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Abstract

The perfluoropolyether (PFPE) class of liquid lubricants has been used for space

applications for over two decades. At first, these fluids performed satisfactorily as early

spacecraft placed few demands on their performance. However, as other spacecraft

components have become more reliable and lifetimes have been extended, PFPE lubricant

deficiencies have been exposed. Therefore, the objective of this paper is to review the PFPE

properties that are important for successful long term operation in space.

Introduction

The purpose of lubrication is to separate surfaces in relative motion by a material

which has a low resistance to shear so that the surfaces do not sustain major damage. This

material can be a variety of different species (e.g., adsorbed gases, reaction _ms, liquids,

solid lubricants, etc.).

Depending on the type of fdm and its thickness, a number of lubrication regimes can

be identified. A classical way of depicting these regimes is by use of the Stribeck curve

(Fig. 1). Stribeck (1) performed comprehensive experiments on journal bearings around 1900.

He measured the coefficient of friction as a function of load, speed, and temperature. Some

years later, Hersey (2) performed similar experiments and devised a plotting format based on



a dimensionless parameter. The Slribeck curve takes the form of the coefficient of friction as

a function of the viscosity (Z), velocity (N), and load (P) parameter, ZN/P.
i

At high values of ZN/P which occur at high speeds, at high viscosities and at low

loads, the surfaces are completely separatedby a thick (>0.25 lma)lubricant film. This is the

area of hydrodynamic lubricationwhere friction is determined by the rheology of the

lubricant. For nonconformal, concentrated contacts where loads are high enough to cause

elastic deformation of the surfaces and pressure-viscosity effects on the lubricant, another

regime, elastohydrodynamic lubrication (EHL) can be identified. In this regime f'dm

thicknesses (h) may range from (0.025 to 1.25 lma).

As fluid f'llm thickness becomes progressively thinner, surface interactions start taking

place. This regime of increasing friction in which there is a combination of asperity

interactions and fluid film effects is referred to as the mixed lubrication regime. Finally, at

low values of ZN/P, one enters the realm of boundary lubrication. This regime is

characterized by the following (3):

1. It is a highly complex regime involving metallurgy, surface topography, physical

and chemical adsorption, corrosion, catalysis, and reaction kinetics.

2. The most important aspect of this regime is the formation of protective surface

(reaction) f'tlmsto minimize wear and surface damage. (For space mechanisms, AISI 440C

steel is the most common bearing material)

3. The formation of these films is governed by the chemistryof both the film former

as well as the steel surface and other environmental factors.
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4. The effectiveness of these films in minimizing wear is determined by their physical

properties which include: shear strength, thickness, surface adhesion, film cohesion, melting

point or decomposition temperature, and solubility.

The perfluoropolyether (PFPE) class of liquid lubricants has been in use for over

25 years for many spacecraft applications (4). These commercial products are made by

polymerization of perfluorinated monomers. The fast member of this class was made by CsF

catalyzed polymerization of hexafluoropropene oxide (t-IFPO) yielding a series of branched

polymers designated in this paper as K fluids (5). A similar polymer is produced by the UV

catalyzed photo-oxidation of hexafluoropropene (Y fluid) (6). A linear polymer ( Z fluid) is

prepared by a similar process but utilizing tetrafhioroethylene (7). Finally, a fourth polymer

(D fluid) is produced by polymerization of tetrafluorooxetane followed by direct fluorination

(8). Formulae for these fluids appear in Table 1. Table 2 contains property data for some

members of the PFPE class of lubricants.

In addition to these commercially available PFPE fluids, a new series of structures are

being prepared by direct fluorination technology (9)-(11). Some of these structures appear in

Table 3.

Of the above PFPE fluids, only K and Z fluids have been extensively used as liquid

lubricants and greases for space applications (4). Recently, a D fluid has been life tested for

use as a shutter mechanism lubricant for the solar and heliospheric mission (SOHO).

The objective of this paper is to review some of the properties of the PFPE class of

lubricants that are important for long term operation in space. This is not intended to be an

extensive review of all PFPE properties, only those related to space requirements. For



example, thermal and thermal-oxidative stability properties important for terrestrial

applications, (12)-(17) will not be covered. In addition, many other classes of liquid

lubricants are being used in space. These classes will not be discussed since adequate

reviews already exist (18).

PerfluoropoDether Properties

As indicated in the introduction, a liquid lubricant has to possess certain physical and

chemical properties to function properly in a lubricated contact. These lubricants must possess

the following attributes for consideration for a space application: vacuum stability (i.e. low

vapor pressure), low tendency to creep, high viscosity index (i.e. wide liquid range), good

elastohydrodynamic and boundary lubrication properties, optical transparency, and resistance

to radiation and atomic oxygen.

Volatility

Although labyrinth seals are extensively used in space mechanisms, lubricant loss can

still be a problem for long term applications (7 to 30 years) (19). For a fLxedtemperature,

and outlet area, lubricant loss is directly related to vapor pressure. For a similar viscosity

range, the PFPE fluids (Z and K fluids) are particularly good candidates compared to

conventional lubricants (Fig. 2) (4). Vapor pressure data also appear in Table 2 (Knudsen

method).

Creep Behavior

The tendency of a liquid lubricant to creep or migrate is inversely related to its surface

tension. Therefore, the PFPE materials which have unusually low surface tensions ('tLV,17 to

25 dynes/cm at 20 °C) are more prone to creep than conventional fluids. However, these
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fluids can effectively be contained in bearing raceways by using low surface energy

fluorocarbon barrier f'llms on bearing lands (having critical surface energies of less than 11

dynes/cm)(20). However, PFPE fluids may dissolve these barrier films with prolonged

contact (19).

Viscosity-TemperatureProperties

Although liquid lubricated space applications do not involve wide temperature ranges,

low temperatures (i.e., -10 to -20 °C) are sometimes encountered. Therefore, low pour point

fluids that retain low vapor pressure and reasonable viscosities at temperatures to 50 or 60 °C

are required. The viscosity-temperature slope of PFPE unbranched fluids is directly related to

the carbon to oxygen ratio (C/O) in the polymer repeating unit, as shown in Fig. 3 (21).

Here, the ASTM slope (based on ASTM method D 341-43) (22) is used for the correlation.

The ASTM slope is obtained by physically measuring the slope of the kinematic viscosity-

temperature data plotted on charts from D 341-43. Therefore, high values of the ASTM slope

indicate large changes of viscosity with temperature. This parameter is no longer used in the

latest ASTM standard (D 341-77) (23). It is used here to simply show the qualitative

differences between the various fluids.

In addition, branching, such as the trifluoromethyl pendant group in the K fluids,

causes a deterioration in viscometric properties. Comparison of ASTM slopes for three

commercial PFPE fluids appears in Fig. 4. Here the low C/O ratio fluid, Z, has the best

viscometric properties. The D fluid, with a C/O ratio of 3, has intermediate properties, while
8

the branched fluid, K, has the highest ASTM slope.

e
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ElastohydrodynamicProperties

The operation of continuously rotating, medium to high speed bearings relies on the

formation of an elastohydrodynamic (EI-IL)film. This regime was briefly described in the

introduction. A more detailed description appears in ref. 24. The two physical properties of

the lubricant that influence EHL f'tlm formation are: absolute viscosity (It) and the pressure-

viscosity coefficient (a).

Viscosity is influenced by both molecular weight and structure. Except for low

molecular weight fluids, a values are only related to structure (25). Pressure-viscosity

coefficients can be measured directly with conventional high pressure viscometers (24)-(31) or

indirectly from optical EHL experiments (23), (30)-(34). Conventional viscometry normally
i

uses the Barus equation (35) for correlations.

lap= laoeap (1)

where lap= absolute viscosity at pressure, p.

11o= absolute viscosity at atmospheric pressure, and a_ = constant (temperature

dependent but pressure independent).

This implies that a plot of log _ versus p should yield a straight line of slope a.

Unfortunately, this simple relationship is seldom obeyed. The pressure-viscosity properties

that are important in determining EI-ILfilm thickness occur in the contact inlet. Therefore,

the slope of a secant drawn between atmospheric pressure and 0.07 GPa is typically used.

Winer (26) has advocated the use of another pressure-viscosity parameter, the
i

reciprocal asymptotic isoviscous pressure (a*) based on work by Roelands (36). Pressure
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viscosity coefficients (_*) (26) for three temperatures (38, 99, and 149 °C) are tabulated in

Table 4 for a Z fluid (Z-25) and a K fluid (143AB). Values for several other non-PFPE

fluids are shown for comparison.

• Figure 5 contains o_values for the branched PFPE (143AB). Data obtained by

conventional (low shear) pressure-viscosity measurements are denoted with open symbols.

Indirect measurements from EHL experiments (effective _ values) are shown with solid

symbols. There is good agreement comparing the different sources as well as different

measurement techniques. Figure 6 contains similar data for the unbranched PFPE (Z-25) as a

function of temperature. Here, there is a definite grouping of the data with effective o_values

being substantially lower than values from conventional measurements.

Two possibilities exist for this discrepancy. First, inlet heating can occur, thus leading

to lower viscosities, lower film thicknesses, and resulting in lower effective o_values. The

second possibility is a non-Newtonian shear thinning effect. Shear rates in EHL inlets can

range from 105to 107 see"1(32). However, the EHL measurementsdo represent actual t-tim

thicknesses that can be expected in practice.

From EHL theory, the greatest film thickness should be obtained with a PFPE fluid

having the largest czvalue. However, for many applications, lubricants must perform over a

wide temperature range. In this case, the EHL inlet viscosity can be the overriding factor if

the temperature coefficient of viscosity is high. This can cause a cross-over in film thickness

as a function of temperature as shown by Spikes et al., (25) in Fig. 7. However, for most

• space applications, bearing temperatures are typically in the range of 0° to +40 °C.

, Therefore, lubricants possessing high _ values (i.e., K fluids) in this range would be



preferred, when only considering EHL.

Boundary Lubrication

As described in the introduction, boundary lubrication is the regime where surfaces are

not completely separated which results in continuous surface asperity interactions. The most

important aspect of this regime is the formation of protective surface films to minimize wear

and surface damage. The formation of these films is governed by the chemistry of both the

film former as well as the contacting surfaces and other environmental factors.

Non-additive hydrocarbons, mineral oils and esters will react in a boundary contact to

produce "friction polymer" (37). Except for electrical contacts, this material is beneficial but

does represent loss of lubricant which requires replenishment. But these conventional

lubricants are never required to act alone. Almost all are formulated with antiwear, anti

corrosion, extreme pressure, or anti-oxidant additives to enhance their performance.

Contrast this with a PFPE boundary lubricant. Here we have a relatively inert, very

pure fluid with n__.ooadditives. If these fluids were totally inert, they should not provide any

surface protection except for some fluid film effects (micro-EHL), removal of wear debris,

and possibly some local cooling. Actually, in boundary contacts, PFPE fluids do react with

beating surfaces producing a series of corrosive gases which, in turn, react with existing

surface oxides producing metal fluorides (36)-(40). These fluorides are effective solid

lubricants which reduce friction and wear (38).

Unfortunately, these fluorides are also strong Lewis acids (electron acceptors) which

readily attack and decompose PFPE molecules (40)-(42). This causes the production of more

reactive species which, in turn, produce more surface fluoride, resulting in an auto catalytic
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reaction. Therefore, the very reaction that allows the use of pure PFPE fluids in boundary

contacts, eventually leads to their destruction and accompanying bearing failure. Of course,

the progression of this mechanism is highly dependent on the local contact conditions (i.e.,

degree of passivation, type and thickness of surface oxide, amount of surface contaminants,

temperature, load, speed, etc.).

A preliminary boundary lubrication study of three commercial PFPE fluids (43) under

sliding conditions in air and vacuum has been conducted with a vacuum four-ball apparatus

using 440C stainless steel bearing balls (43). Wear rates for these fluids appear in Fig. 8.

The following order of lubricant lifetimes was obtained: K fluid = Z fluid > D fluid (air)

and K fluid = D fluid >> Z fluid (vacuum) (Fig. 8). Although D fluid has no space heritage,

both K and Z fluids have been used extensively and successfully. Space experience has

indicated that, in general, K fluid yields longer lifetimes than Z fluids for similar

applications. Therefore, the vacuum 4-ball results correlate with results from space

experience.

A classical way of representing wear as a function of lubricantreactivity is shown in

Fig. 9 (44). The optimum lubricant reactivity (or additive concentration or additive reactivity)

is determined by the severity of the contact conditions. The greater the severity, the greater

the required reactivity to bring about a proper balance. Obviously, for any particular system,

one would like to be at the minimum of the curve. Normally, this minimum is perturbed by

the presence and concentration of lubricant additives. However, as previously indicated,

• boundary additives are not yet available for PFPE fluids. However, active research (45)-(47)

is now taking place in this arena.
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Optical Characteristics

There is always the concern that liquid lubricants used in space mechanisms may

contaminate sensitive optical components (mirrors, windows, etc.) and render certain

measurements useless. Although great care is taken to minimize this problem, the possibility

still exists. Therefore, lubricants that are optically transparent in the various sensor

wavelength regions are obviously preferred. Many of these regions are in the infrared region.

Since PFPE lubricants do not contain hydrogen, they are relatively transparent over most of

this region (from 1400 to 4800 cm"1)(Fig. 10) for a K fluid. Infrared spectral regions of

interest for two Earth Observation Satellites [CERES (Clouds and the Earth's Radiant Energy

System)and MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir) ] are also shown.

Radiation Resistance

PFPE fluids are susceptible to degradation from low energy electrons (48), high energy

electrons (49) and ion beams (50). Mori and Morales (51) have reported the degradation of

several PFPE fluids (D fluid, $200, Z fluid, Z-25, and K fluid, 16256) by x-rays. X-rays

were generated by an Al Ko_source in a commercial x-ray photoelectron spectrometer (XPS).

Thick PFPE layers were swabbed onto 440C steel substrates and exposed to x-rays for three

hours. Degradation was measured by changes in chamber pressure as a function of time.

Pressure changes for three fluids appear in Fig. 11. First order rate constants calculated from

these slopes indicated that Z fluid (Z-25) and K fluid (16256) had degradation rates

approximately twice that of D fluid ($200). These data indicate that PFPE materials are very

susceptible to degradation by X-Ray irradiation.
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Resistance to Atomic Oxygen

In low earth orbit (LEO), the principle chemical species is neutral atomic oxygen. In

LEO, 4.25 eV atomic oxygen will impact spacecraft surfaces. Although space mechanism

liquid lubricants are not directly exposed to this particle flux, it has been shown by Gulino

and Coles (52) that of several candidate radiator fluids, the PFPE class was less affected by

atomic oxygen than silicone based materials. However, K fluid (143AB) and Z fluid (Z-25)

did show small weight losses (Fig. 12) as a function of oxygen plasma exposure time.

Conclusions

The following conclusions can be stated for the use of perfluoropolyether (PFPE)

liquid lubricants for space applications.

1. The PFPE lubricant class can still provide adequate performance for less demanding

space applications (i.e., pure EHL or low load, low cycle boundary contacts).

2. For more demanding applications (i.e., high load, high cycle or for contacts having

high sliding components), additive technology (antiwear, EP, anti corrosion, anti

degradation) will be mandatory.

3. Although active research is now taking place for the development of PFPE boundary

additive formulations, they are not yet available commercially.

4. In the interim, the use of alternative bearing materials (i.e., ceramics) or steel surface

treatments (i.e., ion implantation, phosphating, acid passivation) will be necessary for

extension of lifetimes.
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Table I. Names and Primary Chemical Structures of Commercial PFPE Fluids

Designation Structure

• D C3F70(CF2CF2CF20)xC2F 5

K C3F70[CF(CF3)CFEO]xC2F5

Y C3F70 [CF(CF3)CF20] x(CF20)yCEF 5

Z CF30(CF2CF20)x(CF20)yCF 3

Table II. Physical Properties of Four Commercial PFPE Lubricants

Lubricant Average Viscosity Viscosity Pour Vapor Pressure, Pascal
Molecular at 200°C, Index Point, °C

Weight cSt at 20°C at 100°C

Z (Z-25) 9500 255 355 -66 3.9x10"1° 1.3x10"6

K (143AB) 3700 230 113 -40 2.0x10"4 4x10-2

K (143AC) 6250 800 134 -35 2.7x10-6 1.1xl0 "3

D (S-200) 8400 500 210 -53 1.3x10"8 1.3x10-5
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Table 111. Names and Primary Chemical Structures of Custom Synthesized PFPE Fluids

Perfluoropoly- Structure

(methylene oxide) (PMO) CF30(CF20)xCF3

(ethylene oxide) (PEO) CF30(CF2CF20)xCF3

(dioxolane) (DIOX) CF30(CF2CF2OCF20)xCF3

(trioxocane) (TRIOX) CF30 [(CF2CF20)2CF20] xCF 3

Table IV. Pressure Viscosity Coefficients at Three Temperatures _*, Pa-1 x 108for Several
Lubricants (Ref. 26)

38C 99C 149C

Ester 1.3 1.0 0.85

Synthetic Paraffin 1.8 1.5 1.1

Z Fluid (Z-25) 1.8 1.5 1.3 (Extrapolated)

Naphthenic 2.5 1.5 1.3
Mineral Oil

Traction Fluid 3.1 1.7 0.94

K Fluid (143AB) 4.2 3.2 3.0
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