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ABSTRACT

The stability has been investigated of the ::::steady flow past an infinite flat plate

when it is moved impulsively fro::: rest, in its own plane. For small times the in-

stantaneous stability of the flow depends on the linearised equations of motion which

reduce in this problem to the Orr-Sommerfeld equation. It is known that the flow for

certain values of Reynolds nun:ber, frequency and wavenumber is unstable to Tolhnien-

Schlichting waves, as in the case of the Blasius boundary layer flow past a flat plate.

With increase in tin:e, the unstable waves only undergo growth for a finite time inter-

val, and this growth :'ate is itself a function of time. The influence of finite amplitude

effects is studied by solving the fiill Navier-Stokes equations. It is found that the

stability characteristics are markedly changed both by the consideration of the time

evolution of the flow, and by the introduction of finite amplitude effects.
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§1 Introduction

In the flow over a flat plate at zero pressure gradient the stability of the boundary

layer is not only dependent on its instantaneous thickness, but also on its rate of

growth. This problem, based on the Blasius mean flow has been studied extensively.

However, experiment shows that the stability characteristics based o11 the local growth

of the boundary layer provide a good approximate model. This was confirmed in the

triple-deck structure calculations of Smith (1979a) on the influence of the rate of

growth of near neutral unstable Tolhnien-Schlichting (TS) modes at high Reynolds

numbers. The weakly nonlinear evolution of TS modes within a Blasius layer was

studied by Smith (19791)) and Hall & Smith (1984). In the latter of these studies, it

was demonstrated how a linear mode could evolve smoothly into a finite amplitude

perturbation. In Otto (1994), this was shown to be feasible within the unsteady

problem. Smith also found that it was not possible to determine the effects of boundary

layer spatial growth on the stability of the modes since different conclusions were

found depending on which flow quantity was used to express the finite amplitude of

a mode. Gaster (1974) and Eagles & Weissman (1975) have also contributed to our

understanding of the Blasius problem. In this flow, Tolhnien-Schlichting waves grow

spatially in the flow direction and the resulting equations in this coordinate are elliptic,

and are computationally expensive to solve. The approach of Bertolotti (1991), using

the Parabolised Stability Equations (PSE), in which the elliptic equations are made

parabolic on the assumption of slowly evolving wave characteristics and the changes in

structure may be locally assumed linear, has been one of the more successful methods

to reduce the computational cost. This approach allows far larger steps to be taken in

the evolutionary coordinate.

In the present work, the related temporal problem is considered. Otto (1994) found

reasonable agreement between triple-deck and Orr-Sommerfeld results in regimes of

common validity, for the unsteady flow problem of the flat plate moved impulsively

from rest. Here, we discuss both the linear and nonlinear problems, and since our



problem is already parabolic in the evolutionary coordinate, we use the PSE method-

ology to study the effects of finite amplitude and to reduce the nmnber of time steps

per period required for accuracy, which it does very effectively. We find substantial

differences between the results of linear theory based on the Orr-Sommerfeld equations

and our results for finite amplitude waves.

In Section 2, we derive equations for the linear and nonlinear evolution of Tollmien-

Schlichting waves with a brief summary of our period fitting technique. Section 3

contains details of the numerical methods used to solve the equations. In Section 4,

we discuss the results and finally in Section 5, we draw some conclusions.
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§2 Formulation

The physical problenl consists of an infinite flat plate in two dimensions which is

at rest within a fluid of density P0 and pressure P0. At time t = 0, the plate is moved

impulsively from rest with the speed U0, in the direction parallel to its alignment (see

Figure 2.1 ).

P0

P0

/ / / / / / / / / / / / / / / / 7 --_

Figure 2.1 Velocity Profile Due to Impulsive Motion of Flat Plate

The governing equations for this problem are the equation of continuity and the

Navier-Stokes equations

Ou Ov

0-7+N=0
c)u cgu Ou Op 1 2
a-7+ub-7.+v N - 0x+Nv (2.1)

Ov Ov Ov Op 1 2
0-7+ _ + _0-7= -0-7 + _ v

where each variable is dimensionless, with scaling parameters p0, U0,/z0, and L repre-

senting the ambient density, plate velocity, viscosity and a unit of length in the flow

direction, respectively. The Reynolds number per unit length of plate, Re is defined

as

Re- LUoPo

#o

and V 2 is the two-dimensional Laplacian operator

(2.2)

V2 0 2 0 2
Ox 2 + -O--fi92 • (2.3)

We note that the pressure has been non-dimensionalised by poU_ and time by __z.



In tile caseof an infinite plate impulsively set in motion, the mean solution, i.e.

tile undisturbed flow, is given in dimensionless terms by the reduced set of equations

O_ I 02_

Ot -Re Oy2
_=0 (2.4)

P0

- p0U02

with initial and botmdary conditions

_(0, t)={0 t=01 t > 0 (2.5)

_(Y, t) --_ 0 y ---+oc

The mean streamwise velocity component is therefore given exactly by

_(y,t) = I- erf(@). (2.6)

Given the form of (2.6), it is appropriate to choose physical variables X and Y that

absorb the _ dependence,
X =xv/-R_

y = y,/h--;_

With this transformation, the governing set of equations beconle

Ou Ov

0-X + 8-_ =0

1 Ou Ou Ou Opv/-ffi Ot + U-oN + v_ - OX + V_u

1 Ov Ov Ov Op ___v/-_ Ot + u-s_ + V oy OY + V2 v

(2.7)

(2.s)

and the mean flow is now given by

Y

_(Y,t) = 1 - erf(_-_).
(2.9)

The lack of a physical boundary condition for pressure provides a computational

difficulty for equations (2.8) cast in terms of the primitive variables• We avoid this

problem by reducing this set of equations to a single equation for the normal velocity
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component. In this section,we will discussthe analysis for both linear and nonlinear

disturbances. In addition, we show how to generatean appropriate initial condition

to begin tile stability calculation, and introduce a period-fitting techniqueintended to

reducethe total computational effort.

2.1 Linear Disturbance Equations

We let fi, 5 and/) represent disturbances from the mean state:

_(x,g,t) = c_(g,t) + _(x,Y,t),

_,(x, Y, t) = _(x, K t), (2.1o)

p(X,Y,t)- po
poV_ + _(x,Y,t).

After substituting equations (2.10) into equations (2.8) and linearizing the resulting

expressions, the perturbation pressure,/5, and the streamwise velocity component, fi,

nmy be eliminated, giving the following single equation for _, the transverse compo-

nent:

[( 1 0 _ 0 1 027. 0 2 ( 0___2z 0 2 02ft 0 ]Ott + UO-fX v/-R-_e( O-O_ + -0-_ ) ) OX + -O--Y-if) Oy z & _5= 0. (2.11)

The physical problem is spatially homogeneous in the X-direction, and it is legitimate

to assume a periodic X-variation, giving

,_(x, Y, t) = _(y, t)e _X (2.12)

which reduces (2.11) to

I 02 02ft 1 0 4 02 ]
i 0 c_)( c_2)+ + ( 2_ 2 +c_ 4) 0=0. (2.13)

( _ at OY 2 c_-y-_ iv/-ff_e OY 4

When a periodic time dependence, e -last , is assumed, and noting the mean velocity

is a flmction of Y and t only, equation (2.13) reduces to the familiar Orr-Sommerfeld

equation with similar results. In our case, we consider the solution to equation (2.13)

at any fixed time and then the results show the local stability characteristics of the
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flow for tile linear problem. For this time-dependentproblem, the boundary conditions

are
5(O,t) = O, (2.14)

and since oa = 0 at Y =0,

c')_"0 t) O. (2.15)
_-_(, =

In the farfield, as Y _ oo, the solution depends on e -_y', giving for large Y,

Oi_( Y,t )
oY + _¢_(Y, t) = 0

°_(Y,t) - a2_(Y,t) = 0--SW--

y _ oc. (2.16)

2.2 Nonlinear Disturbance Equations

Substituting (2.10) into (2.8), retaining the nonlinear terms, and eliminating the

perturbation pressure, we find the following for _:

-_ + _ox __-_ + _-f_))(-5_ + oY -oY_ox
O_ 0_ 0 2 O_ c92 02

(2.17)

02fi

°2a could be eliminated using the continuity equation. However, since the
The

term cannot, we leave both terms in for ease of presentation.

We now express the disturbance quantities as a finite sum of modes with respect

to the wavenumber all)ha:

M

j_-M

M

_(x,r,_t= __, _J(r,t) e_'X,
j=- M

M

_(x,Y,_)= _ _j(Y,t) _x.
j=-M

(2.18)

The continuity equation allows for elimination of all the _j's, except ti0, in favour of

the 5j's and requires that 'bo(Y,t) = 0. The resulting equation after making these



substitutions in (2.17) and neglecting all products which colnbine to give a mode

beyond M is given by

( 02 . 02_ ]go 1,o2 i22))(0_V.' (2.19)

where

M+j

k=-M (,--_-:Vj--k j __ k _k OY / + j - k OY 2 OY k OY 3 vj-k
k#o,j

[^ 0.'55 0.'fi0
+ J_t,u°-O-Y-i J.'_2_°_ coY" _¢)

for j = -M,-M + 1,-M + 2,...,-1, and

(2.20)

forj = 1,2,3,...,M.

+ ja @o co2_)Joy2 J'2°l."fio'@ O.',fi°coY2(_J)

(2.21)

The boundary conditions for the t3j's are analagous to those for the linear case:

_j(0,t) = 0, _(0,t) = 0,

ov + jc_j(Y, t) = 0
O_i_,(Y,t)

- j2c_25j(Y,t) = 0
r ----_ o(3.

(2.22)

The variable t)0(Y, t) has no associated wavy part, and is effectively a correction to

the mean solution due to the presence of the finite amplitude waves. An equation for

it may be found by looking at the non-wavy component of the x-momentum equation,

after substituting in (2.18):

Ofio 02_o M i 02_?k ^

COt gY-_ - -v/-_e E kc_ Oy 2 v-k. (2.23)
k=--M
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The boundary conditions for 50 consist of a no-slip condition at the wall and an

asymptotic condition far awayfrom the wall:

c3_0(Y ,t) _ 0 Y --_ o_. (2.24)
_o(0, t) = O, OY

The system of equations (2.19) through (2.24) define the nonlinear problem.

2.3 Initial Condition

In order to solve either the linear or nonlinear problem for some time t = to > 0,

we need to define an initial perturbation which is at least an approximate solution

of the linearised equations. To this end, we can freeze the flow at a given time and

determine the local stability characteristics of the flow from an Orr-Sommerfeld (OS)

analysis. In particular, for given values of (_ and v/Re, we can determine a fimction

'5(Y) and a frequency a.,, such that an initial disturbance of the form O(Y)e _x will

behaw _ according to 5(Y)e i_X-i_t for all time for the frozen flow.

However, since the OS equation does not allow for the evolution of the undisturbed

flow with time, using an initial condition constructed in this way generates spurious

oscillations in the solution. We overcome this problem by finding an initial condition,

which is a slight perturbation of the OS eigenflmction O(Y), that is sensitive to the

changing mean flow. Following the approach of Bertolotti, we let

= o(,)d,, (2.25)

where it is assumed that the time dependence of */ is slowly varying. Substituting this

expression into the linear stability equation (2.13) gives



We llOWmakea 1_t order Taylor Seriesat)l)roximation about to"

t_to +7.,

O0
0 ._ O(to) + 7.-_(to) = Oo+ tO,,

Or' I ,-
v'(I\t) ._ v'(Y, to) + r--gy(Y, to) = v'o(Y ) + rv,(I, ),

(2.27)
a----F-- _ Y, to) = vl(Y),

_ o,, 'L t0),

a2_(v t) °_" t}', t0) + a'_a (}';to).Oy2 _ Oy. 2 _ 7-_

a2v ' iy tWe note that the al)proxinlation for ov'(v,t)at does not include a --SW_ , 0) term; the

slow variation of t/ with t allows us to ignore the second derivative. Collecting like

powers of 7., namely 7.o mid 7.1 we have the following equations, respectively:

t • 0 2

L o(r): - (r) (22s
Lv',(Y)= ( 0j_ a,,,...to))(a_ ) , o3c, ,v- _--ff_-c_[_, _-_-c_ 2 vo(Y)-c_,,to)v'o(y )

where L is the Orr-Sommerfeld operator

_[o _ _a 2a ,,. to) + ,, 2 02

The boundary conditions for v_ and v', are given by (2.14), (2.15), and (2.16).

' and _/1 are orthogonal,With the additional constraint that v 0

tVo) vldY = 0, (2.30

equations (2.28) provide an eigenvalue problem which, when solved, Rives an initial

profile V'o(Y ) and frequency 0o which, to first order, take into account the evolution of

the undisturbed flow.

To further improve the quality of the initial condition, a higher order version of

the above can be perforlned. In this case, we use a second order Taylor Series approx-

imation, and include the second derivative of v' with respect to t, but ignore the third

' and ' the resulting eigenvalue problem containsderivative. In addition to 00, 01, v0 vl,

unknowns 02 and v_ which represent the second-or(ter Taylor Series terms. Extending



the above analysis to 2"d order gives a linear equation fi)r t,_ and an orthogonality

condition, analagous to (2.30).

2.4 Period Fitting

As mentioned in the previous section, we can separate 73(Y, t), for the linear case,

into a time periodic: part, and a function v'(Y, t) that varies slowly with time. In this

case, we will write 0 as

f)(y,_) = v'(y,t)e -i_' (2.31)

where w is taken to be a real quantity; the growth or decay is represented by the

t-variation of v'. To adequately resolve the oscillatory part requires many time steps

per period of oscillation. However, the temporal resolution requirements of v I are

far less restrictive. Consequently, it is more efficient to remove the periodic part of

the solution from the equations and compute only the slowly varying function v'.

Substituting (2.31) into the linear disturbance equation (2.13), we find the following

equation for v'

) ot v/-n--7

,( ---

o=,,(',,.',t) ,,.,_. _)

o '_ ,., 2 o = ) v'(Y, *) = O..by4 ZOi _ -t- o_4

(2.32)

Since the extent of the flow increases as x/t, the vahle of co changes with time.

Therefore, to implenlent (2.32), we must be able to estimate w at any given time. We

define the energy E(Y, t) in the following way:

/5 /5E(Y,t) = O2(y,t)dy = v'2(y,t)e-2i_tdY. (2.33)

Ignoring the slow changes of v' and w with time, we at)proximate w by 2iEl OEat

However, we wish now to work only with v'. Initially, we use a value of w in (2.32)

given by the OS analysis or by the method described in Section 2.3 above. At each

time step, we can correct this value by recognizing that the computed value of v'
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will contain the slowly changing envelopeplus an oscillatory part with a very small

frequency that representsthe changein w, i.e.

jr0 (:x)
E'(Y,t) = _'_(Y,t)dY,

1 OE'

2iE' Ot

Wnew ----- Wold q- Z_W.

For the nonlinear case, tile procedure is very similar. Given that we have

(2.34)

aj = jc_ (2.35)

we make the assumption

wj = jw. (2.36)

That is, we compute wl, associated with the fundamental mode, by the method shown

in equation (2.34). Then all wj for higher order modes are given by (2.36). We note

that any errors incurred by this approximation are at least partially corrected by the

l

the time dependence of vj.

The nonlinear disturbance equations for the v}s now become

y-_ - j2c_2 _ + j(_ - c_(Y,t))ot _¥__ _ j2 2 vj(Y,t) + jc____Sgr_,j_ '

+ ;-_ _ - 2j_2_-_ +j%_ ,}(Kt) = N_'

(2.37)

where Nv ! has the same form as given in (2.20) except that 5 is replaced everywhere

by v !.
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§3 Numerical Methods

In this section, we will provide someof tile pertinent details of tile numerical

solution of both the linear and nonlinearproblems. We beginwith a brief discussionof

the grid and spectral discretization,and follow with descriptionsof the initial condition

generation,linear simulations and nonlinear simulations.

3.1 Discretization

The mean solution is given by equation (2.9) which is repeatedhere:

Y

= 1- (3.1)

Although, u is technically finite for any finite Y and t, it decays quickly away fronl the

plate, and fronl a computational standpoint, it is appropriate to define the extent of

the undisturhed flow to be the Y value at which the undisturbed velocity is 1% of the

plate speed. Since typically the OS eigensolutions decay slowly relative to the decay of

the undisturbed flow solution, it is necessary to choose a physical domain that extends

well beyond this liniit. Defining the edge of the undisturbed flow at t = to to be

}'P.d _ 'i(_/"ed"0)[]0-- 1 -- erf(_) = 0.01 , (3.2)

we have }'ed _-_ 1-821(2v_). We choose an upper bound for Y to be

I_]._x = 4Ova0, (3.3)

i.e. our domain extends to about 10 times the initial undisturbed flow extent.

We employ a Chebyshev collocation discretization using N = 80 polynomials. Al-

though the disturbances do not require any local resolution because, once introduced,

they extend throughout the domain, the mean solution decays rapidly away from the

wall. Consequently, we use a mapping which maps 0 to Y,,_x onto [-1,1] as required

by the spectral discretization, but does so in such a way that points are concentrated

near the lower boundary. The computational coordinate 7/ is defined as follows:

bv-_ (3.4)
71- Y+c
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where b and c are chosen so that Y(1) = Ym_x and Y(0) = Ymid The value of Ymid is

the physical coordinate that bisects the grid. We take it to be 15v_, or about 4 times

the initial undisturbed flow extent. This allows for the undisturbed flow to grow in

extent during the simulation, and keeps the stretching from being too severe. With

these stipulations we have
Ymax Ymid

C : gmax-2gmid (3.5)
b=l+2 c

Ymax

Ill I I I I I,,,, , , , , I I I I I I II
I I II

Y

0 Ymid Y
max

Figure 3. I Representation of Stretched Spectral Grid

3.2 Initial Conditions

For both the linear and nonlinear simulations, the disturbances are introduced at

dimensionless time to = 0.25. We generate three sets of initial conditions at this to.

The first corresponds to the OS eigenfunction, and the remaining two are the 1 _t and

2 "d order corrections, respectively, of §2.3.

The continuous Orr-Sommerfeld eigenvalue problem is defined by

and the boundary conditions

Lye(Y) - 0 (3.6)

= 0, OY _,-; = O,

°"°(Y) + aVto(Y) = 0 (3.7)
OY Y _oo,

= 0Oy2

where L is the Orr-Somlnerfeld operator given by equation (2.29). The corresponding

discrete problem replaces o with the discrete operator ( D--D-g)t,where given a discrete

fimction ¢ defined on the nodes l = 0, 1,2, ..., N,

N

Dq_ Orl (3,8)
k----0

13



where, once again, q E [-1, 1] is the computational coordinate. The dt,k's are the

coefficients of the Chebyshev 1 _t derivative matrix. The system is then defined by

applying tile discrete OS equation at the interior nodes 2, 3, 4, ..., N-2, and the discrete

wall and asymptotic boundary conditions at 7? = -1 (Y = 0) and 7] = 1 (Y = Ym_x)

respectively.

For a given a and v/-R_, the solution of this eigenvalue problem provides a frequency

co and an initial profile v_,I = 0,1, 2, ..., N, which may be used to start the linear

simulation.

In the nonlinear case, this profile may be used as the starting value for the funda-

mental mode. In these simulations, we set the higher order modes initially to 0, and

the -1 mode to the complex conjugate of the fundamental.

The discrete analogues to the 1_t and 2 nd order correction problems of §2.3 follow

directly from above. The resulting linear systems are also eigenvalue problems, the

solutions of which provide a frequency and initial profile.

3.3 Linear Simulations

The continuous linear problem is defined by equation (2.13) with boundary condi-

tions (2.14), (2.15), and (2.16) and initial condition provided as in the the above sec-

tion. We employ the discrete form of these equations along with the Crank-Nicolson

time differencing, given by

,,, -v, _ l_(___gV_ + (3.9)At 2 Ot 1'

which results in the following linear set of equations for 79_+1:

_e "2_¢L1 Oy2 ] 1 At

and

At (+ - +
/J

: [ i 1 -n ___) 012) __ lo_(_O____g)lAt

2iv"-R-TAt((D__p_g)4 2eft (D--P-v)e+c4)] ^,, l = 2,3,4, N-2-- Yl ""' :

(D/'n+' "_ = 0,_,;t+l = O, k BY ]0

( ) )D_ _.[_ @ _/A-1 = 0 ' ___.) _ _2 ^n-4-1v N =0.

(3.1o)
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The value of N for all simulations is chosen to be N = 80.

To perform the simulation with period fitting, we implement the discrete form

of (2.32) along with the Crank-Nicolson time differencing (3.9) and the appropriate

boundary conditions. This linear set of equations for (v')'l '+1 , l = 0, 1,2, ..., N is given

by

and

At

'+' =o, DDY ( v! : 0,

-_- O¢)[V )N = O, __ 02 , txn+l(V )n : O.

(3.11)

3.4 Nonlinear Simulations

The continuous equations for the nonlinear case are given by equations (2.19)

through (2.24). The time differencing will once again be of the form (3.9). The result-

ing discrete set of equations is nonlinear, requiring iterative solution. Consequently,

we will verify results by also performing a simulation which uses Crank-Nicolson for

the linear left-hand side of equation (2.19) and explicit 2 '_d order Adams-Bashforth for

the nonlinear terms on the right-hand side.

For the explicit treatment of the nonlinear terms, we have the following discrete

15



analogueto equations (2.19) through (2.21):

1 " I 02_i _n+l

= i 1 " -n I_-_"_-)

/,, .4

At (qKX_ n "_T ^ ,t--I

(3.12)

for l = 2, 3, ..., N - 2, where

^)l

Nvj3 = i M+j [ ^n k ^n DVj_k,I) + j D2_ " ^"E jkc2(Dvk,tf2, _ _ ^" k,t Dvj-k,_
_--D_ j-k,1 j - k vk't DY j - k DY 2 DY

k=--M

k¢o,j

j _" %,t

k DY a j-kd

r_2_)t
(^ 1., vj, I

+ j k, o • 2 2^ ^n D2u05jnl_.).7 _ uovj,i Dy2 ,

(3.13)

for j = -M,-M + 1,-M + 2, ...,-1, and

M

N_))_, = i E
_=-M+j

_o,j

DS,,
'Uk,l ^n

jko? \ DY vJ-kd

DS" D25 ,' ^"
k _,, "i-k,t'_ J k,t Dvj-k,l

j-k k,/ DY / +j-k DY 2 DY

j D 31)n ]
k,l ^n

k  vj-k,l ,.,, vj, 1+ j_ fio-Dy 2

•2 2^ ^n D2u0 ^n'_
j c_ uovj, 1 Dy 2 vj,i],

(3-14)

for j = 1,2,3, ..., M. In these expressions, the superscript represents the time level,

the first subscript indicates the mode, and the second subscript refers to the grid.

Sinfilarly, the discrete values of the mean flow correction are governed by

M

i_At E [ a ^n D='"
vl¢,l 1 gn--I

2a _-_V(-k,l) Dy2 k (-k,l)_
k=--M

k#o

D2_n- I \
k,l

16



The boundary conditions for each mode j C I-M,-M + 1, ..., M] are given by the

discrete forms of (2.22) for v} _+1

Vj, 0 _ 0, \ DY 10 = 0_

(Dv_ +t" ^n+l _'_ __ 0¢2 ::.n-t- 1
DY )N +O_t_j,N = O, ( Dr2 I N 'uj, N = O,

and (2.24) for tile mean flow correction:

(3.16)

0,0 = 0, \ DY IN --_ 0" (3.17)

The above equations constitute a linear set of equations for tile unknowns _3''+1j,t , J =

-M, -M + 1, ..., M, l = 0, 1, 2, ..., N, where, again, N is taken to be 80. We use this

simulation only as a check. The period-fitting technique discussed in §2.4 allows for

a drastic increase in time step. However, stability considerations will not allow full

advantage of this increase to be taken when the nonlinear terms are treated explicitly.

The majority of the results presented in the following Results section were obtained

using period fitting and Crank-Nicolson differencing for the nonlinear terms, resulting

in a fully nonlinear set of algebraic equations to be solved at each time step. In this

case, (3.12) is replaced by the discrete analogue of (2.37)

_-_)t At

+ _ _ Ij,t

( _ 2 _ , . , o_a ,,,_. (3.18)

o, )]2i---vpfi7 - 2j2a2(D---P-v) + j4a4 / 'V,\ V ]j,l

+ __! (N(v,)[_ + N(v')['),

and (3.15) is replaced by

M

2c_

k=--M

k#o

2on^" +^,,+,
V(--k,l) Dy2 V(-k,I)--

D 2 - n+l -_Vk,l

DY 2 ) "

(3.19)
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To solve the nonlinear set, at each time step we begin by making a guess for the

solution which is a cubic extrapolation using the previous 4 time steps. Using this

guess, we compute the nonlinear terms o11 the right-hand sides of equations (3.18) and

,,+1 which serve
(3.19), and then solve the resulting linear systems for new values of vj, t

as the new guesses in the iteration. The process is repeated until convergence.

To utilise period-fitting, we employ the discrete analogue of equation (2.37). The

algorithm for solving the resulting nonlinear algebraic set of equations at each time

step is then identical to that described above.
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§4 Results

In this section, we present results for both the linear and nonlinear simulations.

We begin, however,by presenting the initial conditions obtained by Orr-Sommerfeld

analysis,and by the 1"t and 2''d order corrections.

4.1 Initial Conditions

The discrete version of the Orr-Sommerfeld equation (3.6) and corresponding bound-

ary conditions (3.7) is solved by fixing values of a and _ and solving the eigenvalue

problem for the frequency ._ and eigenfunction v_. The value of .; is generally complex

with a positive imaginary part representing growth with time and a negative imagi-

nary part indicating temporal decay. For particular pairs of a and v/-ffe a purely real

w results. Figure (4.1) shows the neutral Orr-Sommerfeld curve for time to = 0.25.

The results are identical to those given in Otto (1994). We present this figure for later

reference.

0.50

0.45

0.40

0.55

0.30

0.25

0.20

0.15
I I I I k I I

4000 8000 12000 16000

Re_

Figure 4.1 NeutrQI Orr-Sommerfeld curve showing the pairs
of Reynolds number end streamwise wave num-

ber which give purely reol co
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Tile reference values of e_ and v/_ we have chosen for our simulations are

a =0.4
(4.1)

= 3000

which defines a point just to the left of the neutral curve in figure (4.1). For these

values, the corresponding w resulting from the OS solution and the 1 st and 2 "d order

corrections are given by

Orr-Sommerfeld:

1"t Order Correction

2 "a Order Correction

and the resulting eigenfunctions,

0.27589729 - 0.00004782i

0.27585418 + 0.00028591i

0.27584836 + 0.00028872i

whichmay be used as initialconditionsto the linear

and nonlinear simulations, are presented in figures (4.2a) and (4.2b). Figure (4.2a)

shows the real part of the initial profile, as generated by the OS analysis, which we

call v °s. In figure (4.2b), two curves are given. The dashed curve shows the deviation

of the real part of the initial profile generated by the 1_t order correction, v 1, from

that generated by the OS analysis, v°s. The dotted curve in this figure shows the

deviation of the real part of the initial profile generated by the 2 nd order correction,

v0_, from that given by the 1_t order correction. To plot both of these on the same

graph, we scale the two curves appropriately, so the actual quantities seen on this
1 OS 2 It

V -- vfigure are 1103 _w-_[ and 1104 [vs. Y, where the denominators represent the
O,m_x

peaks of these curves. This figure shows that the I st order correction represents a

0.1% deviation from the OS curve, and the 2 '_d order correction deviates from the 1 _t

order curve by al)out 0.005%. It will become evident in the linear simulations that the

subtle differences between the initial conditions generated by each of these methods

are important. It should also be noted that the OS equation predicts a stable mode

while the corrected value represents an unstable one, for this pair of a and x/-R--e.

20



20-

15-

X__

(a)

0 -

I

0.000 O.010

I

Vo OS

I J

0.020

I

0.030

2O

15

>- I0

(b)

5 - _",_,

0 - _ - _-- - "j _r-_ ........................

I I I I l I I I

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Deviation

Figure 4-.2 Initial Profiles for v. (a) Generated by aS analysis.

(b) Scaled deviation between 1st order correction and
aS (dashed), and between 2nd order correction and 1st

order correction (dotted).

21



4.2 Linear Simulations

The linear simulations without period fitting are solutions to equations (3.10) at

each time step. As results, we present the growth rate, ha(w), as a function of time,

where co is computed at each time step by equation (2.34). We note that a positive

value of Im(co) indicates instability. We also point out that if g is fixed at its initial

profile during the simulation, and not allowed to grow, this is equivalent to the parallel

flow assumption and the value of co should be constant in time and equal to the OS

value. This provides an initial check of the simulation code, and is what we observed.

For the simulations without period fitting, the dispersive error in the Crank-

Nicolson time differencing scheme makes the results very sensitive to the number of

time steps used per period of oscillation. We begin by presenting results for a simu-

lation which uses 200 time steps per initial period of oscillation; i.e., At is chosen so

that based upon the value of w at t = to, one period of oscillation is divided into 200

grid points:

At = (4.2)
200Real(*o0) "

For this case, we give numerical solutions using each of the three initial conditions

detailed in §2.3. Figure (4.3a) gives the results for the initial condition generated

by the OS analysis (solid line), and the 1 st order correction. It is evident that the

nonphysical oscillations in the OS case are a result of the poor starting condition. The

I st order correction, which is sensitive to the evolution of the mean flow, eliminates

most of the oscillations. The sinmlation using the initial condition generated by the

21_a order correction is free of oscillations on the graphical scale. This result is given

in figure (4.3b).

Figure (4.4) gives the solutions corresponding to 100 (solid) and 50 (dashed) time

steps per initial period of oscillation, respectively. The dotted curve on this figure is

the 200 time step per period result given in figure (4.3b). We see that using 100 time

steps per period is still ample, but that the quality of the results when 50 are used is

markedly diminished due to dispersive error in the time-differencing scheme.
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In figure (4.5), we give the results for the linear simulations with period fitting,

using a time step equivalent to 10 (solid) and 2 ((lashed) grid points per period,

respectively. These are solutions to equations (3.11) at each time step. Again, the

dotted curve on this figure is the 200 time step per period result of figure (4.3b). We

note that we get results identical to this control case, using as few as 2 time steps per

period.

We present two final figures associated with the linear simulations. Figure (4.6)

shows Real(co) versus time for the simulation with period fitting using 2 time steps

per period, and demonstrates the effect of the mean flow evolution on the i)eriod

of oscillation. In figure (4.7) we give a direct comparison between the growth rate

predicted by OS theory at each time (dashed), versus the computed growth rate from

the linear simulation (solid), again using the 2 time steps per period case. We see that

the evolution has a significant destabilizing effect.
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4.3 Nonlinear Simulations

For all tile nonlinear simulations, we use the initial condition generated by the 2 '_d

order correction for the j = 1 mode, and its conjugate for the j = -1 mode. However,

we adjust the amplitude to test for tile presence of nonlinear effects. All higher order

modes are initially taken to have 0 values, as is the mean flow correction u0.

For the first four sets of simulation results, we used 17 modes (j = -8,-7, ..., 8)

and we fixed tile peak amplitude of the initial profile for the flmdamental mode, given

in figure (4.2), to be 0.000001 (figure 4.8), 0.002 (figure 4.9), 0.005 (figure 4.10) and

0.008 (figure 4.11). We employed the period fitting algorithm and used 40 time steps

per one period of the flmdamental mode. At each time step, the set of nonlinear

equations given by (3.18) and (3.19), with boundary conditions (3.16) and (3.17) are

solved. Each of these figures contains two graphs: the (a) part gives the growth rate

of the fundamental mode, and in the (b) part, we present the energy curves for modes

j = 1 to j = 8 where we define energy as ln(Iv_j[), and Ej is defined for the jth mode

by equation (2.34). The strong oscillations exhibited in the higher order modes in

figures (4.10) and (4.11) result from strongly nonlinear behaviour in the initial stages

of the simulation, since all higher order modes are initially set to 0. This effect is

amplified by aliasing errors.

On each of these figures, the dotted curve represents the results from the linear

simulation which uses the same initial conditions. For the 0.000001 case, the linear

results are obtained over the entire time range (dotted curve sits on the solution for

the fundmnental nmde). However, even when the amplit'ude is as small as 0.002, the

nonlinear effects can be seen within just a few periods.

To test the effects of even higher order terms, we repeat the 0.008 case above, using

33 modes (j = -16,-15,..., 16). Again we use 40 time steps per one period of the

flmdamental mode. These results are presented in figure (4.12). In the (b) part of this

figure, we again show only the modes j = 1 through j = 8. A reduction in oscillations

occurs due to the elimination of aliasing errors; however, the startup effects can still

be seen.
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Finally, to verify that the period-fitting algorithm and nonlinearalgebraicsolverare

working successfullyfor thesesmmlations,we include a simulation where explicit 2''d

order Adams-Bashforth temporal discretization is used to treat the nonlinear terms,

and period fitting is not used. At each time step, we solve the linear set of equations

(3.12) through (3.17). In this case, 400 time steps per one period of the fundamental

period are used, and we include 16 modes. Figure (4.13) compares the growth rate of

this simulation (20 periods in duration) with the first 20 periods of figure (4.11). It is

evident that these algorithms are performing effectively.

28



0.00

0.00(

-0.00

-0.002

%-
E -0.005

-0.004

-0.005

0,006

I I I I i I I

0.50 0.40 0.50 060

time

-5

-6

7

8

-9
L

-lo

11

-12

- 1,3

-14

................................ (b)

......... :_<_:..£._2- ........

I I I I I I I

0,50 0.40 0,50 0.60

time

Figure 4.8 Noni]neo_ Simuiut]on with period fitting. Durot[on; 50
periods. 17 modes. Initial omptitude of fundarnentGI

mode: 0000001 (e) Crowth rote of the fundamentcl

mode. (b) Energy curves, Solid curves in (b) correspond
to the first end second hormonics; doshed curve ls the

meon flow correction, Dotted curve in both figures is
the iJnear result.

29



0.001

0.000

-0.001

-0.002

- -0.003

-0.004

-0.005

-0.006

f (a)

I I 1 k I I I

0.30 0.40 0.50 0.60

time

-1

(b)
-2

==============================[£ _1- .......

bJ --6

-8

-9

-10 i i i i I i i
0.30 0.40 0.50 0.60

time

Figure 4.9 Nonlinear Simulation with period fitting. Duration: 50
periods. 17 modes, Initial amplitude of fundamental
mode: 0.002. (o) Crowth rate of the fundamental mode.

(b) Energy curves. Dashed curve in (b) is the mean
flow correction, Dotted curve in both figures is the

linear result.

30



0.006

0.004

0,002

"_" 0.000

E

-0.002

-0.004

-0.006

'--.

'-, ,

I I I I I

0.30 0.40

time

"'.

"-,

"',,

"'- ,

I j j

0.50 0.60

(b)

I I _ I I I

0.30 0.40 0.50 0.60

time

Figure 4.10 Nonlinear Simulation with period fitting. Duration: 50
periods. 17 modes. Initial amplitude of fundamental

mode: 0.005. (a) Growth rate of the fundamental mode.

(b) Energy curves. Dashed curve in (b) is the mean

flow correction, Dotted curve in both figures is the
linear result.

31



0.006

0.004

0.002

3
0.000

E

-0.002

-0.004

-0.006

.

(a)

"-.

'..

I I I I

0.30 0.40

time

"'"'..,,,,

"",,

"'.

I i I

0.50 0.60

-1

-2

-3

_-4

LJ --5 -

--6 -

--7 -

-g

(b) : '- -

I "-_I

i i i i i i i

0.30 0.40 0.50 0.60

time

Figure 4.11 NonLinear Simulation with period fitting. Duration: 50
periods, 17 modes, Init}at amplitude of fundamental
mode: 0.008, (a) Growth rate of the fundomental mode,

(b) Energy curves. Dashed curve in (b) is the mean
flow correction, Dotted curve in both figures is the

iineor result.

32



0,006

0.005

0.004

v

0.003

0.002

0.001

0.000

(a)

I I I I I I I

0.30 0.40 0.50 0.60

time

-1

-2

-3

_-4

_-5

-6

-7

-8

-9

b) ..........

I I t I I I I

0.30 0.40 0.50 0,60

time

Figure 4.12 Nonlinear Simulation with period fitting. Duration: SO
periods. ,33 modes. Initiat amplitude of fundamental
mode: 0.008. (a) Crowth rate of the fundamental mode.

(b) Energy curves. Dashed curve in (b) is the mean
flow correction,

33



v

E

0.006

0.005

0.004

0.003

0.002

0.001

0.000
I 1 I 1 I I I

0.28 0.32 0.36 0,40

time

Figure 4,13 Nonlineor Simulotion without period fitting. Explicit
treatment of nonlineor terms. Durotion: 20 periods.

17 modes. Initial amplitude of fundGmentol mode: 0.008.
Crowth rate of the fundomentGI mode is shown. Dotted

curve is simulation ossociated with figure (4.11) -

obscured.

34



§5 Conclusions

In this article we have endeavoured to describe how Tollmien-Schlichting waves

may develop in a temporally evolving flow. We have shown, as is to be expected, that

above a certain critical amplitude their presence will lead the situation to undergo

some kind of transition. We have not tried to describe the flow within this r6gime, we

have purely tried to demonstrate a possible mechanism which may lead to this state

of affairs.

The main theme of our article is to develop reliable numerical techniques which

allow us to solve the nonlinear partial differential equations that can arise in this kind

of problem. The methods that have been used have been drawn from the evolution of

so-called parabolising numerical techniques, both for instability work (see Bertolotti

(1991)) and for full Navier-Stokes simulations (E1-Hady (1989)). In our work we have

the distinct advantage that our underlying physical problem evolves with time rather

than a downstream coordinate, which renders the governing equations parabolic rather

than elliptic as in the spatially evolving boundary layer case. This means that it is

not necessary to change the characteristics of the equations to effect a cheap numerical

solution, rather the methods can be exploited to provide more accurate solutions whilst

using far less resolution, for instance by period fitting. In the PSE work, the spatially

evolving wavenumber is taken to vary linearly with the downstream coordinate, so that

the governing equations are no longer elliptic. If the next order terms were retained,

the equations would revert to their previous state, whereas in our problem we are free

to retain as high order variations as we choose. The assumption we choose to make is

that we can fit a periodicity and the remainder of the evolution is on a slow scale.

In deriving initial conditions for our calculations we start with the Orr-Sommerfeld

results, obtained by Otto (1994). As mentioned earlier we are aware that these results

are fatally flawed, since they do not allow for the evolution of the undisturbed flow,

but nevertheless they provide an initial guess for the modes' form and frequency. We

then consider an eigenproblem in which we not only solve for the mode and complex

35



frequency, but also tile temporal derivative of both quantities. In the example con-

sidered, this produces a fairly large change (rendering a mode that Orr-Sommerfeld

predicts as stable to be unstable). This can be extended so that we ensure the second

derivatives of the quantities are correct, producing minor modifications to the modes

characteristics and eliminating just about all the visible transients from the growth

rate curves (Figure 4.3). Unfortunately one problem that we have not resolved is the

transients due to the start of the nonlinear modes; at the present we start our modes

with zero amplitude (for the non-fundamental). We believe that this is what may be

leading to the oscillations in the energy curves in figures (4.10b), (4.11b) and (4.12t)).

Our simulations for the linear proMem seem to produce the expected results; that

is, the flow can support Tollmien-Schlichting waves for a finite time interval. In the

simulation associated with figure (4.7), it appears that the evolution of the mean flow

has a significant destabilising effect, but it should be noted that the OS analysis, to

which we are making comparisons, is suspect when applied to this evolutionary flow

situation: in Section 4.1, we point out that the OS analysis predicts a stable mode

where the corrected cases suggest instability (we appreciate that this mode is close to

the neutral boundary). It should also be noted that even changing the quantity which

represents the energy of the mode can significantly alter the results, as seen in Smith

(1979a). Perhaps the main message to be taken from this part of the study is that one

should consider the corrected Orr-Sommerfeld equation rather than the parallel one

as the extra work is more than rewarded by the enhanced accuracy.

The nonlinear simulations are as would be expected, in that above a certain initial

aml)litude of the fundamental, after a period of growth, the modes will induce a

transition. The development of this set of methods has enabled us to study these

modes, and we are currently attempting to take this calculation fllrther, perhaps on

into the turbulent rfigime. It is likely that our modal calculations will have more

success than the spatial calculations since our equations are actually truly parabolic.

We hope to extend this work into the compressible domain, so that a study of the

unstable characteristics in the case of subsonic, transonic and supersonic plate speeds

may 1)e performed, and the noise radiation at high speeds predicted.
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