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Abstract

An implementation of a decoupled, single-input/single-output control approach for
the Large Angle Magnetic Suspension Test Fixture is described. Numerical and experi-
mental results are presented. The experimental system is a laboratory model large gap
magnetic suspension system which provides five degree-of-freedom control of a cylindri-
cal suspended element. The suspended element contains a core composed of permanent
magnet material and is levitated above five electromagnets mounted in a planar array.

1 INTRODUCTION

A research effort is underway at NASA Langley Research Center to demonstrate the mag-

netic suspension, positioning, and maneuvering of objects over wide ranges of attitudes.

Future applications of this technology range from magnetic suspension of wind tunnel mod-

els to advanced spacecraft experiment isolation and pointing systems. As part of this

effort, a Large Angle Magnetic Suspension Test Fixture (LAMSTF) has been designed and

built. The LAMSTF is a small scale laboratory model of a Large Gap Magnetic Suspension

System (LGMSS) which provides five degree-of-freedom control of a cylindrical suspended

element that contains a core composed of permanent magnet material. The suspended el-

ement is levitated above five electromagnets mounted in a planar array. The LGMSS is

a conceptual design of a ground based experiment which is to be used to investigate the

technology issues associated with: magnetic suspension at large gaps, accurate suspended

element control at large gaps, and accurate position sensing at large gaps [1]. The objec-

tives of the LAMSTF effort were to investigate the feasibility of the LGMSS concept and to

provide a test fixture for developing and demonstrating control approaches. A description

of the LAMSTF and some of the control approaches which have been investigated are pre-

sented in [2]. LAMSTF suspended element parameters and the field components generated

by the electromagnets at the centroid of the suspended element are given in the Appendix

to this paper.

This paper presents the implementation of a single-input/single-output (SISO) control

approach for the LAMSTF with numerical and experimental results. The control approach
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which was implemented was developed in [3] using the extended linearized model developed

in [4]. The control approach is proportional-derivative (PD), where the command torques

and forces are functions of positions and derivatives of position. The design technique

provides a dynamic compensator given the desired pole locations of the closed-loop system.

Numerical results are obtained which compare the desired poles to the actual coupled pole

locations for a candidate design. Experimental responses are also obtained on the LAMSTF

testbed and compared to simulation results.

2 EQUATIONS OF MOTION

The equations of motion for the LAMSTF were developed in [4]. The LAMSTF configu-

ration consists of five electromagnets mounted in a planar array. Figure 1 is a schematic

representation of the LAMSTF configuration and defines the coordinate systems. The sus-

pended element coordinate system consists of a set of orthogonal'_, _, 5 body-fixed axes

which define the motion of the suspended element with respect to inertial space. The sus-

pended element coordinate system is initially aligned with an orthogonal x, y, z system fixed

in inertial space. The open-loop equations of motion are determined by evaluating the forces

Figure 1: LAMSTF Configuration

and torques produced on the permanent magnet core by the magnetic fields [5]. They can

be written as,
£ = f(X,I) (1)

where

X: [ _ 9 12_ V_z V_ V_ Oy Oz x y z] T"

and

1= [ 11121314151T

In the state vector, Ov and Oz are rotations about the y and z axis called pitch and yaw,

respectively. The translations are x, y, and z, and f_ and V are time derivatives of the
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corresponding positions. The input to the system are the five coil currents, denoted by

I. In order to generate a linear model these equations are expanded about the nominal

operating point Xo,Io using a Taylor series expansion and simplified using small angle
approximations. Higher order terms are neglected in the expansion and motion about the

uncontrolled axis (x) is assumed to be zero. Details of the linearization are presented in

[4]. The linearized equations have the form

_X = A_fX + B_fI (2)

where

OX'] andA= Xo,1o

Expanding these equations yields,

= vM_ (-B,O v - Bxzx - Bv_y - B**z) - vM_K,I (3)

= vM_ (-BxOz + B::vx + Bvvy + Bwz ) + vM_KvI (4)

= vM_ (-B_O v + 2BxvO_ + Bx:c_x + Bx_vY + Bx::zZ) + vM_gxxI (5)

= vi_(Bv.Ov + (Byv - Bx::)Oz + B:v:x + Bxyyy + B:vzZ) + vi_K:_vI (6)

= vi.+ ((Bx: - Bzz) Ov + SvzOz + Bxz:X + Bx,yy + B:_z:Z) + vM_UxzI (7)

where the B terms describe components and spatial derivatives of the magnetic field vector

at the equilibrium point. The first subscript of B refers to a unit vector direction, while

additional subscripts imply partial derivatives with respect to the coordinate system. The

K coefficients are row vectors which define the fields produced by each coil per amp of

current. Ic and mc are inertia and mass of the core respectively, and vM_ is the product

of the core's volume and magnetization. The first terms on the right in equations (3)-(7)

are the torques and forces generated on the core due to perturbations in X, evaluated in

the presence of the uncontrolled fields and gradients produced by the constant bias currents

required to provide equilibrium suspension. The second terms are the torques and forces

generated on the core by controlling the coil currents about the suspension currents. The

controlled torques and forces can be written as,

[ c]=9I (8)

where

_ = vM_.

-Ks

Kv
Kxx

Kxv

Kxz

(9)

For the LAMSTF configuration/_ is full rank and the currents required to produce given
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command torques and forces become

I_.B -1

T_c

(lO)

For equilibrium suspension the torques and forces produced on the suspended element must

be zero, except to counteract the effect of gravity. Therefore at equilibrium the suspension

currents are
0

0

Io =/_-1 0 (11)
0

mcg

Although B-1 decouples the five degrees of freedom in terms of force commands, the

system dynamics are still highly coupled through the destabilizing bias terms in equations

(3)-(7). The bias currents, Io, are used to calculate the values of the bias fields and gradients
presented in the Appendix. Many of these terms can be shown to be zero due to symmetry

of the five-coil planar array. Referring to Figure 1, it can be seen that coil 1 is located

symmetrically about the x, z plane and so cannot produce field components in this plane

which are along the y axis. Furthermore, coils 2 and 5, and coils 3 and 4 form symmetric

pairs about the x, z plane. These coil pairs have equal bias currents; therefore the projection

along the y axis of fields from each pair is also zero throughout the x, z plane. This means

that at Xo, the y component of the field is zero and all of its derivatives with respect

to x and z are zero. Similar arguments can be used to show that Byy and Bzz are also

zero. Considering these zero terms, and making the additional approximation B_x_ _ 0

and Bx_, -_ 0, equations (3)-(7) become,

Ic_,j = -KB_O_ - KBx_x + T_c (12)

Ic_z = -KB_O_ + T_c (13)

mc'_'_ = KB_xx - KB_Oy + F_:c (14)

m_P'_9 = t(B_yyy + F_c (15)

mc?_ = KBx_zz + F_ (16)

where the KB terms are constants equal to the product of vM_ and the corresponding field

or gradient value evaluated at Xo, Io. From these equations, it can be seen that the dynamics

in y, z and 0z are uncoupled and can be analyzed as single degree-of-freedom systems. The

dynamics in 8y and x, however, remain coupled. The strength of this interaction and its

effect on SISO control design will be addressed in the next section.

The term KBx in equations (12) and (13) is negative and causes open-loop instability.

These terms cause high frequency unstable modes referred to as compass needle modes.

Compass needle modes occur because, with the LAMSTF configuration, in order to achieve

gradients which generate the vertical suspension force, the core's magnetization vector must

260



be aligned 180 degrees from the suspension field vector. These modes dominate the dynam-

ics in pitch and yaw. The bias terms KB_:_:_ and KBxyy also cause unstable dynamics.

These terms are similar to the unstable bias flux stiffness terms encountered with small gap

magnetic bearings that use permanent magnet bias flux [6, 7]. The terms KB_:z and KB, z_

cause stable coupling between x and 0y, and stable oscillations in z. Eigenvalues for the
LAMSTF open-loop system are presented in Table 1.

Mode Eigenvalue

Compass needle

Compass needle

y Translation

Stable Coupling

z Translation

-58.7793

58.7793

-57.8061

57.8061

9.7764

-9.7764

0.0000

0.0000

0.0000

0.0000

+ 7.9697i

- 7.9697i

+ 0.9556i

- 0.9556i

Table 1: Eigenvalues of the open-loop system

3 CONTROL SYSTEM EQUATIONS

The control design technique allows the designer to directly place the poles of the closed

loop system for each degree of freedom. Damping ratios and frequencies can be chosen to

provide adequate response to disturbance inputs. The position of the suspended element

is assumed to be known and is measured on the LAMSTF system by a set of five shadow

sensors. As mentioned earlier, the control approach is PD, where the command torques

and forces are functions of positions and derivatives of position. The command torques and
forces can be written as

T_c = - (Pe_ + sRoy) Oy (17)

T_c = -(Pe, + sRo,)O_ (18)

F_¢ = -(P= +sR=)x (19)

F_c = -(By + sRy)y (20)

F_c = -(Pz + sR,)z (21)

Position and rate gains are denoted P and R, respectively, for each degree of freedom.

Control of pitch rotation and x translation will be examined first since these are the only

suspended element motions which are coupled. The approach is to close the loop around

each axis independently and to determine the effect of the cross-coupling on the performance

of the resulting system. Equations (17) and (19) can be written in matrix form as
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F_c = -GF z

where GF is the forward-loop transfer function matrix,

GF = [ PO_ + sRO_0 P,_ +0 ]sR_ (23)

Taking the Laplace transform of system equations (12) and (14) and putting them in matrix

form results in

s 2mcx - KB_z KBxx_ x F_c

Substituting for Tgc and F_c in (24) and collecting terms results in

Ics + ROys + Po_ + K B_ K BxzK B_:z mcS 2 + R_s + Px - K B_x

The characteristic equation becomes

(24)

][°_'] =°x (25)

I_s 2 + Ro_ s + Po_ + K B_ K B_ = 0
K B_z m_s 2 + R_s + P_ - K B_

(26)

Expanding the determinant yields

s2+_+ /_ ] s 2+-+ (27)me mc / Icmc

where the system's characteristic equation has been factored into two decoupled second

order terms and a single coupling term. The coupling term in equation (27) is similar in

form to the natural frequencies of the second order terms; however, it does not depend upon

the feedback gains. It is possible to make this term negligible by increasing the position

gains on the x and 09 degrees of freedom. Ignoring the coupling term, the closed loop

natural frequencies and damping for the 0u mode can be written as

I Poy + K B_: Ro_
w°3'= Ic Coy= i ( (28)2 Pou + K B_=) I_

Similarly for the x control loop

IP_ - KB_,:,: R_ (29)wx = me-- _" = 2x/(P_ - n, )"" n_z_' mc

Solving these equations for P and R yields design equations which allow for pole place-

ment

Po_ = w_ I¢ - I( B_

P_ = _m_ + KB_x

Rou = 2_o_wou I_ (30)

Rx = 2_xWzmc (31)
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The coupling term in equation (27) can only be ignored if the position gains are large,

which implies that the SISO pole placement will be accurate only for sufficiently high fre-

quencies. On the LAMSTF system this requirement was easily achieved. Table 2 shows

design versus actual closed loop eigenvalues when the pitch and x loops are closed indepen-

dently then analyzed as a coupled system. In each case the desired pole locations for the

pitch and x modes were equal. Table 2 shows that the pole placement is inaccurate for low

frequencies, but is reasonably accurate for frequencies above 75 rad/s, as expected. The

table also shows very little variation between design and actual pole location for changes in
damping.

SISO design poles

Frequency, rad/s Damping
10.000

30.000

75.000

100.000

0.707

Coupled poles

Frequency, rad/s

19.402

22.117

Damping
0.364

1.000

0.707 34.299 0.618

24.971 0.849

0.707 76.820 0.690

73.133 0.725

0.707 101.372

98.608

0.697

0.717

150.000 0.707 150.918 0.702

149.075 0.711

75.000 0.100 76.820 0.097

73.133 0.102

75.000 0.300 76.820 0.292

73.133 0.307

75.000 0.500 76.820 0.488

73.133 0.512

75.000 0.700

75.000 0.900

76.820

73.133

0.683

0.717

76.820 0.878

73.133 0.923

Table 2: Effect of coupling on accuracy of SISO pole placement

The characteristic equations for the remaining degrees of freedom can be obtained in

a manner similar to the pitch and x loops. Since these loops are uncoupled, the design

equations are exact. The compensator parameters as a function of damping ratios and

natural frequencies are given by,

fez = w_ I_ - KBx

P_ = w_mc + K Bxyy

Pz = w_mc + KBxzz

Roz = 2(o, wo, Ic (32)

Ry = 2(ywumc (33)

Rz = 2_zWzmc (34)
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4 IMPLEMENTATION

The design method generates compensators which achieve approximate pole placement in

the closed-loop system. The goal was to stabilize the experimental system and be able

to maintain stability in the presence of disturbance forces. Poles were chosen to yield a

system with a stiff response to disturbances and adequate damping to limit overshoot and

oscillations.

As a design example the natural frequency of each closed-loop pole pair was set to

75 rad/s and the damping ratio of each was set to 0.707. Using equations (30)-(34) and

parameters of the LAMSTF system, the position and rate gains were calculated. These

gains are listed in Tuble 3. In the implementation of the PD controller it is desirable to

P0y = 4.94 x 10 -2 Nm/rad Rey = 5.84 x 10 -4 Nms/rad

Po, = 4.98 x 10 -2 Nm/rad R0, = 5.84 × 10 -4 Nms/rad

P_ = 1.25 x 102 N/m Rx = 2.35 Ns/m

Py = 1.25 x 102 N/m Ry = 2.35 Ns/m

P_ = 1.25 x 102 N/m R_ = 2.35 Ns/m

Table 3: Position and rate gains for example design

limit the high frequency gain to minimize the effects of noise. Therefore, each PD loop was

implemented as the following lead network,

Pi + sRi (35)
slur + 1

where the roll-off frequency, wr, is greater than the bandwidth of interest. In practice this

was chosen to be 750 rad/second, an order of magnitude above the desired pole locations.

A state-space model of the fully coupled system was developed and combined with the

dynamic compensator to generate a continuous closed-loop system model. The damping

ratios and natural frequencies of the poles of the closed-loop system are shown in Table

4. The frequencies are higher than designed due to the effects of the roll-off pole in the

implementation.

The compensator designed above has been successfully implemented on the LAMSTF

testbed. The suspended element position was derived from a set of five optical sensors

arranged as shown in Figure 2. The sensors are based on power loss due to a shadowing

of a collimated beam. The five measurements of the suspended element's position were

sufficient to calculate the position and orientation in five degrees-of-freedom. The sensors

are accurate to about 10 microns and have a linear range of about + 1 mm. Dynamics from

the sensor electronics are negligible.

An EISA-class 486 persona] computer was used to implement the controller. Data acqui-

sition, computation, and analog output were all handled by this computer. The controller

was implemented as a set of discrete state space equations. The SISO continuous transfer

functions were combined into a state space model and mapped into the discrete domain

using a zero order hold transformation. The controller was implemented at a sample rate
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Freq (rad/sec) Damping

85.39 0.648

76.91 0.730

81.48 0.703

81.09 0.669

81.50 0.703

635.2 1.000

635.3 1.000

635.4 1.000

641.4 1.000

641.4 1.000

Table 4: Natural frequencies and damping of closed-loop poles

S j

J

ic

j_

Figure 2: Geometry of shadow sensor system

of 1 kHz. A computational delay of 0.43 msec separated the input sampling and analog

output times: Performance of the controller was demonstrated by subjecting the suspended

element to equivalent pulse disturbance forces. Actuator currents corresponding to a given

disturbance force or torque are calculated for each degree of freedom using/_. These dis-

turbances are implemented by adding these inputs to the closed-loop coil currents. Since

the system has a nonzero steady-state error, the position of the suspended element tracks

the input disturbance. Position of the element and the input torques and forces are plot-

ted in Figure 3. The system remains stable and generally has a well damped response to

the disturbances. Response in the yaw, x, y, and z degrees-of-freedom are all similar and

consistent with design expectations. The response in pitch, however, contains slightly more

overshoot and more oscillation than the other degrees-of-freedom. The cause of the under-

damped response in pitch is currently being investigated and may be related to unmodeled

dynamics from eddy current loops in the aluminum baseplate of the system. Additional

testing and system identification are being performed to verify this hypothesis. A simula-
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Figure 3: Experimental response to disturbance input
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tion of the closed-loop system was developed with MATLAB's Simulink package [8]. The

simulation models the continuous dynamics of the plant and considers the effect of sampling

and computational delay in the implementation of the discrete controller. Figure 4 is a

block diagram of the system as implemented in Simulink.

t x(n+l)=Ax(n)+Bu(n)y(n)_(n)+l_(n)

Dis._te.space

i =Ax+Bu
y:Cx÷Du

State-_ce

Scope

Figure 4: Block diagram of Simulink system simulation

Although the sampling frequency of 1 kHz is well above the closed loop dynamics, it

was discovered that a pure analog analysis produced different responses than a simulation

which considered the digital implementation. Figure 5 compares the full simulation, the

experimental data, and an analog simulation. Response in pitch is underdamped experi-

mentally, and the difference with respect to simulation can be easily seen. For the other

degrees-of-freedom the digital simulation and actual response match quite well. The ana-

log simulation, however, predicts a faster rise time and more overshoot in each case. A

discrepancy between the frequency response of the continuous and discrete controllers was

also noticed and appeared to be related to the high gain of the controller at the Nyquist

frequency. Since the controller design was defined in the continuous domain, the differences

between the digital and analog simulations are important to note.

5 CONCLUDING REMARKS

A decoupled control approach for a large gap magnetic suspension system has been pre-

sented. The magnetic suspension system is a planar array of electromagnets which provides

levitation and five degree-of-freedom control of a cylindrical permanent magnet. The con-

trol approach assumes decoupled models for each degree of freedom. Position and rate gains

for a dynamic compensator are computed based on desired pole locations. In the actual

system, however, the system's dynamics remain coupled through bias terms resulting from

the bias currents required to produce equilibrium suspension. The closed-loop performance,

therefore, must be verified by applying the compensator to the coupled system model.

This technique provides the control designer simple and intuitive parameters to adjust

in order to achieve closed-loop performance. In order to investigate the effects of coupling
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Figure 5: Comparison of experimental response (solid), digital simulation (dotted), and

analog simulation (dash-dot)
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between pitch and x translation, an example design was performed using the parameters of

the Large Angle Magnetic Suspension Test Fixture (LAMSTF). Results of the design indi-

cate that the damping ratios and natural frequencies of the coupled axes differ only slightly
from design values. The control approach has been experimentally demonstrated on the

LAMSTF system. Transient responses to pulse inputs compare favorably with simulations
of the closed-loop system.
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A APPENDIX

This appendix presents, in the form of tables, LAMSTF suspended element parameters,

electromagnet parameters, and components of fields and gradients (including second-order

gradients) generated by the LAMSTF electromagnets at the centroid of the suspended ele-
ment. The LAMSTF contains a planar array of five room-temperature electromagnets, with

iron cores, mounted in a circular configuration. The configuration is shown schematically ,in

Figure 1. For a more detailed description of the LAMSTF see [2]. The fields and gradients
were calculated using VF/GFUN [9], including the pre- and post-processor OPERA, with

all iron cores modeled. Physical parameters of the LAMSTF are presented in table A1.

Electromagnet fields and first-order gradients generated by the suspension currents at the

equilibrium point are presented in table A2. The fields, first-order gradients and second-

order gradients generated by each coil at the equilibrium point are presented in table A3.
It should be noted that only non-zero terms are included and the full set of components is

not listed in the tables since Bij = Bji and B_jk = B_kj.

Core diameter

Core length

Suspended element mass, mc

Suspended element inertia, Ic

Core volume, v

Core magnetization, M_

8.509 × 10 -3 m

5.08 × 10-2 m

22.124 × 10 -3 kg

5.508 × 10 -6

2.889 × 10 -6 m 3

7.785 × 105 A/m

Suspension height

Electromagnet outer radius

Electromagnet inner radius

Electromagnet height

Iron core radius

Location radius*

* Distance from center of array

0.1m

0.0825 m

0.0475 m

0.105 m

0.038 m

0.1375 m

to axis of given coil

Table AI: Physical parameters of LAMSTF

Component Field strength, Tesla

BX

B:r,z

BXX37

BX,rZ

Bxyy

BXZZ

-8.1863e-03

9.6504e-02

4.9139e-01

-2.4689e-04

9.4051e-01

-8.9865e-03

Table A2: Values of bias fields and gradients at suspension point
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Fields,Tesla/Amp
Component Coil 1 Coil 2 Coil 3 Coil 4 Coil 5
K_ 2.3100e-04 7.1000e-05 -1.8700e-04 -1.8700e-04 7.1000e-05

Ky 0 2.2000e-04 1.3600e-04 -1.3600e-04 -2.2000e-04

K, -9.4000e-05 -9.4000e-05 -9.4000e-05 -9.4000e-05 -9.4000e-05

First-order field gradients, Tesla/m/Amp

Component Coil 1 Coil 2 Coil 3 Coil 4 Coil 5

gxx

Kxy
Kxz

Kyz

gzz

2.1790e-03

0

-2.7230e-03

-1.8920e-03

0

-2.8700e-04

-1.5030e-03

1.1960e-03

-8.4100e-04

1.7900e-03

-2.5900e-03

-2.8700e-04

7.7200e-04

-1.9360e-03

2.2030e-03

-4.8500e-04

-1.6000e-03

-2.8700e-04

7.7200e-04

1.9360e-03

2.2030e-03

-4.8500e-04

1.6000e-03

-2.8700e-04

-1.5030e-03

-1.1960e-03

-8.4100e-04

1.7900e-03

2.5900e-03

-2.8700e-04

Second-order field gradients, Tesla/m_/Amp

Component Coil 1 Coil 2 Coil 3 Coil 4 Coil 5

KXXX

gxyx

Kxzx

gxyv

gxyz

Kxzz

3.4340e-03

0

-5.3466e-02

-2.1916e-02

0

2.5400e-04

-1.8276e-02

-1.4560e-02

1.6371e-02

-1.1938e-02

8.7350e-03

7.8000e-05

1.6559e-02

1.3733e-02

-2.6790e-02

2.2896e-02

-1.4134e-02

-2.0500e-04

1.6559e-02

-1.3733e-02

-2.6790e-02

2.2896e-02

1.4134e-02

-2.0500e-04

-1.8276e-02

1.4560e-02

1.6371e-02

-1.1938e-02

-8.7350e-03

7.8000e-05

Table A3: Field and gradient values for each coil, Tesla/Amp
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