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Abstract: In this paper we present a variety of nonlinear controllers for the magnetic bearing that ensure both

stability and robustness. We utilize techniques of discontinuous control to design novel control laws for the magnetic

bearing. We present in particular sliding mode controllers, time optimal controllers, winding algorithm based con-

trollers, nested switching controllers, fractional controllers and synchronous switching controllers for the magnetic

bearing. We show existence of solutions to systems governed by discontinuous control laws, and prove stability and

robustness of the chosen control laws in a rigorous setting. We design sliding mode observers for the magnetic bearing,

and prove the convergence of the state estimates to their true values. We present simulation results of the performance

of the magnetic bearing subject to the aforementioned control laws, and conclude urith comments on design.

1 Introduction

Magnetic bearings require high precision control systems to ensure adequate stability, stiffness and robustness. Mag-

netic bearing controllers are typically linear controllers that perform pole placement through state feedback. Nonlinear

control techniques on the other hand provide surprisingly simple, yet stable and robust controllers. It is our con-

tention that nonlinearities can be introduced and exploited in a controlled manner to provide significant performance

enhancements without increasing the complexity of control. To this end we present the following control techniques

and controllers for the magnetic bearing.

• Sliding mode control of magnetic bearings.

• Minimum time control of magnetic bearings.

• Winding algorithm based control of magnetic bearings.

• Nested switching control of magnetic bearings.

• Synchronous control of magnetic bearings.

• Fractional control of magnetic bearings.

• Sliding mode observers for magnetic bearings.

Each of the aforementioned control methodologies utilizes discontinuous control of the magnetic bearing. We

show rigorously the existence of solutions to these highly nonlinear systems and prove the stability and convergence

of the magnetic bearing system subject to each of these control laws.

The organization of this paper is as follows. In the first section we present the basics of the theory of differential

equations with discontinuous righthand sides. The second section presents the dynamical equations of the magnetic

bearing. The third section presents the theory, proof and simulation of a sliding mode controller of a magnetic

bearing. In the fourth section we present the theory, proof and simulation of a minimum time controller of a

magnetic bearing. Section V of this paper presents winding algorithm based control of the magnetic bearing. The

sixth section presents the theory, proof and simulation of a nested switching controller of a magnetic bearing and is

followed by the synchronous controller in the eighth section. The ninth section of this paper presents a fractional

controller and a conjecture pertaining to the stability of the fractional controller. We conclude this paper with a

presentation of sliding mode observers in the tenth section. The appendix lists facts and definitions from real analysis

useful towards understanding the mathematics presented in this paper.
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2 Differential Equations with Discontinuous Righthand Sides

As a prelude we compare and classify ordinary differential equations based on the nature of their right hand sides.

Consider a differential equation of the following form.

(1)
:_ = f(x, t)

(2)
x(o) = to

x _ _" t _ _+ (3)

f(ac, t): _n x _+ --_ _'_ (4)
(5)

The smoothness assumptions on f(z, t) determine the kind of differential system referred to by (1).

The three major kinds of differential systems are

1. Cauehy Differential Systems: In the domain D of the (x, t) space,

• f(x, t) : 3" x 3+ ---. 3" is continuous in z.

• f(z, t) : R" × 3+ --* _" is continuous in t.

2. Caratheodory Differential Systems: In the domain D of the (z, t) space,

• f(z,t) : 3" x 3+ _ R_ is continuous in z.

• f(x, t) : _" x 3+ --* 3" is discontinuous in t on sets of zero measure.

3. Filippov Differential Systems: In the domain D of the (z, t) space,

• f(x,t) : N_ x 3+ _ _'_ is discontinuous in x and t on sets of zero measure.

The nature of the righthand sides indicates the kinds of solutions (strong or weak) that exist for the differential

system. From a control systems engineering standpoint, the use of discontinuous controls necessitates the need for a

careful stability analysis owing to the nature of the solutions that exist for such systems.

2.1 Filippov Differential Systems

In this section we will develop solution concepts and conditions for existence of solutions to differential equations

with discontinuous right hand sides. Such equations represent physical systems governed by switching behaviours.

Instead of describing solutions for differential equations with discontinuous right hand sides, we will consider

differential inclusions which include the said discontinuity as a special case. We will then describe generalized

solution concepts for these differential inclusions, and will present conditions for existense of generalized solutions to

differential inclusions.

We consider Filippov Differential Systems of the following form.

(6)
= f(_,t) (7)

z(t = 0) = t0
E _'_ t _ 3+ (8)

/(x,t) : _¢" x _+ ---,3" (9)
(10)

where in the domain D of the (x, t) space,

, f(x, t) : 3" x 3+ _ _" is discontinuous in x E D on sets of zero measure.

• f(x,t) : _" x 3+ ---, 3" is discontinuous in t E D on sets of zero men-sure.

• f(x,t) : 3" × 3+ ---' _" is measurable in t E D for each x E D.

, II/(z,t)ll _<Kj(t) V (z,t) _ D where Kj(t): 3+ ---, _ is summable.

The aforementioned conditions on the function f(x, t)_" x 3+ --_ _" are also called Filippov conditions.

We will now consider a differential inclusion that adequately describes the discontinuous system. Though the

function f(z, t) : _" x 3+ ---, R" of equation (6) is undefined on sets of zero measure, we choose instead to represent
3" 3"the function f(x,t) : x 3+ --* by a set valued map on such sets of zero measure. That is to say, if for

instance the function is undefined at a point (x*,t*) E !1¢" × _+, we formally define the function to be set valued

at the point (z*,t*). Indeed, depending on the set-value attributed to the function at the point (z*, t*), we may

show the existence of certain generalized solutions to the system (6). To construct the inclusion intelligently, we need

some knowledge about the behaviour of the function f(x, t) : !1¢" × _+ _ _", in a neighbourhood of the point of
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discontinuity. To justify the use of the inclusion, we must show that given any arbitrary e E 3+, there exists a small

enough 8 E 3+ neighbourhood of the point of discontinuity, such that, the trajectories of the differential equation

in this 6 neighbourhood are e close to the solutions of the differential inclusion. Furthermore, as the size of the set

containing the point of discontinuity shrinks to zero, that is _ --* O, the solutions of the differential equation tend

to the solution of the differential inclusion. That is to say, that the trajectories of the differential equation weakly

converge to the solution of the differential inclusion. We will say more about this later.

Indeed, given a discontinuous differential system of the form (6), henceforth we will replace it (whenever

possible) with a differential inclusion of the following form.

E 9v(x, t) (11)

x(t=0) = x0 (a2)

x E 3" t _ 3+ (13)

_'(x,t) : _n × _,+ _ S E _n (14)

(15)

where S is a set in 3" and in the domain D of the (x, t) space,

• the set valued map .T'(x, t) : 3" × 3+ --_ S E Rn is upper semi-continuous.

• The Range[gV(z, t)] E _" is compact and convex.

Comment 2.1 The definition of the inclusion .T'(x,t) is such that it is single-valued in the domain of continuity of

the ]unction f(x,t); indeed it is equal to f(x,t) in the domains of continuity, but is set valued in the domains of

discontinuity of f(x, t).

Comment 2.2 It is important to note the properties of the set S E _'_ which will be used/or the existence of solutions.

We now formally define the solution of a Filippov differential system.

Filippov Solution Concept: An absolutely continuous vector ]unction s(t) : 3+ --_ _'_ is defined to be a

Filippov solution of the Filippov differential system (11) if for almost all t E D,

dslt=t* __ ._(s(t*), t*) (16)dt

where

JZ(s(t*),t*) = f(s(t*),t*) in the domains of continuity (17)

Y'(s(t*)'t*) = _] N convez-hult(B(z,6) - N,t) (18)

6>0 _N=0

and (']uu=o denotes the intersection over all sets N of Lebesgue measure zero where the ]unctionf(x,t) is either
undefined or discontinuous.

Comment 2.3 In the domains of continuity o] f(x,t) : _ ---. _", the inclusion F(x,t) is the same as the function

and therefore the set operation E in equation (158) must be replaced with the strict equality =

The utility of the Filippov solution concept is that it is indeed the limit of solutions to (6) averaged over neigh-

bourhoods of diminishing size. The key point to be understood is that the Filippov trajectories of the discontinuous

system remain close to the true trajectories.

As is evidenced in the proofs of the Cauchy and Caratheodory systems, the method of constructing solutions

to differential equations begins by constructing sequences of approximating solutions, and then ensuring that the
approximations converge in some sense.

We now state the theorem that guarantees the local existence of Filippov solutions.

Theorem 2.1 Local Existence (9] Filippov Solutions To Filippov Differential Systems

Given (G1) A Filippov differential system of the form (11).

If (11) The domain D where f(x,t) is specified/or almost all t

(x,t) c 3" × 3+ : llx - _011< K= and t < K,

(12) f(z,t) : _'_ × 3+ _ _n is measurable in t E 3+ for all r E _n

(I3) Ilf(x,t)ll < h'j(t) V (x,t) E D where KI(t ) : 3+ -- R is summable. Furthermore there exists K! E 3+

such that K! > IKj(t)l v t E D

(14) The differential inclusion in (11), .T'(z,t) : _'_ × 3+ ---, S E _'_, where S is a set in _" and in the domain

D o/the (x, t) space satisfies the ]ollowin9 two assumptions.

* the set valued map f(z,t) : _'_ × 3+ ---, S E _.'_ is upper semi-continuous.

* the set S E _'_ is compact and convex.

Then (T1) The differential system (11) hasat least one Filippov solution s(t) : 3+ ---, 3" ]or t < min(l(t,_)

satis]yin 9 the initial condition s(O) = xo.
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3 Dynamic Equations of the Magnetic Bearing

The dynamic equations of the magnetic bearing [RG93] may be written as follows.

_2 = 0_ A[_] _2 B u

[]
where,

, _¢4 = x_

zlE :i

x2 E ----- x_

u E N 4 = u2
71 3

4

y E _4 = y2
y3

y4

0 0 0

A : _+ --. _4x_ 0 0 0
= 0 0 0

0 0 aw

1 0 0
I E _4×4 0 1 0

= 0 0 1

0 0 0

m

BE N4×4 0 _
= 0 0

I, -12

0

0

--U03

0

°10

0

1

0 0
1__ !
rr_ m

-I, 12

0 0

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

The state variables xl E _4 are the generalized positions and rotational angles while the state variables x2 E _4 are

the generalized linear and angular velocities.

Now choose a control law of the following form.

u = B-'[-A[w]x2 + v] (29)

v_ (3o)
V _--- t?3

V 4

where the control inputs v E _4 will be specified later. Substituting control law (29) in the dynamical equations (19)

- (20), we arrive at the decoupled form of the state equations written as follows.

,, , (31)
X 1 = Z 2

, . (32).t
x2 = v t = 1,2,...,4

4 Sliding Mode Control of the Magnetic Bearing

In this section, we specialize the theory of discontinuous systems to a special class of systems of the following form.
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-- f÷(z) for [z: s(z) > of (33)

-- f_(z) for [z: s(z) < 0] (34)

where z • _n, and f(z) : _'_--* _'_ and s(z) : R '_--+ _. Note that S-- {z : s(x)-- 0} is amanifold of dimension

n - 1. This manifold S is called the sliding manifold or sliding surface. The dynamics of the system on this manifold

S is called the sliding dynamics or sliding modes of the system. The design of the manifold S is such that it is globally

attractive, and trajectories commencing from arbitrary initial conditions reach S in finite time. Furthermore, the

dynamics on S achieves the control objective.

Local existence of solutions is verified by modelling the system represented by equations (33) - (34) by the appro-

priate differential inclusions and verifying whether the inclusion satisfies the hypotheses of the theorem concerning

local existence of Filippov solutions.
Os(x) /. Os x

Uniqueness, in the sense of the Filippov solution is shown if either o_ j÷(z) < 0 or _f_(z) > 0. This is

shown in [SS83], [Fila8], [Fill1]. The physical interpretation of these conditions is simply that the trajectories of the

system are always directed towards S, thus rendering it attractive.

Example 4.1

sg.[_]

sgnix]

= -ksgn[z] (as)

= 1 i# > 0 (36)

= -1 ifz < 0 (37)

Modelling the system (35) by a simple differential inclusion, we rewrite (35) as

• jr(z) (38)

where

Jr(x) = sgn[x] ifx _ 0 (39)

jr(z) • [--1,1] /Ix = 0 (40)

The inclusion in (38) is closed, bounded, convex and uppersemicontinuous and therefore by the theorem on existence

of Filippov solutions, Filippov solutions exist for this system•

The sliding modes of a system, defined to be the Filippov solutions to the system on the manifold S, are calculated

by performing Filippov averaging, which is a convex combination of dynamics on either side of the manifold S. Indeed,

by dynamics on either side of the manifold S, we merely refer to f+(z) and f_(z). The simple extension of the notion

of sliding manifolds to non-autonomous systems is shown in [SS83].

While the theory of existense of solutions has been developed for general nonlinear systems with discontinuous

controls, the methodology to design sliding mode controls to achieve stabilization or tracking is well understood

only for a restricted class of systems [SRS91]. In the following sections, we will present the theory for Linear Time

Invariant Systems - SISO and MIMO.

4.1 Sliding Mode Design For LTI Systems

Consider linear time invariant systems represented by the following equations

} = A_ + Bu (41)

where _ • _R'_, A E Rn×n, B • _'_×_ and the controls u • _m. We will now prescribe the sliding mode controller

design procedure in a sequence of steps.

Step 1.

Check to see if the system is completely controllable• If the system is not completely controllable, a sliding mode

controller cannot be designed.

Step 2.

If the system is completely controllable, find a linear transformation of the state that recasts the system in the

controllable canonical form. That is find a transformation

z=T_ T•_R '_xn (42)

such that the state equations are of the form

o1...o o• . . • .

• = "" '" + u (43)
0 0 0 1 0

x'* bl b2 --. b, 1
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Step 3.
We define S(x) : 3" _ _ as

S(r) = a, xl + a2x2 +"-+ an-lxn-1 + xn (44)

where the coefficients aii = 1,2 .... ,n - 1 of (44) are such that the polynomial S(r) is a Hurwitz polynomial.

Furthermore, note that S = 0 is an n - 1 dimensional manifold, called the sliding surface.

Indeed now choose the control input u to be

u(t) = -b, xl - b_x_ .... bnzn - vl(t) (45)

v(t) = -a, x2-a2x3 ..... an-lx,-ksgn[S(x)] (46)

Choice of control u enables us to rewrite the system ill the form

_:1 --'-- x2 (47)

_2 = z3 (48)

x,_-I = --alxl -- a2z2 ..... an-lXn-l + S(x) (49)

s(_) = -k_g.b(x)] (50)

It is easy to show that Filippov solutions exist, and that S(z) = 0 is reached in finite time from arbitrary initial
conditions. Furthermore on the n - 1 dimensional manifold S = 0, the reduced order dynamics is exponentially

stable. Consequently global exponential stability of the system is shown.
The choice of discontinuous input induces chatter in the system. To reduce the chatter, we utilize various

regularizations and smoothings of the discontinuous sgn function. The common smoothing technique is the use of

the saturation function, which is presented in [SS83].

We now present a choice of continuous control input that enables us to reach the sliding surface S = 0 in finite

time• Indeed, consider the control given by

u(t) =

v(t) =

Such a choice

xl ----

x2 -----

S(_) =

-bl Zl - b2z2 .... bnx,, - vl ( t)

--a,z2 - a2xz ..... a,_-lx. - klS(z)l_ s#n[S(=)]

1

of control u enables us to recast the system equations in the form

Z2

X3

-alzl - a2z2 ..... a,,-1 z.-1 + S(z)

-kls(=)l _ sgnb(x)]

(51)

(52)

(53)

(54)

(55)

(56)

(57)

It is easy to show that Filippov solutions exist, and that the n - 1 dimensional manifold S(x) = 0 is reached in

finite time. Furthermore on the n - 1 dimensional manifold given by S = 0, we see that the reduced order dynamics

is exponentially stable. Consequently global exponential stability of the system is shown• This control law u is

interesting in that it is continuous, but not differentiable.

Comment _.I The disturbance rejection properties of the discontinuous control law are significantly better than that

of the continuous control law. This indeed is the design tradeoff involved in designing continuous control laws.

Comment _.2 The extension of the sliding mode control techniques to controllable MIMO systems that are decouplable

is trivial. Once the system equations are transformed into decoupled systems, each of which is in the controllable

canonical form, we apply the design method outlined earlier to design sliding surfaces for the decoupled system. Note

however that sliding occurs not at the individual surfaces, but at the intersection of all these surfaces.

Theorem 4.1 Sliding mode control of a magnetic bearing system.

Given (GI) A magnetic bearing system of the form (31) - (32}.

If (II) The controlsv' i= 1,2,...,4 are chosen as

, ,, , i i (58)
V,tid,,9 = --alx2 -- k * sgn[alxl + x_]

Then (TI) Filippov solutions exist for the system (31) - (32) subject to the control law (58).

(Te) The trajectories of the system (31)- (3e) subject to the control law (58) reach the origin in finite time.
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0.!

Figure 1: Sliding Mode Control of a Single Axis of a Magnetic Bearing

Proof:

represented by equations (31) - (32) subject to the control law (58) can be modelled by the following inclusion.

xl = -a,z, +S (59)

._ e _-'(_) (60)

where the inclusions .$"(x) : _ ---+[-k, k] are specified as

i I I
U'(x) = -k. sgn[a,x, + x2]if ]]zH_ > 0 (61)

G [-k, k] else (62)

i = 1, 2 ..... 4 (63)

The inclusions 9ei(x) i = 1, 2 ..... 4 are

• closed, bounded, convex and uppersemicontinuous.

Invoking the theorem on the existence of generalized Filippov solutions, we conclude that Filippov solutions exist for

the system (31) - (32) subject to the control law (58).

Stability and robustness of the magnetic bearing follow from the earlier discussions. <lill

The phase portrait of trajectories subject to the sliding mode control is given below.

_ll> To show the existence of generalized Filippov solutions we first note that the dynamical system

5 Minimum Time Control of the Magnetic Bearing

It is many times desirable in a magnetic bearing to choose a control law to perform regulation in minimum time. Such

minimum time regulation ensures good response to impulsive perturbation forces. To achieve regulation in minimum

time, we formulate the optimal control problem as specified in [AEB75].
Consider the minimum time optimal control problem with the functional to be minimized, given by

J = dt (64)

Theorem 5.1 Minimum time control of" a magnetic bearing system.

Given (G1) A magnetic bearing system o.f the .form (31) - (32).

(G2) A .functional to be extremized o] the .[orm (64,).

If (11) The controlsv' i= 1,2,...,4 are chosen as

, _ -sgn[zl +_1 iS]z;+_l > 0 (65)

vo.,,..o,= t -_g"[:_] /Sl_l + _t = 0
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Then (T1) The trajectories o] the system (31) - (3e) subject to the control law (65) reach the origin in minimum
time.

Proof: d5 I> Using standard methods of optimal control [AEB75], we write down the Hamiltonian function

H(x,u,A,t) as

H(x,u, )_, t) = 1 + Aax*2 + ),2v' (66)

Inspection of equation (66) reveals that the control v i that minimizes the Hamiltonian is given by

v' ' (67)= -sgn[M]v,_._
Vraax : 1.' is the maximum permissible value of control. Without loss of generality, we will assume that 'where vmax

where )h and ),2 are the co-state variables. The co-state equations are given by

),, = o (68)
£_ = -x, (69)

Integrating the co-state equations yields

X_(t) = -X, (0)t - X_(0) (70)

Therefore the optimal control is given as

v' = sgn[-Xa (0)t - _(0)] (71)

The control can assume only two values -t-1 or -1. When v i = +l, we integrate the state equations to obtain

x'2(t) = t + xig(O) (72)

t 2
= -- + xi2(O)t + z_(0) (73)_',(t) 2

Eliminating t we obtain (74)

' [_1_ + _i(o)-[_1_(o) (75)
;El = _ - 2

Similarly, when v i = -1, integrating the state equations we obtain

z_(t) = --t+x_(0) (76)

t_+ _(0),+ _i(0) (77)_;(t) = -7
Eliminating t we obtain (78)

' - [_1_+ _(o) [_1_(o) (79)
zl 2 2

These curves describe a family of parabolas, whose switching curve may be written as

x_l:_l (80)
s(_, t) = _ + -7-

' may be written asIn terms of the switching curve, the control Voptimal

t , _ i t

, --sgn[xl +_] iflx_+_l>0 (81)

v°m"_'_t = -sgn[x_] if Ixl + _2 = 0

The phase portrait of trajectories subject to the optimal control V_op.m_l is given below. Note the trajectories

converging to the switching curve, which is nonlinear (while the switching curve in conventional sliding mode systems

is linear). The chosen control gains are

k, = 1 (82)

k_ = 2 (83)
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Figure 2: Minimum Time Control of a Single Axis of a Magnetic Bearing

6 Winding Algorithm Based Control of the Magnetic Bearing

The winding algorithm was introduced by [Kor68], [Pra92] and makes use of continuous switching between the surfaces

xl -- 0 and x_ -- 0 to reach the origin. The interesting feature of this control technique is that the control has two

switches. One switch is used to change the direction, and the other is used to change the magnitude. By repeatedly

switching between the surfaces x] --- 0 and x_ = 0, we wind closer to the origin.

Theorem 6.1 Magnetic bearing control utilizing the winding algorithm.

Given (G1) A magnetic bearing system of the form (31} - (32).

If (11} The controls v i i = 1,2,...,4 are chosen as

' = -klsgn[xi] - k2sg,_[x_]k_ > k2 > 0 (84)Vwinding

Then (rl) Filippov solutions exist for the system (31)- (3£} subject to the control law (84).

(Te) The trajectories of the system (31) - (32) subject to the control law (84) wind to the origin in finite time.

Proof: St> To show the existence of generalized Filippov solutions we first note that the dynamical system

represented by equations (31) - (32) subject to the control law (84) can be modelled by the following inclusion.
• i i

zl = x2 (85)

_ • Y'(_) (86)

where the inclusions -_"(x) : _ _ [-(kl + k2), (k_ + k2)] are specified as

._'(x) = -klsgn[x_] - k_sgn[x[] if Ilxll_ > 0 (87)

[-(kl + k2), (kl + k_)]else (88)

i=1,2 .... ,4 (89)

The inclusions 9ri(x) i = 1, 2 .... ,4 are

• closed, bounded, convex and uppersemicontinuous.

Invoking the theorem on the existence of generalized Filippov solutions, we conclude that Filippov solutions exist for

the system (31) - (32) subject to the control law (84).

Let us first prove the stability and finite time stabilization of the algorithm. To show stability, we use the extended

Lyapunov theorem, [AKP91] proofs for which may be found in [AC84]. The theorem is primarily used to conclude

weak-stability of differential inclusions by investigating generalized gradients of non-differentiable Lyapunov functions.
A brief statement of the theorem would be as follows.

Given a differential inclusion _ • F(z, t) and a nondifferentiable Lyapunovfunction V(x). If for every element

v in the generalized gradient of V, there exists at least one element f E F(x,t), such that LFV < O, then the zero-

solution is weakly asymptotically stable. Indeed, weak asymptotic stability is the best we could hope for when dealing
with set-valued differential inclusions.
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Now consider the system (31) - (32) subject to the controls uw,,ai,_. The system equations are

, (90)
Xl _ X2

x2 = -k,sgn[x;] - k2sgn[x_] (91)

Consider a candidate Lyapunov function

' (92)27 2

i ' # 0 is given byThe derivative for xl, x2

k_x:_ (93)? _
kl (94)

< 0

' 0. However, when z_ = 0, it is clear that we have
Therefore x[ ---, 0, and the reduced dynamics is such that xl --+

i 0, for every
to investigate the properties of the generalized gradient of V. However, it is obvious that when xl =

element v of the generalized gradient of V, (which in this case happens to be any real number in (-1,1)) there exists

an element of the inclusion F(x, t) (indeed, choose f = v) such that the generalized gradient of V along the flow

of the inclusion F(x, t) is negative definite. The conditions of the generalized Lyapunov theorem are satisfied, and

hence the result.
Finite time is shown by considering the state equations of the planar dynamical system in the various quadrants.

Indeed, if the portrait of the system were to be drawn with x_ along the x axis and z_ along the y axis, we would

note the following.

' _ (95)
4- [x2]_ in the first and third quadrants

zl = kt + k_

i _ in the second and fourth quadrants
X2 = :]::k k2

Every instance the trajectory moves from the first quadrant through the fourth quadrant to hit the y axis, we see a

contraction occurring in the magnitude of x_ in the following manner.

k, - k2 [x_]2(O ) (97)
E

From the third quadrant through the second to strike the y axis again, we see the following contraction.

, 2 t kl-k2- i-_- - (98)

The state trajectory therefore winds to the origin. <1

The phase portrait of the planar dynamical system subject to the winding algorithm is illustrated below. Note

the very interesting way in which the state trajectories wind to the origin. The values of chosen control gains are

kl = 2 (99)

k2 = 1 (100)

7 Nested Switching Control of the Magnetic Bearing

Nested switching controls work well for planar dynamical systems [Pra92]. The basic approach is to permit chatter

about the dual sliding surfaces zi = 0 and x_ = 0. It is to be noted that chatter for multiple sliding surfaces is the

equivalent of limit-cycle like behaviour. Consequently, by utilizing multiple sliding surfaces, and nondifferentiable

controls, we are willing to tolerate limit-cycle like behaviour at the origin. Indeed, the problems associated with elim-

inating chatter in one-dimensional systems naturally extend to the higher order systems also. The use of saturation

functions to perform nested switching is an extension of the idea of using saturation functions in one-dimensional

systems, to many dimensions.

Theorem 7.1 Magnetic bearing control utilizing the winding algorithm.

Given (G1) A magnetic bearing system o] the ]orm (31)- (32).

If (11) The controls v' i = 1,2,...,4 are chosen as

i -k2sgn[x_ - k, sgn[x_]] (101)
l}nested
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Figure 3: Winding Algorithm Based Control of a Single Axis of a Magnetic Bearing

Then (T1) Filippov solutions exist ]or the system (31) - (32) subject to the control law (101}.

(Te) The trajectories of the system (31) - (32) subject to the control law (101) reach the origin in finite time.

Proof: g t>

To show the existence of generalized Filippov solutions we first note that the dynamical system represented by

equations (31) - (32) subject to the control law (101) can be modelled by the following inclusion.

• t t

Xl = x2 (102)
.i

x2 6 F'(x) (103)

where the inclusions _"(_) : _ ---.[-(k, + k_), (kl + k_)] are specifiedas

F'(z) = -k2sgn[z_ - klsgn[z'l]] if Ilxll_ > 0 (104)

6 [-k2, k2] else (105)

i= 1,2 .... ,4 (106)

The inclusions f'i(z) i = 1, 2..... 4 are

• closed, bounded, convex and uppersemicontinuous.

Invoking the theorem on the existence of generalized Filippov solutions, we conclude that Filippov solutions exist for

the system (31) - (32) subject to the control law (84).

Consider the system (31)-(32) subject to the nested switching control law given by

_ = _ (107)

_2 = -k_sgn[_+klsgn[x',] (10s)

Now consider the following nondifferentiable Lyapunov function

[x._+ k_sgn[_i]]_
V = 2 (lO9)

= [z'2 +klsgn[zl]][_2 +0]if I_iI > 0 (110)
k '

- _1_ + klsgn[z_]l (111)

_< 0 (112)

t t

Therefore z2 ---* -klsgn[xl]. Indeed, it is easy to see that this happens in finite time. As in finite time z_ =
-klsgn[z_]; now consider the Lyapunov function

v_ - [_]_
2 (113)
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Figure 4: Nested Switching Control of a Single Axis of a Magnetic Bearing

Wl ' ' (114)XlZ 2

, , (115)
= _l[-klsg,[_,]] in finite time

< kll_;I (116)
< 0 (117)

i O, xi2 E [-ka,kl], and is not equal to 0. This is whereIt is cleat that x] ---, 0 in finite time. However, when 11 =
chatter commences, and the system hmit cycles between the surfaces z] = 0 and z_ = klsgn[x]]. Such fimit cycling

behaviour is present as the gain kx is not slowly reduced as x] --* 0. Indeed if the multiplicand of sgn[xi] was to

decrease in magnitude and finally equal 0 when z_ = 0, we can expect x_ to also be equal to 0 without chatter. This

indeed is the principle behind using saturation functions as opposed to sgn functions in nested control. We will now

show an extension of this method, without using saturation functions.

We now try to eliminate the problem of limit cycfing between switching surfaces that was mentioned earlier. We

do this using the switching control law mentioned earlier which is of the form.

+ k= Iz,I " sg,*[*=]]u,_itchi,-,g =-k2sgn[sc'2 i _ , (118)

i i 0. However, almost everywhere, the
Denote S = z2 + k,l_il_sgn[_il. Note that S is not differentiable at x_ =

derivative of S may be written as

i (119)X2

_' = -k=san[s] + ka iz_l,__

value of k2, we hope to swamp the term kz _. Indeed, only in cases when this is possible,By choosing a large

it is possible to conclude that

, , _x_ i (120)

And the conclusions of the previous section follow, without the limit cycle behaviour.

The phase portrait shown below illustrates the properties of the control law. The values of chosen gains are

k, = 0.5 (121)

k2 = 5 (122)

rn = 2 (123)

For the same values of control gains, it is possible to choose a higher order fractional index, and the resulting

phase portrait is shown below.
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Figure 5: Nested Higher Order Switching Control of a Single Axis of Magnetic Bearing

8 Synchronous Sliding Control of the Magnetic Bearing

In this section, we present an interesting property of a modified vector sliding mode control law [AKP92a], [AKP92b],

[AKP 5], and its possible application. The property of this modified vector sliding mode control law is such that

it achieves simultaneous regulation for a group of n scalar systems with n inputs [SMSar], [SMS93], [SMS 7].This

control technique has interesting implications for the magnetic bearing. Using this control technique it is possible to

regulate the states of the multivarious magnetic bearings to the origin synchronously thus ehminating the possibility

of inducing overshoot torques. The control law has the interesting property that it is a closed loop control law which

can be prescribed without explicit reference to the initial conditions of the system. The law is interesting in that it

introduces coupling between decoupled systems to achieve the synchronization objective. We present the basic theory

of synchronous sliding control, and later specialize it to the case of the magnetic bearing.

8.1 Synchronous Sliding

Consider a group of n scalar decoupled systems of the form

= (124)

Xn 'O,n

= (125)
x.i0) x.0

where the states xi 6 _, the controls ui 6 _R i = 1, 2,..., n the initial conditions zi0 6 _ i = 1,2,..., n. With minor

abuse of notation, we create a new state vector x 6 _n, where x = [ zl ... x, ]T

The control objective is to regulate the states from non-zero initial conditions to the origin, in finite time. That

is, that there exist instants of time t* < oc 6 R+ i = 1, 2,..., n such that the following is true.

xi(t) = 0 V t > t_ i = 1,2,...,n (126)

We choose n sliding mode control laws of the following form to ensure achievement of the control objective.

Xi

u,=-k,i--_ I iflxd#0 i=1,2 .... ,n (127)

where k, 6 _+

Comment 8.1 We note here that the controls ul i = 1,2,... are decoupled, in that ui is a function only of xi.

Also note that the time taken by each state xi i = 1,2,...,n to reach the ori9in is a function of its initial value

xi(0) i = 1,2,...,n and the controlgains ki i = 1,2,...,n.
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Comment 8.2 Also note in equation (127} we did not specify the control law at Ixd = o i = 1,2,..,n. Indeed,

u, = -kisgn[xi] Ix,I # 0. We do not specify the control at Ix,I = 0. As the control is not specified only on sets

of zero measure, it does not affect the existence of Filippov solutions shown by modelling the system by a differential

inclusion.

We now present some interesting properties of a modified sliding mode control law that deliberately introduces

coupling between the decoupled systems. We present proof of existence of solutions, proof of stability, and proof of

synchronous finite time convergence for the modified sliding mode control law. In order to do so, we formalize the

notion of synchronous finite time convergence.

Definition 8.1 A set of n E Z+ variables zi(t) : _+ ---+ _ i = 1,2,..., n are said to reach the origin synchronously

commencing from nonzero initial conditions zi(0) # 0 i = 1, 2,..., n if there exists an instant of time t* < oo E _+

such that the following is true.

x,(t) # 0vt<t _ (128)

x,(t) = 0 v t ___t* (129)

i= 1,2 .... ,n (130)

That is to say, that the states with nonzero initial conditions (an assumption we make without loss of generality)

are regulated to 0 at the same instant of time t*. There are many practical applications where such synchronous

regulation is important. A typical application is a multifingered robot hand that grips an object. It is important to

ensure that the fingers touch the object synchronously and thus cause force closure without imparting motion to the

object. We will say more about this later.

It is possible to ensure synchronous motion using a simple sliding mode feedback where the control gains are chosen

with explicit dependence on initial conditions. Indeed, given the initial conditions exactly, we choose a decoupled
control law that uses the values of initial conditions to derive control gMns that guarantee synchronous reaching of

the origin. For the sake of completeness we state the control law as follows.

Theorem 8.1 Synchronous regulation with explicit dependence on initial conditions.

Given (G1) A nonlinear system of the form (le_) - (I_5).

(G2) A control law of the form (127)

If (11) ki i _- 1,2,... ,n are chosen such that

Ix,(0)l I_,(0)1 i = 1,2 ..... n j = 1,2 ..... n (131)
ki k 1

Then (T1) Filippov solutions exist for the system (ie4) - (Ie5) subject to the control law (le7).

(Te) The surfaces x, = 0 i = 1,2 .... n are reached synchronously at a time t* = _.

Proof: _ !> The proof is quite straightforward and utilizes standard facts from sliding mode control theory.

The existence of Filippov solutions is shown using the fact that the modelling differential inclusions Fi(x) : _

[-1, 1] are closed, bounded, convex and uppersemicontinuous. Note that -_'t(x) : _ --_ [-1, 1] are defined as follows

x, (132)
._',(x) = -k,i--_, I if I_'1 # 0

C [-1, 1] if Ixd -- 0 (133)

x_

Stability is shown using the candidate Lyapunov function V(z) : _" --* _+ given by V(z) = _=_ -_- whose
rl

derivative along the flow of (124) - (125) is given by I)" = - _,=_ Ix,I. Indeed V is negative definite proving global

exponential stability of the origin.

Finally, the time taken to reach the origin is given by t_ = _ i = 1, 2,..., n. Now using the assumption that

_ i= 1,2,...,n j = 1,2,...,n, we see that t_ =t_ .... t_ =t*.
k i _-" kj

This completes the proof of the theorem. <l

Comment 8.3 The control law is inelegant to implement as it explicitly depends on the initial conditions. It would be

desirable to develop a state feedback control law that would achieve the same objective, but one whose control gains

do not e3cplicitly depend on initial conditions.

We now propose a state feedback control law that would ensure synchronous regulation.

Theorem 8.2 Synchronous regulation with state feedback.

Given (G1) A nonlinear system of the form (re4) - (le5).
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If (I1} The controls ui i = 1, 2 ..... n in equations (124) - (125) are chosen to be

u, = -k _ if I1_11_> 0 i= 1,2 .... ,n
rt

i=l

Then (TI)

(Te)

(134)

(135)

(136)

where k* E 3+

Filippov solutions exist for the system (124)- (125) subject to the control law (134).

The surfaces xi = 0 i = 1, 2.... n are reached synchronously at a time t* = _k, where IIz(0)l12 is the

2-norm of the vector of initial conditions, given by IIx(0)ll_ =[_,=," x_(0)]_

Proof: tb I> We prove the theorem in three steps. First we show existence of generalized Filippov solutions to

the system (124) - (125) subject to the control law (134). We then show attractivity of the origin when subject to

the control law using a simple Lyapunov argument. Finally we show the achievement of synchronous regulation, by

explicitly computing the times taken to reach the origin. We first make the following comments.

Comment 8.4 It is interesting to compare the control laws given by equations (127) and (134). While the control

specified by (127) decouples the system entirely, the control specified by (134} introduces a coupling between the

through the 2-norm of the state vector I1_11=.Furthermore, note that the control gains k* remain the same for all
ui i= 1,2,...,n.

Comment 8.5 The discontinuous control law (134) is not defined at the origin, the same way the function sgn[(.)] :

---* [-1, 1] is not defined when (.) = O. But also note that the control law specified by (134) is bounded by k*. Indeed,

as _ < li= 1,2 .... ,n, ui < k'i= 1,2,...,n.

Step 1: Existence Of Filippov Solutions

To show the existence of generalized Filippov solutions we model the system (124) - (125) subject to the control
law (134) by the following differential inclusion.

• E " (137)

where the inclusions 9v,(z) : _ --* [-k*, k*] are specified as

_,(x) = -k* xi if 11_112 > 0 (138)I1_11_

E [-k*,k*] if I1_11_= 0 (139)

i = 1, 2..... n (140)

The inclusions 9ri(x) i = 1, 2 ..... n are

• closed, bounded, convex and uppersemicontinuous.

Invoking the theorem on the existence of generalized Filippov solutions, _te conclude that Filippov solutions exist for

the system (124) - (125) subject to the control law (134).
Step 2: Attractivity Of The Origin

Consider a candidate Lyapunov function V(x) : _n --_ 3+ given by

xTx

v- 2 (141)

Differentiating V along the flow of (124) - (125) subject to the control law (134), we find

I-k*@ ]
= [ x, ... x,, ] ' (142)

_k* x.___-
I1_11_

= _k, ll_ll_
[[x[[2 (143)

= -k*ll_ll_ if 11_112# 0 (144)

_< 0 (145)
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Negative definiteness of I? confirms the global exponential stability of the origin.

Step 3: Synchronous Reaching

From system (124) - (125) subject to the control law (134) the following is true for any i, j

_, = -k* xi (146)
11_ll2

_, = -k*- x, (147)
11_112

dx, zi (148)

dT 3 X.,,

v i,j _<. i # j 11_112# 0 (149)

Solving (148), we obtain explicit expressions for constraints on state trajectories as

_x,(0v i, j <_,, i # j 11_112# 0 (150)xi(t)

Using (150) in (146), we recast (146) in the form

_i = -k* z, (151)
Ilxl12

= -k*- xi (152)

= -k* x, (153)

= -k* xi (154)
__q_2_2q

[_,_+ _=,, _, _0)_,J

= -k* xi (155)
._(0),_

• ,[1 + _=1, _¢, _l _

= -k* x,(O) (156)

_i = -k*_ i= 1,2,...,n
(187)

II ( )112

The righthandside of (157) is a real constant, and therefore the solution of (157) is given by

x,(t)= -k* x,(O) t + zi(O) i =1,2 ..... n (158)
-11_(0)ll2-

From (158), we obtain the time t* taken by z,(t) i = 1, 2,..., n to reach the origin, starting from arbitrary nonzero

initial conditions by setting the righthand side of (158) to 0.

. ,,(0) . (159)
0 = -k _t +,,(0)

t* - 11_(0)112 i= 1,2,...,n (160)
k*

Synchronous convergence of state trajectories commencing from nonzero initial conditions is thus shown. This

concludes the proof of the theorem• <1

8.2 Design Of Tracking Control Laws

The control laws that we have developed are discontinuous. As a prelude to presenting tracking control laws that

involve discontinuities, let us analyze a simple linear pole-placement control law from another perspective. Consider

a system represented as a chain of integrators of the form,

:_1 = x2 (161)

• ' • (162)

• (163)
Zn--1 _ Xn

(164)
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where the state vector x E _n and the control input u E _. Given a desired smooth trajectory xld(t) : _+ _ _ to

be tracked by the state xl we present a tracking control law that uses successive derivative of desired trajectories. We

define recursively, a set of desired trajectories for the states as

• ,d(t)- d_,_l,d(t)dt ki-l[xi(t)--Xi.d(t)] i= 2,3,...,n (165)

While we are given a desired trajectory to be tracked by the state xl(t), we define desired trajectories for the

remaining states the tracking of which automatically ensures the original tracking objective for xl(t). Indeed, the

intuition behind such a definition of desired trajectories becomes clear when we look at X2d(t).

• _(t)- d_(t)
dt k, [x,(t) - x,a(t)] (166)

From (166) it is clear that when the surface x2 = x_u the resulting dynamics for xl(t) is given as

_l(t) = x2(t) (167)

= X2d(t) (168)

_ dx_d(t)
at kl[_,(t) - _ld(t)] (169)

The dynamics of the system is such as to ensure that x_ (t) ---, Xld(t) exponentially. However, if the surface x2- z2d = 0

can only be reached exponentially, then the dynamics of xl is perturbed by an exponentially decaying signal, and

therefore invoking the result on the exponentially stable systems perturbed by exponentially decaying perturbations,

we conclude exponential convergence of xl (t) to xLd(t ). We now show the relationship between control laws developed

using the recursively defined desired trajectories and the standard pole-placement control law.

Theorem 8.3 Connection between pole-placement and recursive trajectory definition.

Given (G1) A nonlinear system of the form (161)- (164).

(Ge) Given a set of desired trajectories of the form (165)

If (11) The controls u in equation (164) are chosen to be

dxn.(t) k.[xn(t) - x.d(t)] (170)u-- dt

where X,.d(t) : 9_'_ × 3+ ---* _ i = 2, 3 ..... n is specified by (165) and k,_ E _+.

Then (TI) The control law specified by (170) is a stable pole-placement control with the n eigenvalues each being equal
to -kl i= 1,2,...,n

Proof: 6 1> The proof is obvious by writing the dynamics for xl and x2. Indeed,

kl = x2 (171)

_ _ dx_d(t) k2[x2(t) - x2a(t)] (172)dt

Using the definition of Xzd(t) provided by (165), we rewrite (172) as

:rl = :_2 (173)

dx td[_ - kl[_(t) - _l.(t)]]
at (174)

-k2[x2(t) - [dx_(t) kl [_71 (t) -- 271d(t)]]] (175)

Which may be rewritten as

xl = x2 (176)

x2 d2xld(t) L 1dxld(t)
-- dt 2 "]- [kl "_" _2J'---'_"_ 71- [klk2]Tld(t) (177)

-[k_ + k_]_(t) - [k_k_]_(t) (178)

That is to say

is _ + [k_ ' k '_'--_ (179)

The placement of poles through recursive trajectory definition is trivially obvious by inspection of equation (180).
This concludes the proof of the theorem. 4 &
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Comment 8.6 It is to be noted that this trackin9 control law is valid for any specification of desired trajectories that are

smooth, the tracking of which guarantees achievement of the control objective. That is, we are free to specify any smooth

set of trajectories xid(t) i = 2, 3 ..... n, the only constraint bein9 r,(t) = zid(t) i = 2, 3 ..... n =_ xi-a(t) _ zi-a,a(t).

Indeed, the linear pole-placement control law is just a special case of control laws that achieve this tracking objective.

Comment 8.7 We now ask if it is possible to relax the smoothness assumption on the desired trajectories Zid(t).

Indeed, the first relaxation would be to consider desired trajectories that are differentiable almost everywhere, except

possibly on sets of zero measure. The Nested and Switching control laws presented in the previous chapter are examples

of such discontinuous control laws, the discontinuities existin9 on sets of zero measure. The proofs of such control

laws are much harder in general, though the regularization of such control laws that involve saturation functions have

been used in the recent literature. We have been inspired by the attempts of [Tee92] in developin9 control laws that use

Filippov averagin9 instead of regularization. That is to say, that we are prepared to tolerate chatter and limit cycling by

usin9 discontinuous control laws. The drawback however is that we can show finite time synchronous stabilization only

on the average, whereas a regularized control law, by eliminatin9 the discontinuity would permit smooth stabilization,

though exponentially, without the chatter.

Comment 8.8 Our interest in relaxing the smoothness assumption on the desired trajectories merely enables us to

utilize the discontinuous, synchronous control law for a practical mechanical system.

We will first present the control law for a group of n E Z+ mechanical systems, and then apply it to a well known

example of the magnetic bearing. Many mechanical systems are represented by Newtons force and torque balance

equations that assume the form

., , (181)
Z 1 = Z 2

., , (182)
X 2 = V

where z i E 32 is the state of the ith mechanical system where i _< n E Z+, and vi(z,t) : 32 × 3+ ---, _ is the input

force. Typically, zl represents the generalized position coordinate of the mechanical system, and z_ represents the

generalized velocity coordinate. These equations, though simple in form, serve to illustrate the application of the

theory, and also represent a large class of useful physical systems. Given desired trajectories z_d(t) : 3+ ---, _ to be

tracked by the states zi(t), we attempt to find control laws u i that ensure synchronous tracking for the states z_(t).

We now state the theorem that ensures synchronous tracking for the systems of the form (181)-(182).

Theorem 8.4 Synchronous tracking for a class of mechanical systems.

Given (G1) n mechanical systems, each of the form (181)- (182).

(Ge) Given a set of desired trajectories of the form X_d(t) : 3+ --_ _ i = 1,2 ..... n

If (I1) The controls u'Qc,t) i = 1,2 ..... n in equation (182) are chosen to be
i i

i dx_a . x2 - z2d (183)
V -- -- k2

at [Ej"--, [z_ - Z_d]2]_

x2d -- - kl -- xld (184)

wherekl, k2 E 3+.

Then (T1) Filippov solutions exist for system (181) - (182) subject to control (183).

(;re) States xi(t) track their respective trajectories z ; d( t ) synchronously.

Proof: g I> The proof is simple once we realize the validity of the system equations (181) - (182) subject to the

control law (183) for arbitrarily small neighborhoods of the origin. Indeed, the control law is undefined only on a set

of zero measure. As this set of zero measure is indeed the set we desire to make invariant, and the control law directs

system trajectories to this set, and hence maintains invariance, the conclusions of the theorem naturally follow. The

theorem can also be proved invoking the results of the nested and switching control laws mentioned in the previous

section. <1

8.3 Application to the Magnetic Bearing

In this subsection we apply the proposed tracking control law to magnetic bearings.

The dynamics of magnetic bearings are given by the following equations.

• i i

Xl = /:2

t-I
X 2 -_- V

i = 1,2,...,4

(185)

(186)

(187)
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e;(t)

e,(t)

e_(t)

where

_(t)

Given desired trajectories x_a(t ) i = 1, 2 .... ,4 to be tracked by the respective state variables xl (t) i = 1, 2 ..... 4,
We now define the following set of vectors.

= x_(t)--z'_d(t)i=l,2,. ,4 j=1,2 (188)

= [ el(t) ... e_(t)]T (189)

= [ e,_(t) ... e_(t)]T (190)

-- dXld(t) k_ x'(t)_ - X;a(t) if Ilel(t)ll2 # 0 (191)
dt [le,(t)ll

d_ld(t)
-- dt if Ilel(t)ll2 -- 0 (192)

Now note that x_d(t), is not strictly differentiable at the origin, but has a derivative that exists almost everywhere.

Indeed define the generalized derivative as

dz;,,(t) k_N;(t)

_a(t) -- dt i_ _ if Ilel(t)ll_ # 0 (193)

d_'_(t )
= dt if Ilel(t)ll2 -- 0 (194)

where

N;(t) = Ee_(t)[e_(t)i_(t)-d_(t)e_(t)]j= l,2,3,4 j#i (195)

e'a(t) = z_(t)-xlu(t)i= 1,2 .... ,4 (196)

We now choose v i i = 1,2,... ,4 in the following manner.

i i

v'(t) = z_d(t)-- _.z_(t)-- X2d(t) if Ile2(t)ll_ # 0 (197)_ Ile2(t)ll

dzla(t)
- dt iflle2(t)ll2 = 0 (198)

Synchronous Trackin9 for a Magnetic Bearing.

Mechanical systems, each of the form (187).

Given a set of desired trajectories of the form z_d(t) : _+ --. _ i= 1,2 .... ,n

The controls v'(x, t) i = 1,2 ..... n in equation (I87} are specified by (197}. wherek_, k2 E _+.

Filippov solutions exist for system (187) - subject to control (197).

States z[ (t) track their respective trajectories xla(t) synchronously.

Proof: $ I> The proof of the claim is by invoking the theorem proved earlier for the more general case of a group
of mechanical systems.

Indeed, it is easily seen that the application of control (197) would cause the states x_(t) i = 1,2 ..... 4 to reach

their desired values in finite time, and the desired trajectories are so chosen that the reduced dynamics ensures finite

time tracking for x_a(t). "_

Results of simulation are shown for the following conditions. The chosen desired trajectories were as follows.

zla(t ) = sin t, z_d(t ) = 5, x3a(t) = --2, xJa(t ) = 5. The initial conditions were as follows x](0) = 1, x_(0) =

7, _(o)=-1, _I(o)= 2, _(o)= o, _(o)=o, _(o)=o, _(o)=o.

Claim 8.1

Given (G1)

(G2)

If (11)

Then (TI)

(Te)

Simulation results are in excellent agreement with the predicted behaviour. Indeed, note that the trajectory

errors vanish identically at the same instant of time. This indeed was the motivation for considering the synchronous

tracking control law.
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Figure 6: Synchronous Control of a Magnetic Bearing

9 Fractional Control of the Magnetic Bearing

9.1 Introduction

In this section, we will present an interesting variable structure control law (or a vector dynamical system, that is a

bounded control law, but whose convergence rate is faster than a comparable linear control law, and whose robustness

properties are much better than comparable linear control laws [Pra92]. We will clarify what we mean by comparable

linear control laws in the following subsections. We use the term fractional control law to indicate that this is a

particular form of variable structure control law where the powers of indices are positive fractions.

We will present qualitative arguments for the conjecture, and will provide simulation results that are in agreement

with the conjecture. However the proof of this conjecture has been quite elusive, and we have been unable to present

anything more tangible than this conjecture. We leave the proof of this control method as an open problem to the

reader.

9.2 Finite Time With Continuous Control - Scalar Systems

Consider a scalar dynamical system of the form

= u (199)

where x 6 _R and the control u 6 _R. Given the control objective of regulating the state of the system (199) to the

origin commencing from arbitrary initial conditions in finite time, we choose u in the following manner.

u = -klxl _ sgn[x] (200)

where k 6 3+ and r > 1.

Comment 9.1 The choice of u is novel since the control is obviously continuous, but not differentiable at the origin.

Also note that the control law involves raising the power of Ix[ to a fraction, and hence the term fractional control.

We now make the following claim regarding existence of trajectories, stability and convergence for the system

(199).

Claim 9.1 Existence of solutions, stability and convergence for fractional control of scalar systems.

Given

(G1) System dynamics of the form (199)

If

(11) The control u is specified as in (200)

Then

(T1) Cauchy solutions exist for (199) subject to (200).
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(T2) z = 0 is stable.

(7"3) Indeed x ---, 0 in finite time t*, given by t* =
kit- _]

Proof: _ t> Existence of Cauchy solutions is easily seen by the fact that the righthand side of the differential
system is continuous.

Considering the candidate Lyapunov function V(x) : _R _ 3+ given by

X 2

v 2 (201)

Indeed l/= -k]x]l+_ _< 0. Attractivity of the origin is therefore confirmed.

To show finite time convergence we solve the equation

= -klz[¢sgn[z] (202)

to obtain that t* = . The proof of the claim is complete. 4 6

We now make a comparison between three kinds of control laws that regulate the state of the system (199) to the

origin.

u. .... = -kz (203)

k

u.,,d,.g ---- i_l • if I_1> 0 (204)
k

u1_oc.o.o, - ixll__ z if I_l > 0 (205)

Comparison of control efforts reveals something interesting. For all Izl > 1, the linear controller has the maximum

gain, closely followed by the fractional controller, and the sliding mode controller has the smallest gain. However the

situation is reversed when ]x I < 1..

Similarly, the times taken to reach the origin from initial conditions x(0) # 0 are

tti .... = o_ (206)

Ix(0)l
tsllaln9 -- k (207)

tj_o¢.o.o, - I_(°)1'-_ (208)
k[1 - -_]

We now formulate an alternative control law that combines the best of both the linear and the fractional control

law to give

u* = -kx if I_1 > 1 (209)

k

[zipx if 0 < Izl < 1 (210)

p > 1 (211)

Note that we do not bother to define the control law at the origin.

There is yet another viewpoint as to why this control law does better than a linear control law when Izl < 1. The

linear control law has an eigenvalue -k, and hut u* has an eigenvalue _ (we use the term eigenvalue very loosely
I_1p

here, since strictly speaking even the term eigenvalues does not make sense in a nonlinear context) that is increasing

to oo as Izl --* 0. Though both control laws are bounded, qualitatively, the fractional control law converges much

faster to the origin as seen in the following scalar example.

Example 9.1 Fractional Control - Scalar Case

Consider the simple scalar example given by the equations

= _ (212)

Choose

ul, .... = -kz (213)

u* = -k_ if I_1>1 (214)
k

- • if o < I_1<_1 (215)
I_1_

k ---- 2 (216)

p = 2 (217)

It is clear from the simulation plots that the modified fractional control law outperforms the linear control law.
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Now consider a linear system in the controllable canonical form, given by the following equations.

_?1 = X2

_n = U

where x E _", u E _.
Now choose the control u to be of the following form

u = -klzl - k2x2 ..... k,x,_ if 112711_> 1

kl k2 kn
- _-zi ._t 272..... -----Tx2 if 0 < 112711_< 1

112711_ 1127117 112711_

where

Ilxl12

(218)

(219)

(220)

(221)

(222)

_ 2 (223)

i=1

> n (224)

s '_ + k.s "-1 + ... + kl is a stable Hurwitz polynomial (225)

We now formulate the following conjecture.

Conjecture 9.1 Existence of solutions, stability and convergence for fractional control of controllable linear systems.

Given

(G1) System dynamics of the form (218) - (220)

If

(11) The control u is specified as in (eet) - (ees)
Then

(T1) Filippov solutions exist for systems (218) - (e20) subject to control (221) - (225)

(T2) 27 = 0 is globally stable

(T3) lndeed x ---* 0 faster than a comparable linear control law of the form u_i .... = -klxl - k2x2 ..... k,z_

Qualitative Proof:
First we note that within the unit ball (1127112< 1), the control effort is bounded by

n

I-I _<_ k, (226)
t=l

So the control does not blow up at any instant of time. We have used the notion that in the nonlinear setting,
within the unit ball, we have each eigenva.lue )h i = 1,2,..., n of this system being replaced by --3-tT where r > n.

Ilzl12_

Consequently, from the way the ,_i i = 1,2,..., n combine to form the ki of the control law, the form of the control

law is intuitively obvious•
We find by simulation that the robustness, and rate of convergence of the proposed nonlinear law are much

superior to a linear control law. The proof of this conjecture, however, has eluded us.

Example 9.2 Fractional Control for Magnetic Bearing

We present simulation results for a system of the form

•i , (227)
X 1 = X 2

, (228).I
27 2 = V

where

v' = -k,x_ - k_x_ if I1_11_> 1 (229)

k_ , k2 ' if 0 < IIz[[2 < 1 (230)
-]- x,_-- ..IXl

Ilxll_ tlxll_
kl = 6 (231)

k2 = 11 (232)
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Figure 7: Fractional Control of a Single Axis of a Magnetic Bearing

10 Sliding Mode Observers for the Magnetic Bearing

10.1 Introduction

We first present the basic theory of sliding mode observers for mechanical systems, and prove the existence of

generalized Filippov solutions and stability. We then show the convergence of the observer state errors to zero. We

then present the problem with existing theory, and present bounds on variables that would prevent observer failure.

Finally we remark on the utilization of the computed bounds as a design rule to help design such sliding mode
observers.

The problem of designing observers using sliding mode theory was first introduced and studied by [Mis88]. Here

the observation problem is treated as a special case of a state regulation problem. Sliding surfaces are designed based

on the error dynamics, and reaching a sliding surface is equivalent to the error in the estimate of the measured state

decaying to zero. In sliding mode control, the surface S = 0 is reached in finite time, and on that surface the states

decay exponentially• Similarly, in sliding mode observer theory, the error in the estimate of the measured state decays

in finite time. All other state errors decay exponentially.

Consider a simple mechanical system of the form

Xl = 272

z_ = u

where z 6 _2 and u 6 _. Now consider an observer of the following form.

£

zl = x2 + klsgn[_h]
£

x2 = k2sgn[_2]

= x-_

Such an observer structure equation leads to error dynamics of the form

xl = x2 -- klsgn(_l)

x2 = -k_sgn[_l]

Theorem 10.1 Convergence of the state estimation errors:

Given

(G1) Error dynamics of the form (£38)- (£39)

If

(I1) 1_21< k_
Then

(233)

(234)

(235)

(236)

(237)

(238)

(239)
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(T1) Generalized Filippov Solutions exist for the system (238}- (239)

(T2) The one-dimensional manifold _1 = 0 is attractive

(7"8) The averaged dynamics of £2 about the surface _l = 0 decays exponentially.

Proof: 8 I> Existence of Filippov solutions is due to the fact that the governing differential inclusions are closed,

50

bounded, convex and uppersemicontinuous.

We will prove the theorem using simple Lyapunov analysis. Consider the candidate Lyapunov function,

V = £:5 (240)
2

Differentiating V along the flow of the system(238), we get,

= _1[_2 + k, sgn[_,]] (241)

< -II_lll[k, - _2sgn[_,]] (242)

Thus as long _2 < ka, I/< 0, indeed the surface _ = 0 is attractive.

Comment 10.1 The Theorem asserts the existence of a tubular neighbourhood around the x2 :- 0 axis where the

trajectories converge to the manifold 9iven by _1 = O. It is to be noted that _2 must not be 9rearer than kl until the

trajectories converge to _1 = O. Some additional conditions are necessary to prevent such an occurrence.

The dynamics of the system when constrained to evolve on the surface ka = 0, can be derived using the Fillipov

solution concept. Thus, taking a convex combination of the dynamics on either side of the sliding surface, we get,

_1 = "1'[_2 + kl] + (1 - 7)[_2 -- kx] (243)

_2 : 7k2 -I- (1 - 7)(-k2] (244)

From the above equations, we eliminate 7, and from the invariance of the sliding surface, we get,

_, = 0 (245)

k2. (246)
_2 - /q x2

Exponential decay of _2 is clear from the above equation. The proof of the theorem is complete. <l

We will now utilize this design technique to design sliding mode observers for the magnetic bearing. Consider the

magnetic bearing system represented by the following equations.

.1 1
271 = X2

• 1 1
X 2 = U

• 2 2
X 1 _ X 2

-2 :2
2 2 = U

.3
X2 = --a * oJ * x_ + u 3

.4 4

:E 1 : X 2

• 4 _ 1_ 2 : I_ * O$ * X @ U

We design a sliding mode observer for this system of the following form,

X 1 :

:1 1 [ ]]x2 = u + k2sgn

:2 2 [ 121x_ = u + k2sgn

".3

-3

_ = -a, _* _ + u_+ k_sg_[_]

271 -_ _4 .q_

"_ _ + u 4 -_x2 = a *w * + k2sgn[xx]

-, , -i i=1,2, ,4 j=l,2, andkx,k2>O.where x 3 =x_ -xj ...

(247)

(248)

(249)

(250)
(251)

(252)

(253)

(254)

(255)

(256)

(257)

(258)

(259)

(260)

(261)

(262)



Wewrite the observer error equations as follows.

-1

-I

x2 = --k2sgn[il] (264)
c2

xl i_ -2= - klsg.[_l] (265)
=.2

x_ = -k_sg.[_] (266)
.3

•, = _-k,_g.[_] (26r)
:.3

x_ = --a * w * _ -- k2sgn[k 31 (268 /
-4 -4

x, = x2 - kisgn[i_] (269 /
.4

_ = a ,,,,, _ - k_s_.[_] (270)

We now state the result concerning the stability and convergence of the observer states to their true values.

Theorem 10.2 Convergence of the state estimation errors:

Given

(G1) Error dynamics of the form (263)- (270)

If

(11) I_1 < k,
Then

(TI) Generalized Filippov Solutions exist/or the system (238)- (2.39).

(Te) The one-dimensional manifold _ = 0 is attractive.

(7"3) The averaged dynamics of _ about the surface _i = 0 decays exponentially.

Proof: _ 1> Stability of the error dynamics is easily shown utilizing the following Lyapunov function.

' [_]_
v = _--_k_l_;l+ 2 (271)

/=1

4

kk -i 2
(1" = -- ' _ E [sgnEx']] (272)

i=1

< 0 (273)

Furthermore, I? = 0 --* sgn[_cl] = 0. Invoking the invariance principle of LaSalle, it is seen that the largest invariant

set containing the set _ = 0 i = 1.2 .... ,4 is the set _ = 0, i = 1, 2,..., 4. Stabihty, and hence convergence to the
origin is therefore assured.

We show convergence of the states _i, i = 1, 2,..., 4 to the origin in finite time as follows. As the system is

asymptotically stable, there exists an instant of time t* such that for all t > t "t`_, ll_ll2 < h, --.1_51< k_. Invoking

the theorem on the finite time convergence of the sliding mode observer, the observer states converge in finite time.

11 Closure

We have shown a variety of nonlinear controllers for the magnetic bearing that are simple and robust to build and

are guaranteed to be stable. We believe that the design of controllers utilizing principles of nonlinear analysis provides

new richness, insight and excitement in the design of high precision magnetic bearings.
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12 Appendix- Mathematical Foundations of Discontinuous Con-

trol

In this section we present basic definitions, facts, and examples about measures of sets and functions, integrability,

absolute continuity, convexity, and differential inclusions. For further details about the definitions to follow, refer to

[KF70], [ABg0], [YCBDB82], [Rud64], [nar76], [AC84]. We will use the following concepts to develop solutions of

differential equations with discontinuous right hand sides.

12.1 Measure of Sets

We commence by formalizing the notion of an interval.

Definition 12.1 Let R p denote p dimensional Euclidean space. By an interval in R p, we refer to the set of points

x = [x_,...,zp] r such that

3a, < x,<bi (i=l,...,p) (274)
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The possibility that a, = b, is not ruled out, and the empty set is also included as a possible candidate for the

intervals. An interval can be understood to refer to a p dimensional cube in 3 p.

Definition 12.2 1] A is the union of a finite number of intervals, then A is said to be an elementary set.

Definition 12.3 1] I is an interval in _v, the measure tt of the interval I is defined to be

u:3 p- _= xf=l(b,-a_) (275)

The measure of a set is in some rough sense the volume of the geometric object formed by that set. Indeed, the

measure of a k < n - 1 dimensional object in n dimensional space is 0. Therefore, the measure of a point in _2 is 0,

and the measure of a plane in R3 is also 0. The kinds of control we work with will vanish on an n - 1 dimensional

subspace of n dimensional space. Therefore they vanish on a subspace of 0 measure.

n

Definition 12.4 If the set A is the union of a finite number of pairwise disjoint intervals, (i.e) A = U,=l ij where I: (-] Ik =
I}¥ j ¢ k, then the measure # of the set A is

tt(A) = _ tt(/j) (276)

3=1

Fact 12.4.1 Open sets are measurable.

Fact 12.4.2 The union of a sequence of measurable sets is also measurable.

Fact 12.4.3 The complement of a measurable set is also measurable.

Fact 12.4.4 A set consisting of one point is measurable. Its measure is O.

Fact 12.4.5 A denumerable set (a union of a sequence of countably many one-point sets} is measurable, lts measure
is O.

Fact 12.4.6 Every subset of a set of measure 0 is measurable. Its measure is O.

Example 12.1 Measure of Set of Undefined Control

Consider the control u(t) : 3+ ---* _ given by

u(t) = -sgn[z] (277)

where z E _.Note that the function sgn[x] : _- {0} --_ [-1, 1] is not defined at O. Using fact (re.4.4), we assert that
the control is not defined on a set of zero measure.

Definition 12.5 By almost everywhere, we mean everywhere excepting possibly on a set of measure O.

Simply, by saying a relation holds true almost everywhere, we assert that the set of points where the relation fails to
hold, has measure zero.

Example 12.2 Behaviour of Functions

Consider functions f : X ---, _, g : X ---* _, fn : X -'-* _ n = 1, 2, . . .. The following are the instances of almost
everywhere relations between the .[unctions.

1. f = g almost everywhere, if IJ{z E X : f(x) _ g(x)} = 0.

e. f > g almost everywhere, if U{z E X: f(z) < g(z)} = 0.

3. f, -- f almost everywhere, iflt{x E X : fn(x) # f(x)} = 0.

4. fn T f almost everywhere, if f,_ < f,_+l almost everywhere for all n and f,_ ---* f almost everywhere.

5. fn J. f almost everywhere, if fn+l < fn almost everywhere for all n and f,_ _ f almost everywhere.

Example 12.3 Controls Defined Almost Everywhere

Consider the control u(t) : 3+ ---*_ given by

u(t) = -sgn[x] (278)

where x E _ Note that the control u(t) is defined almost everywhere.
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12.2 Measurable Functions

In the definitions to follow, we will consider real valued functions that map a measurable space X with measure It to

the extended real line _.

Definition 12.6 A function f : X --* _ is measurable i]f the set S = {x E X : [f(x)l < a} is measurable for all

a>0E_.

Measurability of a function is a property of the function, based on the measurability of a certain set in its domain.

Example 12.4 Measurable Functions

All continuous functions f : R '_ --* _ are measurable. Proof is by showing that by definition, S is open, and hence

measurable.

The following are some facts based on operations between measurable functions.

Fact 12.6.7 Given f : X ---*_, i]f f is measurable, then Vk E _, kf is measurable.

Fact 12.6.8 Given f : X _ R, and g : X --* _, if f and g are measurable, then f + g, f - 9, and f o are measurable.

Fact 12.6.9 Given p : X --_ _, and f : X ---* _, if] f is measurable, and if] f(x) = p(x) almost everywhere, then p is

also measurable.

We now present a fact concerning the properties of the limit function, based on the properties of the convergent

functions.

Fact 12.6.10 Given a sequence of]functions f, : X ---* R i = 1,2, ... conver9ent almost everywhere to the ]function

f : X _ _, i]f each fi,i = 1,2, ... is measurable then the ]function f is also measurable.

12.3 Integrable Functions

The key idea of the integral developed by Lesbegue is as follows. In Riemann integration, if f : [a, b] E _ --* _, then
to form the Riemann integral we divide the domain of f, [a, b] into many subintervals and group together neighboring

points in the domain of the function f. On the other hand, the Lesbegue integral is formed by grouping together

points of the domain where the function f takes neighboring values in the range ! Indeed, the key idea is to partition

the range of a function rather than the domain. It is immediately obvious that such a technique allows us to consider

functions that have multiple points of discontinuity, or may not even be defined at some points.

The functions in this section map a measurable space X with measure It into the extended real line _.

Definition 12.7 Let f : X _ _ be a measurable function. Furthermore, let f take no more than countably many

distinct values Yx, y2,. •., Y_,... in its range. Then, the Lesbegue integral of the ]function f over the set A, denoted by

fA f(_)dit" is given by

/a f(x)d p = _ yjit(A,) (279)
J

tJ)h e re

Aj = {x : x EA, f(x)=yj} (280)

if the series (280) is convergent. If the Lesbegue integral off the ]function f exists, then we say the function is

integrable, or summable with respect to the measure It on the set A.

Example 12.5 lntegrable Functions
Consider the constant]function f(x) = 1. Let us evaluate the Lesbe9ue integral off the function. Indeed,

f(_)dit = f_ 1aft (281)

= It(A) (282)

As the Lesbegue integral exists, the function is said to be integrable.

Fact 12.7.11 Given a measurable ]function f: X --* _, if there exists a sequence f, : X _ _ of integrable functions

converging uniformly to f on the set A, then the function f is said to be integrable.
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Fact 12.7.12 Given f : X --* 3, g : X --+ 3, if g > O, and g is integrable on a set A,

everywhere on A, then f is also integrable on A, and
and If(x)l < g(x) almost

I_ f(x)d_l <- _ _(x)dl_ (283)

Fact 12.7.13 Given f : X ---* 3, if/ is bounded and measurable on a set A, then f is integrable on A.

Fact 12.7.14 Given f : X _ 3, if/ is integrable on a set A, then f is integrable on every measurable subset of A.

Fact 12.7.15 Given fn : X _ _ i = 1,2,..., a sequence of functions converging to a limit f : X ---* _ almost every-

where on a set A, if there exists a function g: X ---* _ integrable on the set A, and lY(x)l < g(x), v x almost everywhere in A,
then f is integrable on A, and

lim _ fn(x)dlt = fAf(X)dlt (284)rt_oo

Fact 12.7.16 Given fn : X --'* 3, a sequence of functions convergingto a limit f : X _ _ almost everywhere on a set

A, if 9k E _ such that If(z)l < k, v x almost everywhere in A n = 1, 2 ..... then f is integrable on A, and

lim fA f,_(x)dp = fa f(x)d. (285)n_oo

12.4 Absolute Continuity

Definition 12.8 The function f : X ---* _ is said to be absolutely continuous on the interval [a, b] E _ if for any

e > O, there exists _ > 0 such that for finitely many disjoint open intervals (a,, b,) C [a, b]

Ib,- a,I < 6 _ ZIf(b,)-f(a,)l < e (286)

i=1 i

That is, the function is of bounded variation. It is to be noted, however, that functions of bounded variation need not

necessarily be absolutely continuous.

Fact 12.8.17 An absolutely continuous function f : X ---* _ is necessarily continuous.

Note however, that the converse is not true. We will now present an example to illustrate that the converse is not
true.

Example 12.6 Continuity and Absolute Continuity

Consider the function f : [0, 1] ---* _ defined as follows

f(0) = 0 (287)
1

f(x) = x2eos¥-_ 0 < x < 1 (288)

The function f is differentiable at each x E [0, 1], but is not of bounded variation. This is trivially shown by considering

a partitioning as follows.

(2n - 1)r ....... 1}

n

Variation of f = COS1+ 2 _--

The function is not of bounded variation, and hence is not absolutely

of a continuous function that is not absolutely continuous.

continuous.

(289)

(290)

(291)

We have thus shown an example

Fact 12.8.18 If] : X ---*3, then if] is differentiable, the f is absolutely continuous.

Fact 12.8.19 Any function that satisfies the Lipschitz condition is absolutely continuous.

The importance of absolute continuity is that for Lesbegue integration, the fundamental theorem of calculus holds

precisely only for absolutely continuous functions.
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12.5 Convexity

Definition 12.9 A set M E _n is said to be convex if it contains the joining of any two points in the set.

Example 12.7 Set of Bounded Functions

Consider Ci_,b I, the space of all continuous real valued/unctions f : [a,b] E _ ---* _, and let M be the subset of

Cla,b ] defined as/ollows

M = {f E CIa,b 1 : II(z)l < 1} (292)

Then, the set M is convex. This is easily evidenced by considering the join of two/unctions f(x), g(x) E M. For any

a,_ > O such that a + _ = l, we have

laf(x)÷/_g(x)l < Ia ÷/_l (293)

< 1 (294)

E M (295)

The join of two elements of M belongs to M, and convexity is shown.

Fact 12.9.20 1/a set M is convex, so is its interior.

Fact 1_.9.21 The intersection of a finite number of convex sets is also convex. That is,

f'_ M, is convex
(296)

I=1

where each Mi is convex.

Definition 12.10 The minimal convex set containing a convex set M is called the convex hull of M.

12.6 Set Valued Maps

Definition 12.11 A/unction f(z) : Nn --, _ is said to be upper semi-contlnuous at a point x* E Rn if

f(x*) = lim sup f(z) (297)

Example 12.8 Upper-Semicontinuous sgn Function

Consider the/unction sgn[x] : _ _ [-1, 1] definedas lollows

_gn[_] = 1 _>_0 (298)
---- --I x < 0 (299)

It is obvious that at x = O, the/unction is upper-semicontinuous.

Definition 12.12 Having defined some properties of real-valued/unctions, we now move on to discussing some

important properties of set.valued/unctions. Given two sets X and Y, we define a map F : X ---* Y to be set-valued,

if F : X _ Y associates to any x E X, a subset F(x) E Y.

Definition 12.13 The domain of a set valued map F : X ---*Y is defined to be Domain(F) = {x E X : F(z) # 0}

and the range Range(F) of a set valued map F : X --_ Y is defined to be U_ex F(x).

Definition 12.14 The domain Domain(F) of a set valued map F : X ---* Y is defined to be strict if Domain(F) =

X, and is defined to be proper if Domain(F) _ O.

Definition 12.15 A set-valued map F : X ---* Y is defined to be compact if its range Range(F) is a compact subset

of Y.

Definition 12.16 A set valued map F : X ---, Y is upper semlcontinuous at x* E X, if for any open set Sy

containing F(x*) there exists a neighbourhood Sx of x* such that F(S×) C Sy.

In this section we present basic results for the local existence of solutions of differential equations with discontin-

uous righthand sides. We define a shding mode, and present conditions for the existence of a sliding mode. We then

present briefly the development of the shding mode control law, and the various regularizations of it.

We will now state without proof the following two important results from analysis that we will need.

Arzela-Ascoli Theorem:

Let K be a compact subset of R p and let F be a collection o/functions which are continuous on K and have values

in R q. The following properties are equivalent.
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1. The family F is uniformly bounded and equicontinuous on K.

2. Every sequence.[tom F has a subsequence which is uniformly convergent on K.

The theorem allows us to define a sequence of approximate solutions of a differential equation, and guarantees

convergence of the approximate solutions to a limit function of the sequence is equicontinuous and uniformly bounded.

Filippov Convergence Lemma:

Given a differential inclusion of the form _ = F(x, t). If the inclusion _'(x, t) is closed, bounded, convex, and

uppersemicontinuous, the limit of any uniformly convergent sequence of approximate solutions of the differential

inclusion is also a solution of this inclusion, in the domain of convergence.

That the limit function satisfies the differential inclusion is the main reason for invoking the lemma.
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