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ABSTRACT

A three-dimensional Navier-Stokes analysis tool has been developed in order to

study the effect of film cooling on the flow and heat transfer characteristics of actual

turbine airfoils. An existing code (Amone et al., 1991) has been modified for the purpose.

The code is an explicit, multigrid, cell-centered, finite volume code with an algebraic

turbulence model. Eigenvalue scaled artificial dissipation and variable-coefficient implicit

residual smoothing are used with a full-multigrid technique. Moreover, Mayle's transition

criterion (Mayle, 1991) is used. The effects of film cooling have been incorporated into

the code in the form of appropriate boundary conditions at the hole locations on the airfoil

surface. Each hole exit is represented by several control volumes, thus providing an

ability to study the effect of hole shape on the film-cooling characteristics. Comparison

is fair with near mid-span experimental data for four and nine rows of cooling holes, five

on the shower head, and two rows each on the pressure and suction surfaces. The

computations, however, show a strong spanwise variation of the heat transfer coefficient

on the airfoil surface, specially with shower-head cooling.



NOMENCLATURE

Bp blowing parameter [= (pcVcY1/2)/(poco)]

Br blowing ratio [= (pcVc)/(poV=)]

c sonic speed

d coolant hole diameter

h heat transfer coefficient based on (To - Tw)

ho standard value (= 1135.6 W/m2-K = 200 Btu/hr-ft2-R)

M Mach number

p pressure

r coolant hole radius (= d/2)

Re Reynolds number based on the true chord length

s distance from the leading edge along the pressure or suction surface

T temperature

V¢ average velocity of coolant at the hole exit

Vo local free-stream velocity

y* dimensionless distance of the first point off the airfoil surface

y ratio of specific heats

p density

1_ curvilinear coordinate roughly following the flow

rl curvilinear coordinate running airfoiHo-alrfoil

i; curvilinear coordinate running spanwise

Subscripts

1 at inlet

2 at exit

2



C

0

W

oo

for coolant

stagnation value

at the airfoil surface

local free-stream value

1. INTRODUCTION

There is a growing tendency these days to use higher and higher temperatures at

the inlet to a turbine since it yields higher thermal efficiency. Modem gas turbine engines

are designed to operate at inlet temperatures of 1400-1500*C,which are far beyond the

allowable metal temperatures. Thus, to maintain acceptable life and safety standards, the

structural elements need to be protected against the severe thermal loads. This calls for

an efficient cooling system. One

temperature turbines is film cooling.

such cooling technique currently used for high

In this technique, cooler air is injected into the high

temperature boundary layer on the airfoil surface. Since the cooler air is bled directly

from the compressor before it passes through the combustion chamber, it represents a

loss in the total power output. The designer's goal is therefore to minimize the coolant

necessary to insure adequate turbine life.

To this end, considerable effort has been devoted into understanding the coolant film

behavior and its interaction with the mainstream flow. The film cooling performance is

influenced by the wall curvature, three-dimensional external flow structure, free-stream

turbulence, compressibility, flow unsteadiness, the hole size, shape and location, and the

angle of injection. Many studies on film cooling have been confined to simple geometries,

for example, two-dimensional flat and curved plates in steady, incompressible flow. A

survey of work up to 1971 has been provided by Goldstein (1971). While several further
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studies in this field have been summarized by Garg and Gaugler (1993), some recent

ones are discussed here. Metzger et aJ. (1993) provide a descriptive overview of turbine

cooling methods and situations of current interest. They point out the relative invadance

of some of the problems addressed during the development of the gas turbine engine

over the past five decades. Moreover, they note that while a large information base has

been accumulated on film cooling, the designer's ability to predict film cooling

performance in general is still marginal.

Vogel (1991) described a 3-D Navier-Stokes code for film-cooled gas turbine blades

that couples the flow problem over the blade with the 3-D heat conduction problem within

the blade. Using the Baldwin-Lomax mixing length model (Baldwin and Lornax, 1978)

coupled with the Cebeci-Smith near-wall damping model (Cebeci and Smith, 1974), Vogel

compared the heat transfer coefficients with experimental data for injection on a flat plate.

He could not get reliable results on a turbine blade due to the computer storage

limitations that did not allow more than four to six mesh cells within the hole opening on

the blade surface. Vogel found, in conformity with our observation as well, that more than

six cells within the hole are required for an adequate resolution of the flow field.

Benz and W'_g (1992) analyzed the elliptic interaction of film-cooling air with the

main flow by simultaneously computing the coolant and main flows for film cooling at the

leading edge of a turbine blade. They were, however, concerned with the region

surrounding the hole, and presented no heat transfer results. Amer et ai. (1992)

compared two forms each of the k-_ and k-co family of turbulence models for film cooling,

and found all of them to be inappropriate. Recently Domey and Davis (1993) analyzed

the film cooling effectiveness from one and two rows of holes on a turbine vane, using

Rai's (1989) numericaJ technique. They carded out both two- and three-dimensional
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simulations, but represented each hole by just two grid points. Choi (1993) developed

a multi-zone code for film cooling with a fine mesh near the coolant hole and injection

pipe overlapped on the global coarse grid. Using modified Coakley's q-e turbulence

model, he found reasonable agreement with the film-cooled ACE blade. However, only

one row of holes on the suction surface of the blade was analyzed.

More recently, Leylek and Zerkle (1993) analyzed the coupled problem of flow in the

plenum, film-hole, and cross-stream region for film-cooling on a flat plate using the k-_

model of turbulence in a 3-D Navier-Stokes code. They found the flow within the film-hole

to be extremely complex, containing counter-rotating vortices and local jetting effects that

make the flow field in this region highly elliptic. The distribution of dependent variables

at the hole exit plane resulted from the interaction of three competing mechanisms,

namely, counter-rotating structure and local jetting effects within the film-hole, and cross-

flow blockage. They found that for the high hole-length to diameter ratios (> 3.0), the

velocity profile at the hole exit is akin to the 1/Tth power-law profile for high blowing ratios

(B r >_1.0).

Herein, an existing three-dimensional Navier-Stokes code (Amone et ai., 1991) has

been modif'_l in order to study the effect of film cooling on the flow and heat transfer

characteristics of actual turbine airfoils. Comparison with experimental data (Hylton et al.,

1988) for a C3X vane with four as well as nine rows of film cooling holes including the

shower-head is provided.

2. ANALYSIS

The three-dimensional Navier-Stokes code of Amone et al. (1991) for the analysis

of turbomachinery flows was modified to include film cooling effects and Mayle's transition
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criterion (Mayle, 1991). The code isan explicit, multigrid, cell-centered, finite volume code

with an aigebraic turbulence model. The Navier-Stokes equations in a rotating Cartesian

coordinate system are mapped onto a general body-fitted (E,rt X) coordinate system using

standard techniques, with the E-coordinate roughly following the flow, the rt-coordinate

running airfoil-to-airfoil, and the _-coordinate running spanwise. Viscous effects in the _-

direction are neglected in comparison to those in the r/and _'-directions. This assumption

is not good for high blowing ratios. However, inclusion of viscous effects in the _-

direction requires a fairly dense grid in the E-direction as well. Since the present code is

a one-domain (though multi-grid) code, it is not practical to include viscous effects in the

E-direction also. This assumption may affect the results in the vicinity of film cooling

holes. Since the experimental data on the C3X vane is available away from the holes, this

assumption may not affect the comparison with experimental data to a large extent.

The number of grid points specified on the pressure and suction surfaces of the

airfo=l are different, thus producing a non-matching grid on the "cut-line" in the wake

region. Though it requires interpolation, it allows the grid to be only slightly distorted even

for cascades having a large camber or a high stagger angle, and for airfoils with several

rows of film-cooling holes, thus enabling one to describe details of the flow with a

reasonable number of grid points. The four-stage Runge-Kutta scheme developed by

Jameson et al. (1981) is used to advance the flow solution in time from an initial guess

to the steady state. A spatially varying time step along with a CFL number of 5 was used

to speed convergence to the steady state. Eigenvalue-scaied artificial dissipation and

variable-coefficient implicit residual smoothing are used along with a full-multigrid method.

The effects of film cooling have been incorporated into the code in the form of

appropriate boundary conditions at the hole locations on the airfoil surface. Each hole
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exit (generally an ellipse in the plane of the airfoil surface) is represented by several

control volumes (about 20) having a total area equal to the area of the hole exit, and

passing the same coolant mass flow. This provides the code an ability to study the effect

of hole shape on the film-cooling characteristics, though such an effect is not

demonstrated here. Different velocity and temperature profiles for the injected gas can

be specified at the hole exit. For the cases reported here, turbulent (1/7th power-law)

profiles were specified, in conformity with the observation of Leylek and Zerkle (1993),

since the hole-length to diameter ratio for the C3X vane is 3.4. The code can also be

used for either a specified heat flux or a variable temperature condition on the airfoil

surface. For the C3X vane analyzed here, the experimentally determined temperatures

were specified at the airfoil surface, and wall heat flux was calculated. The algebraic

mixing length turbulence model of Baldwin and Lomax (1978) was used. This model has

been used satisfactorily by Boyle and Giel (1992) for heat transfer calculations on turbine

blades without film cooling. Moreover, Mayle's transition criterion (Mayle, 1991) was

employed. The incoming flow in the experimental tests on C3X vane (Hylton et al., 1988)

had a turbulence intensity of 6.5%, and it is assumed constant for application of Mayle's

model.

Since the hole diameter on the C3X vane is 0.99 mm, the grid size has to be varied

along the airfoil chord. For computational accuracy, the ratio of two adjacent grid sizes

in any direction was kept within 0.76 to 1.3. A periodic C-grid with up to one million grid

points was used. Normal to the airfoil surface is the dense viscous grid, with y* < 1 for

the first point off the airfoil surface, following Boyle and Giel (1992). Computations were

run on the 8-processor Cray Y-MP supercomputer at the NASA Lewis Research Center,

and on the 16-processor C-90 supercomputer at NASA Ames Research Center. The
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code requires about 60 million words (Mw) of storage and takes about 20 s per iteration

(full-multigrid) on the C-90 machine for one million grid points. For a given grid the first

case requires about 1100 iterations to converge, while subsequent cases for the same

grid require about 300 iterations starting with the solution for the previous case.

3. EXPERIMENTAL DETAILS

The code was assessed against the experimental data on the C3X vane in a linear

cascade by Hylton et al. (1988). Figure 1 shows the C3X vane (true chord = 144.93 mm)

with the film cooling hole details. The test vane was internally cooled by an array of ten

radial cooling holes (not shown in Fig. 1) in the active part of the vane. No heat transfer

measurements were made in the actual film-cooled nose piece of the vane as it was

thermally isolated from the rest of the vane. The active pad of the test vane surface was

instrumented with 123 0.51 mm diameter sheathed CA thermocouples to measure the

temperature at the airfoil surface. The thermocouple junctions were located in a plane

2.54 mm off mid-span. The heat transfer coefficient for each radial cooling hole was

calculated from the hole diameter, measured coolant flow rate, and coolant temperature

with a correction applied for thermal entry region effects. The internal temperature field

of the test vane was obtained from a finite element solution of the steady state heat

conduction equation, using the measured surface temperatures as boundary conditions.

Experimental values of the heat flux at the airfoil surface were then obtained from the

normal temperature gradient at the airfoil surface, and these were used to derive the local

heat transfer coefficient, represent values in a plane 2.54 mm off the mid-span of the

airfoil. More details are available in Hylton et al. (1988).
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4. RESULTS AND DISCUSSION

Fig. 2 shows the 281x45 grid in the _-n directions around the C3X vane with all the

nine rows of holes. The concentration of grid lines in regions near the holes on the

leading edge and on pressure and suction surfaces can be noticed in this figure. Also

visible is the non-matching grid structure on the "cut-line" in the wake region, resulting

from the different number of grid points on the suction and pressure surfaces of the

airfoil. This helps reduce grid skewness, specially over the suction surface of the airfoil.

The same grid is stacked in the _:-direction along the span.

Comparisons were made with the experimental data for (i) all the nine rows of film-

cooling holes (five rows of staggered holes in the shower-head around the stagnation

point and two rows each of in-line holes on the pressure and suction surfaces), and (ii)

four rows of cooling holes with the shower-head blocked. For both these cases, the

computational span, shown in Fig. 3, is different from the real span. The ordinate in Fig.

3 denotes the distance along the airfoil surface in the spanwise direction, while the

abscissa denotes the distance along the airfoil surface in the chordwise direction, both

normalized by the hole radius, r. It may be noted that the abscissa in Fig. 3 has breaks

so as to accommodate all the rows of holes. The shape and orientation of the hole

openings in Fig. 3 is a direct consequence of the angles the holes make with the

spanwise or chordwise direction (cf. Fig 1). For case (i) with nine rows of holes, the

pattem of holes shown in Fig. 3 is repeated in the spanwise direction, and since injection

from the shower-head holes is at an angle of 45°with the span direction, periodic

boundary conditions are imposed on the ends of the computational span. For case (ii),

however, with the shower-head holes blocked, injection from the rows of holes being

normal to the surface in the spanwise direction allows symmetry boundary conditions to
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be imposed at both ends of the computational span.

Three experimental cases, 44103, 44108 and 44308, were analyzed for comparison

when the shower-head holes are blocked, and three experimental cases, 44135, 44155

and 44355, were analyzed for comparison with all nine rows of holes injecting the cold

gas. The values of various parameters for these cases are given in Table 1. In this table,

the derived film cooling parameters are based upon the assumption of one-dimensional

compressible flow through the hole. W'_h the shower-head holes blocked, the case 44108

represents the maximum while the case 441 03 represents the minimum coolant mass flow

rate for the experimental data. In terms of the coolant temperature, the case 44108

represents the coolest while the case 44308 represents the warmest coolant when the

shower-head holes are blocked. With all nine rows of holes on, the cases 44135 and

44155 represent the minimum and maximum blowing ratio, respectively, for the shower-

head holes, while the case 44355 represents the warmest coolant. In all cases, the

blowing ratio is high (Br >_.1.0).

Rgure 4 shows the non-uniform experimentally determined temperature on the airfoil

surface for the case 44308, and is typical of all the cases analyzed. These temperature

values were specified as the boundary condition for the airfoil surface temperature in the

code as well. In this and later figures, s represents the normalized distance along the

pressure or suction surface of the airfoil. Besides the somewhat erratic temperature

variation over I sl > 0.25, caused by the internal cooling holes (not shown in Fig. 1) in

the active part of the airfoil, there is a sharp drop in temperature at each end of the

insulated portion of the airfoil (I s l "=0.25).

Figures 5 and 6 show a comparison of the static pressure distribution (solid curve)

on the airfoil surface for the cases 441 55 (with all nine rows of holes on) and 441 08 (with
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the shower-head blocked), respectively, with the experimental data (denoted by D) for the

uncooled airfoil. The comparison is fairly good, and in conformity with Hylton et ai.

(1988), film-cooling does not seem to affect the static pressure distribution except

producing some wiggles in the injection regions. It may be noted that for all the six

experimental cases analyzed here, the pressure distribution is almost identical, and all

grids yield the same result. Figure 7 shows the distribution of y* for the first point off the

airfoil surface for the case 44155. The wiggles in the curve near Isl -< 0.25 are due to

the coolant injection. Clearly y* < 1 over the whole airfoil surface, as required for

accurate heat transfer calculations (Boyle and Giel, 1992). Similar values of y+ were

obtained for the other cases as well.

Figure 8(a) displays the heat transfer coefficient contours on the airfoil surface for

the case 44155 along the normalized chordwise (abscissa) and spanwise (ordinate)

directions. It may be noted that while the ordinate in this figure represents only about 15

mm of computational span, the abscissa represents about 320 mm of the airfoil surface

in ¢hordwLse direction. The heat transfer coefficient values have been normalized by ho

= 1135.6 W/m2-K, an arbitrary value used by Hylton et ai. (1988). The contours are

given at intervals of 0.2 in h/h o values. Clearly, the heat transfer coefficient has a strong

three-dimensional structure over most of the airfoil surface, with relatively low values

directly downstream of the holes on the suction surface. For the sake of clarity, the

contours on the suction and pressure surfaces are blown up in Figs. 8(b) and 8(c),

respectively, for Js J > 0.3, and the contours are given at intervals of 0.1 in Wh o values.

It may be noted from Fig. 8(b) that over 0.3 < s < 0.5, h/h o values range from 0.6 to 2.0

in regions of the span upstream of which there are no holes on the suction surface. Fig.

8(b) also shows a slight tilt (an angle of about 5"with the s-direction) of the h/h o contours
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in the region 0.3 _<s _<0.5. This is due to the relatively strong spanwise injection (Bp =

0.41) of the coolant through the shower-head holes (cf. Table 1) for this case. For the

weaker blowing parameter (Bp - 0.2) through the shower-head holes for the case 44135,

Fig. 9 shows no such tilt of the h/h o contours (given at intervals of 0.1) on the suction

surface. In fact, results in Fig. 9 appear to be almost symmetrical about the mid-

computational span (C = 0.5), even though the strong three-dimensional structure of the

heat transfer coefficient is maintained. It may be noted that injection from the shower-

head holes is at 45°to the span direction and normal to the chordwise direction.

Figure 10 provides a comparison of the normalized heat transfer coefficient (solid

curves) at the airfoil surface with experimental data (Hylton 6t al., 1988), denoted by El,

for the case 44155 at a spanwise location (near mid-span) where the experimental data

was taken. There is no data given for about 25% of surface length on either side of the

leading edge since this portion contained the plenum chambers for injection of the colder

gas and was insulated from the rest of the airfoil in the experimental tests (cf. Fig. 1).

Due to lack of experimental data on the mean temperature of the injected gas at the hole

exit, it was necessary to estimate it based on a one-dimensional compressible flow

through the hole. Despite this estimate, the comparison between the computed and

experimental heat transfer coefficients is fair. The fluctuations in the data are due to the

non-un'_orm airfoil surface temperature in the experimental data. It may be pointed out

that when the iterative procedure for solution of the governing equations is assumed to

converge, the maximum error in any of the variables is of the order of 10"4. Further

iterations produced negligible change in the heat transfer coefficient.

Figures 11 and 12 provide a comparison between the present computations (solid

curves) and experimental data (denoted by El) for the normalized heat transfer coefficient
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for the cases 44135 and 44355, respectively. In general, the agreement is fair. Though

at a somewhat different level quantitatively, the theory seems to follow the fluctuations in

the data, which are again due to the non-uniform airfoil surface temperature, similar to

those in Fig. 4 for the case 44308. We may point out that experimentally, the heat flux

on the airfoil (inner) surface was calculated from a finite element analysis of conduction

within the airfoil, and the heat transfer coefficient was then found by dividing this heat flux

by (To - Tw). The present study computes the heat transfer coefficients on the airfoil

(outer) surface from the three-dimensional Navier-Stokes analysis. Also, the uncertainty

in the heat transfer coefficient measurement varies from about 10% near [sl = 0.3 to

about 22% near Isl -= 0.95 (Hyltcn et al., 1988).

Let us now turn to the comparison of results for only the four rows of holes on the

pressure and suction surfaces, with the shower-head holes blocked. Figure 13(a) shows

the h/h o contours on the airfoil surface (at intervals of 0.1) for the case 44103, and is the

counterpart of Fig. 8(a) for all nine rows of holes on. The stretching in Fig. 13(a) is even

more severe since the ordinate represents only about 8 mm of the computational span,

while the abscissa represents about 320 mm of the chordwise distance on the airfoil

surface. The computational span contains only one hole in each row with symmetry

conditions at both the ends. In this case also, the three-dimensional nature of heat

transfer coefficient is evident but only over 0.3 _< [s I -<0.5, not the entire s as in Fig. 8(a).

Figures 13(b) and 13(c) provide the blow-up for these contours on the suction and

pressure surfaces, respectively, for Isl > 0.3 at intervals of 0.1 in h/h o values. Similar

results were obtained for cases 44108 and 44308.

For the cases 44105, 44108 and 44308, respectively, Figs. 14 through 16 compare

the theoretical heat transfer coefficient at the airfoil, surface (solid curves) with the
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experimental values (Hylton et al., 1988), denoted by El, at the mid-computational span,

close to the location of actual measurement. The comparison is fair on the pressure

surface but not so on the suction surface. A possible cause for this discrepancy may be

the use of an algebraic turbulence model for the analysis, it is known (Amer et al., 1992),

however, that more sophisticated turbulence models, such as the two-equation models,

are also not satisfactory in the presence of film cooling. Perhaps the multiple-time-scale

turbulence model of Kim and Benson (1992) may be more appropriate. However, use

of this model is computationally very expensive since it involves solving four more partial

differential equations in addition to the five at present, all coupled.

Figure 17 shows the small effect of using Mayle's transition criterion for the case

44103. in this figure, the computed heat transfer coefficients with and without Mayle's

model are shown at 1/6th of the computational span. Similar results were obtained at

other span locations, and for the cases 44108 and 44308. Since the flow turns turbulent

right at the leading edge when shower-head cooling is on, Mayle's transition criterion

makes no difference in results for the cases with all nine rows of cooling holes on.

5. CONCLUSIONS

A fair comparison of numerical results with near mid-span experimental data

suggests that the multi-grid code can be used to predict the heat transfer characteristics

of a film-cooled turbine airfoil with several rows of holes injecting through the shower-head

and pressure and suction surfaces. It does show a strong spanwise variation of the heat

transfer coefficient on the airfoil surface, specially with shower-head cooling. However,

a complete comparison of this three-dimensional structure of the heat transfer coefficient

on the airfoil surface can not be done at present due to the lack of similar experimental
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data. It is planned to use the code to study the effect of various film-cooling parameters

such as the hole size, shape and location, the angle of injection, etc.
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TABLE 1 Parameter Values for the Cases Analyzed

Main Flow Parameters (Expedmental)

Case

44103

P0 (kN/m2)

279.1

44155

To(K)
709

i I

0.18

Re1

5.5x 105

6.3x105

0.89

Re2

1.96xi0 B

2.0x10 s44108 281.9 703 0.20 0.89

44308 283.9 711 0.21 6.4x 10s 0.89 1.98x 106

44135 281.55 705 0.20 6.2x105 0.90 2.0x10 s

280.95 705 0.19 6.0x10 s 0.90

5.6x10 s0.18702 0.9044,355 284.02

2.0x10 s

2.02x10 s

Rim Cooling Parameters (Experimental)

Case

Shower
Head

Pw/Po

Suction
Surf.

Pressure
Surf.

Shower
Head

Too/To

Suction
Surf.

rE m

44103 1.000 1.020 1.019 0.68

44108 1.000 1.635 1.692 0.63 0.66
lr

44308 1 .(XX) 1.614 1.636 0.85 0.85
ii

1.00

1.00

1.00

0.75

0.72

0.85

44135 1.018 1.099 1.099 0.67

,,i

Pressure
Surf.

0.72

0.69

44155 1.103 1.101 1.101 0.66 0.69

44355 1.099 1.101 1.102 0.84 0.83

Rim Cooling Parameters (Derived)

Case

i

44103

44108

44308

44135

44155

44355

(P,%¥%/(Po%)
Shower

Head
i

0.00

0.00

0.03

0.20
L

0.411

0.356

Suction
Surf.

0.572

1.093

0.946

0.6,34

0.6,39

0.564

Pressure
Surf.

0.236

1.122

0.953

0.426

0.427

0.387

Shower
Head

0.745

0.7

0.826

T_._o

Suction
Surf.

0.56

0.525

0.71

0.558

0.55

0.7

Pressure
Surf.

0.71

0.564

0.73

0.668

0.667

0.803
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2 ROWS OF HOLES
35" ANGI _F_CHORDWISE
3(1 SPANWISE SPACING

_ _ 2RowsOFHOLES
\_ _ _ _'._N_L_CHORDWISE

"__ 3d SPANWISE SPACING

5 ROWS OF STAGGERED HOLES
45" ANGLE SPANWISE
7.5d SPANWISE SPACING

HOLE DIA. d = 0.99 mm
4(! ROW SPACING

HOLES NORMAL TO DIRF.LWION UNSPECIFIED

Fig. 1 C3X vane and cooling hole de_'ls.

Fig. 2 C-grid over the C3X vane with nine rows of cooling holes.-
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,._ ....... , ......... ,................... ,......... , ......... i................. ,. ........
A

...............i i................ i..................I i.................i .........:........'"i'"'"_-:i ..................i_c""i .......
0

-63.7 -55.7 -24 -16 -8 0 8
Pressure Shower-head Region

::i::::i:;::;:;;.:;;;;i;;;I.......I
...... . Computational
i:_;:::I........_.................
,_ _-',_.,,.__.-: Span for 9 Rows

..._._.....{.._._.,_.., ___

............... 1.................

....... |......... p-,-..l ........

..;_ ._...-._-..._-.--

92.5 100.5
Suction

Fig. 3 Computational span for the nine and four rows of holes on the airfo_ surface.
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1.0 i i i i I i i I , I' i' i i i I i i , ,

m

l

.7
-1.0

i ,i 1 i I I I i i I i. I I ! I I I I I

-.5 0 .5

Pressure Suction
S

Rg. 4 Airfoil surface temperature for the Case 44,308.

1.0
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1.0

0.8

0.6

0.4

0.2

0
-1 .(

Rg.5

- 281x45x81 grid

I I ¢, I I I I I i t t [ t I I t t t

-0.5 0 0.5
Pressure Suction

S

.0

Static pressure distribution on the airfoil surface (Case 44155). _, present

computation; r'l experimental data for uncooled airfoil (Hylton et al., t988).

1.0

.6
O

.4

.2

0
-1.0 -.5 0 .5 1.0

Pressure Suction
S

Fig. 6 Staticpressuredistn'butionon the airfoilsurface (Case44108). m' present
computation;Q, experimentaldata for uncooledaidotl (Hyltonet aL, 1988).
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1.0

0.8

0.6

%

0,4

0.2

t * i i I i i i i i i i i i i i i i i I

m

m

- 281x45x81 grid

.0

i i i I ] I I I 1 I t i i I I ,I t t t
-0.5 0 0.5

Pressure Suction

Fig. 7 y' of the first point off the airfoil surface for the Case 44155,

,0

1.0

0.8

0.6

Z

0.4

O.2

0.0

o0O 

l I I |

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

S

Rg. 8(a) Normalized heat transfer coefficient contours on the airfoil surface for the
Case 44155.
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1.0

0.8

0.6

Z

0.4

0.2

0.0

Rg.e(b)

yA I

I
.5

|

0.80.3 0.4 0.5 0.6 0.7 0.9 1.0

S

Normalized heat transfer coefficient contours on the suction surface of the

airfoil for the Case 44155.

0.4

0.2,

0.0

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3

S

Rg. 8(c) Normalized heat transfer coefficient contours on the pressure surface of the
airfoil for the Case 44155.
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1.0

0.8

0.6

Z

0.4

O.2

0.0

Fig. 9

0.9 1.0

Normalized heat transfer coefficient contours on the suction surface of the

airfoil for the Case 44135.

1.oll i i' i i i , i , I , ' i I i i I i i

281x45x81 grid

ho = 1135.6 W/m2-K _
0.8

0.6

- []

0.2

0
-' .0 -0.5 0 0.5 1.0

Pressure Suction
S

Rg. 10 Normalized heat transfer coefficient on the airfoil surface (Case 44155). _,

present computation; I"1,expedmental data (Hylton et al., 1988).
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1.o _ _ i i i i i i j i-,,i i i i I i i i _

- 281x45x81 grid

0.8 h° = 1135.6 W/m2-K

0.6

o

0.4 E

0 i i i I I I i I ! l I i i I t i i

-1.0 -0.5 0 0.5 1.0

Pressure Suction

S

Rg. 11 Normalized heat transfer coefficient on the airfoil surface (Case 44135)._.__,
present computation; 1-1,experimental data (Hylton et al., 1988).

1.0

0.8

0.6

o
0.4

0.2

0
-1.0

I I I I I I I i I I I I rl i i i i

[]

-0 El

-- 281x45x81 grid

- ho = 1135.6W/m2-K

. f I I I I i I I ! I I I ! I I I i i i

-0.5 0 0.5 1.0

Pressure Suction

S

Rg. 12 Normalized heat transfer coefficient on the airfoil surface (Case 44355).

present computation; r'l, expedmentai data (Hylton et al., 1988).
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1.0

0.8

0.6

Z

0.4

0.2

0.0

I

t
I I ! I ! I | ! I i ! z I1[_1_/11!

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
$

!

0 6 0.8 1.0

Rg. 13(a) Normalized heat transfer coefficient contours on the airfoil surface for the
Case 44103.

o !/o0il!iZ 6

0.4 i

0.2

0a 0 I I _ =

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
S

Rg. 13('o) Normal'Bedheat 1_ansfercoefficientcontours on the suction surface of the
airfollfor the Case 44103.
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1.0

0.8

0.6 1

Z

0.4

0.2

0.0 ,

-1.0
I

-0.9 -0.8 -0.7

V
.5

0 '
S

,, frl
! I ! I

-0.6 -0.5 -0.4 -0.3

Rg. 13(c) Normar_zed heat transfer coefficient contours on the pressure surface of the
airfoil for the Case 44103.

1.o i = = = i = i i = i = ,=, i j i i = i I
N u

.8

-_ r . -

.6 -- [] r', "_

.4 I

•  io xox?0 []
0 h°= 1135.6W/m2-1( . -

-1.0 -.5 0 .5 1.0
Pressure Suction

$

Fig. 14 Normaized heat transfer coefficient on the airfoil surface (Case 44103). _,

present computation; [3, experimental data (Hytton et ai., 1988).
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1.2II i I I I I 1 I I I I I 1 I' I I II. I _

[]

91 /ff .6
#

° o_
/ ' ho = 1135.6 W/m2-K

oEV , , , I'i , I , I i , I I I , ' I '
-1.0 -.5 0 .5

Pressure Suction
.0

Fig. 15 NonnaFBed heat transfer coefficient on the airfoil surfaoe (Case 44108)- ----,
present computation; O, experimental data (Hylton et ak, 1988).

1.2

.8

4

.4

L t/ 401x45x13 grid -

-1.0 -.5 0 .5 1.0
Pressure Suction

S

Fig. 16 Nonna_ed heat transler coefficient on the airfoil surface (Case 44308). _,

present computation; O, experimental data (Hylton el a]., 1988).
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2,0

1.5

0
.c: 1.0
.C:

.5

0
-I .0

I I L I I , _ , I I I I , I I , I I_
401x45x13 grid

h o = 1135.6 W/m2-K

t without Mayle's modelwith Mayle's model

- \ -

-i i I I I I I I I I v I I I I I , _ ,-
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Pressure Suction

s

.0

Fig.17 EffectofMayle'stransi'Joncriteriononthenormalizedheattransfercoefficient
on theaido_st.rface(Case44103).
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