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ABSTRACT

Theoretical results that enable rigorous statements of convergence and exponential stability of

Galerkin approximations of LQR controls for infinite dimensional, or distributed parameter, sys-

tems have proliferated over the past ten years. In addition, extensive progress has been made over

the same time period in the derivation of robust control design strategies forfinite dimensional

systems. However, the study of the convergence of robust finite dimensional controllers to robust

controllers for infinite dimensional systems remains an active area of research. In this paper we

consider a class of soft-constrained differential games evolving in a Hilbert space. Under certain

conditions, a saddle point control can be given in feedback form in terms of a solution to a Riccati

equation. By considering a related LQR problem, we can show a convergence result for finite

dimensional approximations of this differential game. This yields a computational algorithm for

the feedback gain that can be derived from similar strategies employed in infinite dimensional

LQR control design problems. The approach described in this paper also inherits the additional

properties of stability robustness common to game theoretic methods in finite dimensional analy-

sis. These theoretical convergence and stability results are verified in several numerical experi-
ments.

* Department of Aerospace Engineering. The research of the first and

third authors was supported in part by AFOSR grant F49620-92-J-0450.

** Department of Mathematics. The research of the second author was

supported in part by the Institute for Scientific Computing. Texas A&M University

5"[--¢ _,_...... ....
PAGE _ INL,_t =c_,_L'_f BLANK

pg_mr_6M_ IMAGE ItLANg blOT FILIMf_ 519



(1) INTRODUCTION

During the past ten years, significant progress has been made in the derivation of convergence cri-

teria for Galerkin approximations of linear quadratic regulator control problems in Hiibert spaces

[Banks, Gibson79,Gibson91,lto90...]. Usually, these methods synthesize classical results on the

convergence of Galerkin approximations for elliptic, hyperbolic and parabolic partial differential

equations with minimization strategies for convex cost functionals. During the past few years,

however, researchers studying control theory have been increasingly interested in the derivation of

control schemes that are robust with respect to uncertainty, either structured or unstructured, in the

underlying model [McFarlane,Maciejowski ].

One approach that has been employed with success in the development of finite dimensional con-
trollers is the min-max, or soft-constrained differential game, formulation [Basar]. In this class of

techniques the "best" controller is sought subject to a "worst case" disturbance. Extension of this

approach to infinite dimensions has also been made recently in principle [ Curtain]. However, the

arguments regarding the convergence of the associated finite dimensional Riccati approximations
can be more delicate than in the similar LQR minimization case [Attouch,Cavazzuti].

In this paper we show that, in certain cases, the solution to the min-max problem is equivalent to

the solution of a related LQR minimization problem. In these cases the approximation theory for

the LQR minimization problem [ Gibson79,Gibson9 l,lto90...] can be brought to bear, and the so-

lution of the min-max problem can be approximated by a sequence of solutions to finite dimen-

sional Riccati equations. Thus, this gives a computational method for obtaining a feedback control

for a class of infinite dimensional problems which is both optimal and robust with respect to un-

certainty.

(2) PROBLEM STATEMENT

Let H, U and W be real, separable Hilbert spaces and suppose that B _ L(U, H) and dO _ L (W, H)

are bounded operators.

Consider the evolution equation on H

it(t) = Ax ( t) + Bu ( t) + dOw ( t)

x(O) = x o _ H is given

(2.1)

where A is the infinitesimal generator of a strongly continuous exponentially stable semigroup S(t)

on H. In the following discussion, it is assumed that the initial point x(0) is fixed. Furthermore, it

is assumed that one can define the observation from the state via the relationship

y(t) = Cx(t)

C e L (H, H) (2.2)
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The optimal control problem to be considered is the infinite dimensional version of the so-called

"soft-constrained differential game" as described, for example, in [Basar]. This problem can be

stated by first defining the "disturbance-augmented" cost functional

1_,_ 1
J(u,w) = _ o {[[Y(t) ll_+(Nu(t),u(t))u-_(Mw(t),w(t))w}dt (2.3)

where _' e _ is a fixed positive constant, and N c L ( U, U), M e L ( W, W) .

Define the spaces U = L 2 (O, oo; U) and W =

is to find

Jo = inf
ueU

L 2 (O, o% W'). The differential game to be solved

sup J (u, w)
w e W (2.4)

subject to dynamics governed by (2.1) - (2.2).

A solution (u 0, w 0) is called a saddle point of J(u,w) if and only if

J(u O,w) <J(u O,w °) <J(u,w O)

V(u,w) e OxW (2.5)

Roughly speaking, the problem to be solved consists of two parts:

(P1) Find conditions that are applicable to a reasonably large class of problems

for which there exists a unique saddle point solution

(u °, w°) e Ux W,

and such that the solution is given in feedback form.

(P2) Find a method for constructing a sequence of finite dimensional approximations

whose feedback solutions converge to the solution of (2.4).

Next, we discuss conditions under which P1 and P2 can be solved.
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(3.) CHARACTERIZATION OF A SOLUTION

We make the following assumptions (which we will show guarantee that there exists a unique sad-

dle point value to the differential game outlined above):

(HI) Thereexists dl>0 such that(Nu,u)u>dtllull2ofor all ue U

(H2) There exists d2>0 such that(Mw, w)w>d211wll2w for all we W

(H3) BN-IB * -_OM--iO * > 0

Conditions H 1 and H2 are necessary to ensure invertibility of N and M. Condition H3 is necessary

for the characterization of the saddle point in feedback form, and for the arguments for conver-

gence of finite dimensional approximations. While condition H3 is somewhat strong, the assump-

tions above are applicable to a wide variety of distributed parameter control problems and are

extremely convenient for consideration of the convergence of finite dimensional Galerkin approx-

imations. (In a future manuscript we will report on structures application for which H3 is not sat-

isfied, and on our efforts to relax this assumption).

Before stating the main existence and uniqueness result, we consider a reformulation of the state

equation. Define the space R = L 2 (0, oo;H) and observe that a homogeneous (zero initial data)

version of (2.1) is given by

Ax = Bu + dOw

Here the operator A is defined on the domain

- dx
dora A = (xe H -_-Axe H,x(0)= 0}

by

Ax (t) dX-Ax
= dt (t),

and B e L ( U, H), and _ e L ( W, H) are multiplication operators given by

(Bu) (t) = Bu(t)

(dOw) (t) = tbw(t)

We also define the multiplication operators 6" e L (H, H), At e L ( U, U) and M e L ( W, W) in

the obvious way. In this paper we frequently will not distinguish between an operator (such as C)

and the corresponding multiplication operator (6") when it is clear from the context which operator

is used.
With these definitions, the variation of constants form of the solution to (2.1) can be
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given by

x = A-IBu + A-l_w+f

where f = S(t)x o . Here, A-le L(H,H) is defined by A-ix(t)
Hence, the differential game is to find

(3.1)

=  'oS(t-s)x(s)ds.

inf sup
Jo = -- _ J(u, w)

ue U we W

subject to (3. I).

Theorem (3.1) • Suppose that conditions (HI), (H2) and (H3) hold. Then

(u °, w °) e U x W

such that

Jo = inf_ sup__ J (u, w) = J (u °, w °)
ue U we W

Moreover, (uO, w O) is given by

w 0 (t) = T2M-Io * Fix 0 (t)

u 0 (t) = -N'-IB * l-Ix 0 (t)

there exists a unique

(3.2)

(3.3)

Here

where

x ° = A-IBu°+A-IOwO+f

FI is a positive definite solution of the algebraic Riccati equation

(Hx_A y) H + (Ax, H y) H + (6"* Cx, y) H - (FI_f2Hx,y)t t =

for any x, y e D (A ) c H where

f2 - [BN-IB * -_OM-I_ * ] 1/2 >0

0 (3.4)

Observe that (H3) guarantees that

= [BN_IB , _¢OM_Io.] 1/2

is well defined. Since Equations (3.2), (3.3), and (3.4) relate the saddle point to the algebraic Ric-
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cati equation, we can apply known methods and techniques for approximation of Riccati equations

to this problem.

The proof of Theorem (3.1) is developed through a sequence of lemmas. (We are using notation

and definitions from [Zeidler]).

First, recall that for each fixed (u,w), the G-derivative of J(u,w) with respect to u, denoted by

Ju (u,w), is defined by

J(u + tx, w) -J(u, w)
= lim

(Ju(U'W)'X) tj t_o t
(3.5)

Similarly, the G-derivative Jw(U,W) of J(u,w) with respect to w is given by

J(u, w + ty) -J(u, w)
= lim

(Jw(U'w)'Y)w t_o t

for any y _ W. Also,

(Ju(u,w),-Jw(U,W)) _ Ux W

(3.6)

and for any (x, y) _ U x k'¢, we have

((Ju(U,W)'-Jw(U'W)) (x,y))- - =' OxW (Ju (u, w), x) O+ (-Jw (u, w), y) g,

Recall also that if X is a Hilbert space, then an operator r (which may not be linear) from X to X

is called strongly monotone if there is a fixed positive number d such that

(rx,- rx 2, x 1 - xz) x >-rillx' - x2112x

for any x i, x 2 E X. The following lemma gives some nice properties about G-derivatives of

J(u,w).

Lemma 3.1 :

i) for fixed w

ii) for fixed u

iii)

If (H l) and (H 2) hold, then the following are true:

W, J,, (u, w) is strongly monotone on J.

U, and sufficiently small yz, -Jw is strongly monotone on W.

for sufficiently small yz, (j,, -Jw) is strongly monotone on U × W.
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Proof: By direct computation using (2.3) we have

where

1 (Du, u) +(u, Gw+Ff) o+Q(w,f)J(u,w) = _ 0 (3.7)

D = N+B* (A-1)*C*CA-IB

G = B* (A-1)*C*CA-IO

F = B* (A-I)*c*c

I
1 (Mw, w) _t+ 1 (CA_lOw, CA_lOw) _+ 2 (Cf, Cf) _t

O(w,f) = (CA-lOw, f) H 272

According to (3.5), we obtain

Ju (u, w) = Du + Gw + Ff (3.8)

m

Therefore, for any u l, U 2 E U, and fixed w e W, it follows from (H1) that

(Ju (UI' W) -- Ju (u2, w), u I - u2) 0 = (D (u i - u2), u I -/22)

-> (g(ut-uz)'Ul-U2)o >--alllul-u21lz U_t

Hence, i) is true. Similarly, we can write

1
J (u, w) = - _ (D'w, w) _/+ (w, G* u + F'f) V¢+ Q' (u,f) (3.9)

where

G_

D' 1 O* *= M- (A -I) C* CA-10

the adjointofG = O* (A-I)*C*CA-IB

F' = O* (A-I)*c*c

1 * 1
Q'(u,f) = _((N+B*(A -1) C*CA-1B)u,u)o+_(Cf, CJ);I

Hence, from (3.6), we have

+ (CA-IBu, Cf) _t
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Jw(U, W) = -D'w+G_u+ F'f

For any w i, w 2 _ W and fixed u _ U , it follows from (H2) that

(- Jw (u, w 1) + Jw (u, W2), W 1 -- W2) _t = (D' (w I - w2), w| - w2) _t

= 1 (M(w I _w2), w 1 _w2) _ (CA-IO (wl _W2) ' CA-IO(wI_w2))F.I

_ w 2>

(3.10)

Therefore, for sufficiently small _, there is a positive constant d so that

+Jw(U,W2),w -w2) ,>-Jtlw -w211 

Thus, ii) is verified. Finally, for any (up wl), (u 2, w 2) e Ox IAt and sufficiently small '_, it

follows that,

( (Ju (ui, wi) - Jw (Ul, Wl) ) - (Ju (u2, w2) - Jw (U2, W2) ),(Ul, Wl) - (u2, w2))Dx_,

= (Ju(Ul, Wl) -Ju(u2, W2), U 1 -- U2) 0+ (-Jw(Ul, w 1) +Jw(U2, W2),Wl-w 2)

=(D(u 1 -u2) +G(w i --W2), Ul--U2) 0+ (D'(w 1 --W2) -G* (Ul-U2), w I -w2) _/

= (D(Ul-U2),Ul-U2)o+ (D'(Ul-U2),Wl-W2)_/

+ (G (W 1 -- W2), U 1 --/12 ) U-- (G* (u 1 - u2), w I - w2) _¢

(D(u l-u2),u l-u 2) 0+ (D'(w I-w2),w l-w 2)

>_dll Iu, - u211 +dllw, - w211 

Hence, this lemma is completed.

The existence and uniqueness of a saddle point of J(u,w) are illustrated in the following lemma.
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Lemma 3.2: Assume that (H1) and (H2) hold. There exists 00 > 0 such that if 0 < _2 < Oo , then

J(u,w) has a unique saddle point.

Proof: Clearly J(u,w) is continuous with respect to u and w. Further, it follows directly from (3.7)

and (3.9) that for sufficiently small T2 ,

i) u -4 J (u, w) is convex for each fixed w e W,

ii) w ---) -J (u, w) is convex for each fixed u e U,

iii) J(u,w) _** as Ilu[I _,, foreach fixed we W,

iv) -J (u, w) _ ** as IIwll --_ _, for each fixed u e U.

The result follows from Theorem I. 1 in [Bensoussan].

The following result characterizes the saddle point.

Corollary 3.1: (uO, w O) is the saddle point of J(u,w) if and only if Ju(uO, w°)=Jw(uO, wO)=o.

Proof: See [Zeidler], p. 467.

The next result gives a further characterization of the saddle point.

Lemma 3.3: Let

where x ° ( t)

J(u,w).

u 0 (t) = -N'-IB * (A-l) * C* Cx 0 (t) (3.1 I)

w 0 (t) = T2M"IO * (A-I) * C* Cx ° (t) (3.12)

A-1Bu O(t) +A-lOw O(t) +f. Then (uO, wO) is the unique saddle point of

Proof: From corollary 3.1, we only need to check that

Ju (u°, w°) = Jw (u°, w°) = 0

where uO,w 0 are given by (3.11) and (3.12). In fact, applying (3.8), we have

Ju(U°, W°) = (N+ B* (A-1)*C* CAB) (-N-IB *(A-t)*C*Cx °)

+ (B* (A-l)* C*CA-IO) (T2M-IO * (A-I)*c* Cx °) +B* (A-1)*C*Cf

= B* (A-1)*C*C(-x°+A-IBu°+A-IOw°+]) = 0
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Similarly, from (3.10) we have

Jw ( u°, w°) = -(_2 M+ (-¢* (A-l)* C* CA-I¢) ) (_M--I¢ * (A-I) * C* Cx °)

+ (¢* (A-1)*C* CA-IB) (-N'-IB * (A-1)*C* Cx °) +O* (A-l)* C* Cf

= _* (A-I)*C*C(-x°+A-IOw°+A-IBu°+f) = 0

Hence, (uO, w°) is the unique saddle point of J(u,w).

The following lemma characterizes the saddle point in terms of the solution to an algebraic Riccati

equation. We note that H3 has not been used until now.

Le mma 3.4:

pressed as

Assume that (H1)-(H3) hold. Then the unique saddle point (u °, w°) of J can be ex-

u0 (t) = -N-1B * IIx 0 (t)

w° (t) = _M-l¢ * rlx ° (t)

where x°(t) = (A-IBu °) (t) + (A-lOw °) (t) +f(t)

the Riccati equation

, and H is the unique solution of

(Hx, Ay)_+ (Ax, FIy)_+ (C*Cx, y)_- (FIfl2Hx, y)_ = 0

1/2

forany x,y_ D(A)_H and fl = (BN"IB*-T2OM-lO *)

Proof: This result follows from [Bensoussan].

Therefore, the proof of Theorem 3.1 is completed.

(4.) CONVERGENCE OF GALERKIN APPROXIMATIONS

Perhaps one of the most attractive features of the method described in this paper is that the conver-

gence of the Galerkin approximations of the saddle point solution to the differential game is guar-

anteed by the rich collection of Galerkin approximation results available from infinite dimensional

LQR minimization formulations. This is because the solution of the infinite dimensional LQR

minimization problem
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inf f** {iCz(t)12+lv(t)l_}dt
v_ H J°

subject to the evolution equation in H

(4.1)

£(t) = Az (t) + f_v(t)

z(O) =Zo_ H
(4.2)

is characterized by the same algebraic Riccati equation that solves the differential game of the pre-

ceding section, namely

(Flx,Ay)H + (Ax,Hy) H + (C* Cx,y)H - (l-l_Flx,y)H = 0 (4.3)

With this observation, the idea is to construct finite dimensional versions of (4.1) - (4.3) and then

to apply known convergence results such as those found in [Ito] and [Kappel, Salamon]. To pro-

ceed, let { H n } n= 1 be a family of finite dimensional subspaces of H satisfying

oo

H= L.)H n
n=l

We assume that there are operators A. _ L (H., H.), fl _ L (H., H.), C. _ L (H., H.) and that

Pn is the orthogonal projection from H to H n.

With these finite dimensional operators and spaces, one can consider the following LQR minimi-

zation problem:

inf 2 +lv(t)l 2 }dtH. {IC.z.(t)lH. H.

subject to the evolution equation in H n

2 n (t)

z.(o)

= AnZnt + f_nv (t) (4.2) n

= PnZo

The optimal feedback gain for this problem is characterized by a solution to the following algebraic

Riccati equation:

* _ (4.3) nA *FI + UAn + C n C n I-I_ f_ FI = 0
n n tl

529



If I-In and II are the minimal nonnegative solutions of (4.3) n and (4.3) respectively, then we may

appeal to results in the distributed parameter control literature ( [Banks & Kunisch], [Gibson91 ],

[Ito87,lto89], [Kappel, Salamon] ) for conditions under which HnP n --* H. The following condi-

tions can be found in [Ito87].

(H4) For each x _ H, S n ( t) Pn x _ S ( t) x and Sn* ( t) P nx _ S* (t) x, and the convergence

is uniform in t on bounded subintervals of [0,t].

Here, S n (t) = exp (tA n) is the semigroup generated by A n. Note that at t=0, this

condition implies that Pn x -'_ x for all x _ H.

(HS) For each x _ H, f_nPnx _ _x, CnPn x _ Cx and Cn* Pn x _ C*x.

(H6) The family of pairs (A n, _n) and (A n, Cn) are uniformly stabilizable and uniformly

detectable, respectively. In other words,

(i) there exists a sequence of operators Kn _ L (H n, H) such that

suPllg.ii <o0

(A. - ilK.) t < -colt[e Phi t>O-Mne

for some positive constants M 1 and C°l, and

(ii)there exists a sequence of operators G n _ L (H n, H) such that

suplIanlI<o0

[leCa'-o'c')'e.ll<_M2e-': t>_o

for some positive constants M2>I and or 2.

The following result is found in [ Ito].

Theorem 2 : Under the assumptions (H4)-(H6), the unique nonnegative solution H n of(4.3) n con-

verges strongly to the nonnegative solution II of(4.3); that is,

lim IIfix- n Pnxll 0
n ----_ oo

The point of all this, of course, is that (4.3) n is finite dimensional, and so we can solve for l-In

merically. This is done in the next section for specific examples.

nu-
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5. NUMERICAL EXAMPLES

In this section we report on some numerical results for a simple example involving the heat equa-

tion in a rod. Consider the equation

Yt (t, x) = aYxx (t, x) + b (x) u (t) + #?(x) w (t)

y(O,x) = Yo(X)

0_xAl

(5.1)

with Neumann boundary conditions

Yx(t, O) = 0 = Yx(t, 1) (5.2)

In addition, consider the LQR cost functional

1
Jo (u) = -2Io {I lqy(t'x) 2dx+ Nlu(t)[2} dt

and the disturbance augmented cost functional

Jl(U) = llo {Ilqy(t,x)2dx+Nlu(t)12-_MIw(t)12}dt

(5.3)

(5.4)

We setU = 9_,W = 9_, and consider the following two problems:

inf Jo(u )
u_U

(5.5)

subject to dynamics governed by (5.1) with _ - 0, and

inf_ sup_ Jl (u, w)
u_ U we W

(5.6)

subject to the dynamics governed by (5.1).

In our basic numerical experiment, we implement the LQR feed back controller (from (5.5)) in the

presence of a disturbance, and then do the same for the game theoretic controller (from (5.6)). We

then compare the performance of the two controllers in the presence of disturbance. Before giving

some numerical results, we briefly discuss how this problem is reformulated within the framework

developed earlier.

First, set H = L 2 (0, 1 ) and define the operators B _ L (U, H), • _ L (W, H) by Bu = b (x) u,

and _w = _ (x) w. In addition, define the operator A on the domain

dom A = {y_ n2(0, 1); y'(0)= y'(1)= 0} (5.7)

by Ay = ay".
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Next we introduce Galerkin approximations based on finite dimensional spaces H n with linear

spline ("hat" functions) shape functions. This leads to the following finite dimensional version of

(5.1):

6_ (t) = Anot (t) + Bnu (t) + _nw (t) (5.8)

cx(0) = %

where oc (t) _ _n, and A n, B n, _n are n x n, n x 1 and n x 1 dimensional matrices, respectively.

We use I-I0 to represent the solution of the finite-dimensional algebraic Riccati equation associated

with the LQR cost functional

Jg(u) = _o {qCt(t)rcz(t) +Nlu(t)12}dt

and I-I n to represent the solution of the Riccati equation associated with the game theory cost func-
tional

Jnl(U'W) = _o {q(X(t) T(x(t)+glu(t)12-_Mlw(t)2l}dt

In the figures below we plot the approximation to y (t,x) for several different problems.

As data for these examples, we used a=l, N=I, M=I, q=lO, T = 0.5, b (x) = 0.25, _ (x) = -0.35

and Yo(X)= 10x.

In Figure 1 we plot the open loop solution for the problem

6t(t) = Anot(t)

In Figure 2 we plot the LQR closed loop solution (no disturbance) for the problem

6t (t) = (A n - BnN--IBnrrlo ) ct (t)

In Figure 3 we plot the LQR closed loop solution (with disturbance term) for the problem

6_ ( t) = (A n - BnN-1Bnrl-lo) o_( t) + *nw ( t)

In Figure 4 we plot the game theory closed loop solution (with disturbance term) for the problem

6t (t) = (A n - BnN-IBnTI-I l) Ot (t) + rbnw (t)

While figures (1) - (4) describe the qualitative nature of the transient response in each of the four

cases, figures (5)-(8) illustrate an important difference in the examples by taking a cross-section

in space at x=2/3. The basic observation to be made is that the game theory controller improves

performance (in the sense of driving the state to the zero equilibrium position) in the presence of

disturbances. We have performed several such experiments with various parameters (including

Dirichlet boundary data) and observed qualitatively the same behavior. We are currently applying

this method to systems involving elastic structures. Preliminary results indicate that an LQR con-

trolled system may, even worse than performing poorly, become destabilized in the presence of

disturbance. These results will be reported in a future manuscript.

532



Figure (1) Open Loop Response Figure (2) LQR Closed Loop Response
No Disturbance

Figure (3) LQR Closed Loop Response
With Disturbance Figure (4) Game Theoretic Closed Loop

Response with Disturbance

\

't

Figure (5) Open Loop Response, x=.75

1

Figure (6) LQR Closed Loop Response, x=.75
N6 Disturbance

!

I
-2+

°_.I.

"'t

Figure (7) LQR Closed Loop Response, x=.75
With Disturbance

Figure (8) Game / LQR Closed Loop Response, x=.75
With Disturbance
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One of the key motivations for the work in this paper is the applicability of the approach

to uncertain distributed parameter systems. A second numerical example outlined in this section

has been based on examples in [Rosen], but with the introduction of a region of the structure in

which the control influence is uncertain. Again, the problem is to find

oo

l(w(t),w(t))w}dt
inf_ sup__ _ {(Qy(t),y(t))H+N(u(t),u(t))u_ _

u_ U we W 0

where

H= L2(0, 1)

U= L2(0, 1)

W=_

= L 2 (0, .o;H)

= L 2 (0, oo;H)

= L 2 (0, oo;_)

The min-max problem stated above is subject to the evolution equation

_2

_tY(t,x) = a-_x2Y(t,x ) +bu(t,x) +t_(x)w(t)

y(t,O) = y(t,l) = 0 for t>O

y(O, rl) = y°(rl) for 0<_ < 1

where the operator d: is defined by

(x) w (t) w(t)
0 otherwise

and where a=.25, b=l.0, N=.01, 91=.49, and 1_2=.51. Motivated by [Rosen], the operator Q is de-

fined to be simply the projection onto the first three open loop modes

3

(Qf) (x) = ___ (f, ei)ei(x)
i=1

where e i (x) = 4r2sin (ircx).

The operator _ represents the "spatially structured" disturbance. In actual applications, the dis-
turbance could be due to sensor dynamics or structured parametric uncertainty. In either case, the
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task is to design a finite dimensional controller that is robust with respect to the class of distur-

bances that can be input by t_. Figures (9) through (12) depict the transient response of the heat

equation in the rod where

1
0-

is defined to be 0 = 0.5 in this example. The system is clearly exponentially stable, as predict-

ed by the theory, despite the introduction of disturbance. From [Curtain] and the discussion earlier

in this paper, one can conclude that the disturbance attenuation of the closed loop transfer function

from disturbance to input and output is bounded by

IITctll-<

where

1
0-

Even stronger conclusions can be obtained for this particular problem by noting that the entire heat

equation, including disturbance, can be cast in terms of HUbert-Schmidt operators as described in

[Rosen]. The Hilbert-Schmidt norm of the difference between the approximating Riccati equation

solutions and the actual Riccati equation solution converges to zero. This is demonstrated graph-

ically in figures (13) through (15) which show the kernels used to represent the Riccati operators.

The kernels clearly converge as the level of discretization increases. Furthermore, for the small

value of 0=.0001 selected, the Riccati operators should be quite close to the LQR approximations.

This is, in fact, the case, as can be concluded by comparing figures (13) - (15) with figures (4.1b),

(4.1c) and (4.1d) of [Rosen]. The Riccati kernels for 0=.5 are depicted in figures (16)-(19).
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Figure (9) Heat Equation Transient Response, Nc---8
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Figure (! 0) Heat Equation Transient Response, No= ! 3
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Figure (12) Heat Equation Transient Response, Nc=33
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Figure (13) Heat Equation Riccati Kernel, N=8, 0=.0001

Figure (14) Heat Equation Riccati Kernel, N=8, 0=.0001
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Figure (15) Heat Equation Riccati Kernel, N=8, 0=.0001
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Figure (16) Heat Equation Riccati Kernel, N=8, 0=.5
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Figure (17) Heat Equation Riccati Kernel, N=I6, 0=.5
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Figure (18) Heat Equation Riccati Kernel, N=I6, 0=.5
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Figure (19) Heat Equation Riccali Kernel, N=32, 0=.5
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