Msg_Id => Sys_2 Stacus_Msg_Id);

(Ouc_Msg_[d => Hyd Sys_Indicator_Mag_[d);

--i Abstract: This procedure updates the outputs of the Hydraulic

ORdiNAL PAt_E I_

OF POOR QUALITY
........ _ =; V-87

Hydraulic System Partition.Update Press Components Separate Procedure
Ada Unit 65
se;ar_=e _Hydr_uL_c_Sys=e__?ar=i_i°n_

procedure Update_?res% _o_o_entS is

begin

__ upda=e _eservoirHyd Reservoir_Class.Up dace

(Instance :> Reservoir,

Delta2im e => Delta Time, (Pump (Oct.Sys_l)) +

_ - - - (Pump (Oct.Sys_2)}),Consumed Rate :> (Hydrau!ic Pump Class.Consumed Flow

Hydraulic_pumpClass.Consumed-Fl°w

Returned Rate :> (Tot Return_Flow (C_t.Sys_l)
- Tot_Return_Flow (Oct.Sys_2))):

.... update Quantity Sensor and return electrical load

Quantity Sensor_Of ass.UpdaEe

([nstance => Qty_Sensor,

Power Avail => EIec_Sys in_fC Defs.Cb_!023-002)'power = Set.On),

(£1ec-Pwr-Msg'CH_d(ReserVoi r Class.QuantitY (Reservoir));
Sensed_Input => -

-- Set Motor and Pump signals and power for components

Motor Cmd (Oct.Sys_l) := Sys l_Motor Cmd_Msg.Motor-Cmd;

Motor_Cmd (Oc_.Sys_2) := Sys 2 Motor Cmd Msg.Motor_Cmd;

Motor_power [Oct.Sys_l) :=

Elec Pwr Msg.Cb (Elec Sys intfC Defs.Cb_1021_0011 .Voltage;

Motor Power (Oct,Sys_2} :=

Elec ?wr Msg.Cb (Elec Sys intfc_Defs.Cb 1021 002) .Voltage;

Motor_Relay_Power (Oct.Sys_l) := Elec Pwr_Msg.Cb(Elec_Sys_Intfc_Defs.Cb_1021-003) "E°wer;

Motor_Relay_Power [Oct.Sys_2) := Elec Pwr_Msg.Cb .Power:(Elec_Sys intfc_Defs.Cb_1021-004)

for Sys index in Oct.Sys_l_Sys-2 loop

__ When relay power is not avail, or motor is commanded off, set motor power

__ Eo off. This replaces relay I021_001 and relay i021_002.

Selector cells return-

ing data from "con-

nected _ obiects.

if (Motor_Relay_Power (Sys_Index) /= Set.On) or

(Motor_Cmd (Sys_Index} /= Set.On) then

Motor_Power (Sys_Index) := 0.0;

end if;

update Dri_ml ul%i_ and ee_ motor status discrete

Driv__Ul_t._Clase.Upda_e

(Inltan_e => Drive_Unit (Sys_Indexl,

Avail_power => Mocor Power (Sys _ndex),

Delta_Time => Delta_Ti_'

Torque => Hydraulic Pump Class.Torque (Pump (Sys _ndexll);

if Drive_Uni__C!ass.Motor-On (Drive_Uni_ (Sys_Index_) then

Mocor_Stac_s (Sys_Index) := Sea.On;

else

Motor_StatUs (Sys_Index) := Set.Off;

end i_;

_- Convert drive unit speed from rad/sec _o revs/min for IOS display

Motor Speed (Sys Index) := Seu.Rpm (9.5493 * Drive Unit Class.Shaft Speed- _ (Drive_Unit (Sys Index))};

Reilys not modeled

as objects - de=gn
isaue.

V

V-88

_AGE IS

OF POOR QUALITY

\ J

k_j

-- U_dhte Eydrauiic 9um_ and set pump status.

Hyd:_ulic ?um__?iass.Update

ins_anceL=> _ump 'Sys_!ndex;,

]ei=a Time :> _el=a_Ti_e,

?i_id_Av_£1 :> Hyd_Reservcir_Class.Fluid_Avail iReservcir>,

/haft 2_¢'J -> Drlve__niu Ciass.Shaft_S_eed [Drlve_Uni= (Sys_lndex)),

System_?ressure => Distribution_System Class.System_Pressure

(Dist_Sys (Sys_lndex_) ;

_f Hydrauilz_pu:V_Zlass. Pump_Cn (Pum_ _Sys_lndex)) then

Pump_Status Eys_lndex) := Set.Cn;

else

Pump_Status Sys_index) := Set.Off;

end if;

end loop;

end Update_Press_Components;

..

--_ Abstract: This procedure updates the fluid pressuriza=ion

--_ components of the Hydraulic System Partition.

---[

--I Warnings: None.

..

Ads Unit 66 Hydraulic_System_Partition.Update_Supply_Components Separate Procedure
separate (Hydraulic_System_Partition)

procedure Update_Supply_Components is

begin

-- Set Valve signals and power

Iso_Valve_Power (Oc_.Sys_l) := Elec_Pwr_Msg.Cb

(Elec_Sys_Intfc_Defs.Cb_1022_001).Voltage;

(so_Valve_Power _ct.Sys_2) := Elec_Pwr_Msg.Cb

(Elec_Sys_Intfc_Defs.Cb_1022_002).Voltage:

Vlv_Close_Cmd (Qct.Sys_l) :: Sys_l_Valve_Cmd_Msg. Vlv_Close_Cmd;

Viv_Open_Cmd iCc_.Sys_l) := Sys_l_Valve_Cmd_Msg.Vlv_Open_Cmd;

Vlv_C!ose_Cmd (Ocu.Sys_2) := Sys_2_Valve_Cmd_Msg.Vlv_Close_Cmd;

Vlv_CpenCmd (Cct.Sys_2) :: Sys_2_Valve_Cmd_Msg.Vlv_Open_Cmd;

for Sys_Index in Oot.Sys_l_Sys_2 loop

-- Update Isolation Valve

Valve_Class.Update (Instance => Iso_Vlv {Sys_Index),

Close_Cmd => Vlv_Close_Cmd (Sys_Index),

Open_Cmd => Vlv_Open_Cmd (Sys_Index),

Pressure => Disnribucion_System_Class. System_Pressure

(Dist_Sys (Sys_Index)),

Power :> Iso_Valve_Power (Sys_Index],

Flow_Rate => Hydraulic_Pump_Class.Ou_put_Flow

(Pump (Sys_Index])) ;

-- Update distribution system (plumbing that connects components]

Distribution_System_Class.Update

(Instance :> Dist_Sys (Sys_Index),

Delta_Time => Del_a_Ti_,

Consumed_Flow :> Tot_Press_Flow (Sys_Index),

Supply_Flow => Valve_Class. Flow_Rate (Iso_Vlv (Sys_Index)));

-- Update pressure sensor

Pressure_Sensor_Class.Update

(Instance => Press_Sensor (Sys_index),

Power_Avail =>

(Elec_Pwr_Msg.Cb (Elec_Sys_Intfc_Defs.Cb_1023_001}.Power = Set.On),

OR_!NAL PAGE I_

OF POOR QUALITY
V-89

Distrit_.:::_Sys_em_=lass.Sys_ec_:_ess_r _ ,]:$__Sys :Sys_index_ _;
l

end _oo_;

end :5_da:e 3&_ply Co_Ipcnen_S;
............................

....................... :pdateS the fluid su_D!y components of

__! Abstra:_: Th_s proced'a_e ""

___ the Hydr_uii: System. ParCltion

___ Wa _-_ngs: None. _

V

V-gO

•----'----'--O'O'O'O'O'_tNAt.. PAGE !_

OF POOR QUALITY

Ada Unit 67 Orvc_Common_Types Package Specification
.ca,-__a_e Srvc_Commcn_T,fves [s

-y-ce 3ys_L_Jy_ 2 -'_ ',3ys_i, Sys_2] ;

-y_e _n 5ff is _Cn, Off',;

end ;rv:]3mmon_U'/Ve=.

..

-- Ans-:a-._: This vazkage Vrovides zhe common data types used by the

--i parz_z_3ns of the ORVC.

--i

-- Warnings: None.

..

Similar to Std_Eng_Types,

but applies to a par_cuiar

subsystem.

Ada Unit 68 Orvc_Defs Package Specification
with Dis;

with Orvc_Common_Types ;

package Orvc_Defs is

-- The top-level "Component_IDs" in the ORVC system

Aural Cue : constant Dis.Component_Id := t

Dis.Register_Component (Dis.Null_Component, "Aural_cue', Prefix --> True);

Hydraulic_Control_Panel : constant Dis.Component_Id :=

Orvc_Defs is like SSVTF's

SSTF_Defs package.

I Top-Level partJ_ons I

Dis.Register_Component (Dis.Null_Component, "Hydraulic_Control_Panel', Prefix :> True);

Control_Surfaces : constant Dis.Component_Id :=

Dis.Register_Component (Dis .Null_Component, "Control_Surfaces', Prefix => True) ;

Electrical_System : constant Dis.Componenc_Id :=

Dis.Register_Component (Dis.Null_Component, "Electrical_System", Prefix => True);

Hydraulic_System : constant Dis.Component_Id :=

Dis.Register_Component (Dis.Null_Component, "Hydraulic_System', Prefix => True] ;

Landing_Gear : constant Dis.Component Id :=

Dis.Register_Component (Dis.Null_Component, "Landing_Gear', Prefix => True) ;

Session_Manager : constant Dis.Component [d :=

Dis.Register_Component (Dis.Null_Component, "Session Manager', Prefix => True);

Real 6 : constant DIs.Type_Id ::

Dis.Register Type (Dis.Null_Component, "Real_6", Dis.Float_Tag);

Real_f5 : constant Dis.Type_[d :=

Dis.Register_Type (Dis.Null_Component, "Real_iS', Dis.Double_Tag);

package O_O is new Dis.Enum_Functions (Orvc_Common_Types.On_Off) ;

On Off_Type_Id : constant Dis.Type_Id :=

Dis.Register_Type (Parent

Name

The_Tag

Size

Labels

end Orvc_Defe;

=> Orvc_Defs.Hydraulic_System,

=> "On Off",

=> Dis.Enum_Tag,

=> O_O.Size,

=> O_O.Labels);

.................................. _-.......... .-.-. ___--.-

--I Abstract: This package contains the DIS definitions for the ORVC.

--I

--l Warnings: None.

... ------

J Ois veraons of standard I

I

Ada Unk 69 Hydraullc_System_Defs Package Specification
with Dis;

with Orvc_Defs;

with Orvc_Common_Types;

package Hydraulic_System_Defs is

...

-- Define and Register Types
...

ORW_N.%L PA(:M_
OF ._ 0"" '"' V-91

az<age 3ys:_2 .s new _is. Enum_Funczlons <Crvc_Co_mon_Tv_es.Sys_l_Sys_2);

= AS _ 3q in : cons_anz Dis.Tyve [d :=

_is.Reg_s:er T%Te {Paren_ :> Orvc_Defs.Ht'draull: System,

Na_e :> "Pounds_?er_Sq :n",

The_TaG => Dis.?loa__?ag,

Low_Bound => "0.3",

Hugh Bound => "340.3"_;

...

-- Reglsuer TerTs

...

Mc_or [_Qn_Off : cens_ant Dis.Term_Id ;=

Ois.Regis_er Term {Parent => C rvc_Defs.Hydraulic_Sys_em,

Name => "MoLor_l_On_Off",

The_Type => Orvc_Defs.On_Off_Type_Id,

Users => (i => Dis.Look));

Motor 2_On_Off ; constant Dis.Term_[d :=

Dis.Register_Term (Parent :> Orvc_Defs.Hydraulic_System,

Name => "Mocor_2_On_Off",

The_Type :> Orvc_Defs.On_Off_Type_Id,

Users => (1 :> Dis.Look));

Mo¢or_l_Rpm : constant Dis.Term_Id ::

Dis.Register3erm (Paren_ => Or :_Defs.Hydraulic_System,

Name :> "Motor I_RPM",

The_Type :> Orvc_Defs.Real_6,

Users => (i :> Dis. Look));

Mocor_2_Rpm : constant Dis.Term_Id ::

Dis.Register Term (Parent => Orvc Defs.Hydraulic_System,

Name => "Motor 2_RPM',

The Type :> Orvc Defs.Real_60

Users :> (I => Dis. Look));

Fluid_Level : constant Dis.Term_Id :=

Dis.Register_Term (Parent => Orvc_Defs. Hydraulic System,

Name => -Fluid Level",

The_Type => Orvc_Defs.Real_6

Users => (I => Dis.Look_Enter});

Pressure_Sys_l : constant Dis.Term_id :=

Dis.Register_Term [Parent => Orvc Defs.Hydraulic_System,

Name => "Pressure_Sys_l',

The_Type => Pounds_Per_Sq_In,

Users => (I => Dis. Look});

Pressure_Sys_2 : constant Dis.Term_Id :=

Dis.Register_Term [Parent => Orvc_Defs.Hydraulic_System,

Name => "Pressure_Sys_2",

The_Type => Pounds_Per_Sq__In,

Users => (I => Dis.Look));

Flow_Pump_l : ¢or_tan_ Dis.Term_Id :=

Dis.Re, liner_Term (Psren_ => Orvc_Defs.Hydraulic_System,

Name :> -Flow Pump_l",

The_Type => Orvc_Defs. Real_6,

Users => (I => Dis.Look_Enter));

Flow_Pump_2 : constant Dis.Term_Id :=

Dis.Rec]is_er_Term (Parent => Orvc_Defs.Hydraulic_Sys_em,

Name => "Flow_Pump_2",

The Type => Orvc_Defs.Real_6,

Users => (I => Dis.Look_Enter));

Iso_Valve Sys_l : constan_ Dis.Term_Id :=

Dis.Register_Term (Parent => Orvc_Defs.Hydraulic_System,

Name => OIso_Valve_Sys_l",

The_Type => Orvc_Defs.Real_6,

Users => (i => Dis.Look));

Iso_Valve_Sys_2 : constant Dis.Term Id :=

Dis.Register_Term (Paren_ => Orvc_Defs.Mydraulic_System,

e..=......=

V-92

Data types used in

de_nil_ons package

Register lOS "Look
only" term.

Register lOS

LooWEn ter term

_N._i. PAqE ffi

OF POOR qUALITY

V

Name => "Is_c_Va!ve_$ys 2 ",

The_Ty_e => 9rvc_Defs.Real_6,

Users => ',i => D=_s. Lc_k_i ;
m

...

-- Reqzscer Ma_f_n.:-ions

...

pump Nc_Flow : constant Dis.Malfunction_-'d :=

Dis.Reg:s-er_Ma_.func-ion (?aren_ => Orvc_Defs.Hydraulic_System,

Name => "Pump Nc Flow', m

Length :> 2,

LaDels => Sys_l 2.LaDels) ;

Press_Comp Fail : constant Dis.Malfunction_Id :=

Dis. Register_Mal funct ion (Parent

Name

Length

Labels

Iso_Valve_Freeze : constant Dis.Mal

Dis.Register_Malfunction (Parent

Name

Length

Labels

:> Orvc_Defs.Hydraulic_System,

:> -Pressure_Comp_Fail',

=> 2,

=> Sys_l 2.Labels) ;

function_Id :=

=> Orvc_Defs.Hydraulic_System,

=> -Iso_Valve_Freeze',

=> 2,

=> Sys_l_2.Labels);

Pressure_Sensor_Fail : constant Dis.Malfunction Id :=

Dis.Register_Malfunction (Parent => Orvc_Defs.Hydraulic_System,

Name => ,Pressure Sensor_Fail',

Length => 2,

Labels :> Sys_l_2.Labels,

Pl_Name => "Scale",

Pl_Low :> 0.0,

Pl_High => 5.0,

Pl_Type => Orvc Defs.Real_6

P2_Name :> "Offset',

P2_Low => -4000.0,

P2_High => 4000.0,

P2_Type => Orvc_Defs.Real_6);

Motor_Zero_Rpm : constant Dis.Malfunction_Id :=

Dis.Register Malfunction [Parent => Orvc_Defs.Hydraulic_System,

Name :> "Motor_Zero- RPM°,

Length :> 2,

Labels => Sys l_2.Labels);

Disn_Sys_Leak : constant Dis.Malfunction_Id :=

Dis.Register_Malfunction (Parent => Orvc Defs.Hydraulic_System,

end Hydraulic__21stem-Defs;

Name :> "Dist-Sys- Leak°,

Length => 2,

Labels => Sys_l_2.Labels,

Pl_Name => ,Leak Rate GPM',

Pl_Low => 0.0,

Pl_High => 5.0,

Pl_Type => Orvc_Defs.Real_6);

I

Ae_stet maJfunc_on

wilh no paratneters.

Register maCfuncmlon Iwith psrammers.

O@Vrr31N._LPAGE t5

OF I_X)R QUALITY

V--93

V

