
NASA-CR-196143

MBRS VERTICBL BXlS WIND MACHINES

The Design of a Darreus and a Gyromill for Use on Mars

Work done under NASA Ames Grant No. NCC 2-718

Thomson Research Projects, Inc.

Lake Mills, Wisconsin

(A Non-Profit Organization)

--=

n

m_

Initial Design and Analysis done by Senior Engineering Mechanics

and Astronautics Students at the University of Wisconsin-

Madison, Wisconsin. May, 1992.

John Bollig

Lisa Gohr

Kamin Mahoney

Dave Polidori

David Brach

John Dube

Jon Kelly

JoAnna Peterson

0
_)

I'm
I

_t
O,
Z

m

U

Analysis and Critique Completed June, 1994

by Mr. Owen Gwynne, Madison, Wisconsin.

u.
0

..J

I,-4

I.-V1
_w
uJO
>

uJ

c_;--

Frw, Lu,,J.-'_Z

<_

Z
0

W

,..J I-- N

0

_ou

0

w

0

0
0

tD



Preface

i

t m

°= =

.

!]
!7

m

_-°

w

F_

-E-

I
i.

ltZ Z
t7 =

_1̧
s.z :

.i=
m

[

This report contains the design of both a Darrieus and a
-Giromill for use on Mars. The report has been organized so that the

interested reader may read only about one machine without having

to read the entire report. Where components for the two machines

differ greatly, separate sections have been allotted for each machine.

Each section is complete; therefore, no relevant information is

missed by reading only the section for the machine of interest. Also,

when components for both machines are similar, both machines have
been combined into one section. This is done so that the reader

interested in both machines need not read the same information
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Statement of Purpose

The purpose of the Mars Vertical Axis Wind Turbine group was

to design a vertical axis wind turbine which would provide power to

an unmanned Mars research station. The research package for such

a station might include meteorology equipment, a seismometer,

surface chemistry equipment, and imaging equipment. The power

requirement of this package is one watt while in normal operation,

non-transmitting mode (p. A-1 to A-2). It is assumed that a lander

is provided as a platform, with landing characteristics similar to

those of the Martian Egg Lander EM 569 project of 1990 [19], and

that the lander is equipped with a battery-type energy storage

device. The turbine should be able to operate in the Martian

environment for three years, which is the amount of time between

launch windows to Mars; continuous data is desirable, and it would

be three years before another research package could be landed on

the surface. A complete list of the needs and functions of the design,

as well as a FAST diagram appear on pg. A-3 to A-5.
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Environmental Concerns

The Martian atmosphere differs greatly from the Earth's

atmosphere. These differences strongly affect many aspects of our

design. The most important differences are the temperature,

pressure, and density of the air and the surface gravity. These

values for Mars are:

Temperature: 140 - 240°K

Pressure: 6.5 10.5 millibars

Density of air: 1.667 x 10 -5 g/cm 3

Surface gravity: 3.70 m/s 2

The values for pressure and density on Mars are between 1/75

and 1/100 of their respective values on Earth. Even at these low

densities, it has been shown that the Martian atmosphere may be

modelled as a continuum rather than as a collection of discrete

particles [5]. This fact enables us to use the same laws of

aerodynamics as we would use for a wind turbine on Earth./ 0..1,.-0---Another important environmental concern is that of dust

storms on Mars. The low density Martian air is able to transport ('_,1 _'4

only small dust particles (approximately 0.1 mm). The dust storms _'Uc-

affect our design in two major ways. First, the airfoils will have to be__ ._,_,'_'_"'0 _

of relatively hard material to resist abrasion.-_ond, a_//t4L,II_._made

will be used to protect the generator and the gears. _ -- .._

The final environmental consideration is that of wind/_eeds.

The next section covers this topic in detail. _ a_ "/)
r J _

--2-
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_Wind Speed Design Decisions

Two important decisions needed to be made regarding the

Martian wind speeds. First, a range of wind speeds likely to occur

most of the time needed to be determined. A good estimate for the

maximum wind speed likely to occur was also necessary.

The range of wind speeds needed to be determined in order to

optimize the aerodynamic performance of our wind turbine. Because

there is little data on Martian wind speeds, this decision needed to be

based on a combination of analysis of the data and engineering

judgement. The existing data consists of measurements taken at the

Viking lander site and several meteorological studies.

It is quite difficult to make any decisions based on the Viking

data. The experiments measured north-south winds separately from

east-west winds with no correlation between the two. The best

estimate that we could obtain from this data is that the wind speed

was greater than 4 m/s about 80% of the time [see pg. A-6].

Studies done by meteorologists [5] show that the Viking lander

site was a non-optimal site as far as wind speeds go. They are able

to locate several areas where they believe the average wind speed to

be above 8 m/s, and a couple where the average could be as high as

14 m/s [5]. They also state that the global average wind speed is 6.5

m/s.

Since the mission will have other purposes other than just

generating power from the wind, it is doubtful that the landing site

would be at the optimal wind speed location. However, we believe if

wind energy is to be used, the landing site should be a place of at

least moderate wind speeds. Therefore we decided to design for an

intermediate value between the Viking data and the meteorological

studies.

The actual numbers that we have selected are listed below

1) Generate 1 Watt of power from all wind speeds

greater than 6 m/s O _ I

2) Operate a_peak efficiency for wind speeds between

5 m/s and 8 m/s //

-3"
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3) Generate some power for all wind speeds greater

than 4 m/s ,/

We believe that these numbers will provide the best overall

performance of our wind turbine. We see that even if we landed at a

site similar to the Viking site, we would still be generating some

power 80% of the time.

The maximum wind speed likely to occur is very important for

determining the extent of structural support required by our turbine.

Wind speeds of up to 100 km/hr have been recorded on Mars for

only a few hours [ 3 ]. Meteorologic studies estimate the maximum

wind speed likely to occur on Mars at 250 km/hr [ _'].

Once again, engineering judgement needed to be combined with the

data.

The meteorological study here is somewhat questionable due to

some of the assumptions it has made [4-]. Also, our .turl_in¢ ,is

expected to operate for only three years, so the _ it

seeing wind speeds of 250 km/hr is quite small. We decided to

design our wind turbine to withstand all wind speeds up to 150

km/hr.
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Selection of Wind Turbines

Vertical-axis wind turbines appear to be the most feasible

means for generating power from Martian winds. Since vertical-axis

wind turbines are always oriented into the wind, there is no need for

vanes to rotate the blades into the wind. This eliminates the

presence of large gyroscopic forces found in horizontal-axis wind

turbines.

Several vertical-axis wind turbines were considered. The five

possibilities that were given the most thought were:

1) q_-Darrieus

2) A-Darrieus

3) Giromill

4) Split-Savonius

5) Combination of Split-Savonius with either Giromill

or Darrieus

AL_ c,4,o

I !:.I )
/_ c°'J'd='-c r°/L

l) '

_-Oerrk_ S_it Savonim

A turbine that is powered by aerodynamic drag forces, such as

a Split-Savonius, would need to be very large to extract enough

power from the thin Martian air. Therefore, this choice was

determined to be less desirable than the other four.

-5-
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Of the three lift-type turbines, the _-Darrieus and the Giromill

were determined to be the best choices. Also, in order to minimize

mass, each turbine will have two blades. Both the _-Darrieus and

the Giromill possess strong advantages that were not found in the A-

Darrieus. The main advantages of the two turbines are listed below.

-Darrieus Giromill

o The blades are designed

to eliminate bending stress

1. Blade material positioned

for maximum aerodynamic

torque

. Light weight blades can be

built since no bending

stresses are present

2. Has deployment benefits

since relatively easy to

"compress" into small area

A combination of the Split-Savonius with one of these two

machines was also considered. This type of design would enable the

turbine to be self-starting. However the large size of Split-Savonius

that would be required prevented us from selecting this option. The

use of the generator to start our turbine will enable a much lighter l

design than if a Split-Savonius were used for this purpose. ¢/ _9( Z'e

For convenience, the rest of the report will drop the _ prefix

from the _-Darrieus.

f
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Darrieus Blade Design

• Size Determination

Development of troposkien shape for
varying cross-sectional area of blade

• Optimization of Shape

• Airfoil Selection

• Material Selection

Structural Analysis
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In trodtlct|oq

When G. J. M. Darrieus received his patent for a vertical-axis

wind turbine [2], he stated that the blades should take "the form of

a skipping rope." A blade placed in this shape will be in a state of

nearly pure tension, i.e. negligible bending stress. By eliminating

the bending stress, the amount of material required for support is

drastically reduced, and very light-weight blades may be designed.

The word troposkien (from the Greek: "_pogos, turning and

oxotvLov, rope) is now used to describe the shape assumed by

perfectly flexible cable that is spun about a vertical axis at constant

angular velocity.

All previous Darrieus turbines have been designed with a

constant cross-sectional area along the length of the blade.

Although these solutions ease manufacturing of the blades, much

material is wasted. From previous designs, it has been found that _,_)

the tension, and therefore the stress, varies with horizontal(__,_(,e.g'j'

position squared [1]; the stress is highest at the top and lowest in

the center. It was noticed that material could be saved by varying

the cross-section along the length of the blade. Namely, it would

be desirable to place more material where forces are higher, and

remove some material where forces are lower. Our goal was to

have a constant stress everywhere along the length of the blade,

thus eliminating wasted material. Since the shape and the stresses

depend upon how we vary our cross-sectional area, we realized

that we could probably could not achieve exactly constant stress,

but would try to come as close as possible.
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Size and Tin-Soeed Calculations

Using wind energy theory, together with experimental results

from existing Darrieus turbines (see pg. T-1 to T-8), we were able

to determine the necessary size for our Darrieus turbine. In order

to generate 1 Watt from a 6 m/s wind, the blades must have a

swept area of 2 m 2. Due to the low density of the Martian air, this

is about 100 times larger than would be required on earth. The

following figure shows what is meant by area swept.

_Aree Swept
6ea[

The aerodynamic performance of a wind turbine is strongly

effected by its tip-speed. The tip-speed of a windmill is the speed

at which the blades are moving _. Since) for a Darrieus blade,

every position has a different speed, the tip-speed is defined as the

maximum speed of the blade. This is by definition, the product of

the distance b times the angular velocity _ (the distance b can be

seen on Figure 0, pg. T-10). Closely related is the tip-speed ratio,

which is the tip-speed divided by the ambient wind velocity.

Using a suggested wind-speed probability relationship, the

tip-speed was determined so that our turbine would generate the

maximum average power (see pg. T-1 to T-8). The average power

was maximized so that we _e able to recharge our batteries with

the most energy over time(_his was done while also assuring the

generation of 1 Watt from a 6 m/s wind speed. The required tip-

speed was found to be bra=31.3 m/s.

-g-
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Tronoskien ShaDe and Optimization

The equations governing the shape of a varying cross-

sectional troposkien are developed in complete detail in the

appendix (see pg. T-9 to T-17). After considerable manipulation,

the equations may be reduced to one first-order differential

equation, one unknown, and two boundary conditions. The

equations are in the form shown below.

where

dr

_zz = f(r,b,_,K)

r(z=a) = 0

dr

dz (z=0) = 0

r = horizontal coordinate

z = vertical coordinate

a = height, see above figure

b = width, see above figure

= a measure _ of how much we vary our cross-section along

the length of the blade

• a low _ (_=,1) means that there is a strong difference

in cross-sectional area between the top and the

middle of the blades

• a high _ (_=20) means that the cross-sectional area is

nearly constant along the length of the blade (this

value for _ will be used to approximate the constant

cross-sectional area solution)

K = a parameter which depends on many terms, the most

physically significant are:



• K is proportional to mass per unit length of blade
f = a function, the actual function may be found on pg. %17

The values for a and b are not independent, they must be

chosen so that the area swept is 2 m2. In order to solve for the

shape r(z), we are free to choose any combination of a and b that

sweeps out 2 m 2, and any value of _. Since we have this freedom,

we must select the values that give the best results.

What our solution needs to minimize is the required

arclength of the blades so that the area swept is 2 m 2. The

arclength is a measure of how much material is needed and _=_._
therefore minimizing the arclength will minimize the blade mass. J _

The function f in the differential equation is quite complex

(see pg. T-17) and no analytical solution exists. Therefore, we have

developed a numerical solution with a computer program, j Our

computer solution will be developed for several values of a and b.

The selected values of a and b will not sweep out an area of exactly

2 m 2. Therefore our attempt will be to maximize the value of area

swept divided by arclength; this is essentially a power-to-mass

ratio. This concept can filearly be seen by observing the tabular

data (pg. T-28 to T-31). Once this value is optimized, we may

adjust a and b sligl_tly in order to obtain the swept area equal to 2
m 2.

The computer solution (pg. %18 to T-27) is carried out by

first selecting values for a,b, and _, and then solving for the shape

r(z) and the parameter K. The shape is determined pointwise and

may be developed for as many points as desired. Since the

equation is a first order differential equation with two boundary

conditions, we need to leave K as an unknown in order to

guarantee that the solution will "fit" both boundary conditions.

-it)-
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The program uses a combination of the fourth order Runge-

Kutta method for numerical integration and the bisection method

for root finding (see pg. T-24 to T-27). The program is able to

determine the shape, r(z), and the value of K simultaneously. For

each selected value of _, the solution is repeated for 30 different

combinations of a and b that sweep out nearly 2 m2. The whole

procedure is then repeated for different values of g, with the goal

being a maximum ratio of area swept to arclength. _,

After trying several values of _, we notice that the lower the

_, the higher the value of area swept to arclength for all values of a

and b. The following graph shows this quite clearly. The ratio of

area swept to arclength is shown on the vertical axis. The height-

to-width ratio (a/b) is plotted on the horizontal axis. The curve for

_=20 is essentially the case of a constant cross-sectional area along

the length of the blade.

POWER-TO-MASS

Sea&." Legend."

II. inch- 0.1900 {_,_ ZETA - I.

v. inch- 0.0:so __ ZETA- 5. o

G_ zETA- _o..¢

[...

7,,
f.r.1

¢.r,]
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From._ these curves we see that by varying the cross-section,

we get the added benefit of a better shape. This makes our results

better than we had even hoped for. The concept of obtaining a

better shape also makes sense physically. By placing more

material near the top, we increase the centrifugal force there, and

obtain a shape that is more square-like. This shows up well on the

following graph. The graph shows the shape obtained by varying

the cross-section (_=1.3), the shape obtained with a constant cross-

section (_=20), and a circle for comparison. As expected, the

varying cross-section case is "pushed out" more near the top of the

blade, and the constant cross-section case is "pushed out" more

towards the center of the blade (which is the bottom on this

graph). All of these curves have the same arclength.
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We see from figure 2 that for each value of _, there is an

optimal combination of a and b. We are then left with determining

the best value for g. By def'mition, _ has a minimum possible value

of approximately 1.0. With this fact and the above curves in mind,

we see that we want _ very close to 1.0.

Besides having the best shape, we must remember our

original intent to have nearly constant strength (i.e. constant

stress) along the length of the blade. It is important to understand

the differences between the two measures. A constant strength

reduces required material along the length of the blade, whereas a

better shape reduces the length of the blade.

After several iterations, we see that if g is too close to 1.0, we

are not able to approach constant strength and that if g is much

greater than 1.0 we quickly lose the better shape and the ability to

obtain constant strength. The optimal value, determined by trial

and error, was found to be _= 1.3. j

With this value selected, and the optimal values for a and b
determined from the tabular data (pg. T-28 to T-31), we have the

complete solution for our shape and the value of K. With b known,

we are able to determine the required angular velocity from our

earlier specified tip-speed of b,o=31.3 m/s. Then with K and

known, relationships may be written in order to determine the

tension and stress at any point along the blade. This is all done on
pages T-32 to T-36.

From these relationships, we are able to plot the tension and
stress along the length of the blade. The values are normalized for

ease of understanding. The tensile value at any point is divided by
the tension at the blade's midpoint (z=0), which is the minimum

tension. The stress value is also divided by the stress at the

blade's midpoint. These ratios are written as T/To and O/Oo,
respectively, where the subscript o refers to the value at z=0.

These ratios are measured along the vertical axis on the following
plot: Along the horizontal axis is th¢ non-dimensionalized vertical

/



coordinate (z/a). We see that we have taken a maximum loading

ratio (T/To) of nearly 4 and reduced it to a stress ratio (O/Oo) of

approximately 1.5. We also see that we have come very close to

achieving constant strength (O/Oo=1) throughout the length of the
blade. For the traditional, constant cross-sectional area Darrieus

designs, the stress ratio would follow the same curve as the tension
ratio.

TENSION AND STRESS 1L&TIOS

5c'a&: /._lqenm/:

I; Inch - 1.20_1

V. Inch - 1.70041 _ 5TRIESS 1LaTIO

..g

-r, F
p

!
i

o.,t_k_ I 1 I I

II.e 1.2140 II,,lalW II.Jt41Q _ I_

Z/A

Although all of these figures give great promise to the idea of

varying the cross-sectional area along the length of the blade, .we
"needed to estimate the total saving of mass to see if the idea was

really worthwhile. Remember that benefits occur for three

different reasons. First, we reduce tna/ss by varying the cross-

section along the length of the blade/and removing material where

it is not necessary. Second, we obtain a better shape (shorter

length of blade) which requires less material. `'/Finally, by reducing
the total blade mass, we reduce stresses everywhere.S/When our

solution was compared to the constant cross-sectional area solution
we found thfit by varying the cross-sectional area we reduced _ -_,

blade mass by over 34% while also achieving a 54% reduction i-n __'7-. _

maximum stress (see pg. T-36). These results verify that it is "l/z_,j._O

worthwhile to vary the cross-section along the length of the blade. 6,-_YvF".



Darrieus Airfoil Selection

Chord Length

The optimum performance of the wind turbine depends upon the size and

shape of the machine itself and the size and type of airfoil used for the
blades. A measure of the turbine's performance can be given by

Cp = 0.25n(c/r)kXV 2 - 0.5n(c/r)CdX3

where"

Cp = coefficient of performance, a measure of efficiency
n = number of blades for the turbine

c = chord length of the blades
r = distance from the chord line to the center line of rotation

X = the tip-speed of the machine

V = the incident wind velocity acting on the machine

Cd = the average drag coefficient for the blades

The incident velocity, V (Fig. 6 and appendix p. T-41; [24]), is given by the

equation

V = 1 0.0625n(c/r)X(k+3Cd)

Substituting this equation into that of Cp, differentiating with respect to

the tip speed, X, and assuming the atmosphere acts as an ideal fluid (Cd=0)

results in the expressions

and

X = 16r/(3nck)

V = 2/3

The latter simply means that during optimal operation, the incident

velocity acting on the wind turbine is equal to 2/3 the free stream

velocity. For the darrieus machine, the first equation, used to find the

chord length, is now a function of two variables, e and r; unlike the

giromill. Considering that the torque generated by the the outermost part
of the blade will be much greater than that of inner sections, the value of r

_ 15-..



used was 0.839 m. Substituting values for k,r,n, and k results in an

optimum chord length of 6.83 cm.
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Incident velocity vs. Free stream velocity
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Thieknes_

The thickness of the airfoil can be determined by finding the maximum

value of the average coefficient of moments (Fig. 7) which is given by

Cma = (c/r)[(p/2)V2-CdX2]

By inspection, it can be seen that the thickness of the airfoil should only be

dependent on finding the lowest value of Cd. As before, the radius also

affects these calculations. However, as r decreases, the contribution to the

moment decreases as well and so we make tlz same assumption of r as

when finding the chord length. Using experimental data [8] to compute a

value for these drag coefficients gives the following as examples:

Airfoil tYPe

NACA0006

NACA0009

NACA0012

NACA1410

0.0098

0.0079

0.0076 /

0.0081

As can be seen, there is very little difference among these drag values

which results in moment coefficients which differ by only thousandths; the

NACA 0012 airfoil being only slightly better than the others. Initially it

was thought ignoring these differences and using the thinnest section

possible (to cut mass requirements) would be best. The range of usable

angle of attacks (Fig. 8 and appendix p. T-42; [24]) for each airfoil,
however, does show that the NACA 0012 section is the best choice,

especially at higher wind speeds.

Lift and Drag

Due to the extremely low density of Mars' atmosphere and the small

planform area of the blades (0.18 m 2) the lift and drag forces acting on the

blades are small. At a wind speed of 6 trds the lift force on the blades is

only 0.72 N (appendix p. T-42). The drag forces have been neglected due

to the fact that they are typically on the order of one percent of the total
lift force.

-18-



Darrieus Material Selection /Y_'.<v_ _ic_ ".

The material selection for the blades was limited b/y-:w_n""

factors, one being the low temperature range (140K-240K), iand the

second being the need for a high strength-to-w_ig ht-rati°'--The

materials collected within those limits are found in Table 1 and Table

2 on pg. M-1 and M-2 in the appendix.

The Darrieus blades are in pure tension while the machine is

operating, thus a light weight material with Strong tensile properties

is needed. These two criteria are best exhibited by unidirectional
• ' : _-_: 5

Comt_osites ( Table 2 (pg. M-2) in the appendix shows properties of ,_ ,<c o,
- . . '.. ._ ..:_,j_:,,.__ (6-') 7 l'l'6:Lc ,:.L__-:':'__-_

such composltes), _ : _c _ \'-_- " " . I e.:_"r....:/:_
" " 11 -- _ l_C"_'

Kevlar had the h_ghest strength-to-wetght ratio of all t e ,--..., --_"

materials. It also exhibits superior properties of fatigue. Kevl_.._St 3 /_"

suited the need for the Darrieus blades and thus was chosen for the

b__iterial. Verification of the material selection can be found on

page M-4 in the appendix. _loy _ '_ :"' q
All connector pins are made out of titanium 6AI4V." This _'" _ _(4t/

material was chosen because of its extremely high shear strength. Its

low coefficient of expansion is also very important so that it won't

interfere with the materials it is pinning. Properties of this titanium

alloy can be found in Table 1 (pg. M-l) in the appendix.
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TroDosklen Blade, Analysis

The solution of the troposkien equation for a given set of

parameters was completed. These parameters constitute a set of

"governing equations" that determine the dimensions of the blade.

The "governing equations" have been included in the appendix(T-33,

T-34). The subsequent analysis of the blades included the following:

(1) Centrifugal loading analysis,

(2) Aerodynamic loading analysis,

(3) Thermodynamic loading analysis.

These will be discussed further in the following, additionally, sample

calculations have been included(T-43 - T-62). The troposkien blade

specifications will be discussed first.

r

TroDoskien blade specifications

The final configuration of the troposkien blade was a hollow

shell with approximately constant wall thickness. Many alternative

configurations were considered(T-60,T-61), but in the end the thin,

hollow shell proved the best choice(T-63).

Outer shell shape - NACA0009

At the equator

cord = 7.4 cm

wall thickness = 0.5 mm

f1

At r - 6 cnl

cord = 9.0 cm

wall thickness - 1.0 mm

total mass of each blade = 0.486 kg.

Addition information on the geometry of the blade can be found in

the appendix(T-43 - T-45).

-7_-0 -
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Centrifugal Loads

The dominant loads acting on the troposkien airfoil are the

centrifugal forces. The troposkien blades are in a state of pure

tension for centrifugal loading. The solution of the troposkien

solution yields specific parameters which must be satisfied; these

parameters may be found on pg. T-33 and T-34. Manipulation of

these equations yields specific information about the stress in the

blade at any location (T-39). Remarkably, we find that the tensile

stress is completely independent of the cross-sectional area, as long

as the area is varied according to the mass per unit length equations

on pg. T-14. This is because as the cross-sectional area is increased,

the centrifugal force is increased, and the tensile force increases. For

example, the uniaxial stress acting at the blade's equator is

where"

Go = 61.1 * 8 = To / (Acs)o

To = tension at equator

8 = mass density (mass/length 3) of material

(Acs)o = cross-sectional area at the equator

The density of the blade material is 1380 kg/m3. This yields a

uniaxial stress of 84.3 kPa at the equator. The maximum stress is

129.8 kPa, occurring at the roots of the blades. Because of the high

strength of Kevlar, the factor of safety under normal operating

conditions is _'_The only way to reduce the ,_fact°r of safety is
to use a weaker and/or heavier material!

The source of greatest concern with respect(_the centrifugal
loads is the location of the pin that will secure the blade to the hub of .-i r_-

the shaft (T-46 to T-48). A stress concentration will occur around A I/J/,) jr

the hole. The stress concentration factor [20] is defined as, _tj_ _._'#_v,

k = 2 - (1-w/d) + [1.5(1-w/d) / (l+w/d)] _ ,0.D#-

..__v "2
The stress intensity factor evaluated at the pin location is_

The maximum stress is computed by Omax = k P/t(w-d). The

load P is determined to be T/2 = 9.0 iV, so we obtain

Omax = 181.1 MPa

-21-
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The ultimate stress for the material isgiven to be 1400 MPa, giving a factor

of safety of 7.7.

Aerodynamic loadirut

The aerodynamic loads acting on the airfoil were found to be

negligible compared to the centrifugal loads. Considered in the analysis,

were the pressure acting over the surface of the airfoil, which could

potentially deform the airfoil shape, and the bending moment acting on the

blade due to the total aerodynamic load.

The pressure acting on the surface of the blade was analyzed by

modeling the blade surfaces as infinite plates fLxed on the leading and

trailing edges.

u

w

u

[
u

m

u

t
m

t

[

The equation for the maximum deflection of the center of the plate[22]is

ymax = a qb 4/E t3

where

, a = 0.0285

q = pressure acting on the surface

b = cord of airfoil _ _ _, _-: 5

E = flexural _odules_)_f material

t = wall thickness of the blade

Assuming the maximum deflection of the plate to be equivalent to

half the maximum thickness of the airfoil, a pressure can be calculated.

This pressure acts as a residual force against any restoring pressure.

Thus, for Ymax = 0.00333 m,

q = 38.96 MPa

-
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The pressure actingon the blade due to the aerodynamics of the

airfoilisestimated(T-51 -t-55)[8]and subtracted from q.

Q = q - p = 38 94 MPa

This yields a maximum deflection of

ymax2 = 0.003328 m

The differencebetween the maximum deflectionsis0.05%.

The aerodynamic loadingwas estimated to be 0.06 N-m about the

verticalaxis.The moment actingon the blade at r = 0.06m would be

approximately equal to that actingabout the center(T-56-T-57).

The relevant moment of inertiaand centroid at r = 0.06m is

Iyy = 514.08(10)-9 m 4

x = 0.042c

Substituting into o = Mx / Iyy, yields

o = 6.1 kPa.

This stress is less than 5% of the uniform stress due to the

centrifugal loads.

Thermodynamic loading

The martian atmosphere experiences a diurnal temperature

change of ~100 K. The strains that result from these temperature

fluctuations is negligible(T-58, T-59).

The material has an axial and a transverse coefficient of

expansion. They are:

-23-
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_axial -- 100 K (-2.0(10)o6 ! K )

Etrans = I00 K (60(10) -6 / K )

In the axial direction, the total length is 2.54 m.

direction the length is approximately the cord length.

change in overall length is

8 = 53.4 gin, axially; and

6 = 444 _tm, transversely.

In the transverse

The total

14L
-_. : ," d_J'f

' )._

The expansion in the axial direction is negligible, and the expansion
in the transverse direction is less than 1%.

L

-24-



i

.v

Giromill Blade Design

Size Determination

Strut Positioning

Blade Structure

w

Strut Connections

• Stresses

Airfoil Selection

Material Selection

m

i

B



ii

L_

I

....

=

Dimensions and Tip Sp_

In determining Giromill dimensions the initial step comprised of

an approximate Swept Area(Asw)(see Pg.G1) needed to produce one
Watt of mechanical power. From Asw dimensions of height and

radius of Giromill were obtained.

From wind energy theory, it is possible to deduce a rough idea of

A sw. By considering kinetic energy of moving air, the following

equation for maximum mechanical power(Pmeeh)that can be
extracted was derived: (for complete derivation see pg.T-8)

Eq.(l) Pmech=Cp(.5*P *Asw*V°^3)

Cp=>eoefficient of power

p=>density of Martian air
Vo=>free stream velocity on Martian surface

Wanting to maximize Pmech, a peak Cp and related Tip Speed

Ratio(T) where needed. Numerous numerical data showed an

approximate C p/m ax=0.5 in accordance with a T=3.0. [9](see pg. G2)

Solving Eq.(1) for Asw, setting Pmech=l. 0 Watt, and plugging in

appropriate quantities gives:

Eq.(2) Asw=l.389 [m62] (see pg.G3 for calculation)

It is also know that the A sw can also be represented as a function

of height(h) and radius(R) of the Giromill Eq.(3) below. Another

equation which is a function of h and R is the perimeter of the

Giromill(P) Eq.(4) below.

Eq.(3) Asw(h,R) =2hR= 1"389[m^21
and

Eq.(4) P(h,R) =4R+2h

If Eq.(4) is minimized to ensure smallest amount of material

used, Eqs. (3) and (4) can he solved for Giromill dimensions h and R.

R=.5546[m]
h=l.1786[m]

w

-25"-
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(see pgs.G3-G4 for calculation)

The T related to C p/raax can be used to obtain the operating

angular velocity of the Giromill, with the correct R determined

above. The equation for T is as follows:

Eq.(5) T = toR/V0

to=> operating angular velocity of the Giromill

Setting Eq..(5) equal to 3.0 and solving for to'

to=32.45[r/s]

(see pg.G5 for calculation)

These first calculations for dimensions and angular velocity

became very important for later calculations in Giromill design.
f

w

Strut Positioning

The decision for a two strut per blade design was determined
from two factors. Factor one was two struts-'dr6 a stmpler design

___,__three or more. Factor two was two struts reduced the
maximum bending moment in the one strut case by 17.1%.(see

appendix pg.G15)

For the two strut design the positions of the struts along the

blades was crucial. The position was in-direct relation--to-the-bending

moments and stress on the blade. S--;_. ........:-,-_ _-_

In the blade and strut arrangement, the blade was modelled as a

beam with a uniform distributed load(w) acting in the plane of the

struts.(see appendix pg.G9) Looking at the bending moment diagram

we see three large moments:

MA=MB=wa^2/2

Mc=(wh/$)(-h+4a)

a=>position of struts from end of blade

h=>length of blade

(see appendix pg.Gl2-G13)

!



With the maximum bending moments determined, it was

desirable to minimize them as much as possible. This in turn

minimizes the stress on the blade. If the moments M A and M C can

be balanced the desired minimal stress will result. By determining

the ratio of a/h to make the following equality true:

Eq.(1) [MA[=IMC[

the smallest stresses possible are achieved.

Plugging the appropriate equation for the moments in Eq.(l) from

above "fli_following equation for a and h result:

Eq.(2) a^2+ha-.25h^2=0

Solving Eq.(2) give the ratio a/h=.207 or a is 20.7% the length of

the blade under a uniform load.(see pg.G13-G14)

Blade Structure

J
A NACA-0012 airfoil shape was chosen for reasons to be

mentioned later under the title Giromill Airfoil Selection. The

material aluminum boron was chosen for the Giromill, which includes

the blades, for reasons which will be mentioned under the title of

Giromill Material Selection. f

When considering blade structure, centrifugal loads acting under

operating conditions become the key design consideration. The

aerodynamic loads are negligible compared to the centrifugal

loads.(see pg.GlS)

Centrifugal distributed load:

Eq.(l) w=(toA2R/h)Masslone blade

(see appendix pg.Ol9)

This relates to the maximum bending moment on the blade of:

Eq.(2) MA=wa^2/2=((toA2RaA2)/h)Masslone blade
(see pg.G12) /



n

Notice Eq.(2) MA is a function of mass, if this mass can be reduced,
the stress on blade will also reduce.

To reduce the mass the blade was hollowed out to a thickness of

.5[mm]. This dimension was determined on a manufacturability of
aluminum boron.

The consideration of a ribbed blade was omitted due to the fact

that¢^ with the rib_ stress and deformation of blade increased.

Stresses(using ox on pg.G21)

w/o rib ox[w/o=l.6297 * 10A7[Pa]

w/rib ox]w/= 1.6899* 10A7[Pa]

Deflection(see calculation on pgs.G28-G29)

yEIw/o=(.9644)yEIw/

The final overall dimension of the blade are as follows:(see pg.G4,

pg.G30 and section Giromill Airfoil Selection)

C(cord length)=8_. 1.13[cm]

T(Max. thickness)=9.756[mm]

D(blade thickness) =.5[mm] .

h(blade length)=l. 17857[m]

t_onnections of Struts

To connect the blades to the struts three points must be consider.
Point one the struts must be pinned for deployment and to reduce

bending moments on blade./Point two struts mus _ be positioned at
42.04% of the cord length from the leading edge. This will insure no

resulting moment due to centrifugal loading. Point three struts must
be positioned at 20.7% Fof blade length from end of blade.(see pg.G14)

To comply with point one small cylinders of radius=l.5[mm] and

length=7.0[mm] are attached to the end of each strut. This small

cylinder is then fitted into a U-shaped fitting, which is welded to the

blade. See appendix pgs.G35-G37 for complete dimensions and shape

of pin connections.
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Position for points two and three are found in appendix pg.G34.

Stresses and Factor of Safety

In the f'mal stress analysis there are two points to consider. Point

one is the the centrifugal loads dominate the aerodynamic loads.(see

pg.Gl8). Point two the centrifugal loads act perpendicular to the
blade and at the center of mass.

Keeping these two points in mind, the maximum stress(ox) found

in the blade will occur at the point of maximum bending moment
Calculated axduring operating condition:

ox = 1.62960792* 10^7[Pa] = 16.296[MPa]

with a factor of safety of:

F.S.=81.0

(see pg.G41 for sample calculation) t,j_::_i_- _ ,

"-_--ecking shear stress intheblade is approximately during

,_ operating conditions:

x=4.1 [MPa]

with a factor of safety of:

F.S.=19.5

(see pgs.G42-G44 for sample calculation)

Notice the large factor of safety. Due to the nature of the

centrifugal loads and moment of inertia dependance on blade

thickness(D) this can not be helped. The stresses depend on (D) in

such a way that they decrease with decreasing (D). (see pg.G39 for

justification)

The final consideration looked at concerning the blade was the

pressure load due to aerodynamic loads. It was thought that with

such a small thickness of the blade (D=.5[mm]), this pressure load

may deform the blade. This was modelled and determined to be

negligible.(see pg.T51-T55 for calculations)



w

The stresses concerning the struts and connections are of very

high factors of safety. This is due to the small forces applied to the

strong aluminum boron material. See appendix pg.G31-G34 for strut
considerations and dimensions.

Total Mass of Blades and Struts

The Giromill contains two blades, four struts, and four pin

connections. The resulting mass of Giromill(MT):

MT=2MB+4Ms+SMu+4MCL=0.42887[Kg]
(see pgs.G45-G46)
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Giromill Airfoil Selection

_hord Length

The optimum performance of the wind turbine depends upon the size and

shape of the machine itself and the size and type of airfoil used for the
blades. A measure of the turbine's performance can be given by

Cp = 0.25n(c/r) kkV2
0.5n(c/r)Cd_. 3

where:

Cp = coefficient of performance, a measure of efficiency
n = number of blades for the turbine

c = chord length of the blades
r = distance from the chord line to the center line of rotation

7_ -- the tip-speed of the machine
V = the incident wind velocity acting on the machine

Cd = the average drag coefficient for the blades

The incident velocity, V (Fig. 6 and appendix p. G-54; [24]), is given by

the equation

V = 1 0.0625n(c/r)_.(k+3Cd)

Substituting this equation into that of Cp, differentiating with respect to

the tip speed, L, and assuming the atmosphere acts as an ideal fluid (Cd=0)

results in the expressions

_... 16r/(3nck) /"

and
V = 2/3 J

The latter simply means that during optimal operation, the incident

velocity acting on the wind turbine is equal to 2/3 the free stream

velocity. For optimum performance, the first of these results has only one

variable, c. For the case of the giromill, Substituting values for _.,r,n, and k

results in an optimum chord length of 8.13 cm.

-31 -
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The thickness of the airfoil can be determined by finding the maximum

value of the average coefficient of moments (Fig. 7 and appendix p. G-54 to

G-55; [ibid.]) which is given by

Cma = (c/r)[(P/2)V2-Cd k2l

By inspection, it can be seen that the thickness of the airfoil should only be

dependent on finding the lowest value of Cd. Using experimental data [8]

to compute a value for these drag coefficients gives the following as

examples:

Airfoil type .C,d

NACA0006

NACA0009

NACA0012

NACA1410

0.0098

0.0079 t ;s::<

0.0076 y__ /_ J
0.0081

As can be seen, there is very little difference among these drag values

which results in moment coefficients which differ by only thousandths; the

NACA 0012 airfoil being only slightly better than the others. Initially it

was thought ignoring these differences and using the thinnest section

possible (to cut mass requirements) would be best. The range of usable

angle of attacks (Fig. 8 and appendix p. G-54 to G-55; [24]) for each airfoil,

however, does show that the NACA 0012 section is the best choice, <.. ......,.

especially at higher wind speeds. Peculiar to the darrieus type wind
machines is the fact that regardless of the wind speed, chord length, and

thickness, there will always be a section of the blade that will be smiled

during some portion of the rotation. As r decreases or as the free stream

wind velocity increases, the tip speed k decreases. This results in an

increasing angle of attack until the stalling angle of the airfoil is reached.

At k = 1, the blade speed is equivalent to the wind speed and the lift and

drag forces are equal to zero at that instant. At optimum levels, this point

occurs at roughly 16 cm from the axis of rotation.

!



Lift and Drag

Due to the extremely low density'of Mars' atmosphere and the small

planform area of the blades (0.09m2) the lift and drag forces acting on the

blades are small. At a wind speed of 6 m/s the lift force on the blades is

only 0.23 N (appendix p. G-54 to G-55). The drag forces have been

neglected due to the fact that they are typically on the order of one
percent of the total lift force.
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Giromill Material Selection

The material selection for the Giromill was limited by two main

factors, one being the low temperature range and the other being the

need for a high strength-to-weight ratio. The materials collected

within those limits can be found in Tables 1 and 2 on pg. M-1 and

M-2 in the appendix.

The material selection for the Giromill blades and struts must also

take in consideration bending, and shear. A high modulus of

elasticity is also needed to withstand any deflection due to the

location of the struts. The material which exhibited the best

properties in all categories was boron reinforced aluminum. This is a

metal matrix composite characterized by high tensile strength and
• .

shear modulus, dimensional stability, joinability, high ductdlty, and

toughness. For further verification of'-th-_-_e Gir mill material selection,

see page M-6 in the appendix.

All connector pins are made out of titanium alloy 6A14V. This

material was chosen because of its extremely high shear strength. Its

low coefficient of expansion is also very important so that it won't

interfere with the materials it is pinning. Properties of this titanium

alloy can be found in Table 1 on page M-1 in the appendix.
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Shaft Desien

The loading on the shaft is as follows (pp. S-1 to S-8):

• Bending due to wind drag on the turbine blades

•Torsion due to power transmission from blades to

generator

•Axial/buckling due to weight of blades

The shaft configuration of Figure 9a was chosen because fatigue

is eliminated from the shaft. The non-rotating inner shaft takes the

bending moment, while the outer shaft takes the torsional load.

Because the rotating shaft does not see any bending, a fatigue

situation is avoided.

• _ _ ,_t-_9

7"o jc_ _j0.

/6 _, /,,j
or_ r" /

fJt_

The bending moment of approximately 18 N-m led us to an

aluminum-boron composite (AIB) inner shaft with a diameter of

10mm. The outer rotating shaft, also of'AIB, has an inner radius of

19mm and an outer radius of 19.5mm. The bearing races are

integral to the shafts to avoid problems with adhesion over the low,

wide temperature range. The dimensions of the bearings were based

on an SKF ball bearing which was selected for its ability to handle

small thrust loads [p. S-13]. The races are coated with a film of

molybdenum disulfide for lubrication.

A first approximation of the torsional natural frequency of the

Darrieus machine was found to be 2.5 I-lz, while that of the giromill

was 4.3 Hz (pp. S-9 to S-12). The main torsional forcing function for

these machines is caused by "tower shadow," which is illustrated in

Figure 10. Each blade passes through a region of reduced wind/"

velocity, caused by the interference of the tower, once per

revolution. When the blade passes through this tower shadow, it

experiences a dip in lift and therefore in the torque transmitted to

the shaft. Because there are two blades, the frequency of this dip is

twice the rotational speed of the machine, or 5.6 Hz for the Darrieus

- 3(0-
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Outer rotating shaft

stationary shaft

J
Figure ___9a. Stationary Inner Shaft Configuration

Note that the inner shaft bends while the outer shaft

rotates and transmits power to the generator--no

fatigue.
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Stationar_ Outer Shaft

or Guy Wires

Notating Inner Shaft

/
J

Figure _ b" Stationary Outer Shaft or Guy Wires

Note difficulty Of power transmission from

inner shaft to generator outside of outer shaft.
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Figure __c: Single, Rotating, Overhung Shaft

Note that the rotating shaft is subject to bending and

there is therefore fatigue of the shaft, so a larger

diameter is required.
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Figure __: Illustration of Tower Shadow. Our

shaft is so small in diameter that this effect is

minute at best.
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and 5.2 Hz for the giromill. If the torsional natural frequency of the

shaft is near the frequency of this forcing function, a damaging

condition of resonance could occur; however, the amplitude of the

forcing function depends directly on the width of the tower. Our

tower is so slender (less than two percent of the total width of the

machine) that it is questionable whether a turbulent shadow would

even exist behind our shaft. Regardless, the resonant frequency of

the Darrieus machine is considerably lower than the frequency of the

forcing function; that of the giromill is closer but still less than half of

the forcing function frequency. We have therefore concluded that

the major vibrational forcin_ function of tower shadow should not

present a problem. _7_)__/1

The total mass of the shaft for the Darrieus is 0.396 kg, and for

the giromill is 0.300 kg. Development of shaft loading and

dimensions, and natural frequency calculations appear in greater

detail in Appendix S. Figures 11 and 12 show the configurations of

both machines. ,/ 4:,___ __
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Gears ,Bearings and Lubrication

rhe bearings are integral to the rotating and stationary shafts.

The _ower is transmitted from the rotating shaft to the generator

throqgh a gear system. The large gear is integral to the rotating

shaft_'_ the small gear is connected to the generator. A gear ratio

of_ needed to accommodate the generator. A detailed
description of the gears and bearings is found on pages M7 and M8

in the appendix.

Lubrication becomes a complex problem when dealing with the

low temperature range _f Mars. Oils and greases do not operate at
these low temperatures¢ therefore solid lubricants must be used. Of

the solid lubricants available, Molybdenum disulfide (MoS2) is the
/

best suited for our purposes. MoS2 is effective in a vacuum,/

dependable at low temperatures, dimensionally stable, and is not

damaged by radiation. Other solid lubricants , such as graphite, are

ineffective in at least one of these area_ MoS2 has a

comparably low coefficient of friction and one of the highest wear

lives (see Table 3, pg. M-3 in appendix). MoS2 performs best when

used as a film. To increase wear life, MoS2 should be bonded to the

surface with a phenolic resin.

resin bonded MoS2 film wear life= 9,860,000 (35ksi cycles)

non-bonded MoS2 film wear life= 103,680

This MoS2-resin combination works well with aluminum, which is

the material that we are using for our gears and bearings. The

thickness of a typical film for our case would range from .07ram

.O01mm.
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The electrical system for this project has three primary functions

These functions include:

/
1.) Rotational start-up

/
2.) Speed control

3.) Electrical power generation /

To achieve each of these objectives simultaneously, a rather complex _'1
system will be employed. A schematic of this system is shown in fig. 17.'__.p ,2

The system includes a miniature DC motor with a step-up gearhead, a

speed control card with potentiometer, a battery bank with charging unit,
an external anemometer, and two control devices. Each function, along

with its individual components is examined in detail in the pages that

follow.

Rotational Start-Un

Neither the Giromill nor the Darrieus Vertical Axis Wind Machine

(VAWM) are expected to be able to self-start with any degree of certainty.
To overcome this problem, the motor will be used to start the rotation of

both machines. J"

The estimated w'm_speed at which both machines would be able to
produce energy is 4 m/s (see p. T-4). The anemometer would be used as a
means to detect when the free stream wind speed reache_ this cut-in

value. Upon reaching the cut-in wind speed, the cut-in control would be
used to forward-drive the motor and begin rotating the blades of the

VAWM.

To forward-drive the motor,_Te battery bank would have to be used
as a power supply for the motor. This type of operation would present the

potential problem of completely exhausting the batteries. To prevent this,
another control device would be used that would limit .the level to which

. depleted. ----_-"/ '_ ' '_"J"_
the batteries could be _ 1.. _./,_, 7_fd_, t._ f/7,_ "

1-t/ 
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Sveed C9ntrol

Speed control is a very important part of our VAWM design. For the

case of the Darrieus, the moment-free shape of the troposkien is only valid

for one rotational speed. The maximum coefficient of power is also

attained at a constant tip-speed-ratio, which, for a constant wind speed,

requires a constant rotational speed. The final reason for constant

rotational speed is structural integrity. If the machines were allowed to

spin uncontrolled, the stresses developed would become self-destructing
and eventually cause failure.

To maintain a constant rotational speed, a commercially available

speed controller card, the Instech 1100, will be used (see reference [25]).

The rotational speed of the motor (back-driven to act as a generator) is

linearly related to its output voltage by the generator's velocity constant.

By measuring the output voltage and knowing the velocity constant of the

generator, the card is able to use an external potentiometer to regulate the

rotational speed of the generator to a specified value.

Examining the figure on p. T-4, we see that output power increases

with increasing wind speed up to a point after which the output power

decreases. In general, we find that, "If the fixed speed load is able to

accept the maximum possible mechanical power, no additional braking or

loading is necessary as the wind speed increases above its rated vaTiue."l'.7]l I

By scaling the figure on p. T-4, we estimate a _U_°nera_or "_'T 7_ ]

output capacity of 3_1 W_ be required for adequate braking. For .rc_,
confirmation of th_ver, wind tunnel tests should be

performed _ 97('C._zS-4' / _ ,A / _o_, _ /• _,.

Electrical Power Generation ',- _ _7_ _._t_ o
f/

For braking, we found that a 3.1 Watt generator is required. NASA

also requires that the system operates at 12 Volts. This information allows
us to examine available miniature motors. A commercial miniature motor

catalogue indicates that a 12 Volt, 3.7 Watt motor would typically have an
efficiency of 85%, a velocity constant of 714 r.p.m./volt, a no-load speed of

44
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9,000 r.p.m., and a mass of 0.058 kg [26].

For the operating speed of 300 r.p.m, to generate 12 Volts, a gear
ratio of 30:1 will have to be used. This will be achieved by a 6:1 increase

from the blade rotational shaft to the shaft of a 5"1 8earhead. Again

referring to a commercial motor catalogue, we f'md an efficiency of 80%

and a mass of 0.065 kg for such a gearhead [26]. cry7 r
¢,

Calculating the driving torque imposed on the central shaft by the

blades, we find a value of 0.068 Nm (pp. P-l, P-2). At the normal /

operating speed of 300 r.p.m., we find an output power of 1.48 Watts(p. P-

2). This value does not take the efficiencies of the bearings into account,

and will be slightly higher than the actual value.

Other Considerations

1.) Conventional lubrication will probably not be effective at
such extreme temperatures. Investigation of alternatives

should be made.
/

2.) Calculations show that at 15% inefficiency, a 3.7 Watt )
motor would reach steady state 17.21 K warmer thatv//

the surroundings. (p. P-3) This does not present a ,_/

problem for overheating, v// i/

3.) The total mass of the electrical system (excluding batteries

and charging unit) is 0.160 kg.

t/

/..I ",:,,e,.:¢
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The Darrieus and giromill wind machines will be stored in the

lander in a very space efficient manner.

DARRIEUS

The Darrieus machine has blades that fold into the center shaft

when stored. See l_ggure 13a. for stored position. Upon landing on

the surface of Mars, the lander lid will open and the machine will be

elevated out of the lander compartment. The stationary shaft of the

machine will be secured to the elevated platform which rises and

acts as the base of the wind machine. This platform will have a blind

hole that the windmill's stationary shaft will be inserted into. Once

the elevator has deployed the machine from the lander

compartment, the blades will fall into their_appropriate operational

positions due to gravitational effects. See_gure 11 for the elevated

working position. The blades simply roll around a countersunk pin

hole into their locked and working positions. This countersunk hole

is higher at one side with an increasing slope leading to a slot that

the connecting pin will lay in for operation. See _lgure 13b. for

detailed drawing of blade connectors. The blades of the Darrieus are

connected to the collar, which is integral with the rotating sleeve, by

an airfoil shaped piece that slides into the hollow blades and is

secured with a rivet. See _ure 13c. for detailed and dimensioned

drawings. See appendix page D-1 for the calculations determining

appropriate pin sizes.

GIROMILL

The giromill has hinged blades that fold up into the center

shaft when stored. See _gure 13a. for stored position. Like the

Darrieus, upon landing, the lid will open and the giromill will be

elevated out of it_ lander compartment. The giromill struts are

hinged to the rotating sleeve which allows them to fall into their
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operational positions once out of the lander compartment. See figure

12 for elevated working position. A diagonal wire, made of titanium,

connecting the top strut to the bottom strut keeps the struts in their

desired positions and prevents them from falling back down into the

shaft. This wire has a ball and socket connection at the shaft. See

figure 13d. for detailed drawings and dimensioning. See appendix

page D-2 for the calculation determining appropriate pin sizes.

The generator for both of these machines will be connected to

the stationary shaft by a bracket.
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Our main goal was to design a functioning vertical-axis wind

turbine that would be lighter than the existing design of a tornado

vortex wind turbine. At an estimated shipping cost of $20,000/kg, it

is obvious why low mass is crucial to the design. The total masses of

the three machines are listed below.

Tornado Vortex =30.0 kg "_

Darrieus 1.624 kg }

Giromill 0.900 kg )

u

i

i;

i

[
L

.

L

Although the vertical-axis wind turbines we have designed

would be quite expensive to produce (especially the Darrieus), the

reduction in shipping cost is so large that the production cost is

almost negligible.

We also see that the Giromill appears to be a better choice than

a Darrieus. The small size of our machines leads to small stresses

developed in the blades. Because of these small stresses, the

structural advantage of the Darrieus is not a major benefit. If the /r

machine were to be scaled to a larger size, the structural advantages

of the Darrieus would have a much larger effect. As far as a 1 Watt.

turbine goes, the Giromill is a better choice than the Darrieus.

Although the varying cross-sectional Darrieus is not the best "/

choice for a 1 Watt Mars turbine, it deserves serious consideration

for future wind turbines on Earth. By varying the cross-section, both

the required mass and the maximum stress are significantly reduced.

Although initial production costs would be high, a mold could be built

so that several of the turbines could be built at moderate cost.
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Future Work
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In the development of this design, several ideas came up which

we were unable to incorporate because of temporal constraints.

These included:

•Use of magnetic bearings instead of ball bearings. < This would

cut the mechanical losses considerably, but magnetic

bearings do take a considerable amount of power.

Perhaps if a material were created with a critical

temperature of superconducti_ty above the range in
which we're working...

• Use of pitch control, or "smart blades," on the giromill. By

varying the pitch of the giromill blades as they progress

around the shaft, either by an active control system

(computer feedback loop and servo motors) or by

ingeniously locating the pin between the blade and strut

at a point other than the quarter-chord point, where a

varying coefficient of moment could be used against a

spring to change the pitch of the blade.

• Develop a shock absorber system to mount the wind turbine

on while stored in the lander. The purpose of this would /:

be to cut the acceleration of landing and further reduce

the size of structural components.

• Scale up the wind turbine so that it could provide enough

power to operate the research package in the transmitting _

mode (about eight watts; p. A-2).

•Wind tunnel test models of the machines to insure that

overspeed will not occur. While the best information we
could find has indicated that this will not occur, airfoil

data does not cover angles of attack over approximately

20 degrees; in high winds, the angle of attack could range

from 0 to 180 degrees. If overspeed did occur, we

recommend the addition of a braking system, either

aerodynamic or mechanical. Either could be deployed by

centrifugal force acting on a governor, j
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_A blind hole

Darrieus Machine Configuration
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_A blind hole

Giromill Machine Configuration
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NEEDS AND FUNCTION_

Must operate in storms

Function

Withstand Storms

Must operate in Martian environment Resist Environment

J:

m

Want a lightweight design

Want a simple design

Must withstand landing

Minimize Weight

Maximize Simplicity

Withstand Impact

¢ : :

B •

Want sufficient life for mission

Must produce 1 Watt of power

Want small design

Must not interfere with experiments

Want to be adaptable to changing
wind velocities

Must convert energy from wind

Optimize Life

Provide Power

Minimize Size

Prevent Interference

Promote Adaptability

Convert Energy

I _ _

w

Want to provide power continuously

Must provide means for starting

Want dynamic stability

Want machine to stay upright

Want to achieve maximum power-to-
mass ratio

Must eliminate need for maintenance

Ensure Continuity

Ensure Starting

Ensure Stability

Maintain Orientation

Maximize "Power/Mass"

Eliminate Maintenance

Want to resist corrosion

Want to use wind from any direction

Want to minimize friction losses

Want maximum aerodynamic performance

Resist Corrosion

Accommodate Orientation

Minimize Friction

Maximize Aerodynamics

r



m

Want to minimize mechanical vibrations

Want to minimize surface roughness

( to minimize drag)

Minimize Vibrations

Resist Abrasion
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50.% 90.% 99.% 99.9%

NASA "I'M 100470

# Obs.

L, (deg) 0.1% 1.% 10.%

270-299 -13.3 -9.7 -4.5 0.7 7.4 13.3 15.6 2217

299-329 -12.0 -8.7 -4.0 0.8 9.3 16.3 195 24(30

329-360 -17.4 -10.7 -6.2 -0.3 10.0 16.9 20.0 1892
0-29 -15.4 -8_5 -4.8 -1.1 3.7 10.0 14.8 1461

29-59 -6.7 -5.0 -2.6 .0.7 2.0 4.0 4.9 1615
59-89 -6.1 -4.9 -2.4 .0.7 15 2.5 3.1 289

89-119 -6.2 -4.9 -3.0 -1.0 1.0 2.5 3.3 1240
119-149 -6.3 -5.2 -3.1 .0.9 2.1 4.1 5.1 2843

149-179 -7.2 -5.6 -3.0 -1.0 3.0 5.2 6.7 2484

179-209 -13.9 -9.7 -5.5 -1.2 3.5 8.4 11.0 2187
209-239 -12.7 -9.0 -4.8 .0.1 7.7 14.6 18.4 2161
239-270 -10.6 -6.0 -1.8 1.6 7.8 14.7 16.5 2360

TABLE 2-3. - Zonal wind cumulative probabilities versus season (m/see, + from west)

99.9% #Obs.[
t

L (deg) 0.1% 1.% 10.% 50.% 90.% 99.% .

270-299 -15.1 -13.6 -7.7 -0.9 4.0 9.8 11.7 2217 1

299-329 -13.9 -11.9 -6.7 -0.9 5.0 10.4 13.7 2400 i329-360 -17.6 -14.7 -9.9 -1.4 6.6 12.0 15.0 1892

0-29 -12.7 -11.2 -5.9 .0.3 3.3 6.9 9.0 1461

29-59 -4.6 -3.4 -1.9 -0.3 3.1 5.0 5.9 1615 i

59-89 -2.7 -2.5 -1.6 .0.3 2.9 4.0 4.6 289 !

89-119 -3.6 -3.0 -2.0 -0.4 3.11 4.5 5.0 1240
119-149 -5.8 -4.2 -2.4 .0.7 2.9 5.1 6.3 2843 I

149-179 -7.9 -5.5 -3.0 .0.5 2.3 5.4 6.7 2484 i
179-209 -16.2 -12.2 -7.6 .0.9 3.5 7.3 9.4 2187

209-239 -16.2 -12.5 -7.5 .0.5 5.5 9.7 11.7 2161
239-270 -10.8 -7.9 -4.2 0.5 5.1 9.8 14.1 2360 :

[
i

[

[

TABLE 2--4.- Meridional wipd cumulative probabilities versus season (m/sec, + from South)
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Wind Energy Theory and Probability: Size Calculations

A moving mass of air, as shown in the figure below, has kinetic energy of

motion. For the air moving with the wind velocity, V, the kinetic energy is

T=0.SmV 2

i=.=l

V

w

4

w

w

7

<

[
w

L

where T=kinetic energy

m=mass of air

V=velocity of air

/

V

X

For our parcel of air, the mass is equal to the density times the volume, or:

m=pAx

where p=mass density of the air

A=cross-sectional area of the parcel

x=length of the air parcel //

Substituting this mass into our energy equation yields,

T=0.5(pAx)V 2

The power in the air, Pair' is then given by the derivative of the kinetic

energy with respect to time. Assuming incompressible flow, we have:

[
[

• Pair = dT/dt = 0.SpAV2(dx/dt)+ 0.SpAx(2V)(dV/dt)

For steady air flow, (dV/dt)=0, and (dx/dt)=V.

w
r



The power equation now reduces to

Pair--0.5pAV 3

When wind flows past a windmill or turbine, as in the diagram shown

below, the maximum power that can possibly be extracted from the wind
can be calculated.

U I

----o
(1) _'!

........ ._.._2) II .

• " ..... .,,,,(4)
I
I

U I
I

U1 |

!

p

P_

P3

Circular tube of air flowing through ideal wind turl_ine.

For this idealized case, the air is moving from point 1 to point 4 past

the turbine. If the air flow is ideal, and the maximum possible power is

extracted, it can be shown by momentum theory [6] that

V 2=V 3 : (2/3)V 1 A 2=A 3 : (3/2)A 1

V 4 = (1/3)V 1 A 4 = 3A 1

Now, taking an energy balance, for this idealized case,

Pmech,ideal = Pairl'Pair4
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where Pmech,ideal = the maximum power that can be extracted

Pair l = the power in the air at position 1

Pair4 = the power in the air at position 4

Substituting into our power equation,

Pmech,ideal = 0"5p(A1 V13 . A4V4 3) = 0.5p(8/9)A1 Vl 3

Expressing in terms of the physically meaningful terms, A 2 and V 1,

Pmech, ideal = 0"50(8/9)(2/3)A2V13 = 0.5(16/27)PA2V 13

where (16/27) is the Betz coefficient.

The actual mechanical power is typically defined as

Pmec h= Cp(0.5pA2V 13)

wher'e Cp is defined as the coefficient of power and must be less than the

Betz coefficient. _) _---- (

t

Wind speed probability relationships

The figures shown on the next page show the relationship between

Cp ,X, and the shaft power, where X is the tip speed ratio defined as:

= rm a x_ V**

where:

rma x = maximum horizontal distance

from shaft to blades ('b' in troposkien notation)

co= angular velocity of shaft

V.. = free stream wind velocity
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Although the above curves are for a particular Dameus, the

curves for other Darrieus turbines all look nearly identical. One

important thing to notice is that all the curves have a maximum Cp of
about 0.35 at a tip-speed ratio of just less than 6. The other major

point of interest is that the maximum power generated occurs when_
the wind speed is about twice the wind speed for the maximum_..._C.

coefficient of power (Cpm).
C_

In order to determine what speed to operate our turbine at, we
need to analyze the wind speed probability. Data for wind speed on

Mars is very difficult to find, and what is found is only for two
particular locations. Since our wind speed probability function
depends not only on time, but also on location where we land, the

global mean wind speed was used. A probability analysis was then

done using the global wind speed as our base.

The most important item to determine is the average power we
are able to generate over time. This can be estimated with a

probability study. "

m

,I _. r;//

w\//%
'I //. .
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The previous curves show the relationship between the power
and the wind speed. At first it seems odd to have the relationship

between power and wind speed be nearly linear, since power depends
on wind speed cubed. However, we must remember that efficiency

goes down with increasing wind speed. For the previous curve, a line
appears to be a good fit for the curve; however, for other turbines it

has been found[_] that a better fit can be made with the relationship:

Pe = 0 U<Uc

Pe = a + bu k Uc,<U<UR

Pe = PeR U>UR

where:

Pe = usable electric power generated
PeR = the rated (maximum) electrical power
u = wind speed

UR = wind speed at which maximum power is generated
Uc = wind speed when mechanical and electrical losses are

equal to shaft power
a,b= constants used to fit curve

k = the Weibull shape parameter, a probability term

It is suggested [6] that if the wind speed probability is not well
known that a value of k=2 should be used. This is the value we will

use. The values of a and b that give the best curve fit are O:___

a ==

k
PeRUc

k k
Uc-U R

b=P 
k k

UR'U c

With this relationship, the power is now approximated with

the curve on the following page.

u J



m

}

: ±

{

_L_

[
m

I,!
m

4._

L_

P@

I

Uc
U

Now that we have an equation for power as a function of wind

speed, we are able to calculate our average power from the
relationship:

O0

Pe,avg = f Pef(u)du
u=O

where: ;

f(u) is the probability density function of wind speeds; it has

property If(u)du = 1the

u=O

A recommended probability density function is [(p]:

k-I

k,,u,-cIUlex -/ul  
where c is a constant; c== 1.12Umean

Substituting this into the above equation for Pe,avg , yields:



UR ¢¢

P¢,avg = _(a+buk)f(u)du + PeR If(u) du

UC UR

This equation can be integrated if the change of variables is made so

that

Then, in terms of x, we have

_f(u)du = Ie -x dx = -e -x

j'ukf(u)du = fck(_kkk)f(u)du = fckxe-xdx

= -ck(x+l)e-X

Substituting in the limits of integration yields

k

e-(uc/c) _ e-(uR/c)_P¢,avg = PeR (URIC) k- (Uc/C) _" I

The quantity in brackets is Often referred to as the plant factor (PF)

The value of Uc is nearly always in the range 0.4UR < Uc < 0.5UR.

The normalized power is defined as

The following curve shows PN for uc=0.4UR. Since we chose a value

of k = 2.0, we see that we have a maximum normalized power if ua/c.

equals 2.0. By designing our turbine for this situation we will

produce the most usable energy over time.
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Since URiC = 2.0 and c=l.12Umean , we can deduce that UR =

1.Sumean will be the optimum selection.

Reviewing the curve of Cp vs. L and using the above expressio _'_
yields for the optimum case: /}_._ __ _,t_}

_.R--2.9 =C._..o__ea n )_lt. . '7

Solving this equation tells us that the optimum (rmaxCO) -" 31.3_

With this information, we are now able to to size our Darrieus. We

decided to get at least 1W of power from wind speeds greater than 6

m/s. Returning to our power equation, and an assuming overall

efficiency of 11-0.8 to cover all mechanical and electrical losses, we

have:

1 Watt = 0.8{ Cp(u=6m/s)(0.5)(0.01665 kg/m3)Aswept(6m/s) 31

where

Cp(u=6m/s) is taken off the chart for our calculated _.(u=6m/s)=5.21

We find Cp(u=6m/s) = 0.35. /

Substituting this in yields:

Aswept : 2.00 m 2
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a

Aswept

A/S

b

Cf

D

g

G

H

K

KID

X

P

R

R

P

Paf

Pc

Psupp

Pv

S

T

To
0

O0

D-c,Qv

L!st of Symbols
One-half the total height of our blade

The area swept out by both blades

The ratio of the swept area to the arclength

The maximum horizontal position of our blade

Centrifugal force

A constant concerning the varying density
m

acceleration of gravity, 3.70 _ on Mars

Gravitational force acting on a section of the blade

the step size used for numerical integration

a parameter used in integration

a variable used in bisection method to solve for K

a variable used in bisection method to solve for K

tip-speed ratio

an arbitrary point used in the derivation, see

Figure 1

Horizontal coordinate

The average horizontal coordinate for the blade

The mass density per unit length of our blade

The mass per unit length of a thin airfoil "skin"

The portion of the density (per unit length)

that is constant

The density (per unit length) of the internal blade

support @ z--O

The '_portion of the density (per unit length) that is

varied

Length of blade between point of maximum
horizontal deflection and point P, see Figure 1

Total arclength of one blade

Tension at arbitrary point P

Tension at z=0

Slope of blade at point P, see Figure 1

The angular velocity of our blade

Rotational parameters, see Eq. (11) & (12).of

derivation

A ratio of densities

L

[



Troposkien Notation
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I Arclength I(s)

Z

Area

Swept
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Figure I. Schematic of a Perfectly Flexible Cable

Rotating About a Vertical Axis
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Referring to Figure 1, we obtain two equations that must be

satisfied for equilibrium.

where

_:Fz = 0

I;Fr = 0

_Fz = sum of all forces in z direction

_Fr = sum of all forces in r direction

For our situation these equations reduce to

( 1 ) Tsin0 = Cf

(2) TcosO = To + G

f

w

n

B

[

where

where

T = tension in member

0 = angle in Figure 1

To = tension at vertical midpoint
s

G = gravity force = log ds
0

S

Cf = centrifugal force = I P to2r d s
0

p = mass per unit length

to = angular velocity

s = arc length

g = acceleration of gravity

I Taking the ratio of equation (1)
dr

and (2) and noting that tan0=- d-_

(3) tan 0 =
Cf d__xr

To+G- dz

Substituting in to equation 3 yields

i ,

[



S

I po_2r ds
dr 0

(4) dz To + G

Equation (4) is subject to the boundary conditions

r=O at z=a v

dr
--=0 at z=O v
dz

Assuming a rotational speed of about 40 rad/s and considering any

point with radial position of greater than 0.1 meters, (our blade's

average radius is 0.677 meters)

m

Centrifugal acceleration = co2r > (40rad/s)2(0.1m) = 160 see2

m

Gravitational acceleration = 3.70 see2

Clearly, the gravitational acceleration can be neglected.V/After we

select our material, we will also show that the aerodynamic forces

are negligible in determining the shape.

For constant rotational speed, equation (4) reduces to

= d r o_2 rs

(5) dz- - To j prd s

When I observed a conventional troposkein solution from Sandia[1],
noticed that the tension varied according to the equation

(6)
T r 2

= c

where C was some constant /2_ ._

In observing equation (6), it was _that since the tension

varied along the length of the blade, it might be a good idea to vary
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some of our mass density so that we may reduce mass where it is not

needed. This will not only reduce the mass in that location, but will

lower the stresses throughout the blade. Remember that density is

density per unit length, so what is really being varied is the cross-

sectional area. /

Therefore, it was decided @1though'we might have some portion of

our blade cross section with----a--constant cross-section(i.e, a thin airfoil

"skin"), and then an internal support with a varying cross-section.

Remember that density is defined as mass per unit length, so a

varying density really means a varyin._ cross-sectj_anaLarea.

The total density would then be in the form

yP = Pat" + Psupp(1-D -1) )

where

Pal = the density of the airfoil skin; a constant
/

Psupp = the density of the internal support a_ z=0

D = a constant to be optimized _ 6rr_f/_

Eventually we decided to make our airfoil as one unit, and for our

case Paf is equal to zero. The derivation is for the more general case

and may be applied to our case by just setting paf=0.

The density equation may be rewritten as

P = Paf + Psupp(l+D) - Psupp(Db2 )

For simplicity these will be grouped in to two terms, one which does

not depend on r, and one that does. The density terms will be:

Pc = the constant density portion

Pv = the varying density portion

Our density now will be written as

(7) P =Pc-pvr 2

-[--1+
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Putting equation (7) into equation (5) yields

s ¢o2p v s

(8) dr_ t°2Pc frds + To fr3ds
dz-" To 0 0

We can rewrite equation (8) by noticing that

_/ dr2(9) ds= 1 + (_zz) dz

(10)

Z Z

dr f ._/ dr fr_/ dr_zz = "t2c2 r 1 +(_zz )2 dz + f_v 2 3 1 +(d-_) 2 d z

0 0

where

co2pc

(1 1) f2c2 - To

¢O2pv

(12) f_v2- To

Now, we can change the integro-differential equation (10) to an ordinary

differential equation

(13) d2r _/ dr= -f2¢2r 1+(d---_)2 + flv2r 3 1+ 2

After some algebraic manipulation, equation (13) can be written in the

form of exact differentials.

d _1 dr _c 2 d f2v 2 d

(14) d--z'_ l+(d---z)2 =" 2 dz (r2) +'4 dz
(r4)

/
dr

Integrating and substituting in the boundary condition that _zz = 0 at r=b
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(15) _zr) f_c2 f2v2I+ 2 =i - 2 (r2-b2) +

Squaring both sides yields

_Zr) 12c2 f2v2(16) 1+ 2= [1 -_(r2-b 2)+ _-

Evaluating the left hand side (L.H.S.) yields

__ 2 r 4L.H.S. = 1 + ( b(-_2-1) f2v2b4" 4 (_-1) )2

-2( _ 2 r 4b_2 -1) - _v 2642 4 (_-g-1) )

This may be rewritten into equation (16) as

dr _ r2 Dv2b4 r4
(b2-1)- (b"i" "1) )( _¢2b2 _ flv2b 4 r'

This equation may now be rewritten as

dr taJbs ( 2.p_R_ r 2 _ 2pc r 2

-- " (pvb 2 (_'-l) - (b4 *l)(_--_Z)2 16 _'Pv b2 (_'-1) (b4 -1>)

dr

2._ r 2 r_L4

_[ 2p e r2 _ pvb 2 (_'-I) - (b4

- q,, -'3 ( s
_, _vb 4

The above equation was obtained by noting that

(r4_b4)

f2c2= f_v2Pc
Pv

Now we will define two new parameters

pc= S

_v2b 4
= K2

8

(r4_b 4) ] 2

-1)

-V- Ito
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Now we may write

d r 2; r 2 r4 2 2r_ r 2
(_z)2 = 4K 2 (b2(_'-l) - (b4 -I))(K (b2(_-i'-l) - (b4 -l)) -1)

Taking the square root of both sides yields

,
.,)) -1)dr 2._.r 2 " _ .1))(K2(2_2(___2_1) . (b4

_ZZ-- 4-_K ( b2(b -_'l) " (b' b b

dr

If we observe Figure 1, we can see that d-"_ is going to be negative.

d r q 2._.r 2 __ZZ -- ° 2K (b2(_-_--l) - (b 4 -I))(K r2 - - -

We may now solve equation (17) numerically with its two boundary

conditions for both the shape r(z) and the unknown K

(17)
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tilt************** Th|s program will generate solutions for m va_Ing density tr_skien ***********m

PROGRAM T_IN

:_;_*AAAAA_'-_ TOOHIGH and TOOLOW will be used to determine the correct value for K **************

LOGICAL TOOHIGH, TOOLOU

A Is one-f_mlf the height of the blade _&_&_&_&_**_&_&*********

Z and R contain the coordinates of the blade _-_-___*******

H |$ a step size used for numerical _ntegratton ::::::::::::::::::::::::::::

K _s what % called "K squared" _n the derivation e**********************/r**********

KLO end KH% will be used to solve for K using a bisect|on method *******************

REAL RPRIME,A,Z(IOOO),R(IOOO),H,CRCY(IO00)

& ,CRCX(IOOO),K, KLO, KHI,HAXTEN,TENSARRAY(IO00)

& ,RATIO(31),ADIVB(31),ZDIVA(IOOO),STRESSARRAY(lO00)

REAL DERIVAT%VE(IOOO),F1,F2, F3, F4,HTIHESD

EXTERNAL RPRIHE,AREASWEPT, RAVG, ARCLENGTH

OPEN (18,file-'trot1')

_RITE(18,55)

WRITE(18,*)

_RITE(18,*)

***************** This main loop will carry out the enttre calculations for varying values of A and B **

***************** so thet the area swept _$ nearly constant. ******************************************

LOOPSTEPS = 31

DO 1000 LOOPER = 1,LOOPSTEPS

A= 0.55+ (REAL(LOOPER-I))*O.35/_O.O

***************** Set B so the area swept is nearly • constant for comparison's sake ******************

C B= 1.31/(_*A)

****************** If we want to work with a p_rticular a and b, we can use the following ;&;_;&;_;;;;

A= 0.737

B- 0.889
c

***************** Our boundary condition requires the next two t_nes to be true _;_&_&_&_&_

Z(1)=A

R(1)_.O

_&_&&A_** Next I set a step size and a "guess" for the value of K

_A/800.O
K=1.4
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_;_;._;'-;'-_; Set KLO and 10ti to the upper and lower bounds for K

KLO-O.O

101%•45.0

;;;;;;;;_;;;;_;_ NPTS is the number of points I will use to approximmte the integral HJHJhH-/r**Jr*J

NPTS'800

;;;;;_;;_;_;; The next line Is required so that our boundary _Jt1_ is mat.

0ERIVATIVE(NPTS)_.O

****_****/rt***** FIAXSTEPS is the maximum # of rises I will carry out the bisection aethod _****

HAXSTEP$ - 30

;_;_;_;_ This follow_ loop v_Ll carry out the bJsect1_ mat_ to solve for K

33 HIgH - 1,MAXSTEP$

TO(O41G_.FALSE.

TOO4.O_ -.FALSE.

k*dr*_t-kk*/_k*

_;;_;_ _Js Loop rill carry out the int_rat1_ us_ the fourth order R_e-Kutta

_;_;;_;_ Hethod end keeps the values of r and z tn the arrays R and Z *_ktt*_**ttti*ilii*/rJrk*

DO 100 I=2,NPTS

Z(Z) = A - (REAL(I))*A/REAL(NPT$)

FI=I'UrRPRIflE(R(I-1),K,B)

F2=H*RPRI_E(R(I-1)+O.S*F1,K,B)

F3=H*RPRI_ECR(I-1)+O.S*F2,K,B)

F4=H*RPRIHE(R(I-1)+F3,K,B)

*****_t*****_ HTIHESO |s the step s_ze tJaes the derivative ******************--***********

HTIHESD = (F1+(2.0*(F2+F3))+F_)/6.0

R(I) : R(I-1) ÷ HTIHESD

DERIVATIVE(I-I) - HTIHESO/H

100 CONTINUE

,6,**_******6** End of integration loop ***_*J*J*J*JJ****J_t*JJ**Jrk***J*_;_;;;;;;_;_****

;;;;;;;;;;;;;;;; If our slope at the end does not match our boundary condJt|on, make K higher /r/rJrk_

IF (DERIVATIVE(NPTS-1).GT.O.O001) THEN

KLO=K

K - (K+K}tI)/2.0

TOOLOI/ - . TRUE.

ENOIF

;;_;_ If ve select too high a value for K, va v|tL get am _maglnary derivative, whtch /rJrk

;;_;_;_;;;; Js not • solution to our problem. The follw_ng check prevents these solutions /r/rk#

/r_ntt_t/_t_rk_ from appearJng, and corrects K so that the next 8tteapt will be better. _;_;_;;

IF (.HOT.(TOOLO_)) THEN

%F(DERIVATIVE(NPTS-2).EQ.O.O) THEN

IGI%-K

K-(K+KLO)/2.0

TOOHIGH • .TRUE.

ENOIF

ENplF

V
]
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_*kJkk_ End of the check for K too high --***--**********--*************--

;;'-';_;;_-'_; If our K ts now the solution, stop performtr_ the bisection method "-;';_-_':-_:_,;-'_

IF (( .NOT. (TOOHIGH)) .NED. ( .NOT.

& (TOOLON))) THEN

GOTO

ENDIF

*_*_rk*****_k_* End of check for correct K ,;,_,;;,'-:-:,_,;-',_,;,;;,;,'--',;'-;,;,-'*_t____k_

****/rk*/rkk_ Now that we have the solution, calculate the desired p_remeters

_k*/rk**/r/rJ_k_ and print out the output /r_r**k**kkk***/nk*_***k*_/ntk/ntt_Jrkkk_***_*_k_k/_kkk/rk

1000

ASPT = AREASWEPT(R,H,NPTS)

ARCLT :" ARCLENGTH(R, DERIVATIVE,NPTS,H,K,B)

MAXTEN = SQRT( 1.0 + (DER%VATTVE(1))*'k2)

UR%TE(18,.999) A, B,.K, ASPT, ARCLT,.RAVG(R, NPTS), HAXTEN, ASPT/ARCLT

RATIO(LOOPER) " ASPT/ARCLT

AD%VB(LOOPER) = A/B

CONTINUE

_kJ_kk_**_ For • given • and b, the foLLoutng Loop will produce an _;_;_-=_;_

*_rk;;;;;;;;;;;;;;;; array with the values of the tenston at every point _-_=_;_;_;_-_-_--

DO 93 LFT • 1,NPTS

TENSARRAY(LFT) = SGRT(I.0 + (DERIVATIVE(LFT))_r_2)

ZDZVA(LFT) = Z(LFT)/A

93 CONTINUE

;-"-_;_;-';::-'_-':'-_ Thts Loop gJvma the ten, ton and stress ratto_ •t any given point as welt as gtvtng /n_

_n_k**k*_-_;_-_;;;;;;; us the total mess r_qu_red w_th the parameter rhosum :::::::::::::::::::::::::::::::::

RHOSU_. 0

DO 94 LFT2 • 1,NPTS .=:.

VARY=1.0+1.55,(I- (R(LFI"2)-/B)e*2)

STRESSARRAY(LFT2 ) •TENSARRAY (LFT2)/VARY

RHOSUI_ RHOSUH+VARYt ('I+SQRT ( 1+ (DERIVATIVE(LFT2) )/dr2 ) )*H

94 CONTINUE

C WRITE(*,_) RHOSUIq

_rkk'k/_/nk/_k_Jrkk_kk/r

HHPTS = 51

The foLloutng Loop v|LL enable us to plot a ctrcLe of the same ;_;;_;;;;;;_

• rcLength as our troposk_en for the p_rpose of comparison _;;_;_;;;;;_;;

-T- 2_0
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PI = ACOS(-1.0)

CRCY(HRPTS) • ARCLT/PI -

CRCX(MPTS) • 0.0

DO 9432 LCC " 1,MRPTS-1

PHI = REAL(LCC-1)*PI/(2.0_t(REAL(MI_PTS)))

CRCY(LCC) = (ARCLT*SIN(PHI))/PI

CRCX(LCC) = (ARCLTiCOS(PHI))/PI

9432 CONTINUE

• _ri_t**_;_;;_* End of toop to caLcuLate ctrcLe coordinates

_t_r/_r_/n_Jrk These Lines can be used to plot vIr_OUI pariaeters

C CALL XYUNZT('lmters','lleters')

C CALL CURV(CRCX, CRCY, I_PTS,'CIRCLE',' ',1,.TRUE.)

C CALL CURV(R,Z,NPTS,'TROPOSK%EN',' ',],.FALSE.)

C CALL CURV(ADIVB, RATIO, LOOPSTEPS,'Asuept/S',' ',2,.FALSE.)

C CALL SPLOT('vet_o.ps','POtJER-TO-HASS','a/b',

C & 'AREA/LENGTH','t',S.O,S.O,.TRUE.,.TRUE.,4,4,

C & 5,5,0.6,1.5,0.69,0.75)

C CALL SPLOT('tskeJn2.ps','COHPARISON','R',

C & 'Z','t',S.O,S.O,.TRUE.,.TRUE.,4,4,5,5,

C i 0.0,1.0,0.0,1.01

C CALL CURV(ZDIVA, TENSARRAY, NPTS,'TENSZON RATIO',",2,.FALSE.)

C CALL CURV(ZDIVA, STRESSARRAY, NPTS,'STRESS RATIO',",3,.FALSE.)

C CALL $PLOT('tenl.clate','TENSlOtl AND STRESS RATIOS','Z/A',

C i 'RATIOS','t',5.0,S.O,.TRUE.,.TRUE.,5,10,7,10,O.O,I.0,O.5,4.0)

55 FORMAT(//,9X,'A',12X,'B',12X,'K',11X,'As_ept',10X,'S',

| 13X,'R',TX,'(T/To)_lx',6X,'Asvept/S')

999 FORMAT(SX, E9.3,4X, Ea.3,4X,EIO.4,4X, EIO.4,4X, EIO.4,4X, E9.3,

i 4X,E10.4,4X,E10.4)

STOP

END

_r_r_rk****_*_r*_AAAAA_AA_tt**_**_*/rk END OF THE RAIN PROGP,N_

_t*_r_t_t_r_*_rt The vertabLe X tn thts_t_nctton ts what I c_ltL rtn the rest of the progrl_

FUNCTION RPRIRE(X,K,B)

REAL X,B,Q,L,R,K, ZETA, PROOUCT, ROOT

ZETA : 1.3

**_k_tt_r**_r*_/r/rk_ The follo_1_ are l_rueters to save t.ml_lat|_ ill

a = 2.0kZETA/(B'k"k2)

L = ((x/e)_r*4)-l.0dO

- ((X/B)**2) - 1.0dO

-]--Z
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PROOUCT = (Q,N) - L

ROOT - PRODUCTt((ICtPRODUCT)-I.0)

__ %f K is too high, root will be negative, and this will lead to i_inary

;_;_;;_; solutions, which make no sense for thts problem. :::::::::::::::::::::::::::

%F (ROOT.GE.O.O) THEN

RPR%HE = SQRT(K/4.0) * SQRT(ROOT)

;_;_;A_;_;_;Jr* %f K II too high then ROOT will be rN_gative. Too a_id _ter error, set

;_;_;_;; RPR%ME - O. Then in the main prngrmm if RPRIME - O, [ change K so that tt /r_

_r**********JHk*** will be Lover for the next iteration. _;;;;;_;_;_A_;_k;_;AAA;;;A_A;

ELSE

RPR%ME = 0.0

ENDZF

RETURN

ENO

***_r****k******k"k*k"k***k**fr***** END OF FUNCTION RPRIHE *k'kk*k*kk********k***_rk***********kk****k***Jrk

Function AREASVEPT will calculate the area swept by both blades */rt_******/r_/,t*/_k**t/r_

FUNCTXON AREAS_EPT(R,H, NPTS)

REAL R(NPTS),H

AREASUN " 0.0

DO 5 1%%:1,NPTS

AREASUN - AREASUM +R(III)*H

CONTINUE

AREAS_EPT = 4.0*AREASUH

RETURN

END

END OF FUNCT%ON AREASVEPT _'_'_'_";_"'_"_ ....................

__ Function RAVG will c_ltcuLate the mean vlLue of r for our blade _;__

FUNCT%ON RAV6(R, NPTS)

REAL R(NPTS)

SUHAVG = 0.0

DO 6 JJJ=I,NPTS

SUHAVG=SURAV6 + R(JJJ)

6 CONT%NUE

RAVG • SUHAVG/REAL(NPTS)

RETURN

END

END OF FUNCTZON RAVG ";';"_;_;;'_;; ........................

.r

T-ZL
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:A;;_-'_'_;;;_AAA* Funct|c,l ARCLEIiGTH wilL calculate the arcLength required of each blade

FUNCTTON ARCLENGTH(R, DERZVATTVE, NPT$/Hs K, B)

REAL ARCSUH, R(NPTS), DERIVATIVE (NPTS), H, K

ARCSUM = 0.0

DO 7 LLL'I,NPT$

ARCSUN = ARCSUN+(SQRT(I+(DERZVATIVE(LLL))

& **2) )*H

F CONTINUE

ARCLENGTH = 2.0*ARCSlJH

RETURN

END

END OF FUNCTION ARCLENGTH

AA A__AA AA; __AA:_-"AA&A_AutA_Au_

T-2_ 



Discussion on comouter solution to troooskien eaualion_

We begin with the problem of trying to solve equation (17)
together with its two boundary equations. Since it is a first order

differential equation with two boundary conditions and one

additional unknown, we see that we have the right number of

equations in order to solve for both the shape (r(z) ) and the
unknown K. The Runge-Kutta method of order 4 and the bisection

method are applied simultaneously to equation (17). The procedure
is outlined below.

First, several values of a and b are computed by the computer

so that all of these values sweep out roughly 2 m 2 (the required size

for 1 Watt of power). The solution is then generated for all of these
values of a and b so that the optimal height-to-width ratio will be

obtained. Also a value of _ is selected and this value will be changed

manually after observation of results in order to optimize the value

of this parameter. Now, for each combination of a,b, and z the only
unknown left in equation (17) is K. J

First we make a guess value for K, and set upper and lower

bounds for K. The lower bound is 0. The upper bound and the guess

value are found after trying the solution a couple of times. Then the
equation is numerically integrated with this value of K.

The numerical integration is done with the fourth order Runge-

Kutta method. The method can be found in any numerical

mathematics textbook and may be seen clearly in the included

computer program. The step size was continually decreased until no

change in the results resulted from a further decrease in the step

a__&_.
size. The required step size was found to be 800 •

In order to solve for K, we must ensure that our solution

satisfies the boundary conditions of no slope at z=0 and r=b at z=0. If

K is selected too low, we run into two problems. First, the solution

does not reach b when z=0. Second, there is a finite (non-zero) slope

at z=0. Clearly, too low a value for K is not a solution to the equation.

Also, if K is selected too high, the solution "steps" past b and the

product under the radical in equation (17) will be negative. This
violates our second boundary condition and is also not a solution.
This brings us to the bisection method used.

After attempting the calculations with the guess value for K,

we could determine whether K was too low or too high from the

results. After making this determination, K was updated using a

-7--2-4
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bisection method.

I
KLO = 0 = Preset

lower bound for

K

The method is
I

I

I

I
I

ActUal Value

of K

outlined below.

Initial Guess of

value for K

I Step 1

KHI = a preselected

value for an upper bound

for K, determined by trial-
and-error "/

I
K]_O

We found that K was too high, so update its value
and the value of KHI

I

New I
Updated valuefor

, I
Altual

Value

of K

Step 2

Now, we find that K is too low, so update K and KLO

New

New I guess

tq-O I for K,11 I
A_tual KHI

Value
of K

Step 3

The procedure continues" and usually converges after about 8

steps, since our initial interval is quite small.

T-zS
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The whole procedure is carried out for 30 different values of a

and b for each selected _. Different solutions are then obtained for

different values of _.
I

The area swept is then calculated by the formula •

a

A swept = 4 ,[r d z
O

This is done numerically by noting that

NFrs

A swept _ 4Az _ r i
i=l

a
where NPTS =

Az

The arclength is calculated from the formula

a

S=2 1 + (_-_z)2

0

dz

This is solved .numerically with the approximation

NFrs

s-2az 1 +(_z )2
i=l

Also calculated in the computer program is the average

horizontal location along the blade; it is called RAVG or R.

The most impostant parameter generated is Aswept/S, which is

the ratio of the area _wept to the arclength. It is effectively, a

power-to-mass parameter; optimization, of this parameter is vital.

-T-ZG



Everything has now been solved for except for the tension.

This is done by recalling equations (1) and (2) from the derivation.

If these two equations are squared and added together, we obtain:

T 2 = Cf2 + (To+G) 2

Dividing all terms by (To+G) 2 we obtain

1-2 c.a
(To+G) 2 - (To+G) 2 + 1

Also, from equation (3) in the derivation,

T2 dr)2 + 1
(To+G) 2 - (-_z tL/6 _'5----

Now, gravity can be neglected in the equation, and we obtain:

Too = 1 + (_z)2

This can be evaluated numerically at every point.

-'/--7-7-
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Reading Ta.bular Data _..,/(_

The following is a brief outline of what all the terms on the tabular

data mean and how to interpret the results

A

B

K2

Aswept

S

R

one-half the height of the blades

the maximum horizontal position of the blades

a rotational parameter, no obvious physical
significance

the area swept by both blades, power generated is

directly proportional to Aswept z_ I

the arclength of one blade, effectively a measure

of required mass

the average horizontal coordinate of our blade

(T/To)max the maximum normalized tension (To is where

tension is minimum)

Aswept/S the most important column in the tabular data; a

power-to-mass ratio; maximizing this parameter

is crucial to our design

T-2g
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A B

0.550E+00

0.562E+00

0.573E+00

0.585E+00

0.597E+00

0.608E+00

0.620E+00

0.632E+00

0.6_3E+00

0.655E+00

0.667E+00

0.678E+00

0.690E+00

0.702E+00

0.713E+00

0.725E+00

0._+00

0.748E+00

0.760E+00

0.772E+00

0.783E+00

0.795E+00

0.807E+00

0.818E+00

0.830E+00

0.842E÷00

0.853E+00

0.865E+00

0.877E+00

0.8_8E+00

0.900E+O0

.119E+01

.117E+01

.114E+01

.112E+01

.110E+01

.108E+01

.106E+01

.104E+01

.102E+01

.100E+01

.982E+00

.966E+00

.949E+00

.933E+00

.91_+00

.903E+00

.889E+00

.875E+00

.862E+00

.849E+00

.836E+00

.824E+00

.812E+00

.800E+O0

.789E+00

.778E+00

.768E+00

.757E+00

.747E+00

.737'E+00

.728E+00

-2..
I(

0.3138E+02

0.3904E+02

0.4500E+02

0.3521E+02

0.2256E+02

0.1666E+02

0.1311E+02

0.1068E+02

0.8915E+01

0.7574E+01

0.6509E+01

0.5658E+01

0.4955E+01

0.4375E+01

0.3885E+01

0.3465E+01

0.3108E+01

0.2800E+01

0.2528E+01

0.2291E+01

0.2081E+01

0.1898E+01

0.1735E+01

0.1589E+01

0.1459E+01

0.1343E+01

0.1236E+01

0.1142E+01

0.1055E+01

0.9775E+00

0.906_E+00

Aswept

0.2054E+01

0.2215E+01

0.2336E+01

0.2339E+01

0.2266E+01

0.2218E+01

0.2181E+01

0.2151E+01

0.2127E+01

0.2106E+01

0.2087E+01

0.2070E+01

0.2055E+01

0.2042E+01

0.2030E+01

0.2018E+01

0.2007E+01

0.1998E+01

0.1988E+01

0.1979E+01

0.1970E+01

0.1962E+01

0.1955E+01

0.1948E+01

0.1941E+01

0.1935E+01

0.1928E+01

0.1922E+01

0.1916E+01

0.1911E+01

0.1905E+01

0.2795E+01

0.2915E+01

0.2999E+01

0.2979E+01

0.2896E+01

0.2838E+01

0.2791E+01

0.2753E+01

0.2719E+01

0.2690E+01

0.2663E+01

0.2639E+01

0.2618E+01

0.2599E+01

0.2582E+01

0.2566E+01

0.2552E+01

0.2540E+01

0.2529E+01

0.2519E+01

0.2511E+01

0.2504E+01

0.2498E+01

0.2493E+01

0.2489E+01

0.2486E+01

0.2483E+01

0.2483E+01

0.2482E+01

0.2483E+01

0.24,84E+01

0.933E+00

0.986E+00

0.102E+01

0.100E+01

0.950E+00

0.911E+00

0.879E+00

0.852E+00

0.826E+00

0.804E+00

0.783E+00

0.763E+00

0.745E+00

0.728E+00

0.711E+00

0.696E+00

0.681E+00

0.667E+00

0.654E+00

0.641E+00

0.629E+00

0.617E+00

0.606E+00

0.595E+00

0.585E+00

0.575E+00

0.565E+00

0.556E+00

0.546E+00

0.538E+00

0.529E+00

(T/To)max

O. 1336E+02

O. 1807E+02

O. 2259E+02

O. 1918E+02

O. l_ta4E+02

O. 1065E+02

0.9017E+01

O. 7883E+01

O. 7040E+01

0.6383E+01

0.5842E+01

0.539_+01

0.5015E+01

0.4690E+01

0.4406E+01

0.4151E+01

0.3928E+01

0.3729E+01

0.3546E+01

0.3_BOE+01

0.3228E+01

0.3091E+01

0.2966E+01

0.2849E+01

0.2742E+01

0.2644E+01

0.2550E+01

O. 24661E+01

O. 2_E+01

0.2311E+01

0.2241E+01

Aswept/S

O. 7346E+00

O. 7598E+00

O. 7789E+00

0.7852E+00

O.7826E+00

0. 7816E+00

O.7814E+00

0.7816E+00

0.7822E+00

O.7'830E+00

O.7837E+00

0.7845E+00

0.7851E+00

O. 785_+00

O.7861E+00

O.7863E+00

O. 7865E+00

O. 7864E+00

0.7861E+00

O.7856E+00

O.7848E+00

O. 7839E+00

0.7'828E+00

0.7815E+00

0.7800E+00

O. 7783E+00

O. 7763E+00

0.7743E+00

0.7"r20E+O0

0.7696E+00

O. 7670E+00

T-2q
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w A B K Aswept (T/To)max As_ept/S

0.550E+00 .119E+01 0.2044E+01 0.2004E+01 0.2847E+01 0.911E+00 0.6506E+01 0.7040E+00

0.562E+00 .117E+01 O.1836E+01 O.1998E+01 0.2812E+01 0.889£+00 0.6100E+01 0.7105E+00

i O.573E+00 .114E+01 O.1650E+01 O. 1990E+01 O. 2778E+01 O.868E+00 0.58271[+01 O. 7164E+00

._i ! 0.585E+00 .112E+01 0.1490E+01 0.1984E+01 0.2748E÷01 0.848E÷00 0.5535E+01 0.7222E+00
-- 0.597E+00 .110E÷01 0.1351E+01 O. 1979E÷01 0.2720E÷01 0.829E+00 0.5269E+01 0.7277£+00

0.608E+00 .108E+01 O. 1225E+01 O. 1973E+01 0.2693E+01 0.811E+00 0.5015E+01 0.7327E+00

ii _ i 0.620E+00 .106E+01 0.1113E+01 O. 1967E+01 0.2668E+01 0.793E+00 0.4778E+01 0.7373E+00
_ 0.632E+00 .104E+01 O. 1014E+01 O. 1962E+01 0.2645E+01 0.777E+00 0.4564E+01 0.7417E+00

O.643E+00 .102E+01 0.9242E+00 O. 1955E÷01 O.2623E+01 O. 760E+00 0.4355E+01 O.7455E+00

_ = 0.655E+00 .100E+01 0.8463E+00 0.1951E+01 O.2604E+01 O. 745E+00 0.4172E+01 O.7493E+00

_: _ _ 0.667E+00 .982E+00 0.7752E+00 0.1946E+01 0.2586E+01 O.?30E÷O0 0.3997E+01 0.7525E+00

0.678E+00 .966E+00 0.7109E+00 0.1941E+01 0.2569E+01 0.715E+00 0.3831E+01 O.7554E+00

0.690E+00 .949£+00 0.6535E+00 O. 1936E+01 0.2554E+01 0.701E+00 0.3679E+01 0.7581E+00

0.702E+00 .933E+00 0.6016E+00 O. 1931E+01 0.2540E+01 0.688E+00 0.3536E+01 O.7604E+00

_ _ 0.713E+00 .918E+00 O.5537'E+00 O. 1920E+01 O. 2527E+01 0.675E+00 0.3398E+01 O.7622E+00
mmm

0.725E+00 .903E+00 0.5113E+00 0.1921E+01 0.2515E+01 0,663E+00 0.3273E+01 0.7639£+00

0.737E+00 .889E+00 0.4730E+00 O. 1917E+01 0.2505E+01 0.651E+00 0.3157E+01 0.7653E+00

O. 748E+00 .875E+00 0.4375E+00 O. 1913E+01 0.2496E+01 0.639£+00 0.3045E+01 0.7662E+00
m 0.760E+00 .S&2E+O0 0.4054E+00 O. 1908E+01 0.2488E+01 0.628E+00 0.2940E+01 O. 7670E+00

0.772E+00 .849E+00 0.3760E+00 O. 1904E+01 0.2481E+01 0.617E+00 0.2841E+01 0.7674E+00

i _ _ 0.783E+00 .836E+00 0.3486E+00 0.1899£+01 0.2475E+01 0.606E+00 0.2745E+01 0.7673E+00

i _ 0.795E+00 .824E+00 0.3247£+00 O. 1896E+01 0.2470E+01 0.596E+00 0.2662£+01 O.7674E+00

0.807E+00 .812E+00 0.3021E+00 0.1892E+01 0.2466E+01 0.586E+00 0.2579£+01 0.7670E+00

I_ 0.818E÷00 .800E+O0 0.2816E+00 O. 1888E+01 0.2463E+01 0.577E+00 0.2502E+01 0.7664E+00
_ 0.830E+00 .789£+00 0.2625E+00 O. 1884E+01 0.2461E+01 0.567E+00 0.2428E+01 0.7655E+00

-- 0.842E+00 .778E+00 O.244";'E+00 O. 1879£+01 0.2459E+01 O.558E+00 O.2.350E+01 0.7642E+00

0.853E+00 .768E+00 0.2290E+00 O. 1876E+01 0.2459E+01 0.550E+00 O.2293E+01 O.7630E+00

!__ 0.865E+00 .757E+00 0.2140E+00 O. 1872E+01 O.2459E+01 0.541E+00 O.2230E+01 0.7613E+00

_ 0.877E+00 .747E+00 0.2003E+00 0.1869£+01 0.2460E+01 0.533E+00 O.2177.E+01 0.7596E+00

0.888E+00 .737E+00 O. 1873E+00 O. 1864E+01 0.2461E+01 0,525E+00 0.2114E+01 0.7573E+00

t 0.900E+O0 .728E+00 O. 1757E+00 0.1861E+01 0.2464E+01 0.517E+00 0.2062E+01 0.7552E+00
m

w
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A B K kswept T (T/To)max Aswept/S

m

t

l-

[

w

u

!

W

m

I

i
m

I
i

0.550E+00 .119E+01 0.4184E+00 0.1976E+01 0.2835E+01 0.898E+00 0.0019E+01 0.6970E+00

0.562E+00 .117E+01 0.3794E+00 O, 1970E+01 0.2800E+01 0.877E+00 0.5722E+01 0.7038E+00

0.573E+00 .114E+01 0.3445E+00 0.1965E+01 0.2767E+01 0.857E+00 O. 54tJ+E+01 0.7101E+00

0.585E+00 .112E+01 0.3138E+00 O. 1960E+01 0.2737E+01 0.838E+00 0.5190E+01 0.7162E+00

0.597E+00 .110E+01 0.2864E+00 O. 1956E+01 0.2709E+01 0.819E+00 0.4956E+01 0.7219E÷00

0.608E+00 .108E+01 0.2618E+00 0.1951E+01 0.2683E+01 0.802E+00 0.4736E+01 0.7272E+00

0.620E+00 .106E+01 0.2393E+00 O. 1945E+01 0.2658E+01 0.784E+00 0.4523E+01 0.7319E+00

O.&32E+O0 .104E+01 0.2194E+00 0.1941E+01 0.2635E+01 0.768E+00 0.4331E+01 0.7365E+00

0.643E+00 .102E+01 0.2017E+00 O. 1937E+01 0.2615E+01 0.753E+00 0.4154E+01 0.7408E+00

0.655E+00 .100E+01 O. 1853E+00 0.1932E+01 0.2595E+01 0.737E+00 0.3982E+01 0.7445E+00

0.667E+00 .982E+00 O. 1709E+00 O. 1929E+01 0.2578E+01 0.723E+00 0.3830E+01 0.7482E+00

0.678E+00 .966E+00 0.1576E+00 0.1924E+01 0.2561E+01 0.709E+00 0.3681E+01 0.7513E+00

0.600E+O0 .949E+00 O. 1453E+00 0.1919E+01 0.2546E+01 0.695E+00 0.3537E+01 0.7539E+00

0.702E+00 .933E+00 O. 1343E+00 O. 1915E+01 0.2532E+01 0.682E+00 0.3406E+01 0.7564E+00

0.713E+00 .918E+00 O. 1244E+00 0.1911E+01 0.2520E+01 0.670E+00 0.3285E+01 O. 7586E+00

0.725E+00 .903E+00 O. 1152E+00 O. 1907E+01 O. 2508E+01 O. 658E+00 0.]166E+01 O. 7602E+00

0.737E+00 .889E+00 O. 1070E+00 O. 1904E+01 0.2499E+01 0.646E+00 0.3060E+01 0.7618E+00

O. 748E+00 .875E+00 0.9929E'01 O. 1899E+01 0.2490E+01 0.635E+00 0.2956E+01 O. 7629E+00

0.760E+00 .862E+00 0.92291E'01 O. 1895E+01 0.2482E+01 0.62.3E+00 0.2858E+01 O. 7637E+00

0.772E+00 .849E+00 0.8579E-01 0.1891E+01 0.2475E+01 0.613E+00 0.2764E+01 0.7641E+00

0.78.3E+00 .836E+00 0.7998E'01 O. 1888E+01 0.2469E+01 0.602E+00 0.26791E+01 0.7644E+00

0.795E+00 .824E+00 0.7451E-01 O. 1884E+01 0.2464E+01 0.592E+00 0.2595E+01 O. 7643E+00

0.807E+00 .812E+00 0.6956E-01 0.1880E+01 0.2461E+01 0.583E+00 0.2519E+01 0.7640E+00

0.818E+00 .800E+O0 0.6494E-01 O. 1876E+01 0.2458E+01 0.573E+00 0.2445E+01 O. 76,34E+00

0.8,]OE+O0 .789E+00 0.6067E-01 O. 1872E+01 0.2456E+01 0.564E+00 0.2374E+01 0.7625E+00

0.842E+00 .778E+00 0.5682E-01 O. 1870E+01 0.2455E+01 0.555E+00 0.2311E+01 0.7616E+00

0.853E+00 .768E+00 0.5315E'01 O. 1865E+01 0.2454E+01 0.546E+00 O. 22471E+01 0.7601E+00

0.865E+00 .757E+00 0.4990E-01 O. 1863E+01 0.2455E+01 0.539£+00 0.2191E+01 0.7589E+00

0.877E+00 .747E+00 0.4674E-01 O. 1859E+01 0.2456E+01 0.530E+00 0.2134E+01 0.7570E+00

0.888E+00 .737E+00 0.4392E-01 O. 1857E+01 0.2458E+01 0.522E+00 0.2083E+01 0.7553E+00

0.900E+O0 .728E+00 0.4119E-01 0.1852E+01 O. 2/._0E+01 0.515E+00 0.2030E+01 0.7529E+00
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Evaluation of Parameters from troposkien solution

We have solved for the troposkien shape in terms of the

parameter K. However, this parameter gives us little insight as far as

the magnitudes of the stresses. In order to obtain these figures we

must go back and determine the physically meaningful terms in

terms of K. Recall that

K2 fly 2b4
8

tO2pv

_v2- To

.'. To= 8K 2 (1)

We also know that

boo = 31.3 m/s

(from our tip-speed ratio)

ps,_,ppD
pv = b 2 (by definition)

Substituting these into Equation (1) yields

122.46.os,__ppD
To = K2 (2)

We are able to obtain an expression for D also,

o_f + ps,,pp(1 +D)
=" 1 (3)

b-'_ PsuppD

This relationship is also by definition (see derivation)

A third relationship is that for the maximum tension

T-32_



Ta = Tmax = To(T/To)max

The optimal case would be if the stress at all points was the

sarne. Therefore, we will try to find a relationship between the
tension and the stress. Tmax is also referred to as Ta because it

occurs when z=a.

The tensile stress is simply the tension divided by the cross-

sectional area. Since our density terms are density per unit length,

they are really the mass density of the material times the cross-

sectional area.

Oa Ta/Aa _a _ _ _ _
Oo - To/Ao (1_ T/To)max _.. :_ S7"_L'_'-

where"

(_ = stress

A = cross-sectional area

(1_ means "is proportional to"

Since our airfoil has no separate "skin", Pal=0 (see derivation)

and we may replace "(IX" by "---"

ga 1

o-_ = 1--_ (T/To)max (4)

immediately we' see that the stress ratio is always less than the
ratio of the tensions which is what was desired.

We now have 4 equations to work with which enable us to
solve for the tensile forces, the constant D, and the densities per unit

length. The equation for _ has been simplified for the case where

Pal=0. They are presented below as a summary

122.46psuppD
(I) To = K 2

1
(2) _ =b2( I +_)

T-33
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(3) Ta = Tmax = To(T/To)max

aa 1

(4) a-'o = 1"_ (T/To)max
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We see that equation (2) can be solved for D once _ has been

picked. In order to determine _, the computer program was run
several times for various choices of _, until we could obtain a ratio in

equation (4) as close to unity as feasible. If _ was selected too low,

the tension ratio became very large and the ratio would not approach

1. If _ was selected very high, we lose the benefits of varying the

cross-sectional area and can not approach a ratio of 1. Therefore,

when trying to obtain a ratio in equation (4) close to unity while also

minimizing arelength, the optimal value of _ was found to be _=1.3.

There is no closed form solution to show that this is the optimum,

however iterative computer solutions reveal that this is the case.

With _=1.3, the computer program was run, and the output of

interest here was"

b= 0.889 meters

(T/To)max = 3.928
K 2 = 3.108

With these values known, we are able to solve for D and our

stress ratio.

D = 1.55

O._._a= 1.52
13o

We see that we have taken a loading ratio of nearly 4 and

reduced it to a stress ratio of approximately 1.5. This enables us to

reduce our support mass significantly.

Next, we would like to approximate how much better our
solution is than the traditional constant cross-sectional area

troposkien solution. To do this, we estimate the mass required for
the blades of both machines. Remember that our solution provides

benefits in three separate ways. First, we reduce weight by vary.ing

the cross-section along the blades. Second, we obtain a better shape



L

ii
u

than the constant cross-section solution, therefore requiring less

weight. Finally, since the stresses are mass dependent, the mass we
removed where it was not needed helps to reduce stresses

throughout the blade. Since there is no benefit in completely

developing a constant cross-section solution, we will consider each of

the three parts separately, and add their contributions to

approximate our total mass and stress reduction.

w

D

I

• =

m

u

First, we generated a computer solution for the case of 4=1.3 and for

the case 4=20 (nearly constant cross-section). The arclength for the

z=20 solution was longer than the z=l.3 case because of the shape

benefits of varying the cross-section. The constant cross-section

solution would need to have a large enough cross-section to support

the maximum tensile load. The maximum tensile load would also be

greater for the constant cross-section solution due to more mass

present, but this topic will be discussed in section (II). Therefore its
cross-section will be approximated with the cross-section of the

varying cross-section solution at r=0.

p(r) = Psupp(l+D)

p(r) = Psupp(1-D( b 2 - 1))

constant cross-section solution

varying cross-section solution

i;

u

v-

i _

To find the total mass of each blade, we integrate the density times

the differential arclength.

S "_

Mass = _ p(r)ds
O

_/ drWe know thatds = 1 + (_zz)2 d z

Now the mass equation can be integrated numerically from z=0 to

z=a, and the ratio of the constant cross-section to the varying cross-
section can be obtained. This was done and the results are

MASSconstantcross-section = 1.538

MASSvarying cross-section

[
7-35"
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We see that varying the cross-section allows us to reduce mass by
34.2%.

The maximum tensile loads were compared for the constant cross-

section and varying solutions and we found that the constant cross-
section troposkein had a 54% greater maximum tensile load. Since in

step (I), we assumed that the two solutions had the same cross-
section at the point of maximum tension, we see that the stress is

54% greater in the constant cross-section solution with this

assumption.

.C0.ngl.uxinn

Therefore, we find that by varying the cross-section we are able to

reduce blade mass by over 34%. We also have a maximum stress
54% less than that of a constant cross-section solution. We conclude

that varying the cross-section has some remarkable advantages and

should be implemented in
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6
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8
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x[ c]

0.000

0.500

1.250
2.500

5.000

7.500
10.000

15.000
20.000

25.000
30.000

40.OOO
50.000

60.000
70.000
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90.000
95.000

100.000

S[(v/V)2]

0.000

0.750

1.083
1.229

1.299

1.310
1.309

1.304

1.293
1.275

1.252
1.209

1.170
1.126

1.087

1.037
0.984

0.933
0.000

pressuredistribution

H-p[Pa]

0.000
9.444

13.637

15.476
16.357

16.496

16.483
16.420

16.281

16.055
15.765

15.224
14.733

14.179
13.688

13.058
12.391

11.748
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Fd, May 1, 1992
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The Student Edition of MathCAD 2.0 For Educational Use Only

FIND MINIMUM DIAMETER OF INSIDE SHAFT FROM BENDING STRESS

For AIB:

Dinside := /_i F'I
cult

Gult m I.I. GPa

1
I

3

.2

Dinside = 5.503.mm

Use a rather large FS, say 1.75, because the ultimate tensile stress

was used; the yield strength will be scmewhat lower than this, but isunknown:

Inner radius of the rotating shaft is dependent on the size of the

bearing between it and the stationary shaft. We chose a bearing from
SKF (p. ) which has an outside diameter of 19mm.

Mass of two blades: MassBlades m 2. kg

Acceleration during landing impact: Acc m 7.9.81. Is_c21Inner radius of shaft: Rim 9.5-mm

MassBlades. Acc 2BENDING: Ro :- _-- + Ri

_Tult. T

Ro = 9. 502"mm

BUCKLING: 2"Ri
thickness :.

95.5

Ro :- Ri + thickness

Ro = 9.699.mm

So use an outer diameter of 19.5 mm based on critical buckling stress.

S-!0
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m m IL kg m IM

nlnm 0.001.m

GIROMILL

sec m IT kg. m
N! --

2

sec

N 9

Pa m -- GPa m i0 .Pa

2

m

Radius of Gircmill:

Length of Gircmill Blades:

Mass of one strut frcra -R to +R:

Mass of two blades:

Jgiro :-

2

2- MassStrut. h

12

2

Jgiro = 0.233- kg-m

R :-- 0.55.m

h :_ 1.0.m

MassStrut :u 0.020. kg

MassBlades :- 0.380. kg

2

+ 2. MassBlades- R

DARRIEUS [approximate blade shape as circular]

Radius of Darrieus:

Height of Darrieus:

Mass of two blades:

Inner radius of blades:

Outer radius of blades:

R :- 0.75.m

h :- 2. R h- 1.5.m

MassBlades :- 0.989. kg

rl :z 0.75.m

r2 :- 0.755. m

Jdarr :- MassBlades.

2

Jdarr = 0.28- kg.m

2 2

rl + r2

4
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6ingle Row Deep Groove Ball Bearings

PLAIN
_ S .---I

F--
L__

NO $H_LD

TYPE Z

12I

TYPE 2Z

TWO SHIELI_

Principal dimensions

d D

Basic Speed Mix.

load rating I fillet

rating radius

dynamic

B C

Mass

TYPE RSI TYPE 2RSt

Designation

Open One shield Two shields One seal Two seals

t)

t/

m

[

m

!

r

mm mm

In. in_

i

mm N rpm mm kg

in. Ibf. in, Ibs.

7 14 5 753 63 000 0.15 0.0020 _ --

0.2756 0.$512 0,1969 169 0.006 00044

17 S 1170 56 000 0.3 0.0049 AY 7 --

06693 0.1969 263 0.012 0.011

19 6 1 720 40 000 0.3 0.0075 607 607 Z

07480 0.2362 387 0.012 0.016

22 7 3 250 36 000 0.3 0.013 627 627 Z

0.8661 0.2756 731 0.012 0.028

8 16 4z 1 040 56 000 0.2 0.0031 X8 --

0.3150 06299 0.1575 234 0.008 0.0068

19 6 1 460 50 000 0.3 0 0071 AY8 --

0,7480 0,2362 320 0.012 0.016

22 7 3 250 38 000 0.3 0.012 608 808 Z

0.8661 0.2756 731 0.012 0.026

9 17 4= 1 110 53 (_00 0.2 0.0034 X9 --

0.3543 0.6693 0.1575 250 0.008 0.0076

20 6 1590 48 000 0.3 0.0076 AY g

0.7874 0.2362 357 0.012 0.030

24 7 3 710 36 000 0.3 0.014 609 609 Z

0.9449 0.2756 835 0.012 0.031

25 8 4 620 32 000 0.3 0.020 829 629 Z

1_0236 0.3150 1 040 0.012 0.044

10 19 5 1 170 48 000 0.3 0.0054 Xl0

0.3937 0.7480 0.1969 263 _ , 0.012 0.012
=

19 5 1 480 38 000 0.3 0'0055 61600 --

0.7480 0.1969 333 0.012 0.012

22 6 1 900 38 000 0.3 0.016 61900 --

0.8661 0.2362 427 0.012 0.035

26 6 4 620 34 000 0.3 0.0055 6000 6000 Z

1.0236 0.3150 1 040 0.012 0.012

30 9 6 070 3'0 000 0.6 0.032 6200 6200 Z

1.1611 0.3543 1 140 0.024 0.071

35 11 8 060 26 000 0.6 0.053 6300 6300 Z

1.3780 0.4331 I 610 0.024 0.11

' This refers to o;I Iubrical;o.n and moderato load. Consufl SKF for lower ratings applicable to grease lubricatk_.
Series 16100 -- 16101. 16002 -- 16072, also available,
Series 6200 through 6220 and 6303 through 6317 are aJso available as precision bearings (ABEC 5).
= Seal and shield vers:o.'lS1ram wider than listed.
: Suffix 2RZ denotes rubberized shield.

AX7ZZ

AY7ZZ

6O7 2Z

627 2Z

XSZZ

AYaZZ

6O8 2Z

XgZZ

AYgZZ

609 2Z

629 2Z

X10ZZ

61800 2Z

619O0 2RZ s

6OOO 2Z

6200 2Z

6300 2Z

-- u

t

607 RS1 607 2RS1

627RS1 627 2RS1

608 RS1 608 2FISI

609 RS1 609 2RS1

629 RSl 629 2RS1

m

-- 61900 2RS1

8000 RS1 6000 2RS1

6200 RS1 6200 2RS1

6300 RS1 63002R61

-'=;KF

e:
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MATERIAt SFLECT_0_/

The ddvin_!_broper_e_which_re_jn 4-o-_he
Bladesare _und below in +he cri_na.

barrle_t£

A NALYSIS MATRIX
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MATERIAL S EL_C%'IoN
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MATERIAL SELECTI_N

Thedrivin_l proper-l-ie3whJchper@in +0 -_he..
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C- I
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E--I
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I- V_ryAliol_ly roore
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impor'+anf.
4- Muchmore
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Titanit_m

"[all--'[_=4oOMPa = 4- M 80MPa -_
F.C. 5

_ % = ie._ _ eceu. J.ts×lo
Ar_. _t,,1---& 6ot,41_ _MPa
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I.44 x IO-_m m z
d -- O. 05@ r_m
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check,berdin9 _crner4-

); M=_WL=_= I:i
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