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ABSTRACT

In this paper, a high accuracy linear positioning system with a linear force actuator and magnetic

levitation is proposed. By locating a permanently magnetized rod inside a current-carrying.solenoid, the

axial force is achieved by the boundary effect of magnet poles and utilized to power the linear motion, while

the force for levitation is governed by Ampere's Law supplied with the same solenoid. With the levitation

in a radial direction, there is hardly any friction between the rod and the solenoid. The high speed motion can

hence be achieved. Besides, the axial force acting on the rod is a smooth function of rod position, so the

system can provide nanometer resolution linear positioning to the molecule size. Since the force-position

relation is highly nonlinear, and the mathematical model is derived according to some assumptions, such as

the equivalent solenoid of the permanently magnetized rod, so there exists unknown dynamics in practical
application. Thus "robustness" is an important issue in controller design. Meanwhile the load effect reacts

directly on the servo system without transmission elements, so the capability of "disturbance rejection" is

also required. With the above consideration, a time-delay control scheme is chosen and applied. By comparing

the input-output relation and the mathematical model, the time-delay controller calculates an estimation of

unmodeled dynamics and disturbances and then composes the desired compensation into the system.
Effectiveness of the linear positioning system and control scheme are illustrated with simulation results.

_TRODUCTION

Interest in research on large-gap magnetic suspension systems began in the early 1960's. The

principal goal was the elimination of aerodynamic support interference in wind tunnel testing. To early

1970's the interest extended to small-gap ones. The first system developed was the Annular Momentum

Control Device (AMCD) with applications to the stabilization and control of spacecraft [1]. This research

was continued with the Annular Suspension and Pointing System (ASPS) which provides orientation,

mechanical isolation, and fine pointing of space experiments[2][3]. For decades, Magnetic suspension

technologies (MST) have demonstrated their capabilities in many fields, from industrial compressors,

high-speed milling and grinding spindles, magnetically levitated trains, control wheel suspension for
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spacecraft to rocket propulsion turbomachinery. Important features of the magnetic suspensions and

actuator systems are:

(1) Versatility of the Electromagnetic Forces

The physical force of a magnetic circuit to a high-permeable armature is called the Maxwell-force.

Contrary to this commonly used force, the reaction force of a conductor carrying a current in a

magnetic field is called the Lorentz-force. By successful integration of these physical effects, the

constructed electromagnetic subsystem can be utilized as a rotary motor, linear actuator, radial

bearing, thrust bearing, etc.

(2) Molecule-size Resolution
One problem of electric motors is the ripple of motion at low-speed operating regions due to the

finite pole effect. The rotor always rests at the finite circumference positions which have the

minimum magnetic flux (potential energy). Thus there are inherited limitations for resolution of

control. The non-pole magnetic field provided by a coil, on the other hand, sets no resolution

limitation. The resolution limit, in turn, is set by sensors, instrumentation and control strategies.

Magnetic suspension systems provide a promising approach for achieving positioning with

nanometer resolution.

In this paper, a linear positioning system with a linear force actuator and magnetic levitation is to be

designed. By locating a permanently magnetized rod inside a current-carrying solenoid, the axial force is

achieved by the boundary effect of magnet poles and utilized to power the linear motion, while the force for

levitation isprovidedby the magnetic bearing and governedbythe maximum linkageprinciple.With the levitation

in a radial direction, there is no ti-iction between the rod and solenoid. The demand of high-speed motion can

hence be achieved. Under the proposed arrangement, the axial force acting on the rod is a smooth function of

rod position, so the system can provide nanometer-resolution linear positioning to the molecule size. It is

known that an effective control system is the key condition for successful implementation of

high-performance magnetic levitated positioning systems. Major issues for design of such control systems

are:

(1) Nonlinearity

By assuming that the complete energy of the magnetic field is concentrated within the air gap. The
basic mathematical models of active magnetic bearings are obtained from Maxwell's laws. The

input-output relations are highly nonlinear despite the variables defined.

(2) Unmodelled Dynamics
Secondary effects such as copper resistance, stray fields and saturation are neglected.

(3) Disturbance Rejection
Because the load effect reacts directly on the servo system without the transmission elements, the

capability of "disturbance rejection" is also required.
With the above considerations, a time-delay control scheme with the properties of "robustness" and

"disturbance rejection" is utilized[4][5]. By comparing the input-output relation and the mathematical

model, the time-delay controller calculates an estimation of unmodeled dynamics and disturbances and then

composes the desired compensation into the system. Effectiveness of the linear positioning and control

systems is illustrated by numerical simulation results.
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SYSTEM DYNAMICS

System Configuration

The configuration of the proposed magnetic levitated linear positioning system is shown in Figure 1. To

achieve the function of levitation, the current in the solenoid must be'kept in the direction that can maintain

the stability of radial motion. Under such condition, the magnetic force in the axial direction tends to push the

rod away from the center of the solenoid. Hence a spring is required to supply the force in the opposite

direction. Also, the spring must be precompressed to avoid an uncontrollable equilibrium point. The additional

magnetic bearing system is used to keep the moving part balanced in the axial direction. With a biased current

fed to the solenoid, the magnetic force ( F= I × B ) in the radial direction is utilized to suspend the moving

part, while, with the controlled current, the axial motion is governed by the force caused by the non-uniform

magnetic field in the boundary.

Permanently

S Solenoid t Magnetized
Rod

o

Magnetic

Bearing

Figure 1 The configuration of magnetic levitated linear positioning system

Dynamics in Axial Motion

To derive the dynamics, a solenoid is employed to produce the equivalent magnetic field B of the

permanently magnetized rod and thus simplify the calculation of the force-position relationship. With such an

arrangement, the solenoid-rod configuration can be approximated as depicted in Figure 2. The force acting

on the inner coil due to the current in the outer coil can then be found with Ampere's Law.
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Figure 2 Equivalent configuration

Consider two current-carrying elements as shown in Figure 3. The force between the two

current-carrying elements is[6]

I.toI2Ii ^ ^
dF - _ .al x (a-2 x r)dl2dll

4xr

where dF

kto

dll,dl2

I1,I2

r

al
;12

= force on element 1 due to current in element 2, N

= permeability of air, Hm t

-- lengths of current-carriyng elements 1 and 2, respectively, m

= currents in elements 1 and 2, respectively, A

-- distance between elements, m

= unit vector in direction of current in element 1, dimensionless

= unit vector in direction of current in element 2, dimensionless

_"= unit vector in radial direction( from element 2 to 1), dimensionless

Applying the force-position relation to the equivalent model, it can be found that the force acting on the

inner coil with radius r2 at position x 2 due to the current-carrying outer coil with radius r_ at position x_ is

given by the following equation:

I.toI,I2r,r2dO,d02 _3/2 "I c°sO_ - sin02_cl
dF = 4x[(xl -x2) 2 + (rt sin01 - r2sin02) 2 + (rlcos01 - r2cos02) 2

x {[cos0 j-sin 0,_c] x [(x2- x,)_ + (r2sin02- rlsin0,)_ + (r2cosO2- r, cos0,)tc] }

Hence the force in the axial direction can be expressed as

alex

-laollI2rir2(x2 -Xl)(COS0 lcos02 + sin01sin02)

4n:E(x , -x2) 2 + (r,sin01- r2sin02) 2 + (rlcos0t- r2cos02)2_ 3/2

d0 ld02,

with the numerical calculation, the force-position relation of the rod, with 5000 Gauss of flux density at

one end on the axis shown in Figure 4, where r_ is 1.1 cm, r 2 is 1.0 cm, the length of the rod is 1.0 cm,

and the length of the solenoid is 10 cm. The result indicates that the solenoid-rod configuration

operates as a current-controlled stiffness nonlinear spring, so the model of axial motion can be simplified

and shown in Figure 5, where K_ is the preload spring, and K_ is the equivalent model of the solenoid-rod

configuration.
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Figure 3 Geometry of short current-carrying elements for finding force between them.
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Figure 4 Force-position relation in axial motion.
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Figure 5 Simplified model of axial motion.
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Thedynamicequationin axialmotioncanthenbemodeledas

Xl =X2

1
it2 = --_[KI " (xi + Xp) +K2(xl) • (i + ib)]

where

x_, xz = position and velocity of the rod respectively, cm, cm/sec

K 1= stiffness of the spring, N/cm

K2(x ) = current controlled stiffness of solenoid-rod configuration, N/A

xp = pre-compressed length of the spring, cm

i b = biased current for levitation, A
i = controlled current, A

m = mass of the magnetic rod, kg

Dynamics of Radial Motion

To verify the function of levitation of the proposed mechanism, the dynamics of radial motion is taken

into consideration. Imagine a small deviation of the rod position in radial direction Y2, then the radial force

can be modeled as

dFy =
gollI2rlr2[r2sinO2(cosOlcos02 +sin01sin02)+(y2sin01 -rt)sin02]d0 dO

2 . • 2 2 3/2 1 2,
4rtE(xl-x2) +(y2+rlsm01-r2sln02) +(rlcos01-r2cos02) I

From the calculation, the result is shown in Figure 6. It is clear that, with positive current, the force

tends to force the rod staying in the central axial position. Any deviation in radial direction will cause a

force in the opposite direction to push it back. Hence the function of levitating is achieved. In this paper,

the motion in the radial direction is not controlled.

Since the system is passive and motion in the radial direction is confined, the open loop in the radial

direction poses no stability problem.
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Figure 6 Axial force-position relation.
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CONTROLLER DESIGN

Time Delay Controller

Since the magnetic levitated positioning system is subjected to the load effect directly, the controller

must be good at disturbance rejection. Besides, the force-position relation is highly nonlinear. Hence the

Time-Delay Controller (TDC) design method proposed by Youcef-Toumi [3] is applied to control the rod
position.

Consider the axial motion to be controlled as

i : f(x,t) + h(x,0 + B(x,t)u+ d(O

where

x = an 11x 1 plant state vector,

f(x,t) = an n x 1 nonlinear vector represents the known dynamics,

h(x,t) = an n × 1 nonlinear vector represents the unknown dynamics,

B(x,t) = an n × r control distribution matrix with rank r,

d(t) = an n x 1 unknown disturbance function.

Define the linear time-invariant reference model as

:i., =An, Xn,+ Bmr
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and the error between the model and the plant as

e=Xm-X.

The objective of the control scheme is to make the error behave as the desired dynamics

/_=Aee = (Am +K)e

Combined with the plant dynamics and reference model dynamics, the error dynamics

formulated as

can be

e:Aee + [-f-h -d +Amx +Bar -Bu -Ke]

To satisfy the desired error dynamics, the control input u must be functioned to make

[-f -h -d +Amx +Bar -Bu -Ke] = 0

Observe the above equation; only h and d are unknown. They can be estimated from the measured

information at time t -L, with

fi(x,t)+ d(t) =_fi(x,t- L) + d(t- L) ---,,(t- L) - f (x,t- L) - B(x,t- L)u(t- L)

Then the TDC control law is

u(t) = B+(t)[f (x, t - L) - X(t - L) + B(x, t - L)u(t - L) - fit) + A.,x(t) + Bmr(/) - Ke(t)]

Rewrite the dynamics equation of the magnetic levitated linear positioning system as

£1 =X2

£2:-1{[K1 .(x, +Xp)]+[K2(xl)" (i+ib)+mb/]}+bi

and let

E x2 Ih x,[fix) = -Kl " (xl + Xp)/m '

then by choosing the reference model as

£2 -100 -20

0 lan .:[0]-K2(Xl) • (i + ib)/m - bi b

1[1[°1xl + i
x2 100

and K ---0, then the control force is
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i(t) = _-l {Kl[xl(t-L)-xl(t)l/m- _c2(t-L)+ b(t-L)i(t-L)- 100xt (t)- 20x2(t)+ 100r(t) }

The simulation results are shown in F!gure 7 and Figure 8. In the simulation, the control force is limited

with a saturation bound [-3.5, 10] and b is chosen to be a constant 10. Under the case in Figure 7, the

linear positioning system is subjected to a step disturbance in the axial direction at time t = 0.5 sec, whose

amplitude is -0.1. For the case in Figure 8, the system is utilized to move a load with mass equals to 5 m,

the mass of the moving part.

3.5

3

E
_._..2.5

0
e_

1.5

1
0 0.5 I

time (sec)

1.5 2

15

G"
0

_10
E
(3

tO

_9o 5

/
0

0 0.5 1

time (sac)

1.5

10

-5

1

0.5 1 1.5 2 0 0.5 1 1.5

time (sec) time (see)

Figure 7 Simulation result with Time Delay Controller.

415



0 0.5 1

time (sec)

1.5 2

10

(J

E
¢o
v

to

O

¢1
>

-5
0.5 1 1.5

time (sec)

10

A
.<

= 5
to

,2o

O

0
O
¢J

2

0

-1-5
0 0.5 1 1.5 2 0 0.5 1 1.5 2

time (sec) time (sec}

Figure 8 Simulation result of TDC

Time Delay Controller with Mean Value Theorem

The method described in the previous section requires the measurement of _c2. It means that the designer

must take care of either the noise induced by numerical derivativeness or the setting up of the

accelerometer. An alternative scheme is introduced by Youcef-Toumi[4] with the application of

the mean-value theorem as follows:

Define the unmodeled dynamics W = h + d; the error dynamics can be written as

e=A_e + [-f-W +Amx +Bmr -Bu -Ke]

Integrate the equation at both sides to get

e(l) -----(I)(t, to)e(/'o ) "4- _'tot _(t, x) [A,.x('t) + B,.r(x) - fix) - W(x) - Bu(x) - Ke('t)ld'c
Vt > to

416



where

q)(t, "r) = e A'(t-_)

Then

I t (I)(/, t)_IJ(t)dt = (I)(/,/o)e(to) - e(/) + f t (I)(t, t) [Amx(t) + Bmr(t) - f(t) - Bu(t) - Ke(t)ldt
t0 l 0

Utilizing the mean-value theorem approximation, the above equation can be approximated by

Is' I = _(t, "0 [Amx('0 + Bar(Z) - fit) - Bu('0 - Ke('01&to _(t, _) dT ¢-F(t) _(t, to)e(to) - e(t) + Ire

Thus the control force can be found as

u=B+[Amx +Bar -f-_ -Ke]

With the same choice of reference model in the previous section, the simulation result with

disturbance in axial force is given in Figure 9. Figure 10 demonstrates the result of load effect.
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Figure 9 Simulation result with modified Time Delay Controller (I)
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Figure 10 Simulation result with modified Time Delay Controller (II)

Discussions

From the simulation results, the property of "disturbance rejection" of Time Delay Controllers is

demonstrated. Due to the saturation constraint in the control force, the controller can perform well with

limited external load. With the mean-value approximation, the performance is improved. But it requires

a higher sampling rate to gather more information in the^delay time.

During the design stage, the choice of parameter b plays an important role. In general, if we^ know

more about the nonlinear dynamics of the system to be controlled, we can have a better choice of b. Under

the situation that no information is given for the unknown dynamics, we usually choose b as a constant

value. From simulation results shown in Figure 1 l, we conclude that the larger b provides moreguaranteeon

the "disturbance rejection", but has poorer performance.But, the larger b drives the control force to the

saturation bound easily and consequently the system fails to work.
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CONCLUSION

Applying the equivalent magnetic flux density between the solenoid and permanently magnetized rod, a

method of modeling the force-position relation in the solenoid-rod configuration is proposed. Based on the

model, a "current controlled stiffness" spring serves as a low friction linear positioning system. Two kinds

of Time Delay Control schemes are applied to control the system. The Time Delay Controller is a fast

adaptive control scheme without identification of the dynamics of the plant to be controlled, so it can be

easily implemented. From the simulation results, the property of disturbance rejection is demonstrated.
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