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ABSTRACT

Theoretical results that enable rigorous statements of convergence and exponential stability of
Galerkin approximations of LQR controls for infinite dimensional, or distributed parameter, sys-
tems have proliferated over the past ten years. In addition, extensive progress has been made over
the same time period in the derivation of robust control design strategies for finite dimensional
systems. However, the study of the convergence of robust finite dimensional controllers to robust
controllers for infinite dimensional systems remains an active area of research. In this paper we
consider a class of soft-constrained differential games evolving in a Hilbert space. Under certain
conditions, a saddle point control can be given in feedback form in terms of a solution to a Riccati
equation. By considering a related LQR problem, we can show a convergence result for finite
dimensional approximations of this differential game. This yields a computational algorithm for
the feedback gain that can be derived from similar strategies employed in infinite dimensional
LQR control design problems. The approach described in this paper also inherits the additional
properties of stability robustness common to game theoretic methods in finite dimensional analy-

sis. These theoretical convergence and stability results are verified in several numerical experi-
ments.

* Department of Aerospace Engineering. The research of the first and
third authors was supported in part by AFOSR grant F49620-92-1-0450.

** Department of Mathematics. The research of the second author was i
supported in part by the Institute for Scientific Computing, Texas A&M University

PRECEDWNG PAGE BLANK NOT FLMER 5/% 519

INTERTIUNALL Y BLANK |




(1) INTRODUCTION

During the past ten years, significant progress has been made in the derivation of convergence cri-
teria for Galerkin approximations of linear quadratic regulator control problems in Hilbert spaces
[Banks, Gibson79,Gibson91,1t090...]. Usually, these methods synthesize classical results on the
convergence of Galerkin approximations for elliptic, hyperbolic and parabolic partial differential
equations with minimization strategies for convex cost functionals. During the past few years,
however, researchers studying control theory have been increasingly interested in the derivation of
control schemes that are robust with respect to uncertainty, either structured or unstructured, in the
underlying model [McFarlane,Maciejowski ].

One approach that has been employed with success in the development of finite dimensional con-
trollers is the min-max, or soft-constrained differential game, formulation [Basar]. In this class of
techniques the “best” controller is sought subject to a “worst case” disturbance. Extension of this
approach to infinite dimensions has also been made recently in principle [ Curtain]. However, the
arguments regarding the convergence of the associated finite dimensional Riccati approximations
can be more delicate than in the similar LQR minimization case [Attouch,Cavazzuti].

In this paper we show that, in certain cases, the solution to the min-max problem is equivalent to
the solution of a related LQR minimization problem. In these cases the approximation theory for
the LQR minimization problem [ Gibson79,Gibson91,1t090...] can be brought to bear, and the so-
lution of the min-max problem can be approximated by a sequence of solutions to finite dimen-
sional Riccati equations. Thus, this gives a computational method for obtaining a feedback control
for a class of infinite dimensional problems which is both optimal and robust with respect to un-
certainty.

(2) PROBLEM STATEMENT

Let H, U and W be real, separable Hilbert spaces and suppose that B € L(U, H) and ®eL(W, H)
are bounded operators.

Consider the evolution equation on H
i(t) = Ax () +Bu (1) + Pw (1)
2.1)

x(0) =x,€eH is given

where A is the infinitesimal generator of a strongly continuous exponentially stable semigroup S(t)
on H. In the following discussion, it is assumed that the initial point x(0) is fixed. Furthermore, it
is assumed that one can define the observation from the state via the relationship

y(n =Cx()
Ce L(H, H) (2:2)
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The optimal control problem to be considered is the infinite dimensional version of the so-called
“soft-constrained differential game” as described, for example, in [Basar]. This problem can be
stated by first defining the “disturbance-augmented” cost functional

1
7

where Y€ R is a fixed positive constant,and Ne L(U,U),Me L (W, W) .

W) = 3 [s Uy 13+ N (), u (1) y= 5 Mw (), w(D) ddr (23)

Define the spaces U = L*(0,%;U) and W = L?(0, ; W) . The differential game to be solved
is to find

J, = inf sup_J(u, w)

ue U we W (24)

subject to dynamics governed by (2.1) - (2.2).
A solution (uO, wO) is called a saddle point of J(u,w) if and only if

J(uO, w) SJ(uO, wO) <J(u, wO)

Y(u,w) e UxW (2.5)

Roughly speaking, the problem to be solved consists of two parts:

(P1) Find conditions that are applicable to a reasonably large class of problems
for which there exists a unique saddle point solution

(uo, wO) e Ux V_V,

and such that the solution is given in feedback form.

(P2) Find a method for constructing a sequence of finite dimensional approximations
whose feedback solutions converge to the solution of (2.4).

Next, we discuss conditions under which P1 and P2 can be solved.

521



(3.) CHARACTERIZATION OF A SOLUTION

We make the following assumptions (which we will show guarantee that there exists a unique sad-
dle point value to the differential game outlined above):

(H1)  There exists d; >0 such that(Nu,u)UZdlllullfj for all ue U
(H2) There exists d,>0 such that (Mww) 2 d,lwly, for all we W
(H3) BN 'B* - YoM 'o* 20

Conditions H1 and H2 are necessary to ensure invertibility of N and M. Condition H3 is necessary
for the characterization of the saddle point in feedback form, and for the arguments for conver-
gence of finite dimensional approximations. While condition H3 is somewhat strong, the assump-
tions above are applicable to a wide variety of distributed parameter control problems and are
extremely convenient for consideration of the convergence of ‘finite dimensional Galerkin approx-
imations. (In a future manuscript we will report on structures application for which H3 is not sat-
isfied, and on our efforts to relax this assumption).

Before stating the main existence ax%d uniqueness result, we consider a reformulation of the state
equation. Define the space H = L” (0, oo;H) and observe that a homogeneous (zero initial data)
version of (2.1) is given by

Ax = §u+5w.

Here the operator A is defined on the domain

dom A = {xe H ‘—(%—Axe H, x(0)= 0}
by
dx
Ax(t) = a—t—Ax(t),

and Be L(U, H), and ® € L (W, H) are multiplication operators given by

(Bu) (1) = Bu(1)
(Ow) (1) = Ow (1)

We also define the multiplication operators Ce L(H,H), Ne L(U,U) and Me L(W,W) in
the obvious way. In this paper we frequently will not distinguish between an operator (such as C)
and the corresponding multiplication operator (C ) when it is clear from the context which operator
is used.

With these definitions, the variation of constants form of the solution to (2.1) can be
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given by
x = A Bu+ A '®w+f 3.1

where f = S(t)x,. Here, A™'e L(H, H) is defined by A-lx(r) = ,[:;S(t-s)x(s) ds .
Hence, the differential game is to find

inf  sup I, w)

Jy = —
uell we W

subject to (3.1).

Theorem (3.1) : Suppose that conditions (H1), (H2) and (H3) hold. Then there exists a unique
(uo, wO) e UxW

such that

Jy = inf~ sup_J(u,w) = J(u® w?
0 ue U we W

Moreover, ( uO,wo) is given by
Wl () =M o T (1) (3.2)
Wty =-N"B* 1.0 () (3.3)

where
X = ATBU+ AT oWl f
Here Tlis a positive definite solution of the algebraic Riccati equation
([TxAy)y, + (AxTIy), + (C° Cxy)y — (MQQTMxY),, = 0 (3.4)
forany x,y € D (A) c H where

Q= [BN'B* —yom'd*] 20
Observe that (H3) guarantees that
- 1k, 172
Q = [BN B* —yYOM @*)
is well defined. Since Equations (3.2), (3.3), and (3.4) relate the saddle point to the algebraic Ric-
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cati equation, we can apply known methods and techniques for approximation of Riccati equations
to this problem.

The proof of Theorem (3.1) is developed through a sequence of lemmas. (We are using notation
and definitions from [Zeidler}).

First, recall that for each fixed (u,w), the G-derivative of J(u,w) with respect to u, denoted by
J, (u,w), is defined by

L J(u+tx,w) —J(u,w)
J, (u, w),x)U = xh-l+n0 ; 3.5)

Similarly, the G-derivative J,,(u,w) of J(u,w) with respect to w is given by

o J(u,w+ty) —J(u,w)
U290 = Jim ===

(3.6)

forany y€ W. Also,

(J, (u,w),=J, (u,w)) € UxW

and for any (x,¥) € UX W, we have

(U, u,w), =S, (W), (5 g = (Ju (W), %) o+ (=4, (u, W)Y

Recall also that if X is a Hilbert space, then an operator " (which may not be linear) from X to X
is called strongly monotone if there is a fixed positive number d such that

2
(Tx; = Txy, x; —xp) 24| x, - Xy
for any X,,x, € X. The following lemma gives some nice properties about G-derivatives of
J(u,w).
Lemma 3.1: If (H;) and (Hj) hold, then the following are true:
i) for fixed we W, J, (u, w) is strongly monotone on J.

i) for fixed u € U, and sufficiently small ¥, -J,, is strongly monotone on w.

iii) for sufficiently small ¥, (J,,—1,) is strongly monotone on UxW.
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Proof: By direct computation using (2.3) we have

J(u,w) = %(Du, u)U+ (u, Gw+Fj)U+Q(w,j)

where

D= N+B*(Ah*Cc*cA !B
G = B (Ah) c*cA'o
F=8W\YHYcc

1

27

Q(W’f) = (CA_I(Dst) H

According to (3.5), we obtain
J,(u,w) = Du+Gw+Ff
Therefore, for any 4, u, € U , and fixed w € V_V, it follows from (H1) that
(J, (uy,w) =J, (uy W), uy —u,) U = (D(uy—uy), u; —uy) U
2
2 (N(uyp=ug), uy—uy) p2dyf|uy — ||
Hence, i) is true. Similarly, we can write
J(u,w) = —1(D'w w) —+ (w, G u+Ff)—+Q (u,f)
k4 2 b W b W I

where

D = lpm-—o (A Y Ctcalo

,YZ

G*= the adjointof G = ®* (A-)" C*CA'B

F=ao" (A HY e

3.7

L, o e L
(Mw, W) o+ 5 (CA™'®w, CA™'®w) g+ 5 (CF.CN

3.8)

(3.9)

Q' (u,f) = %((N+B* (A" C*CA 1B u, u) Tha % (ChCH 5+ (CA™'Bu, Cf 5

Hence, from (3.6), we have
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J,(u,w) = —-D'w+G u+Ff

— _ (3.10)
For any w,,w, € W and fixed u € U , it follows from (H2) that

(—J, (u,w)) +J,, (4, wy), w; —w,) W (D' (w;—w,), w, —-wz)v_v

_ % (M (wy = wy), wy =wy) == (CA™'® (w = wy), CA™® (w; —wy))

2 i%— -1p|? W, —w,|>
2 (2 - len 1ol Jjw, -,

Therefore, for sufficiently small ¥, there is a positive constant d so that

2
(=J, (e, W) +J, (4, w)), wy —w)) o 2 dljw, —w| o

Thus, ii) is verified. Finally, for any (4, w;), (45, w,) € Ux W and sufficiently small v, it
follows that ,

((Ju(upwl) ~J (up,wp)) - (J, (uy, wy) -J,, (uy, wy) ) (U, wy) — (uy, Wz))Ux

w

= (J, (uy,wp) =J, (uy, Wz)’“l‘“z)g"’ (=, (up, wy) +Jw(“2»wz)»wx_wz)v_v
=(D(ul—u2)+G(wl—w2),u,—u2)a+(D'(wl—wz)—G*(ul—uz),wl—wz) -
= (D(ul-—uz),ul—uz)U+ (D'(ul—uz),wl—wz)W
+(G(wl—wz),ul—uz)n—(G*(ul—uz),wl—wz)v_v
= (D(”l"uz)’“l_“z)u+ (D‘(wl—wz),wl—wz)v_v
24wy~ w5+ dwy = wol|

Hence, this lemma is completed.

The existence and uniqueness of a saddle point of J(u,w) are illustrated in the following lemma.
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Lemma 3.2: Assume that (H1) and (H2) hold. There exists 90 >0 suchthatif 0< 'Y2 < 90 , then
J(u,w) has a unique saddle point.

Proof: Clearly J(u,w) is continuous with respect to u and w. Further, it follows directly from (3.7)
and (3.9) that for sufficiently small ’Yz .

i) u—J(u,w) is convex for each fixed we W,
iiy w— —J(u, w) is convex for each fixed ue U ,
iii) J(u, w) > o0 as |lull > o for each fixed we W,
iv) —J (1, w) = o0 as |wll — oo for each fixed ue U.
The result follows from Theorem 1.1 in [Bensoussan].
The following result characterizes the saddle point.
Corollary 3.1: (u°wP) is the saddle point of J(u,w) if and only if J (u®w®)=J,,(u®w°)=0.
Proof: See [Zeidler], p. 467.
The next result gives a further characterization of the saddle point.

Lemma 3.3: Let
uO(t) = _N1p* (A'l)*C*CxO(t) 3.11)

W (1) = Mo (AT exf () (3.12)

where x° (H = A~'BuO (n + A low? (tY+f. Then( uo.wo) is the unique saddle point of
J(u,w).

Proof: From corollary 3.1, we only need to check that
J,Wow% =7 v =0
where 1% w? are given by (3.11) and (3.12). In fact, applying (3.8), we have
J (% w% = (N+B* (A1) C*CAB) (-N"'B* (A1) c*cx¥)
+ (B (ATY A1) (Mo (ATH) Crex®) + B (AT Cr e

=B (AN = +A Bl + A oW+ =0
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Similarly, from (3.10) we have
1

YzM+ (-@* (A7) C*CA-'@)) (M (ATH)T ¢ )

7, @ w = —(

+ (B (AHY C*CAIB) (-N'B* (A ) C*Cx% +&* (A ) e
=" (A H (= +A oW+ ATIBO+) = 0
Hence, («°,w0) is the unique saddle point of J(u,w).
The following lemma characterizes the saddle point in terms of the solution to an algebraic Riccati

equation. We note that H3 has not been used until now.

Lemma 3.4: Assume that (H1)-(H3) hold. Then the unique saddle point (uO, WO) of J can be ex-
pressed as

WO = -N1B I (1)
wo(t) = M 'O (1)

where  x°(1) = (A7'Bu®) (1) + (AT1OW®) () +£()  , and 1 is the unique solution of
the Riccati equation

2 -
(ITx, Ay) 5+ (Ax, Tly) 5+ (C*Cx, y) = (MQMx, y) = 0

_ 1 % 1y 12
forany x,y€ D(A) cH and Q = (BN 'B -VOoM d*) |
Proof: This result follows from [Bensoussan].

Therefore, the proof of Theorem 3.1 is completed.

(4.) CONVERGENCE OF GALERKIN APPROXIMATIONS

Perhaps one of the most attractive features of the method described in this paper is that the conver-
gence of the Galerkin approximations of the saddle point solution to the differential game is guar-
anteed by the rich collection of Galerkin approximation results available from infinite dimensional
LQR minimization formulations . This is because the solution of the infinite dimensional LQR
minimization problem



N P (=2 OTR M OIA R (4.1)

subject to the evolution equation in  H

Z2(t) = Az (1) +Qv (1)
Z(O) =ZO€ H (42)

is characterized by the same algebraic Riccati equation that solves the differential game of the pre-
ceding section, namely

(Mx.Ay), + (AxITy), + (C* Cxy), — (MTQQMxY), = 0 (4.3)

With this observation, the idea is to construct finite dimensional versions of (4.1) - (4.3) and then
to apply known convergence results such as those found in [Ito] and [Kappel, Salamon]. To pro-
ceed, let {H,}”_| be afamily of finite dimensional subspaces of H satisfying

H= UH,

n=1

We assume that there are operators A,,€ L(H,,H,),Q e L(H ,H,)),C, € L(H, H,) and that
P, is the orthogonal projection from H to H,,.

With these finite dimensional operators and spaces, one can consider the following LQR minimi-
zation problem:

inf oo

ve H 1o {[Caza Dy + v (DIF, Y at (4.1),

subject to the evolution equation in H,,

Z, (1)
Z, (0)

A, Z1+Q v(D) (42),
PnZO

The optimal feedback gain for this problem is characterized by a solution to the following algebraic
Riccati equation:

* *
AJTI+TA,+CC,-TIQ Q T1 = 0 (4.3),
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If IT_ and [T are the minimal nonnegative solutions of (4.3), and (4.3) respectively, then we may
appeal to results in the distributed parameter control literature ( {Banks & Kunisch], [Gibson91],
[1to87,1to89], [Kappel, Salamon] ) for conditions under which IT P, — I1. The following condi-
tions can be found in [[to87].

(H4)

(H5)
(H6)

Foreachx € H,S, (NP, x> S(Hxand S, (1) P,x - S (1) x, and the convergence
is uniform in ¢ on bounded subintervals of [0,t].

Here, S, (t) = exp(tA,) is the semigroup generated by A,. Note that at r=0, this
condition implies that P,x — x for all x€ H.

For each x € H, Qnan — Qx, C,P x = Cx and C""l Px— Cx.

The family of pairs (4,, Q) and (A,, C,) are uniformly stabilizable and uniformly
detectable, respectively. In other words,

(i) there exists a sequence of operators K, € L (H , H) such that

sup||Ky|| <

" e (A, -QK)t —Q, !

P ll<Me
for some positive constants M and ®;, and
(ii)there exists a sequence of operators G, € L (H,, H) such that
sup|[G, | <

|e“ =P | < My 120

for some positive constants M,>1 and ®,.

The following result is found in [ Ito].

Theorem 2 : Under the assumptions (H4)-(HG6), the unique nonnegative solution I, of (4.3),, con-
verges strongly to the nonnegative solution 11 of (4.3); that is,

lim ) [ix— 11 P x| — 0
n-— oo

The point of all this, of course, is that (4.3),, is finite dimensional, and so we can solve for I, nu-
merically. This is done in the next section for specific examples.



5. NUMERICAL EXAMPLES

In this section we report on some numerical results for a simple example involving the heat equa-

tion in a rod. Consider the equation

y,(t,x) =ay (L, x) +b(x)u(t) +o(x)w(s) 0<x<1

y(0,x) = y,(x)

with Neumann boundary conditions

y,(,0) =0=y.(1)

In addition, consider the LQR cost functional
1 ¢e
Jo(w) = 5[5 {foay (1,0 dx+ Nju (1)} dt

and the disturbance augmented cost functional
1

Y’Z

Ty = 4[5 Ufsay (10 dx+ Nu (D2 = 5 Mw ()]} de

Weset U = K, W = R, and consider the following two problems:

inf_ Jy (u)
ue U

subject to dynamics governed by (5.1) with $ =0, and
i su
tnf_ P_ J, (4, w)

ueU welW

subject to the dynamics governed by (5.1).

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

In our basic numerical experiment, we implement the LQR feed back controller (from (5.5)) in the
presence of a disturbance, and then do the same for the game theoretic controller (from (5.6)). We
then compare the performance of the two controllers in the presence of disturbance. Before giving
some numerical results, we briefly discuss how this problem is reformulated within the framework

developed earlier.

First, set H = L?(0, 1) and define the operators B€ L(U,H), ®e€ L(W,H) by Bu = b(x)u,

and ®w = ¢ (x) w. In addition, define the operator A on the domain
dom A = {ye H*(0,1); y (0)=y (1)= 0}
by Ay = ay".

(5.7)

531



532

Next we introduce Galerkin approximations based on finite dimensional spaces H" with linear
spline (“hat” functions) shape functions. This leads to the following finite dimensional version of
(5.1):

a(t) = Ao () +B "u(t) + O"w (1) (5.8)
a(0) = o
where o (£) € K", and A", B", ®" are n X n,nx 1 and n X 1 dimensional matrices, respectively.

We use Il to represent the solution of the finite-dimensional algebraic Riccati equation associated
with the LQR cost functional

Ty = 5 {ga ) Ta(n) +Nu(n]*} dr

and I1, to represent the solution of the Riccati equation associated with the game theory cost func-
tional

Ji(u,w) =[5 {ga () Ta () +Nu ()|~ %le(ml} dt

In the figures below we plot the approximation to y (1,x) for several different problems.

As data for these examples, we used a=1, N=1, M=1, ¢=10, vy = 0.5, b(x) =0.25, ¢ (x) =-0.35
and y,(x)=10x.

In Figure 1 we plot the open loop solution for the problem
a(r) = A"a(r)

In Figure 2 we plot the LQR closed loop solution (no disturbance) for the problem
&(r) = (A"=-B"N'B"T ) a(s) .

In Figure 3 we plot the LQR closed loop solution (with disturbance term) for the problem
&(1) = (A"=B"N'B"TI) a (1) + D"w (1)

In Figure 4 we plot the game theory closed loop solution (with disturbance term) for the problem
&(r) = (A"=B"N'B"TI ) a(r) + O"w (1)

While figures (1) - (4) describe the qualitative nature of the transient response in each of the four
cases, figures (5)-(8) illustrate an important difference in the examples by taking a cross-section
in space at x=2/3. The basic observation to be made is that the game theory controller improves
performance (in the sense of driving the state to the zero equilibrium position) in the presence of
disturbances. We have performed several such experiments with various parameters (including
Dirichlet boundary data) and observed qualitatively the same behavior. We are currently applying
this method to systems involving elastic structures. Preliminary results indicate that an LQR con-
trolled system may, even worse than performing poorly, become destabilized in the presence of
disturbance. These results will be reported in a future manuscript.



Figure (1) Open Loop Response

Figure (3) LQR Closed Loop Response
With Disturbance

Figure (2) LQR Closed Loop Response
No Disturbance

Figure (4) Game Theoretic Closed Loop
Response with Disturbance

Figure (5) Open Loop Response, x=.75

Figure (6) LQR Closed Loop Response, x=.75
N§ Disturbance

Figure (7) LQR Closed Loop Response, x=.75
With Disturbance

Figure (8) Game / LQR Closed Loop Response, x=.75
With Disturbance
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One of the key motivations for the work in this paper is the applicability of the approach
to uncertain distributed parameter systems. A second numerical example outlined in this section
has been based on examples in [Rosen], but with the introduction of a region of the structure in
which the control influence is uncertain. Again, the problem is to find

1

,YZ

inf SuP_J‘{(Qy(t),y(t))H+N(u(t),u(t))U— (w (1).w (1))} dt
0

uelU we W

where

H=12(0,1)  H=L?(0,00;H)
U=12(0,1)  U=L*(0,c0;H)
W=% W = L?(0, ;%K)

The min-max problem stated above is subject to the evolution equation

2
&0 = alyy (1,0 +bu(tn) +(IW (D)
X

y(t,O) =)’(’»1) =0 for 120
y(©0,m) =y°(m)  for 0<m<1

where the operator ¢ is defined by

w (1)
o) w(t) = {——Bz‘ﬂl B, <x<B,

0 otherwise

and where a=.25, b=1.0, N=.01, $1=.49, and B,=.51. Motivated by [Rosen], the operator Q is de-
fined to be simply the projection onto the first three open loop modes

3
(0N (x) = . (fiee;(x)

i=1

where e;(x) = ﬁsin(inx),

The operator ¢ represents the “spatially structured” disturbance. In actual applications, the dis-
turbance could be due to sensor dynamics or structured parametric uncertainty. In either case, the
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task is to design a finite dimensional controller that is robust with respect to the class of distur-
bances that can be input by ¢. Figures (9) through (12) depict the transient response of the heat
equation in the rod where

0=~

,YZ

isdefinedtobe © = 0.5 in this example. The system is clearly exponentially stable, as predict-
ed by the theory, despite the introduction of disturbance. From [Curtain] and the discussion earlier
in this paper, one can conclude that the disturbance attenuation of the closed loop transfer function
from disturbance to input and output is bounded by

1 Teilloa <Y

where

0=~

,YZ

Even stronger conclusions can be obtained for this particular problem by noting that the entire heat
equation, including disturbance, can be cast in terms of Hilbert-Schmidt operators as described in
[Rosen]. The Hilbert-Schmidt norm of the difference between the approximating Riccati equation
solutions and the actual Riccati equation solution converges to zero. This is demonstrated graph-
ically in figures (13) through (15) which show the kernels used to represent the Riccati operators.
The kemels clearly converge as the level of discretization increases. Furthermore, for the small
value of 0=.0001 selected, the Riccati operators should be quite close to the LQR approximations.
This is, in fact, the case, as can be concluded by comparing figures (13) - (15) with figures (4.1b),
(4.1¢) and (4.1d) of [Rosen]. The Riccati kerels for 6=.5 are depicted in figures (16)-(19).
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Figure (10) Heat Equation Transient Response, N.=13
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Figure (11) Heat Equation Transient Response, N.=23
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Figure (12) Heat Equation Transient Response, N.=33
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Figure (16) Heat Equation Riccati Kernel, N=8, 8=.5
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Figure (17) Heat Equation Riccati Kemel, N=16, 9=.5
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Figure (18) Heat Equation Riccati Kernel, N=16, 6=5
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