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Abstract

In this paper we consider high-order centered finite difference approximations of hyperbolic

conservation laws. We propose different ways of adding artificial viscosity to obtain sharp

shock resolution. For the Riemann problem we give simple explicit formulas for obtaining

stationary one- and two-point shocks. This can be done for any order of accuracy. It is

shown that the addition of artificial viscosity is equivalent to ensuring the Lax k-shock

condition. We also show numerical experiments that verify the theoretical results.
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1 Introduction

Centered finite difference methods, especially high-order ones, are often computationally

efficient when the solution of the underlying problem is smooth. For non-smooth solu-

tions, however, these methods produce excessive oscillations, which ultimately will ruin

the solutions completely. One way to overcome the spurious phenomena is to introduce

numerical viscosity which will smooth the numerical solution. But there are caveats; vis-

cosity must not be used such that unnecessary smoothing occurs. As the computational

mesh is refined the viscous effects should decrease while still damping the oscillations.

Nessyahu and Tadmor [7] used a Lax-Friedrichs solver to construct non-oscillatory 2nd-

order centered difference methods for hyperbolic conservation laws. A similar approach

was undertaken by Harten and Lax in [3], where they constructed an approximate Rie-

mann solver from a modified version of Richtmyer's two-step scheme. In this paper we

shall develop a general theory on how to achieve sharp shock resolution for high-order

finite difference approximations of systems of conservation laws by adding artificial vis-

cosity. We shall thus consider finite difference solutions of the Riemann problem

ut+ f_:=O

I uL x < o (1)
u(x, O)

un x>_O,

where it is assumed that the states UL, uR E _d can be connected via a k-shock moving

with speed s; f = f(u) E _d is assumed to be differentiable. By means of the coordinate

transformation
y=x-st

T----f

the original Riemann problem (1) is transformed to a stationary problem

(f - su)u = 0

f y < 0 (2)
u(y_ 0)

un y>_O,

since u, = 0 in the (y, r)-coordinates. It will be assumed that the entropy solution of

eq. (2) can be obtained as the pointwise limit (boundedly) of the regularized problem

(f - su)y = L_u, lira u(y,t) = UL, lim u(y,t) = un, (3)
y--* -- oO y.-* oO

when _ _ O; L_ is a linear elliptic operator.

2 Second-Order Difference Methods

When analyzing second-order difference methods we follow the principles set forth in [1, 5].

Hence, eq. (3) is discretized as

Do(fj - suj) = _hD+D_uj , _ > O, (4)



subject to the boundary conditions

lim uj = UL, lim uj = uR. (5)
j--,-oo j--.oo

The right-hand side of eq. (4) corresponds to choosing L_ = e0_, e --_ 0 + in eq. (3). The

difference operators are defined as

1 1 1

Douj = -_--h(UJ+l - uj_,), D+uj = -_(uj+, - uj), D_uj = -_(uj - uj-1),

where h = xj+ 1 -- Xj is the uniform mesh size. The central difference Do(fj - suj) can be

rewritten in conservative form as

Do(fj - suj) = D+ (_(fj - suj + fj_l - suj-1)) •

Thus, eq. (4) can be expressed as

D+ (l (fj -- suj + fj-, - suj-1) - ¢(uj - uj-1)) = 0,

which in turn leads to

_(fj+l -- sU,+l -l- fj -- .suj) -- E(Uj+l -- Uj) = l (fj --.suj -t- fj-l -- ,sUj-l) -- e(ilj -- ilj-1)

---- ... _ fL -- 811L ,

where the last equality follows from the boundary conditions (5). Consequently,

L+, - IL - _(ilj+, - _L) - 2c_j+, = -(fj - A) + _(ilj - IlL)- 2_ilj.

Let

F(u) = f(u) - fL -- s(il- IlL)- 2eu

a(u) = fL-- f(u) + s(ii-- UL) -- 2eu.

The difference approximation (4), (5) can then be written as

F(u,+I) = a(ii,).

Letting j _ oc yields

i. e._

F(uR)=G(uR),

(6)

(7)

fR- A = 4ilR- ILL). (8)

This is the familiar Rankine-Hugoniot condition, which is fulfilled since ui and uR are

the states on either side of the stationary k-shock problem (2). We can thus define F(u)

and G(u) as

F(il) = f(u) - fp- s(u- up) - 2eu

G(u) = fp- f(u) + s(u- up) - 2eu, (9)

where up = UL or up = uR. The second choice corresponds to letting j ---+ c¢ in eq. (6).

The Rankine-Hugoniot condition would then follow by taking the limit j ---* -cx_ in eq. (7).
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2.1 Nonlinear Analysis of One- and Two-Point Shocks

Given that there exists a solution, eq. (7) can be interpreted in the following way: The

two states UL and un can be connected to each other via a stationary viscous profile

{uj}_oo where uj satisfies the nonlinear recursion formula (7). The question then arises

naturally whether it is possible to connect two given states UL and uR by a viscous profile

consisting of a finite number of intermediate states UM,, j = 1,..., p. We begin by proving

a negative result.

Proposition 2.1 There are no states U L ¢ UR such that U L and uR can be coupled by

the viscous regularization (7) without any intermediate state, i. e., there are no zero-point

shocks.

Proofi Suppose that the two states UL and uR can be directly coupled by eq. (7), i. e.,

F(u_) = a(uL).

From definition (9) it follows immediately that

fR- fp - s(uR- up) - 2cu_ = fp - fL + s(_L - up)- 2_uL.

But the Rankine-Hugoniot condition (8) implies that

2eUR = 2CUL.

Since e > 0 it follows that uR = UL, which proves the proposition. []

Proposition 2.2 Two states UL, un E _d can be connected via a viscous profile (7) using

one intermediate state UM E _d (one-point shock). Furthermore, if the states UL and uR

are close, the Lax k-shock condition is equivalent to having e > 0 in eq. (4).

Proofi A single intermediate state U M must according to eq. (7) satisfy

G(UL) = F(UM) (10)
a(uM) = F(uR).

The definition of F and G and the Rankine-Hugoniot condition (8) together imply that

--2eUL = fM -- fL -- S(UM -- UL) -- 2eUM (11)
--2euR = fL -- fM -t- S(UM -- UL) -- 2gUM

Adding these two equation yields

1 (12)
uM = _(u, + uR).



We have thus found the intermediate state UM. The scalar viscosity _ and the shock

speed s remain to be determined. Using the well-known Roe-linearization one can re-

write eq. (11 ) as

(A(uL,uM)- _)(uL - uM)= 2_(uL- _M)
(13)

(A(UM, UR)- SI)(UM -- UR) = --26(UM -- UR),

where the Roe-matrices A(UL, UM) and A(UM, uR) are defined by

A(uL,_) = I'(OuL+ (1 --0)uM)e0

A(UM,_R)= I'(OuM+(I--O)_R)dO.

But eq. (13) has a solution if and only if

2_ = #k(UL, UM) -- 8, 2e : --#k(ltM, UR) -JV 8,

i, e._

1

(14)
1

= _(,_(_L, _) + _(_, uR)).

Here lak(UL, UM) and #k(UM, ua) denote eigenvalues of A(UL, UM) and A(UM, ua), respec-

tively. From the definitions of the Roe-matrices it follows immediately that

A(UL,UL) = f'(uL), A(uR, uR) = f'(uR).

Denote by )_k(u) the eigenvalues of f'(u). Hence, Taylor expansion yields

where the second equality follows from eq. (12). Similarly,

_(_M,-R) = Ak(uR)+ O(I_R- uLI).

The Lax k-shock condition requires that

_k(uL) > _ > _k("R)

hold for exactly one characteristic family k, 1 < k <__d. Thus, for weak shocks the Lax

k-shock condition holds iff

m(_L, .M) > _ > m(UM,_R),
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which in turn implies that _ > 0, i. e., eq. (4) satisfiesan entropy inequality. Conversely,
supposethat c > 0. Then

Hence,
1

_(uL,_) > _(_(_L, uM)+ _(uM,_R)) > _(uM, uR).

Recalling eq. (14) we see that

_k(uL,_M) > s > _k(uM,UR).

Thus, for weak shocks our solutions obey the Lax k-shock condition.

Finally, we need to verify that s defined by eq. (14) is compatible with the Rankine-

Hugoniot condition (8). We have

fg -- fn = A(UL, UM)(UL -- UM) + A(UM, UR)(UM -- UR).

For a one-point shock, however, UL -- UM, um -- uR are eigenvectors of A(UL, UM) and

A(UM, UR) (cf. eq. (13)), respectively, whence

fL -- fR = #k(UL, IZM)(UL -- UM) + #k(ltM, UR)(UM -- ttR)"

Using eq. (12) yields

1

fL -- fn = -_(_k(UL, UM) + /tk(UM, Un))(UL -- Un).

Thus, the Rankine-Hugoniot condition (8) is satisfied with

= a(#k(uL, uM)+ _k(UM, UR)).

This concludes the proof. []

Remark: The proof of the previous proposition shows that one should choose _ according

to eq. (14). In the actual implementation, however, it would be advantageous to use

= ¼L_(_L,_M)- _k(UM, UR)[ ,

since the argument of the modulus function would be positive for a true k-shock. If, on

the other hand, the argument should happen to be negative due to round-off errors, for

instance, then the modulus function will prevent the formation of an entropy violating

shock. []

In the scalar case c and s can be expressed directly in terms of f(u) since

A- fM 2(A- fM)
#k(UL, UM) = A(UL, UM)-

UL -- UM UL -- UR

#k(UM, Un) = A(uM, un) --
IM- fR 2(/.- IR)
U M -- UR UL -- UR
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Using these expressions in eq. (14) yields

fL -- 2fM + fn

2(uL - u,)

fL-- fR
N--

U L -- u R

(15)

From eq. (15) it then follows that

f(u) = lu2.

1

= g(uL - uR)

1

s = _(_L + uR).

(16)

The next proposition shows that the smallness assumption of proposition 2.2 is not needed

for strictly convex scalar functions f(u).

Proposition 2.3 Let f(u) be a twice differentiable, strictl9 convex scalar function, and

let e be given by eq. (15). Then

> 0 _ f'(uL) > f'(un).

Remark: The latter condition is the well-known entropy condition for scalar conservation

laws [6]. []

Proof: Taylor expansion yields

fR = f(uR - UM + UM) = f(UM) -t- f'(UM)(UR- UM) "_ 2f"(w)(ul_ - UM) 2

fL = f(UL -- UM "]- UM) = f(UM) "q- ft(uM)(ttL -- UM) -]" _f"(v)(UL -- UM) 2

for some v and w. Using eq. (12) then gives

fL-- 2fM + fR 1
e= 2(UL--Un) ---- l--_(f"(v)+f"(w))(UL--Un).

But f" > 0 because of strict convexity. Hence,

e > 0 _ UL > uS _ f'(UL) > f'(un).

The second equivalence follows since if(u) is a strictly increasing function of u (because

of strict convexity). []

Example: For Burgers' equation the flux is given by



[]

In case of a convex scalar function f(u) the one-point shock condition (10) can be

depicted as (recall that F(UL) = G(UL), F(UR) = G(uR))

F(u)

I I I

UR UM UL

G(u)

Thus far we have shown how to obtain a one-point shock. It is not necessary to confine

ourselves to one-point shocks, which the following discussion will show. Suppose that we

want to connect UL and uR by a viscous profile using two intermediate states UMl and

UM_. This amounts to requiring

G(UL) = F(UM,)

G(UM_) = F(UM_) (17)

G(uM,)=F(uR).

Adding these three equations yields

1

- uM1=
(18)

As before we rewrite the first and third equations of (17) as

(A(UL, UM,) - SI)(UL -- UM,) = 2e(UL -- UM1)

(A(uM2, uR)- sI) (UM: -- UR) = --2£(UM2 -- UR),

which can be solved iff

25 -_ _k(ttL, UM1) -- 8 > 0 UM, -- UL -_ Oqrk(ttL, ttM1)

--2E = #k(UM2, UR) -- s < 0 ul_12 -- ttR = O_2rk(ttM2, UR) ,

where rk(uL, UMI), rk(UM2, UR) denote the kth eigenvectors of A(UL, UM_), A(UM:, uR).

The inequalities are immediate consequences of the k-shock condition. The first set of
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equations yields
1

1

In particular, if UM, and UM_ are known, so are e and s.

determined by eq. (18), by

(19)

The intermediate states are

UM1 -- t_L -_ Oqrk(UL, UM])

UM2 -- UR = o_2rk(UM2, UR) ,
(20)

and by the Rankine-Hugoniot conditions (8). As opposed to the case of a one-point shock,

the explicit eigenvector structure of A(UL, UM,) and A(uM_, un) must be known in order

to compute the intermediate states.

Example: In the scalar case eq. (20) becomes redundant (rk = 1). We are thus left with

uM, - _M, = (uR -- uL)/2
IR - IL = _(uR- _L)

i. eo,

IL - fM, fM_- IR 2(fL - IR)
+

tt L -- IZM] ZtM_ -- U R IZL -- tt R

11,M2 -- UM, : (11, R -- 11,5)/2.

For Burgers' equation one gets the linear system

(21)

UMz Jr- ttM_ = It L nt- tt R

_M, -- _M_= (_L -- uR)/2,

which yields

Consequently,

?2M 1 -_- (3UL "_- uR)/4

?_M2 = (ILL -'_ 3un)/4.

I(7UL+ un), /_(UM_un) = I (UL+ 7un),t'("L, "M,) = _

which implies

c = -_6(UL -- uR)

1
(22)

D
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2.2 Linear Perturbation Analysis

In general we cannot expect the methods based on nonlinear analysis to be insensitive to

perturbations. A different approach could be based upon linearization of eq. (7) [1, 5]:

(f'(up) - sI)ujq-1 -- 2El/'j4-1 : -(f'(up) - sI)uj - 2cuj.

This equation can be diagonalized when f'(u) corresponds to a hyperbolic operator. The

diagonalization is formally obtained by letting f'(up) _ Ap, I ---, 1. We thus obtain

(/_p - s - 2c)Uj+l = (-Ap -4- s - 2z)uj.

Suppose that up = uR. This corresponds to linearizing around the state to the right of

the shock. We can thus express Uj+l as a function of uj:

--AR + s - 2_

Ujq-1 : A R -- S -- 2E U j,

where u i is assumed to be to the right of the shock. Note that one could not reverse

the recursion above, since one would ultimately cross the discontinuity, across which the

linearization has no meaning. The linearization implies that uj is viewed as a perturbation

around the constant state uR. No matter what the value of uj is, we can make the

perturbation disappear in the next step by setting

s - 2_ = An. (23)

Similarly, linearizing around the left state UL gives

IZj -_- __A L "31-_ __ 2 uJ+1,

where itnow isassumed that uj+1 isto the leftof the shock. Again, requiring

3 n t- 2E : AL (24)

implies that perturbations are annihilated in one step. Combining eqs. (23), (24) yields

1

= +

(25)

The above expression for s states that s is the arithmetic average of the characteristic

speeds on either side of the shock. This is the correct value modulo second order terms

[6]. In particular, one should expect the corresponding numerical scheme to work well
for weak shocks. Note that the analysis thus far - linear as well as nonlinear - has been

based on eq. (7), which was obtained from eq. (4) by factoring out the operator D+.



Example: For Burgers' equation we have Ap = up, whence

1

=  (uL - uR)

1
(26)

[]

In the above example the linear approach resulted in twice as much viscosity as the one-

point-shock. Note that the shock speed s is unchanged. This is, however, a coincidence.

The values of e and s are determined by two criteria, namely that perturbations to the left

and to the right of the shock are annihilated in one step. In general, these requirements

are incompatible with correct shock speed (cf. eqs. (14), (25)), i. e., the Rankine-Hugoniot

condition. Of course, if we confine ourselves to eliminating the oscillations on only one

side of the shock, then we can use the correct shock speed.

The transformation of eq. (1) to the time independent problem (2) was done to enable

the theoretical analysis. In practice, one often computes in the fixed coordinate frame of

eq. (1), which requires no a priori knowledge about s; correct shock speed will follow from

the conservation form of (1). However, one can use the values for e obtained from the

theoretical analysis and still obtain good results, cf. subsequent sections. Furthermore, in

practical implementations it would be desirable to implement the viscosity locally around

the shock. This can be done by introducing a switch so as to turn off the viscosity in the

smooth regime. One way to do this would be to replace the right-hand side of eq. (4) by

¢D+rj-1/2D-uj ,

where rj = 1 close to the shock, rj = 0 otherwise; rj_l/2 is the interpolation of rj at the

cell interface xj-1/2; UL and uR would be replaced by some interpolated value of u to the

left and the right of the shock, respectively.

3 High-Order Difference Methods

We shall now use the results from the previous sections for 2nd-order methods to construct

artificial viscosity for high-order methods. The standard explicit centered approximation

of O/Ox of order 2r has the form

Q2r = R2_Do, (27)

r--1

R2,. = _.,(-1)'%_,(h2D+D-) '_ , (28)
v_O

where the coefficients _ are defined by

So= 1,
,., (29)

C_ v -- 4v_l.20_v_l , V= 1,2,...,r- 1.

10



We can also use compact implicit differenceapproximations of Pad6 type. Some of

these operators can be written in the form (27), but with a different operator R2,. For

example, the compact 4th-order approximation is (27) with

h 2

R4 = R_ ') = (I + -_D+D_)-'. (30)

We will always assume that the implicit operators have the form R (i) = p-l, where P is

a nonsingular explicit operator of finite bandwidth.

3.1 Factorization of High-Order Dissipation

The idea to use to construct the viscosity, is to use high-order dissipation heD, where D

can be factored as D = R2_D+D-. The approximation for the transformed equation (2)

is

R2_Do(f - su)j = heR2_D+D-uj, (31)

where e is a parameter. The boundary conditions are as before

lim uj = UL, lim uj = un. (32)
j--.-oo 3_oo

By (31) we see that it is natural to consider the operator R2_ in the space 3,t of grid

functions {vj} with
lim vj = 0. (33)

j--,+oo

By definition, the inverse of the implicit operators exist. For the explicit operators we

h ave

Lemma 3.1 The explicit operator R2_ in (28) is non-singular in the space JM.

Proof: Consider the equation

R2rvj = 0, j = 0, +1,...

for real vj, and let the scalar product and norm be defined by

oo

(v,w) = Z vjwjh, Ilvll_= (v,v).
j_--o_

Summation by parts yields (using (34) and (33))

r--1

o = (v,R_v)= Ilvll2+ _-_(-1)"a,(v,(h2O+O-) _v)

r-1

= Ilvll2 + _ ,_,ll(hO-)"vll 2.
ls=l

(34)
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Note that the boundary terms disappearbecauseof (33). Sinceall a, are positive, it

follows that v = 0, which proves the lemma. []

Since R2_ is non-singular, the equation (31) holds if and only if

Do(f- su)j = hsD+D_uj (35)

holds. But this is the three-point scheme that we have analyzed in section 2. Therefore,

the high-order methods with artificial viscosity, as in (31), produce exactly the same solu-

tion as the three-point scheme does. To take advantage of the high-order approximation

property, we must obviously implement the viscosity locally around the discontinuity. We

use the same switch function rj as for the three-point scheme. We summarize the results
in

Proposition 3.1 The propositions in section 2 concerning zero- and one-point shocks for

2nd-order methods apply to high-order methods of the form (31) as well. For one-point

shocks _ should be chosen according to eq. (14). Here R2_ is defined either by the explicit

formula (28), or by an implicit operator as described above. [_

In section 2 we also determined the viscosity coefficient e based on linear analysis.

The linearized equation for the high-order methods is

R2_Do(f'(up) - sI)uj = heR2_D+D_uj. (36)

The arguments in section 2 can be applied to this equation, and the optimal choice of e

for the three-point scheme is optimal in the same sense for the high-order method.

For explicit operators R2_, the effect of the artificial viscosity can be interpreted in

the following way. Upon diagonalization, the general solution of (36) is given by

_T

J (37)Uj = E O'vl% '

where E, = E,(e) are the roots of the characteristic equation; a_ are arbitrary scalar

coefficients. For e = 0 there are two roots

E1 = 1, n2= -1.

1t¢ 1_+' with I_,(0)l < 1,andr-1 roots {_ with I_,(0)t > 1,There are also r 1 roots t _J3-
see [9]. All roots except _1 = 1 give rise to parasitic solutions, and E2 = -1 is the one

that causes the trouble. The remaining roots also induce errors, but they are less severe.

If I .1 > 1, then its presence near the shock is not felt, since the solution is bounded

as j --* oc. The analogous arguments hold for the solution to the left of the shock.

The special choice (25) of e for the three-point scheme gives _2 = 0. The factored

form (36) implies that the coefficients _r,, v = 3,4,...,2r vanish. This follows since

12



R2r is nonsingular on the space .M, which means that eq. (36) is equivalent to eq. (4).

Consequently, the general solution (37) is identical to that of a three-point scheme. But

that is possible iff the coefficients cr_ = 0, u = 3,4,...,2r; the roots n,, u = 3,4,...,2r

are non-zero, but they do not influence the solution. Hence, the solution of the linear

equation has the form
uj = al, (38)

where al is determined by the condition at xj = oc, i. e., crl = uR.

3.2 High-Order Dissipation Based on Perturbation Analysis

We shall now consider a different form of artificial viscosity for the explicit approximation.

For the nonlinear equation we use

R2rDo(f - su)j = _ h2"-IE,,(D+D-)"uj. (39)
v.._]

This choice of viscosity corresponds to having L_ = _=1 e_0_ _, e- _ 0 in eq. (3). There

are r viscosity coefficients to determine, but the width of the total difference operator is

not increased by the viscosity terms. The linearized equation is

R2_Do(f'(up) - sI)uj = _ h2_'-le,,(D+D-)_'uj. (40)

The general form of the solution is still given by (37). Instead of forcing the coefficients

a3, a4,. •., a2_ to vanish, we now choose e_ such that

/_2 : /_3 : "'" _ /_r+l _ 0,

where, as before,
< l, u =3,4, ... r+l

when no viscosity is present. This procedure can also be viewed as reducing the linear

approximation to an r + 1 point scheme near the shock. As above we implement the

approximation with a switch rj. After a re-normalization (j _ j - N) the solution of the

linearized equation can be expressed as

2r

j-N > 1 (41)Uj .-_ 0"1 -'t- Z O'vt';v '

v=r-t-2

The parasitic part of the solution represented by the sum does not cause any harm. Even

if the computation is carried out over a finite domain, such that j _< N, where N is

fixed, the coefficients a_ are bounded since the solution is bounded at j = N. Therefore,

j-N is small near the shock where j << N. We do not expect any difficulties, even if
Crut_ v

the shock passes through the boundary, since our methods are either strictly or strongly

stable, see [8, 2].
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In the analysiswehaveassumedthat all roots _ aresimple. Shouldtherebe multiple
roots, {x,}32rcanalwaysbepartitioned into onegroup with exactly r - 1 members inside

the unit circle and another group with r - 1 members outside the unit circle. Hence, our

principle still applies. All the _ inside the unit circle vanish by our choice of e_.

We illustrate our principle by considering a 4th-order approximation Q4. After diag-

onalization eq. (40) becomes

(12e2 + Ap - s)uj+2 + (12el - 48e2 -- 8(Ap - .s))Uj+l - (24el - 72e2)uj

+(12el - 48e2 + 8(Ap - s))Uj_l + (12e_ - Ap + s)uj_2 = 0

(42)

Suppose that we have linearized eq. (39) to the right of the shock, i. e., up = uR. We now

want to eliminate the characteristic roots t¢2 = -1 and _3, ]_31 < 1. Being to the right

of the shock this corresponds to setting the coefficients in front of uj-1 and uj-2 to zero

(j = k,k + 1,...). Hence,
1

el =-5(AR-
(43)

1

e2 = 12(AR- s).

On the other hand, linearizing eq. (39) to the left of the shock corresponds to setting

up = UL in eq. (42). This time we set the coefficients in front of uj+l and uj+2 to zero

(j = -k,-k- 1,...), thus resulting in

1

E1 = _(AL -- 8)

1
(44)

One realizes immediately from eqs. (43) and (44) that e_ > 0, e2 < 0 is equivalent to the

k-shock condition AL > s > AR. The viscosity coefficients will be uniquely determined iff

(cf. remarks at the end of section 2.2)

1 A

Thus,
1

e, = g(AL- As)

1

e2= 24(AL -- AR) (45)

1
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Using these values in eq. (42) yields

(_r -- _p)uj+2 -- 8(_r -- _p)uj+l + 7(_L -- _R)uj
(46)

-8(_p - _R)uj-1 + (_P - _R)uj-2 = 0.

Hence, to the right of the shock we obtain (/_L ¢ £R)

uj+2-8uj+a + 7uj =O, j = k,k + l,...

Similarly,

7uj - 8uj_l + uj-2 = O , j = -k,-k -1, . . .

to the left of the shock. Using the substitution j --_ -j in the latter equation and defining

vj = u_j, the two recursive expressions above will coalesce into

ui+2 -- 8uj+l + 7uj = O, j = k, k + 1,...

whose characteristic roots are given by

t_1 _ 1, K4 --- 7.

Summing up, choosing s, _1, and E2 according to eq. (45) in eq. (40) (for r -- 2) yields

the following characteristic roots

aa =1, x2=0, t¢3=0, _4=7.

Thus, the parasitic modes corresponding to n2 and n3 have been eliminated.

Example: For Burgers' equation we have Ap = up, whence

1
_1= _(uL - uR)

1
_:- (uL- uR)

24

1

s = _(uL + uR).

Numerical results for this approximation will be presented in section 5.

(47)

[]

3.3 Averaging Operators

Yet a different kind of viscosity, based on simple 2nd-order averaging, was used in [2]. We

consider the approximation of the problem in its original time dependent form

duj + Q2_fj = 0. (48)
dt
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Let

be a time discretization of Runge-Kutta type of the high-order semi-discretedifference
scheme(48). Then the algorithm is

= t-n+l 2fi_+l -n+lU2 +1 '(t_j-1 + + _'j+l )/4

Linearize around a constant state away from the shock as was done earlier. Let

dvj S2,vj , $2_-- = = -Q2 f (up)
dt

(49)

be the linearized difference approximation in space without any viscosity. Then the Runge-

Kutta method is

,_7+' = P(kS_)v_ , (50)

where
m

P(z) = 1 + _-_/3_z _
t/----1

is a polynomial (third degree in our experiments), and k is the time step. The averaging

procedure can be written as

h 2

v_ +' = (I + --_--D+D_)'5_ +' .

Hence, one complete step with the filtered Runge-Kutta method for the linearized equation
is

vT+l q' n h2= P(k_.2,)v3 + -_D+D_P(kS2,)v'_.

For explicit approximations Q2, the artificial viscosity contains difference operators of all

orders between 2 and m(2r - l) + 2, i. e., odd order terms will appear. For implicit

approximations Q2_ all grid points are involved when the filter is applied at any given

point. With steady state solutions one obtains

k( h D+D_P(kS2_)vjI- P(kS2,.))vj = -4---A

where A = k/h. Hence, the viscosity coefficients depend on the Courant number. In the

last section it is demonstrated that the averaging technique (implemented with a switch

function) is also very efficient for non-stationary shocks.
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4 Linear Discontinuities

Consider the linear problem

ut + _tu_ = 0 (51)
u(x,0) = _(x)

where _ is the (possibly discontinuous) periodic initial data; # E _. The equation above

can be discretized as

U_ +1. = uj'_ - k#Dou'_ + ekhD+D_uy , (52)

or

uy "l-l-- /_(£-_-@) u__ 1 -t- (1 - 2cA)

where _ = k/h. It is well-known that by choosing

uj +1 e- uj+l,

_ I_1 (53)
2

one gets an upwind scheme. Furthermore, requiring

1 1 h-- -- =- ¢=:a k--- (54)
2_ It,I It,I

results in the method of characteristics, i. e.,

u_+l = n if > 0 U_ +1 n if < 0Uj-1 _ , = Uj+ 1 _ •

Now suppose that O_ is approximated using the high-order operator Q2r = R2rDo. We

can then use the idea from section 3.1 to obtain the following implicit scheme

R2r_2_ +1 = R2ruy - k#Q2ru_ -_- ekhR2_D+D_@. (55)

Assuming that there exists a periodic solution of eq. (55), it follows that R_ exists. In the

class of periodic solutions eq. (55) is thus equivalent to eq. (52). Hence, the conclusions

above also pertain to eq. (55).

In regions where the flow is smooth it should not be necessary to resort to the method

of characteristics in order to compute solutions of high accuracy. Consider an explicit

4th-order method for convenience. The viscosity term is then modified according to

h 2

ghR4D+rj-1/2D- , R4 = I - --_ D+rj-x/2D- ,
(56)

where rj_l/2 = 0.5(rj_l + rj) is the interpolant of a switch function rj;

(h2/6)D+D_)Do. We have used a switch proposed by Jameson [4]

rj = Izx+ujl¥ IA-_jl] "

Q4 = (I-

(57)

17



Note that rj ---- 1 if A_uj and A+uj do not have the same sign. In particular, rj = 1

where there are high-frequent oscillations. Choosing p = oc ensures that rj -- 0 at the grid

points where the flow is smooth. Thus, in smooth regions we have R4 = I. Assuming that

the spurious phenomena are localized to a compact set it follows that R4 is non-singular.

Eq. (51) is now discretized by

R4u! 1) : R4uy - )_L4u_

R4u_ 2) m-_ (_jR, uj -_ _jR,_ 1)- _jz_/4?.t_ 1) (58)

R4 u_ -I-1 -- (_j R4 _ -Jr-/]j R4u! 2) - _ ,_i4u_ .2) ,

where R4 is defined by (56); the spatial operator L4 is given by

L4 = hQ4 - _h2R4D+r3_I/2D_ (59)

and the integration parameters are given by

oj =3/4 c_=0

/_j = 1/4 /_j=l

7J=1/4 7j=0 if rj=l (60)
5j=1/3 if rj = O, 5j = O

rtj = 2/3 _i = 1

_j = 2/3 Cj = 0

Now, in smooth regions where rj = 0 the discretization (58) reduces to (R4 = I, L4 = Q4)

_1)u = uj - _Q4u'_

u! 2) 3un lu0) Ar_ u 0)

@+1 =-31 u, _j+_32 u(2)3 2_3Q4u_?) ,

which is a 3rd-order TVD Runge-Kutta method. Note in particular that the value of e is

irrelevant whenever rj = 0. When rj = 1, on the other hand, we recover

R4uy +1 -- R4uy - k_Q4u2 + ekhR4D+D_u'_.

Should rj = 1 for all j this is nothing but the Euler forward method (where we have

assumed periodicity) that reduces to an upwind method for e = Ittl/2 and to the method

of characteristics for I = 1/1#t. If rj = 1 locally, we expect (58) to behave roughly like

an upwind scheme in that region.

Returning to the original formulation (58) we observe that since R4 is non-singular,

eq. (58) can be written in explicit form

=
?g_2) __ O_j?g_ + _jl/,_ 1)- _j)_l)} 1) (61)
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where v n, v (1) and v (2) are the solutions of the tridiagonal systems

r_ _o(i) r _(i) i=1,2
R4vj : L4u2 , 1_4_j _- _4uj ,

The tridiagonal structure of R4 is given by

1 (_rj_l/2Vj_l nt- (6 + rj+l/2 -}- rj-,12)uj - rj+I/2UJ+I) "

In the next section we will present numerical results obtained from (61).

5 Numerical Results

We begin by studying the factorized artificial viscosity described in section 3.1. We have

used the explicit and implicit 4th-order schemes (31), obtained by setting

h 2 _(i) = R_i) = ([ + h2 .... 1
R2r : R4 : I- --D+D_6 , _2_ --_l)+U_) ,

for solving Burgers' equation (f(u) = u2/2) with a stationary shock (s = 0). An explicit

3rd-order Runge-Kutta method has been used to solve a time dependent problem in a fixed

coordinate system. Thus, the shock speed s does not appear explicitly in the equations.

As initial data we have taken u(x, O) = -x, which should result in a stationary shock at

the origin for t _> 1. Furthermore, UL = 1 and uR = -1. From proposition 3.1 it follows

that choosing e according to eq. (16), i. e., e = 1/4, should result in a one-point shock.

U(x,O)=-X. u(-1.t)= 1, ull.t)=-l, t-2, n-101

j II

0.8

08

o 0,4

0.2

+

"_41A

'_ 41.(

-0.8

41', g, 41:, -0'.2 ; o!2 o', o!6 0'8-1
-1

Fig. 1: One-Point Shock, 4th-order Explicit (-t-) and Implicit (o), _ = 1/4

Below is the result when the viscous terms are turned on only in a neighborhood of

the shock. The viscosity is turned on and off by the switch defined by eq. (57). We also

verify the theoretical results for the two-point shock. The coefficient e is then given by

eq. (22), that is, _ = 3/8.
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We now proceed to case where the shock is non-stationary. Again we compute in a

fixed coordinate system using the factorized viscosity of section 3.1. Thus, the theory

developed in the previous sections does not apply directly. It is still interesting to see how

well this principle of introducing viscosity fares in practice. Indeed, it turns out that the

viscosity coefficient e obtained through linearization (26) works better in this case. In all

of the following numerical experiments we have used the adaptive switch (57) to turn on

viscosity locally around the shock; u(x, O) = UL, x < 0, and u(x, O) = un, x > 0; UL = 2,

uR = 0. Hence _ = 1/2. The solutions have been plotted at t = 1/2.

u(x,O) - H(x,2,0), u(-1,t) - 2, t - 0.5, n - 100

2.5:

_t

_2

÷

i0_5

0

-0.5 .o'.B-0'6 -01, -o'.2 ; 0'2 o'., o'.B 0'.8

Fig. 5: Moving Shock, 4th-order Explicit, ¢ = 1/2

2.5

_2

÷

e

-0.5

u(x.0) - H(x,2.0), u(-1,t) - 2. I. 0.5, n - 100

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

-018 -015 -014-o12 ; o!2 o!, o16 o:0

Fig. 6: Moving Shock, 4th-order Implicit, e = 1/2

Next we employ the viscosity based on perturbation analysis as described in section

3.2. The data is the same as in the previous examples. The viscosity is now given by

eq. (47), i. e., e_ = 1/3, e2 = -1/12. We also give two examples of the averaging technique

of section 3.3.
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2,5
u(x,0). H(x,2,0), u(-1,t) - 2, t - 0.5, n. 100

1.5

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

i'
.0,5

0

-0.5
-1

Fig. 7: Moving Shock, 4th-order Explicit, E1 = 1/3, e2 = -1/12

u{x,0). H(x,2,0), u(-1,t)-2, t-0.5, n. 100
2.5

g l.s

io.5

0

4151

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

"0:8 "0:6 -0:4 "0:2 (_ 0:2 0:4 0:6 0:8

Fig. 8: Moving Shock, 4th-order Explicit, Averaging Viscosity

2_5

u(x,0). H(x,2,0), u(-1,t)-2, t =0.5. n-100

2

_t5

-0.5 ¸

"°:I .0:8 -o:6 -o:4 -o:2 _ 0'2 o', o:* 0:8

Fig. 9: Moving Shock, 4th-order Implicit, Averaging Viscosity

22



We concludethis sectionby showingtwo 4th-order computationswherewehavesolved
the linear advectionequation ut + ux = 0 by means of the hybrid scheme (61). In the first

example we have used e = 1/2 and k = h. The switch rj has been set to one at every

grid point. The hybrid scheme is thus equivalent to the method of characteristics. In the

second example ¢ = 1/2 and k = 0.9h; the switch rj is now turned on adaptively. This

implies that the numerical method should behave as an approximate upwind scheme near

the discontinuity. The solutions have been plotted at t = 1/2.

u(x,O)-P(x,1), u(-1,1)-0, t.0.5, n.20tl
. iiliil1

0.8

8
1

!
:. 0.6

, 0.4

g-
g0.2

<

"0"=1 -0'.8 -016 ,014 -0'.2 (_ 01.2 0;4 016 018

Fig. 10: Propagation of a Discontinuity, 4th-order Explicit (+), -- • -- Initial Data,

u(x,O) =P(x,1), u(-1,t)=O, t=O,5, n.200

12

k=h

z
1_ o.s

O.l_

+

0.4

0._
1

< C

"02.1

i i÷

i i +

i i* *
i i
i _ +
I t

, i
i 1" +
t i

I

i _ +

t +!

I I +

.o'., .o'., .o'.,, -o'.2 ; o'.2 o'., o'., o'.8

Fig. 11: Propagation of a Discontinuity, 4th-order Explicit (+), -- • -- Initial Data, k = 0.9h
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