
NASA Technical Memorandum 109057

/hf _/

/ & 6.,-z /

The Analysis of a Generic Air-to-Air Missile
Simulation Model

Joseph A. Kaplan

Virginia Polytechnic Institute and State University

Blacksburg, Virginia

Alan R. Chappell

Lockheed Engineering & Sciences Company

Hampton, Virginia

John W. McManus

Langley Research Center

Hampton, Virginia

June 1994

National Aeronautics and

Space Administration
Langley Research Center

Hampton, Virginia 23681-0001

oo
r_

p.q

!

o, t'- o

tl

O

r3_= =
_- ,17
...d taj

to t,_ i2_

o 1--- L--3 ._
IIr t"

c _f

I < (:2
Iz_ _ ,£7
_-- _.) t-- U

u.J Z3

Abstract

A generic missile model was developed to evaluate the benefits of using a dynamic missile
fly-out simulation system versus a static missile launch envelope system for air-to-air combat
simulation. This paper examines the performance of a launch envelope model and a missile fly-out
model. The launch envelope model bases its probability of killing the target aircratt on the target
aircraft's position at the launch time of the weapon. The missile's probability of kill is calculated
by using either a mathematical function or a look-up table. This method presents several
problems. The method does not account for any evasive maneuvers that the target aircraft attempts
in order to maximize the miss distance of the missile to the aircraft. Most launch envelope

implementations do not include the opponent's closing rate and Line-of-Sight (LOS) rate in the
probability of kill computation. The benefits gained from a launch envelope model are the
simplicity of implementation and the minimal computational overhead required. The missile's
probability of kill is based strictly on the target's position at launch time. A missile fly-out model
takes into account the physical characteristics of the missile as it simulates the guidance,
propulsion, and movement of the missile. The missile's probability of kill is based on the missile
miss distance (or the minimum distance between the missile and the target aircratt). This technique
of modeling weapon launches rewards the target aircraft for any evasive maneuvers that it attempts
in order to maximize the missile miss distance. The problems associated with this method of

modeling are a larger computational overhead, the additional complexity required to determine the
missile miss distance, and the additional complexity of determining the reason(s) the missile
missed the target. This paper evaluates the two methods and compares the results of running each
method on a comprehensive set of test conditions.

Nomenclature

t

tBURN

At

timpact

XTarget

XMissile

YTarget

YMissile

ZTarget

ZMissile

aX

AY

AZ

RANGE

RANGEEstimated

D

V

A

O

Current time (seconds)

Time before fuel exhaustion (seconds)

Simulation time interval (seconds)

Estimated time of missile's closest approach to target (seconds)

Target position on the X axis (meters)

Missile position on the X axis (meters)

Target position on the Y axis (meters)

Missile position on the Y axis (meters)

Target position on the Z axis (meters)

Missile position on the Z axis (meters)

Distance between XTarget and XMissile (meters)

Distance between YTarget and YMissile (meters)

Distance between ZTarget and ZMissile (meters)

Distance between the target and the missile (meters)

Estimated range at timpact (meters)

Drag affecting missile

Velocity (meters/second)

Acceleration (meters/second 2)

Pitch angle (radians)

te

0

q

r

f

P

S

CD0

K

W

T

G

M

MMAX

MMIN

SO

S_e

CMT

LOS

LOSx

LOSyz

CR

CRX

CRy

CRZ

Cv

VXDesired

VYDesired

VZDesired

ql_sired

rDesired

Yaw angle (radians)

Pitch Velocity (radians/second)

Yaw Velocity (radians/second)

Pitch rate (radians/second)

Yaw rate (radians/second)

Pitch acceleration(radians/second 2)

Yaw acceleration (radians/second 2)

Density of air

Surface area of missile

Coefficient of Drag

Constant of Drag

Weight of missile used in drag calculation (kilograms)

Thrust of missile (newtons)

Acceleration due to gravity (meters/second 2)

Mass of missile (kilograms)

Mass of missile at launch time(kilograms)

Mass of missile when fuel is expended (kilograms)

Pitch Signal

Yaw Signal

Missile time constant. Lag in control surfaces (seconds)

Line-of-Sight (LOS) angle (radians)

X component of the LOS angle (meters)

YZ component of the LOS angle (meters)

Closing rate between missile and target (meters/second)

Closing rate between missile and target on the x axis (meters/second)

Closing rate between missile and target on the y axis (meters/second)

Closing rate between missile and target on the z axis meters/second)

Closing velocity between missile and target (meters/second)

Desired velocity in the X axis to close with target (meters/second)

Desired velocity in the Y axis to close with target (meters/second)

Desired velocity in the Z axis to close with target (meters/second)

Desired pitch rate to close with target (radians/second)

Desired yaw rate to close with target (radians/second)

Introduction

Modem air combat simulations must perform in a greatly expanded and rapidly changing
tactical environment. Such a simulation system must be able to model new aircraft and their

advanced capabilities. The system requires a modular software structure so that new weapon
systems or aircraft subsystems (e.g., sensors or propulsion systems), modifications to aircraft
control systems, or changes to the aircraft configuration can be easily incorporated. In support of
the study of aircraft with enhanced maneuverability at Langley Research Center (LaRC), a Tactical
Guidance Research and Evaluation System (TiGRES) was developed. The design and

development of TiGRES as well as its relationship to past and current air combat simulation
systems are described in detail in reference 1.

The TiGRES system allows researchers to develop and evaluate aircraft systems in a tactical
environment. The three main components of TiGRES are a Tactical Decision Generator (TDG),
the Tactical Maneuver Simulator (TMS), and the Differential Maneuvering Simulator (DMS). A
TDG is an intelligent system that selects the combat maneuvers to perform throughout an air

combat engagement. Both the TMS and the DMS use a TDG as the automated opponent. The
Paladin TDG was developed specifically for the TiGRES research.

This paper presents two methods for modeling weapons systems within TiGRES. The first
method evaluated utilizes a missile launch envelope model. The missile launch envelope model
utilizes the range and LOS angle between the target aircraft and firing aircraft. The missile's
probability of kill is based on the range and LOS angle between the missile and the target aircraft at
the time of missile launch. This technique of modeling weapon launches does not consider any
evasive maneuvers that the target aircraft may attempt in order to maximize the missile miss
distance. The second method evaluated is a missile fly-out model. The missile fly-out model

includes the physical characteristics of the missile and simulates the guidance, propulsion, and
movement of the missile. The missile's probability of kill is based on the missile miss distance, the
minimum distance between the missile and the target aircraft. This technique of modeling weapon

launches rewards the target aircraft for any evasive maneuvers that it attempts while trying to
maximize the missile miss distance.

The Paladin System

Paladin is a knowledge-based TDG implemented using Artificial Intelligence (AI) techniques
and a large amount of information about aircraft dynamics, flight control, and air combat. The
system provides insight into both the tactical benefits and the costs of enhanced maneuverability.

Paladin uses an object-oriented pro_ng approach 3 to represent each aircraft in the simulation.
Each aircraft object includes informauon on the current state of the aircraft's offensive systems
(e.g., guns, missile systems, fire control radar, etc.), defensive systems (e.g., electronic counter-
measures, chaff, etc.), and propulsion system. This state information is used to help guide
Paladin's reasoning process.

Paladin models a combat engagement as a series of discrete decisions. Hence, at temporally
regular decision points, the system must choose the "best" tactical maneuver to follow until the
next decision point. To make this choice, Paladin uses information about its own state and
estimated data about the opponent to calculate the relative geometry between the two aircraft. This
relative geometry is used to perform a situation assessment and to select a new throttle position.
After extrapolating the opponent's state a short time into the future, Paladin generates a

situationally dependent set of trial maneuvers 5 and predicts a future engagement state for each trial
maneuvers. These future engagement states are passed through a group of scoring functions that

evaluatevariousaspectsof thetacticalsituation.Theresultsof thescoringfunctionsareweighted,
basedonthemodeof operation,tocomputethecurrentbestmaneuver.Paladinexecutesthe
selectedmaneuverto directtheaircraftuntil thenextdecisioninterval.

Theweaponsmodelusedhasadirecteffecton the air-to-air combat results produced by
TiGRES. At each simulation execution interval Paladin computes the relative geometry between
the opposing aircraft. The weapons model then uses the relative geometry information to compute
the current weapons solutions.

Engagement Scoring Data

Evaluating an engagement requires information on aircraft relative geometry and Paladin's
system status. This information is available in the form of participant-specific data maintained by
Paladin. All data relating to the Paladin aircraft as well as Paladin sensor data (e.g., the opponent's
relative position) are assumed to be known exactly. Other data required about the opponent must
be estimated.

The engagement scoring module uses quantities which are based on exactly known data
specific to the Paladin aircraft or relative values from the Paladin aircraft's point of view. Paladin's
current throttle position and altitude are parameters taken directly from the current state. Range is
the magnitude of a vector connecting the centers of gravity of the aircraft. The LOS angle is
defined as the angle between the LOS vector and the ownship body x-axis (see figure 1); the
deviation angle is defined as the angle between the LOS vector and the ownship velocity vector;
and the LOS angle off is defined as the angle between the LOS vector and the opponent's body
x-axis.

OPPONENT

X-BODY AXIS

OPPONENT
V VELOCITY

VECTOR

OPPONENT
OWI_SHIP

X-8ODY AXIS

LOS ANGLE

OWNSHIP
VELOCITY

VECTOR

OWNSHIP

Figure 1. Angle Definitions

The deviation angle is calculated as the inverse cosine of the magnitude of the projection of the

range onto the velocity vector divided by the range. In equation form,

deviation angle =

[-xAx + pAy + ZAz]
arccos / I

L (Range)IVelocityl]
(1)

The LOS angle is the inverse cosine of the magnitude of the projection of the range onto the x-body

axis divided by the range, or,

LOS angle =

D(1,1)Ax + D(I,2)Ay + D(1,3)Az 1arccos Range
(2)

where Ax, Ay, and Az represent the difference between the two aircraft positions. D(i, j) is the i, j
element of the Paladin body axis direction cosine matrix. Then the LOS elevation is taken to be the
inverse sine of minus the opponent's z-coordinate in the Paladin body axis system divided by the

range, or,

LOS elevation =

-Zopponent in Paladin body axis system]arcsin Range
(3)

The LOS azimuth is the inverse tangent of the opponent's y-coordinate divided by the opponent's

x-coordinate, both in the Paladin body axis system.

LOS azimuth =

arctan [Yopponent in Paladin body axis system]

LXopponent in Paladin body axis system3
(4)

The velocity, acceleration, and orientation of the opponent are estimated, since this data would
not be available from sensors. The required data values are estimated using a three point time

history of the known position data and several assumptions about the opponent aircraft (weight,
wing surface area, and flight characteristics). The current position of the opponent and the
opponent's position at the preceding two decision cycles are used to fred a quadratic curve fit for
the position as a function of time. The first and second derivatives of this function at the current
time yield an estimation of the opponent's instantaneous velocity and acceleration. By assuming
aerodynamic characteristics of the opposing aircraft, and using the velocity and acceleration
estimates, an estimated body-axis orientatmn for the opponent can be found.

The quantities used by the engagement scoring module which are based on estimated data are
largely relative values from the opponent aircraft's point of view. Each of these quantities has
some error introduced by the estimation process. The range rate is the magnitude of the projection
of the relative velocity onto the range axis (all in the inertial axis system).

5

rangerate=
AxAx + AyAy + Ak_Az

Range
(5)

The opponent's deviation angle and LOS angle are calculated similarly to the Paladin aircraft
parameters (equations 1 and 2), using the opponent's velocity and x-body axis. Paladin's LOS

angle off is defined as 180 ° - opponent's LOS angle. References X and X1 present an evaluation

of the error magnitudes (absolute value of the actual value minus the estimated value) during the
course of a typical engagement. If the aerodynamics of the opponent aircraft are not well known,
the error in the LOS angle should increase, since this error is strongly dependent on the aircraft
flight characteristics.

Engagement Scoring Metrics

Paladin currently uses four scoring metrics, each computed at the aircraft simulation update rate
of 32 times per second, to evaluate each air combat engagement. The first metric consists of the
total time that each airplane has its weapons locked on its opponent, the probability that any
weapons fired will hit the opponent, the distance between the opponents, the angle-off, and the
deviation angle. The results are printed in a table format at the completion of each run.

The second scoring metric computes a Probability of survival (Ps) using the data computed by
the first metric. The probability to hit for an all-aspect missile and for the cannon are computed
using the range and LOS angle to the opponent. The probability to hit for a tail-aspect missile is
computed using the range, the LOS angle to the opponent, and the LOS angle off. Aircraft
missiles are treated as limited resources and a probability to hit of 0.65 is required to launch the
first missile. The probability to hit threshold increases by 0.05 for each missile launched. An
estimated fly-out time (the time it will take a missile to reach its target) for each missile is computed
based on the launch parameters, and another missile cannot be fired until the fly-out time has
passed. The Ps for an aircraft is:

Ps = 1.0 - E [probability to hit * Ps(f)]
(6)

summing over each weapon fired by the opposing aircraft. Ps(f) represents the Ps of the aircraft
firing the weapon at the time the weapon was fired.

The third scoring metric attempts to determine a Lethal Time (LT) advantage for each
engagement. LT advantage attempts to weigh the lethality of each distinct type of weapons lock
time.

LT - Paladin Gun - Opponent Gun +
2

(2 * (Paladin Tail-Aspect - Opponent Tail-Aspect)) +

(Paladin All--Aspect - Opponent All--Aspect)
(7)

A positive LT value shows Paladin with a lethal time advantage, and a negative LT shows the
opponent with an advantage.

6

O.I,

38500

36500

34500

32500

30500

2850O

26500

24500

22500

20500

18500

16500

14500

12500

10500

8500

6500

4500

2500

50O

Figure 2 - Graphical Representation of A Launch Envelope Model

7

Thefourthmetricis TimeonOffense(TOF).

TOF= (Gun time + All-aspect time + Tail-aspect time)
(8)

ATOF is computed as Paladin's TOF minus the opponent's TOF. A positive ATOF value shows
Paladin with an time on offense advantage, and a negative ATOF shows the opponent with a time
on offense advantage.

Missile Launch Envelope Method

The missile launch envelope model considers the range and LOS angle between the target and
firing aircraft at launch. The missile's probability of kill is based on the range and LOS angle
between the missile and the target aircraft at the time of missile launch. This technique of modeling
weapon launches does not consider any evasive maneuvers that the target aircraft may attempt in
order to maximize the missile miss distance. The problems associated with this method of
modeling are the use of simplified scoring functions and the use of a "time of launch" probability
of kill computation.

Missile Fly-out Method

The missile fly-out model includes the physical characteristics of the missile and simulates the
guidance, propulsion, and movement of the missile. The missile's probability of kill is based on
the missile miss distance, the minimum distance between the missile and the target aircraft. This
technique of modeling weapon launches rewards the target aircraft for any evasive maneuvers that
it may attempt in order to maximize the missile miss distance. Some of the problems associated
with this method of modeling are a larger computational overhead, additional complexity in
determining the missile's miss distance, and determining the reason(s) the missile missed the
target. Missile miss distance may be caused by any combination of three reasons:

1) the missile failed to reach the target because of physical constraints (i.e., range,
inability to quickly maneuver, etc.)

2) the missile's line of sight limitations were exceeded
3) the target aircraft performed a maneuver that generated an optimal miss distance

Model Characteristics

Several constraints were placed upon the implementation of the missile model. These
constraints included:

1) the model must exhibit realistic physical properties (e.g., account for gravity, drag,
etc.)

2) the guidance and control system must operate realistically
3) the model must require minimal computational intensity
4) the software must possess cross-platform capabilities
5) the subroutine must be re-entrant so multiple missiles may be in-flight against multiple

targets

A point-mass missile model was developed based on aerodynamic equations provided in
Reference 9. The model is generic so any missile's characteristic may be incorporated into it. The
missile model selected for analysis is a generic radar guided missile with physical characteristics

similarto the AIM9 "Sidewinder." Table 1 presents the characteristics of the missile used for

testing. The model takes into account the following physical features of the missile, including:

1) the missile can accelerate faster as the weight is reduced due to the rapid burning of fuel
2) the missile needs to accelerate to a sufficient velocity before it can begin to maneuver

(i.e., the missile can not pull as many G's at low speeds as it can at high speeds)
3) the guidance controls in the missile use a proportional navigation system (i.e., they set

a path to intercept the target, and not to track it)

Table 1 - Physical Characteristics of the Generic Test Missile

Weight at Launch 125 Lbs

Weight at Burnout 50 Lbs
Thrust 690 Lbs

Time of Motor Bum 8.0 seconds
Maximum Acceleration 30 G's

Range 2.5 Miles
Proportional Navigation

Missile Simulation Computations

After initializing all variables with conditions suitable for launching the weapon, Paladin calls
the missile subroutine. The first conditions computed are from the previous iteration. These
conditions are used for the current iteration calculations.

The first variables to be computed are the differences in the X, Y, and Z axis. The AX, AY,
and AZ all represent the difference between the missile's position and the target's position. Having
computed the differences along each axis, the range is computed.

The difference in the X, Y, and Z axis, respectively, for the previous iteration in equation form is

AXt- 1 = XTargett_l-XMissilet-1 (9)

AYt- 1 = YTargett_ I -YMissilet.1 (10)

AZt- 1 = ZTargett.l-ZMissilet-i (11)

The range between the missile and the target for the previous iteration in equation form is

Ranget_ 1 = _/AXt_12+AYt_12+AZt.I 2 (12)

The subroutine then computes the forces which will effect the missile's flight path.

The missile's drag for the current iteration is computed by combining the profile drag and the drag

due to lift drag. The drag, in equation form, is

Dt = (Kl*Vt-12) + K2*(qt-12+rt12)

Wt.12 (13)

where

KI =1. p. s* CD0 (14)

K2-2*K*w2
p*s (15)

p, s, CD0, and w are all assumed to be constant in the drag computation. When the weight has

changed significantly enough to alter the drag, the missile's fuel will be exhausted. Having lost
thrust, the missile will begin to quickly decelerate. This assumption was made to simplify the drag
computations.

The missile's acceleration for the current iteration is computed by subtracting the drag from the
thrust and dividing by the mass. Acceleration due to gravity must then be subtracted from the
result.

The computation of the acceleration, in equation form, is

At = (Tt-I - Dt-I) _ G*sin(®t_l)
Mt-I (16)

The pitch and yaw accelerations are computed based upon the signals for the control surfaces
minus pitch and yaw rates of the last iterations. These are then divided by the missile time constant
representing the time necessary to move the missile's control surfaces.

The pitch and yaw accelerations, in equation form, respectively, are

cit _ SO,. I - qt-I
CMT (17)

i:t _ S,v,. I - rt-I
CmT (I 8)

The pitch velocity is computed based upon the previous iteration's pitch rate minus the cosine
of the pitch angle. The result is then divided by the velocity to produce the pitch velocity.

The pitch velocity, in equation form, is

Ot = qt-I - cos(_)t_l)

Wt-I (19)

The yaw velocity is computed dividing the previous iteration's yaw rate by the velocity
multiplied by the cosine of the pitch.

The yaw velocity, in equation form, is

kIXt =
rt-i

Vt.l * cos({_t.1) (20)

10

The velocities for the X, Y, and Z axis are computed. This is done by multiplying the velocity

by the components of the pitch and yaw angles that contribute to motion in the particular axis.

The computation for velocity in the X, Y, and Z axis respectively, in equation form, are

X t = vt_ 1 * cos(Ot.i) * cos(tt/t.1) (21)

r t = Vt I * COS(Ot_l) * sin(Wt_l) (22)

Zt = Wt-i * sin(®t_|) (23)

The missile's velocity is computed by multiplying the missile's acceleration by the iteration rate

and adding the result to the previous iteration's velocity.

The computation of the velocity, in equation form, is

Vt = Vt-I + At * At (24)

The pitch and yaw rates for the current iteration are computed by multiplying the angle rate by
the iteration rate and adding the result to the previous iteration's rate.

The computation of the pitch and yaw rates, respectively, in equation form, are

qt = qt-I + Clt * At (25)

rt = rt_l +/'t * At (26)

The pitch and yaw angles for the current iteration are computed by multiplying the angle
velocity by the iteration rate and adding the result to the previous iteration's angle.

The computation of the pitch and yaw angle, respectively, in equation form, are

Ot = Ot-1 + Ot * At (27)

x/t = tI/t 1 + _I/t * At (28)

The X, Y, and Z position of the missile are computed for the current iteration by multiplying
the axis' velocity by the iteration rate and adding the result to the previous iteration's posmon.

The computation of the X, Y, and Z position, respectively, in equation form, are

X t = Xt. 1 + X t * At

Yt = Yt-I + Yt * At

Zt = Zt-i + Zt * At

11

(29)

(30)

(31)

If the fuel of the missile has not been exhausted, the mass is updated to reflect the mass lost
due to oxidation. This is done by subtracting the mass at fuel exhaustion from the mass at missile
launch and dividing the result by the time required to reach fuel exhaustion. This value represents
the amount of mass lost per second. The amount of mass lost per second is then multiplied by the
iteration rate to give the amount of mass lost per iteration. This is then subtracted from the
previous iteration's mass. The resultant value is the current iteration's mass.

The computation of the mass, in equation form, is

Mt Mt,/IMM x_ tBURN (32)

The distances between the target and the missile along the axis are computed for the current
iteration. This is done by subtracting the missile's position from the target's position.

The computation for the X, Y, and Z position, respectively, in equation form, are

(33)

(34)

(35)

AX t = XTargett-XMissilet

AY t = YTargett-YMissilet

AZ t = ZTargett-ZMissilet

The range between the missile and the target for the current iteration in equation form is

Ranget = _/AXt2+AYt2+AZt 2 (36)

Having computed the new distances between the missile and the target, the LOS components
are computed. This is done to determine whether the target has exceeded the limitation of the
seeker's radar.

The computation for the X component of the LOS, in equation form, is

LOSx = AXd (37)

The computation for the YZ component of the LOS, in equation form, is

LOSyz = _AYt 2 + AZt 2 (38)

The LOS is computed by taking the inverse tangent of the YZ component of the LOS divided
by the X component of the LOS.

The computation of the LOS, in equation form, is

LOSvz
LOSt = ARCTAN(.--;--x-A_)

LOb X (39)

12

Having computed the LOS angle between the missile and the target, the subroutine computes
the closing rates as the missile tracks the target. This is done by subtracting the current iteration's
distance between the missile and the target from the previous iteration's distance. The result is then

multiplied by the iteration rate to give the closing rate for the current iteration.

The computation for the closing rates in X, Y, and Z, respectively, in equation form, are

CRx = (AXt.1 - AXt) * At (40)

CRy = (AYt-I - AYt) * At (41)

CRz = (AZt.I - AZt) * At (42)

The relative closing rate computation, in equation form, is

CR = (RANGEt_! - RANGEt) * At (43)

The closing velocity is the negation of the relative closing rate.

CV = -CR (44)

Having computed all of the relative positions, the guidance algorithm of the missile can now be

employed. The first computed variables are the desired velocities in the body axis that will lead to
an intercept.

The computation of the desired velocities in the X, Y, and Z axis, respectively, presented in
equation form, are

_ (AYt * CRz) - (AZt * CRy)

VXDesired _/AXt2+ AYt 2 + AZt 2 (45)

_ (AZt * CRx) - (AXt * CRz)

VYDesired _/AXt2+ AYt 2 + AZt 2 (46)

(AXt * CRy) - (AYt * CRx)

VZDesired = 5¢/AXt2+ AYt 2 + AXt 2 (47)

With the desired velocities in the body axis computed, these are then transformed into equivalent

desired pitch and yaw rates.

qDesired = -sin(W) * WXDesire d + COS(W) * VYDesire d (48)

rDesired = (COS(O) * VVDesired) + [sin(O) * [(COS(W) * VXDesired) + (sin(W) * VYDesired)]]

(49)

13

The pitch and yaw signals are computed by multiplying the desired rates by the closing velocity
and the navigational constant. The navigation constant adjust the signal so the missile will intercept
the target instead of tracking it.

The computation of the pitch and yaw signals, respectively, in equation form, are

S® = CNav * CV * qDesired (50)

Shy = CNav * CV * rDesired (51)

Missile Warhead Detonation Comput_fion_,

The missile's estimated time of closest approach is calculated, along with the estimated range at the
time of closest approach.

tlmpact =
-((AX*CVx) + (AY*CVy) + (AZ*CVz))

CVx 2 + CVy 2 + CVz 2 (52)

RANGEEstimated = "Vr (CVx * tlmpact + AXt) 2 + (CVy * tlmpact + AYt) 2 + (CVz * tlmpact + AZt) 2 (5

3)

By using the missile's detonation logic(see Appendix D), weapon detonation distance from the
aircraft can be determined. One of three possible results are returned from the missile's detonation

logic. The missile either missed the target, struck the target, or is still actively engaged in tracking
the target.

Missile Simulation Testing.

To evaluate the model, extensive testing was performed. The launching aircraft was positioned
at an altitude of 6,000 meters. A grid was set up in front of the launching aircraft that extended
5,000 meters down range, 4,000 meters to both sides of the aircraft, and 6,000 meters above and
below the launching aircraft. Each of the axis were then broken down into 25 meter increments.
Each point in the grid indicated a starting position for the target aircraft. The launching aircraft
traveled down range in straight and level flight at a constant velocity of Mach 0.7. The target
aircraft was also in straight and level flight at Math 0.7. Maeh 0.7 was chosen as the test velocity
because the majority of tactical encounters occur in the subsonic range. The direction of travel for
the target aircraft was away from the launching aircraft

number of possible starting conditions = (5000/25) * (8000/25) * (12000/25)

This works out to 30,720,000 possible starting positions for the target aircraft. The target
aircraft was put into each of these starting position and the simulation was allowed to continue until
one of three possible conditions occurred:

1) the seeker's line of sight limitation was exceed
2) a non-negative closure rate was achieved between the missile and the target aircraft
3) the missile scored a "hit" upon the target aircraft (a hit was denoted by the missile

passing within 10 meters of the target aircraft)

14

Most modem air-to-air missiles inflict lethal damage upon their target by showering it with

shrapnel. Detonation is achieved by passing within a predetermined distance of the target. Based
upon various methods of producing shrapnel, 10 meters was judged to be an adequate distance to
produce a mission kill. Ifa hit was scored, the starting position of the target aircraft was printed
out to a file.

Several different simulations were run. The first denoted what areas the missile could hit by giving

the seeker a perfect radar. This was done to determine the range and physical properties of the
missile model. In Figure 3, a vertical slice was taken from the center of the volume generated by
the simulation run. Several distinct features of this slice stand out. Each mark on the plot shows a

starting position of the target aircraft that the missile was able to hit. The center of the slice forms a
"peak" that leads to the position of the launching aircraft at zero X, zero Y, and 6,000 meters of
altitude. This "peak" feature is primarily due to the fact that the missile cannot maneuver
sufficiently at low speeds to hit the target aircraft. There exists a larger concentration of hits in the
lower portion of the slice due to the effects of gravity on the missile.

12000-

'10

10000-

8000.

6000-

4000

2000

0

.;;:...

!!!!!!!!!!!!!!!!!!!!!!!22;ii:ii12111112111111.

........... o
............ 4

.............. !

..... o

....... o
...... °

........ o

........... o
............ o

.............. 4

!iiiii?iiiiii!i?iit?)[i?:
.................. o

0 2000 4000 6000 8000

Range

10000

Figure 3 - Vertical Slice of Missile Fly-Out Simulation

12000

15

The simulations that followed incorporated placing a LOS limitation upon the seeker. If the
target was beyond this LOS limitation, then the seeker lost sight of the target and failed to track it,
thus ending the simulation. Since TiGRES currently implements a 30" launch parameter, a 15*
LOS limitation was placed upon the seeker(i.e, the missile's radar cone only extends 15*s in any
direction from a line projected out of the center of the seeker at the front of the missile). If this
LOS limitation is rotated 360 ° in the X, Y, and Z axis, a 30 ° seeker cone in front of the missile is

produced. This was done to see if TiGRES was over estimating the missile launch parameters.
Running this simulation with a 15" LOS limitation produced a trumpet shaped cone (see Figure 3).
The cone in Figure 4 was produced by running the simulation at an iteration rate of 32 times a
second and taking a horizontal slice from the generated volume at the altitude of the launching
aircraft. This cone closely resembles the shape of the launch envelope model. The narrow
beginning of the cone was due to the missile's low speed at launch. In Figure 5 and Figure 6, the
simulation was run at iteration rates of 64 and 128 times per second, respectively. The higher
iteration rates allow the model to predict more accurately the missile's closest approach to the target
aircraft. If the model estimates the missile will pass or overtake the target before the next iteration,
it will detonate the warhead at the point of closest approach. If the model is run at lower iteration
rates, it cannot predict accurately the closest approach distance. To determine whether a larger
LOS limitation would affect performance, a 20 and 30* LOS limitation were tested. These
limitations produced 40* and 60 ° cones, respectively. These simulations continued to reveal wider,
yet similar, trumpet shaped cones as shown in Appendix E. Since the missile was tested against a
non-maneuvering target, evasive maneuvering will raise the chance that the pilot can escape the kill
range of the missile. The use of a non-maneuvering target in testing was done to insure the
robustness of the missile model.

The missile's seeker relies on the target's relative position (X, Y, and Z). This is the only
information that the launching aircraft is given about the target aircraft, so it is realistic to assume
the missile will have access to similar information. The model is implemented as a re-entrant
FORTRAN subroutine, so multiple missiles can be in-flight against multiple targets.

Conclusions

The results of this study show that a robust missile launch model envelope model will produce
realistic results based on a non-maneuvering target. Simulations that include an active target
require the additional features of a missile fly-out model to produce accurate results. The missile
fly-out model considers the physical characteristics of the missile as it simulates its guidance
system, propulsion, and movement. The missile's probability of kill is based on the missile miss
distance, not the missile launch conditions. This technique of modeling weapon launches rewards
the target aircraft for attempting evasive maneuvers to maximize the missile miss distance. The
problems associated with this method of modeling are a larger computational overhead, the
additional complexity required to determine the miss distance, and reason(s) why the missile
missed the target. Achieving the maximum benefit of the fly-out model requires providing the
target aircraft with visual or sensor information when the opponent launches a missile. This
information allows the target to actively perform evasive maneuvers. Further research in this area
requires adding missile avoidance logic to Paladin.

16

R¢ferences
1. Goodrich, Kenneth H.; McManus, John W. : An Integrated Environment For Tactical

Guidance Research and Evaluation. AIAA Paper #90-1287, May 1990.

2. Goodrich, Kenneth H.; McManus, Dr. John W; Chappell, Alan R: A High-Fidelity Batch
Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis.

AIAA Paper #92-4145, August 1992.

3. Meyer, Bertrand. Object-oriented Software Construction. Ed. C.A.R. Hoare. Prentice Hall
International Ltd., 1988.

4. McManus, John W.: "A Parallel Distributed System for Aircraft Tactical Decision
Generation." Proceedings of the 9th Digital Avionics Systems Conference, 1990, pp. 505 -
512.

5. Chappell, Alan R.; McManus, Dr. John W; Goodrich, Kenneth H.: Trial Maneuver
Generation and Selection in the Paladin Tactical Decision Generation System. AIAA Paper

#92-4541, August 1992.

6. Brownston, Lee; et al.: Programming Expert Systems in OPS5. Addison-Wesley Publishing

Co. Inc., 1985.

7. Barr, Avron; Edward A. Feigenbaum; ed.: The Handbook of Artificial Intelligence, 1Iol. I.
William Kaufmann, Inc., 1981.

8. McManus, John W.; Chappell, Alan R; Arbuckle, P. Douglas : "Situation Assessment in the
Paladin Tactical Decision Generation System." AGARD Conference Proceedings 504; Air
Vehicle Mission Control and Management, March 1992.

9. Imado, Fumiaki, and Miwa, Susumu: "Three Dimensional Study of Evasive Maneuvers of a
Fighter Against a Missile", AIAA Paper #86-2038, 1986

17

FIGURE 4

18

FIGURE 5

19

FIGURE 6

20

Appendix A:

Format for Generic Missile Model

The model is implemented as a re-entrant subroutine. It has no concept of which missile it
is calculating, the missile's target, or time. All these things must be passed to it. The
model is just a single iteration calculator. By giving it the previous iteration's data, it can
continue to calculate a course for the missile. The model calculates everything in metric

units. If your program uses English units, several variables must be converted at missile
initialization. The target's relative position (X, Y, and Z), old and new, must be converted

every time.

Definition of Variables:
VELCTY REAL meters/second
PITCHR REAL radians/second
PTHSIG REAL radians/second**2
YAWR REAL radians/second
YAWSIG REAL radians/second**2
PITCH REAL radians
YAW REAL radians
X REAL earth-based x in meters
y REAL earth-based y in meters
Z REAL earth-based z in meters

MASS REAL pounds
TARX REAL earth-based x in meters
TARY REAL earth-based y in meters
TARZ REAL earth-based z in meters
SEC INTEGER seconds
ITS INTEGER iteration # in current second
ITMIN INTEGER # of iterations per second
HIT INTEGER 1 or 0
MISS INTEGER 1 or 0
OTARX REAL earth-based x in meters
OTARY REAL earth-based y in meters
OTARZ REAL earth-based z in meters
RANGE REAL meters

Initialization of Variables:
VELCTY
PITCHR
PTHSIG
YAWR
YAWSIG
PITCH
YAW
X
Y
Z
MASS
TARX
TARY
TARZ
SEC

Velocity
Pitch rate

Pitch signal
Yaw rate

Yaw signal
Pitch

Yaw or heading
X position of missile
Y position of missile
Z position
weight of missile
X position of target
Y position of target
Z position of target
of secs of missile flight

21

Initialize
initialize
initialize
mitialize
initialize
initialize
initialize
tmtialize
initialize
nitialize
initialize
initialize
imtialize
initialize
imtialize

to launching aircraft's velocity
to 0.0
to 0.0
to 0.0
to 0.0

to launching aircraft's alpha
to launching aircraft's heading
to launching aircraft's X position
to launching aircraft's Y position
to launching aircraft's Z position
to 56.7 kilograms
to target aircraft's X position
to target aircraft's Y position
to target aircratVs Z position
toO

ITS
ITMIN
HIT
MISS
OTARX
OTARY
OTARZ
RANGE

of iterationsin currentsec
of iterationspersec
hit determiner
missdeterminer
X posof targetlastiteration
Y posof targetlastiteration
Z pos of target last iteration
distance of missile & target

initialize to 0

initialize to 32(if you are running at 32/sec)
initialize to 0(will change to 1 if hit scored)
initialize to 0(will change to 1 if miss scored)
initialize to target's old X pos
initialize to target's old Y pos
initialize to target's old Z pos
initialize to - 1.0

After all the variables have been initialized, the following vafiabl¢_; m¢_t be update every_ iteration:
TARX
TARY
TARZ
OTARX
OTARY
OTARZ
SEC
ITS

X position of target
Y position of target
Z position of target
X pos of target last iteration
Y pos of target last iteration
Z pos of target last iteration
Seconds of missile flight

set to target aircraft's X position
set to target aircraft's Y position
set to target aircraft's Z position
set to target's X pos from previous iteration
set to target's Y pos from previous iteration
set to target's Z pos from previous iteration

Number of iterations in current second

Constants in pro mam:
NAVC navigational constant 4
PTHMAX maximum pitch acceleration 30 G
YAWMAX maximum yaw acceleration 30 G
TIMRNG distance to fuse warhead at 100 meters

DETRNG detonation range (hit score) 10 meters
SEEKER seeker limitation .261798 radians(15 degrees)
MXTIME time of missile bum 8 seconds

MINWGT minimum weight of missile 22.7 kilograms
MAXWGT maximum weight of missile 56.7 kilograms
MAXTRT Thrust during motor bum 6800 N
MINTRT Thrust after motor burnout 0 N

G Gravitational constant 9.8 meters per second 2
OPVEL Optimal velocity of missile 700 meter per second

The managing software must keep track of the missiles in flight. It will also be responsible for
updating the time of flight and the target for each missile. At every iteration, add one to the ITS
variable until ITMIN is reached, then reset it to zero and add one to the SEC variable.

22

Appendix B - Test Pro m'am

PROGRAM TMS_MISS_CALC
IMPLICIT NONE

REAL VELCTY,PITCHR,YAWR,PITCH,YAW
REAL X,Y,Z,MASS,RANGE

INTEGER LOOP 1,LOOP2
REAL TARX,TARY,TARZ

INTEGER ITMIN
PARAMETER (ITMIN = 128)

INTEGER STEP
REAL TARGTX,TARGTY,TARGTZ
REAL PTHSIG,YAWSIG
INTEGER TOPX,TOPY,TOPZ
INTEGER BOTX,BOTY,BOTZ
PARAMETER (TOPX = 4500)
PARAMETER (TOPY = 4000)
PARAMETER (TOPZ = 12000)
PARAMETER (BOTX = 0)
PARAMETER (BOTY = -4000)
PARAMETER (BOTZ = 2000)
PARAMETER (STEP = 25)
INTEGER HIT,MISS
REAL OTARX,OTARY,OTARZ

C

OPEN(UNIT = 10,FILE = 'TESTCONE',STATUS ='NEW')
DO 3000 TARGTY=BOTY,TOPY,STEP

DO 2000 TARGTZ=-BOTZ,-TOPZ,-STEP
PRINT *,'TARGTZ = ',TARGTZ,'TARGTX = ',TARGTX

DO 1000 TARGTX=BOTX,TOPX,STEP

VELCTY = 200.0
PITCHR = 0.0
YAWR = 0.0
PTHSIG = 0.0
YAWSIG = 0.0
PITCH = 0.0
YAW = 0.0
X=0.0
Y=0.0
Z = -6000.0
MASS = 56.7
TARX = TARGTX
TARY = TARGTY
TARZ = TARGTZ
HIT = 0
MISS = 0
RANGE = - 1

23

+

+

+

75

100
200

DO 200 LOOP1 -- 1,30
DO 100 LOOP2-- 1,ITMIN
OTARX = TARX
OTARY -- TARY
OTARZ = TARZ

CALL GETTAR(TARX,TARY,TARZ,ITMIN)
CALL CALCULATIONS(VELCTY,PITCHR, PTHSIG,YAWR,YAWSIG,

PITCH,YAW,X,Y,Z,
MASS,TARX,TARY,TARZ,LOOP1,LOOP2,ITMIN,
HIT,MISS,OTARX,OTARY,OTARZ,RANGE)

FORMAT(F8.2,',',FS.2,',',F8.2)
IF (HIT .EQ. 1) THEN

WRITE(10,75) TARGTX,TARGTY,-TARGTZ
HIT = 0
MISS = 0
GOTO 1000

END IF

IF (MISS .EQ. l) THEN
MISS = 0
HIT = 0
GOTO 1000

END IF
CONTINUE

CONTINUE

1000 CONTINUE
2000 CONTINUE
3000 CONTINUE

END

24

Appendix C - Missile Model

SUBROUTINE CALCULATIONS(VELCTY,PITCHR, PTHSIG,YAWR,YAWSIG,

+ PITCH,YAW,
+ X,Y,Z,MASS,TARX,TARY,TARZ,SEC,
+ ITS,ITMIN,HIT,MISS,OTARX,OTARY,OTARZ,

+ RANGE)

C* Name - Subroutine Calculations
C* Purpose - Implements a missile simulation for the
C* Paladin tactical decision generator.
C* Variables -
C* NAME TYPE UNITS

* ..

C* VELCTY REAL meters/second
C* PITCHR REAL radians/second
C* PTHSIG REAL radians/second**2
C* YAWR REAL radians/second
C* YAWSIG REAL radians/second**2
C* PITCH REAL radians
C* YAW REAL radians
C* X REAL earth-based x in meters
C* Y REAL earth-based y in meters
C* Z REAL earth-based z in meters
C* MASS REAL pounds
C* TARX REAL earth-based x in meters
C* TARY REAL earth-based y in meters
C* TARZ REAL earth-based z in meters
C* SEC INTEGER seconds
C* ITS INTEGER iteration # in current second
C* ITMIN INTEGER # of iterations per second
C* HIT INTEGER 1 or 0
C* MISS INTEGER 1 or 0
C* OTARX REAL earth-based x in meters
C* OTARY REAL earth-based y in meters
C* OTARZ REAL earth-based z in meters
C* RANGE REAL meters
C******************_********** ***************** _** _**************

IMPLICIT NONE
REAL VELCTY,PITCHR,YAWR,PITCH,YAW
REAL THRUST,DRAG,YAWSIG,PTHSIG

REAL X,Y,Z
REAL ACCELR,PTCHRD,YAWRD,PITCHD,YAWD
REAL XD,YD,ZD,MASS

REAL CMPDIS,CMPSIG
REAL CMPDRG,CMPTHT,ACCEL
REAL PTHACC,YAWACC,CNGPTH,CNGYAW
REAL CNGX,CNGY,CNGZ

REAL TARX,TARY,TARZ
REAL OTARX, OTARY,OTARZ

25

REAL CURRR,CURRX,CURRY,CURRZ
REALNEWR,NEWX,NEWY,NEWZ
REAL RESR,RESX,RESY,RESZ
REAL CLSVEL,CMPOP,CMPOY

REALLINEX,LINEY,LINEZ
REALPITCHO,YAWO
REAL RANGE,IMPTME,INTRVL
INTEGERITMIN,SEC,ITS,HIT,MISS

REAL NAVC

PARAMETER (NAVC = 4)
REAL G

PARAMETER (G = 9.8)
REAL PTHMAX, YAWMAX
PARAMETER (PTHMAX = 30.0)
PARAMETER (YAWMAX = 30.0)
REAL TIMRNG,DETRNG
PARAMETER (TIMRNG = 100.0)
PARAMETER (DETRNG = 10.0)
REAL OPVEL,MATTRT,MINTRT
PARAMETER (OPVEL = 700.0)
PARAMETER (MATTRT = 6800.0)
PARAMETER (MINTRT = 0.0)
REAL BRNTME,MAXWGT,MINWGT
PARAMETER (BRNTME = 8.0)
PARAMETER (MAXWGT = 56.7)
PARAMETER (MINWGT = 22.7)

REAL SEEKER

C degrees * .017453293 = radians
C 15 deg = .261798 radians
C PARAMETER (SEEKER = .261798)
c 20 deg = .349064 radians
C PARAMETER (SEEKER = .349064)
C 30 deg =.523596 radians

PARAMETER (SEEKER = .523596)

REAL XCOM,YZCOM
REAL LNANG,ATAN

INTRVL = 1/(ITMIN * 1.0)
CURRX = (OTARX - X)
CURRY = (OTARY - Y)
CURRZ = (OTARZ - Z)

CURRR = CMPDIS(CURRX,CURRY,CURRZ)

THRUST = CMPTHT(SEC,MATTRT,BRNTME,MINTRT)
DRAG = CMPDRG(VELCTY,PITCHR, YAWR)
ACCELR = ACCEL(THRUST,DRAG,PITCH,MASS)
PTCHRD = PTHACC(PTHSIG,PITCHR)
YAWRD = YAWACC(YAWSIG,YAWR)
PITCHD = CNGPTH(PITCHR,VELCTY,PITCH)

26

YAWD = CNGYAW(YAWR,VELCTY,PITCH)
XD = CNGX(VELCTY,PITCH,YAW)
YD = CNGY(VELCTY,PITCH,YAW)
ZD = CNGZ(VELCTY,PITCH)

VELCTY = VELCTY + (ACCELR * 1/ITMIN)
PITCHR = PITCHR + (PTCHRD * 1/ITMIN)
YAWR = YAWR + (YAWRD * 1/ITMIN)
PITCH = PITCH + (PITCHD * 1/ITMIN)
YAW = YAW + (YAWD * 1/ITMIN)
X = X + (XD * 1/ITMIN)
Y = Y + (YD * 1/ITMIN)
Z = Z - (ZD * 1/ITMIN)
IF (SEC .LE. BRNTME) THEN

MASS = MASS - (((MAXWGT-MINWGT)/BRNTME) * 1/ITMIN)
END IF

NEWX = (TARX - X)
NEWY = (TARY - Y)
NEWZ = (TARZ - Z)

NEWR = CMPDIS(NEWX,NEWY,NEWZ)

XCOM = CMPDIS(NEWX,0.0,0.0)
YZCOM = CMPDIS(0.0,NEWY,NEWZ)

LNANG = ATAN(YZCOM/XCOM)

RESR = (CURRR - NEWR)*ITMIN
RESX = (CURRX - NEWX)*ITMIN
RESY = (CURRY - NEWY)*ITMIN
RESZ = (CURRZ - NEWZ)*ITMIN

CLSVEL = -RESR

CALL LNOFST(NEWX,NEWY,NEWZ,RESX,RESY,RESZ,
+ LINEX,LINEY,LINEZ)

PITCHO = CMPOP(YAW,LINEX,LINEY)
YAWO = CMPOY(PITCH,YAW,LINEX,LINEY,LINEZ)

PTHSIG = G * CMPSIG(NAVC,CLSVEL,PITCHO,PTHMAX,MASS,
+ VELCTY,MINWGT,OPVEL)
YAWSIG = G * CMPSIG(NAVC,CLSVEL,YAWO,YAWMAX,MASS,

+ VELCTY,MINWGT,OPVEL)

IF ((Z .GT. 0.0) .OR. (VELCTY .LE. 0.0)) THEN
MISS = 1
RETURN

END IF

IMPTME = -((NEWX*RESX)+CNEWY*RESY)+(NEWZ*RESZ))
IMPTME = IMPTME/((RESX**2)+(RESY**2)+(RESZ**2))

27

RANGE = (RESX*IMPTME + NEWX)**2
RANGE = RANGE + (RESY*IMPTME + NEWY)**2
RANGE = RANGE + (RESZ*IMPTME + NEWZ)**2
RANGE = SQRT(RANGE)
IF (RANGE .LT. DETRNG) THEN

IF (ABS(IMPTME) .LE. INTRVL) THEN
HIT = 1
RETURN

END IF
END IF

IF (ABS(LNANG) .GT. SEEKER) THEN
IF (NEWR .LT. DETRNG) THEN

HIT = 1
ELSE

MISS = 1
END IF
RETURN

END IF

IF ((CLSVEL .GT. 0) .AND. (SEC .GT. BRNTME)) THEN
IF (NEWR .LT. DETRNG) THEN

HIT = 1
ELSE

MISS = 1
END IF
RETURN

END IF

RETURN
END

C SUBROUTINES BEGIN HERE

REAL FUNCTION CMPDRG(VELCTY,PITCHR, YAWR)

C* Name - Function CMPDRG

C* Purpose - Computes drag value for the missile simulation
C* Variables -
C* NAME TYPE UNITS
Clllt ..

C* VELCTY REAL meters/second
C* PITCHR REAL radians/second
C* YAWR REAL radians/second

IMPLICIT NONE

REAL VELCTY,PITCHR, YAWR
C

REAL K1,K2
28

C

PARAMETER (KI = 0.009412)
PARAMETER (K2 = 93850/(9.8**2))

CMPDRG = K1 * VELCTY**2 + (K2 * (PITCHR**2 + YAWR**2))/VELCTY**2
RETURN
END

C** ***_****

C,_@,_*** _*****************_,_*****_** _**_******_******* _***

REAL FUNCTION CMPSIG(NAVC,CLSVEL,LINEO,MAXTRN,MASS,

+ VELCTY,MNMASS,OPVEL)

C* Name - Function CMPSIG
C* Purpose - Computes steering signals for missile
C* Variables -
C* NAME TYPE UNITS

* ..

I NTEGER Navigational constant. Usually 4C* NAVC
C* CLSVEL REAL
C* LINEO
C* MAXTRN REAL
C* VELCTY REAL

REAL
Meters/second

radians (line of sight)
G's (max number of G's capable of pulling)
meters/second

REAL NAVC,CLSVEL,LINEO,MAXTRN,MASS,VELCTY

REAL SIGNAL,MAXSIG,MNMASS,VLCTY2,OPVEL,OPVEL2
REAL VELSIG

SIGNAL = NAVC * CLSVEL * LINEO

VLCTY2 = VELCTY * VELCTY
OPVEL2 = OPVEL * OPVEL

VELSIG = (VLCTY2/OPVEL2)

IF (VELSIG .GT. 1.0) THEN
VELSIG = 1.0

END IF

MAXSIG = (MNMASS/MASS) * VELSIG * MAXTRN

IF (ABS(SIGNAL) .GT. MAXSIG) THEN
SIGNAL = MAXSIG * ABS(SIGNAL)/SIGNAL

END IF

IF (ABS(SIGNAL) .GT. MAXTRN) THEN
SIGNAL = MAXTRN * ABS(SIGNAL)/SIGNAL

END IF

29

CMPSIG= SIGNAL

C_t_t_,_,_q__,_q___tq_**_,_

REAL FUNCTION CMPOP(YAW,LINEX,LINEY)

C* Name - Function CMPOP

C* Purpose - Computes an element used in computing
C* pitch signals from the seeker.
C* Variables -
C* NAME TYPE UNITS

* ..

C* YAW REAL radians
C* LINEX REAL meters
C* LINEY REAL meters

IMPLICIT NONE

REAL YAW,LINEX,LINEY

CMPOP = (-1) * SIN(YAW) * LINEX + COS(YAW) * LINEY

RETURN
END

C__o_,____,__,___,

REAL FUNCTION CMPOY(PITCH,YAW,LINEX,L1NEY,LINEZ)
C_,_**_,_o__,_,_,_,_,_,_,_,_**************_****_

C* Name - Function CMPOY

C* Purpose - Computes an element used in computing
C* yaw signals from the seeker.
C* Variables
C* NAME TYPE UNITS

C* ..

C* PITCH REAL radians
C* YAW REAL radians
C* LINEX REAL meters
C* LINEY REAL meters
C* LINEZ REAL meters

IMPLICIT NONE

REAL PITCH,YAW
REAL LINEX,LINEY,LINEZ

CMPOY = SIN(PITCH) * (COS(YAW)*LINEX + SIN(YAW)*LINEY)
CMPOY = CMPOY + COS(PITCH)*LINEZ

SUBROUTINE LNOFST(RX,RY,RZ,RESX,RESY,RESZ,
+ LINEX,LINEY,LINEZ)

C* Name - Subroutine LNOFST

C* Purpose - Computes line of sight angles
C* Variables
C* NAME TYPE UNITS

* ..

C* RX REAL meters
C* RY REAL meters
C* RZ REAL meters
C* RESX REAL meters/second
C* RESY REAL meters/second
C* RESZ REAL meters/second
C* LINEX REAL meters
C* LINEY REAL meters
C* LINEZ REAL meters

IMPLICIT NONE

REAL RX,RY,RZ
REAL RESX,RESY,RESZ
REAL LINEX,LINEY,LINEZ
REAL CMPDIS

REAL R,R2

R = CMPDIS(RX,RY,RZ)
R2=R*R

LINEX = (RY * RESZ- RZ * RESY) / (R2)
LINEY = (RZ * RESX- RX * RESZ) / (R2)
LINEZ = (RX * RESY - RY * RESX) / (R2)

RE_
END

REAL FUNCTION CMPDIS(X,Y,Z)

C* Name - Function CMPDIS
C* Purpose - Computes distance
C* Variables
C* NAME TYPE UNITS

* ..

C* X REAL earth-based x

C* Y REAL earth-based y
C* Z REAL earth-based z

IMPLICIT NONE

REAL X,Y,Z
31

CMPDIS = SQRT(X*X + Y*Y + Z'Z)

SUBROUTINE GETTAR(TARX,TARY,TARZ,ITMIN)

C* Name - Subroutine GETTAR

C* Purpose - Provides a moving target.
C* Variables
C* NAME TYPE UNITS
C II t ..

C* TARX REAL earth-based X
C* TARY REAL earth-based Y
C* TARZ REAL earth-based Z

C* ITMIN INTEGER (# of iterations per second)

IMPLICIT NONE

REAL TARX,TARY,TARZ
INTEGER ITMIN

REAL MACH

PARAMETER (MACH = 234.375)

TARX = TARX + (MACWITMIN)
TARY = TARY
TARZ = TARZ

RETURN
END

REAL FUNCTION CMPTHT(T,MAXTRT,MXTME,MINTRT)

C* Name - Function CMPTHT

C* Purpose - Computes thrust for missile simulation
C* Variables -
C* NAME TYPE UNITS
CI_ ...

C* T INTEGER seconds (# of seconds missile has flown)

IMPLICIT NONE
INTEGER T

REAL MAXTRT,MXTME,MINTRT

IF (T .LE. MXTME) THEN
CMPTHT = MAXTRT

ELSE
32

CMPTHT = MINTRT
END IF

RETURN
END

C_____t______

REAL FUNCTION ACCEL(THRUST,DRAG,PITCH,MASS)
C__________

C* Name - Function Accel

C* Purpose - Computes acceleration
C* Variables
C* NAME TYPE UNITS

_ ..

C* THRUST REAL newtons
C* DRAG REAL newtons
C* PITCH REAL radians
C* MASS REAL kilograms

IMPLICIT NONE

REAL THRUST,DRAG,PITCH
REAL G,MASS

C ACCELERATION DUE TO GRAVITY IS 9.8 meters PER SECOND
PARAMETER (G = 9.8)

ACCEL = (THRUST-DRAG)/MASS - (G*(SIN(PITCH)))
RETURN
END

REAL SIGNAL,PITCHR
REAL MSSCST

C MISSLE TIME CONSTANT IS 0.25 SECONDS

PARAMETER (MSSCST = 0.25)

33

PTHACC = (SIGNAL - PITCHR)/MSSCST

RETURN
END

REAL FUNCTION YAWACC(SIGNAL,YAWR)

C* Name - Function YAWACC

C* Purpose - Computes Yaw acceleration
C* Variables
C* NAME TYPE UNITS

lOt ..

C* SIGNAL REAL radians/sec**2
C* YAWR REAL radians/sec

IMPLICIT NONE

REAL SIGNAL,YAWR
REAL MSSCST

C MISSLE TIME CONSTANT IS 0.25 SECONDS

PARAMETER (MSSCST = 0.25)

YAWACC = (SIGNAL - YAWR)/MSSCST

RETURN
END

REAL FUNCTION CNGPTH(PITCHR,VELCTY,PITCH)

C* Name - Function CNGPTH

C* Purpose - Computes changes in the pitch angle
C* Variables -
C* NAME TYPE UNITS

IIt ..

C* PITCHR REAL radians/second
C* VELCTY REAL meters/second
C* PITCH REAL radians

IMPLICIT NONE

REAL PITCHR, VELCTY,PITCH

CNGPTH = ((PITCHR - COS(PITCH))/VELCTY)

RETURN
END

34

REAL FUNCTION CNGYAW(YAWR,VELCTY,PITCH)

C* Name - Function CNGYAW

C* Purpose - Computes yaw changes
C* Variables
C* NAME TYPE UNITS

llg ..

C* YAWR REAL radians/second
C* VELCTY REAL meters/second
C* PITCH REAL radians

IMPLICIT NONE

REAL YAWR, VELCTY,PITCH

CNGYAW = (YAWR / (VELCTY*(COS(PITCH))))

REAL FUNCTION CNGX(VELCTY,PITCH,YAW)
C_______t____

C* Name - Function CNGX

C* Purpose - Computes changes in x direction
C* Variables -
C* NAME TYPE UNITS

C* VELCTY REAL meters/second
C* PITCH REAL radians
C* YAW REAL indians

IMPLICIT NONE

REAL VELCTY,PITCH,YAW

CNGX = VELCTY * COS(PITCH) * COS(YAW)

RETURN
END

C_,_**_,__,__**_ __*_**_*_

REAL FUNCTION CNGY(VELCTY,PITCH,YAW)

C* Name - Function CNGY

C* Purpose - Computes changes in Ydirection
C* Variables -
C* NAME TYPE UNITS

_ ..

C* VELCTY REAL meters/second
35

C* PITCH REAL indians
C* YAW REAL radians

IMPLICIT NONE

REAL VELCTY,PITCH,YAW

CNGY = VELCTY * COS(PITCH) * SIN(YAW)

RETURN
END

C,_*****_,_**_**_**_***********************_*********_********

REAL VELCTY,PITCH

CNGZ = VELCTY * SIN(PITCH)

36

Appendix D

Missile Detonation Logic

Tracking

LOS >

Seeker

Limitation

No
Continue

Yes

Estimated

Range < 10
meters

/ /Hit

No • J Report /Miss

37

No

No

Yes

/ /Hit

38

F_el Exhausted

Closing
Velocity

< 0?

No
Continue

Yes

Fuel

Exhausted?

Yes

Hit

NO

/ Report /Miss

39

APPENDIX E

40

41

42

43

44

45

Form Approved

OMB No. 0704-0188REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of _nformatlon ps est=mateci to average 1 hour per response, including the time for reviewing instrudions, searching exlsttng data sources,

gathering and maintaining the data needed, and comp!etlng and revvewmg the coIledlon of reformation, Send comments tee larding this burden estimate or any other asDect of this
collection of information, including suggestions _or reducing th_s burden, to Washington HeadquaFters Services, Directorate for Information Operations and Reports, 1215 Jefferson

i Davis Highway, Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Pro ect (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 1994
4. TITLE AND SUBTITLE

The Analysis of a Generic Air-to-Air
Model

3. REPORTTYPEANDDATESCOVERED
Technical Memorandum

Missile Simulation

6. AUTHOR(S)

Joseph A. Kaplan, Alan R. Chappell, and John W. McManus

7. PERFORMINGORGANIZATIONNAME(S)AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-0001

g. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

5. FUNDING NUMBERS

505-90-53

R. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA TM- 109057

11. SUPPLEMENTARY NOTES

Kaplan - Virginia Polytechnic Institute and State University, Blacksburg, VA
Chappell - Lockheed Engineering & Sciences Company, Hampton, VA
McManus - Lan_le_ Research Center, Hampton, VA

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified/Unlimited
Subject Category - 61

13. ABSTRACT (Maximum 200 words)

A generic missile model was developed to evaluate the benefits of using a dynamic missile fly-out

simulation system versus a static missile launch envelope system for air-to-air combat simulation.

This paper examines the performance of a launch envelope model and a missile fly-out model. The

launch envelope model bases its probability of killing the target aircraft on the target aircraft's

position at the launch time of the weapon. The benefits gained from a launch envelope model are the

simplicity of implementation and the minimal computational overhead required. A missile fly-out

model takes into account the physical characteristics of the missile as it simulates the guidance,

propulsion, and movement of the missile. The missile's probability of kill is based on the missile

miss distance (or the minimum distance between the missile and the target aircraft). The problems

associated with this method of modeling are a larger computational overhead, the additional

complexity required to determine the missile miss distance, and the additional complexity of

determining the reason(s) the missile missed the target. This paper evaluates the two methods and

compares the results of running each method on a comprehensive set of test conditions.

14. SUBJE_ TERMS

Simulation, Missile Modeling

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

46
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39-_8

298-102

