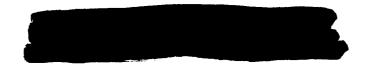
This document is submitted in compliance with NAS9-12100


SD 72-SH-0003

B-70 AIRCRAFT STUDY FINAL REPORT Volume IV

April 1972

an

L.J. Taube Study Manager B-70 Aircraft Study

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

PAGE

2

VOLUME I

SECTION I	DATA LOCATION MATRIX WORK BREAKDOWN STRUCTURE	I-3 I-11
SECTION II SECTION III	COST DATA DEFINITIONS	I-21 I-29
SECTION IV	B-70 PROGRAM SUMMARY COSTS	1-29

VOLUME II

WBS 1.0	AIR VEHICLE	II-1
WBS 2.0	PROGRAM TECHNICAL SUPPORT	II-127
WBS 3.0	MAJOR AIRFRAME MATING	II-237
WBS 4.0	FLIGHT TEST	II-251
WBS 5.0	FLIGHT TEST GROUND SUPPORT EQUIPMENT	II-487
WBS 6.0	SPARES	II-581
WBS 7.0	SPECIAL TEST EQUIPMENT	II-603
WBS 8.0	TOOLING	II-611
WBS 9.0	OTHER PROGRAM ELEMENTS	II-675

VOLUME III

WBS 1.1	AIRFRAME STRUCTURES ENVIRONMENTAL CONTROL	III-I III-325
WBS 1.2		III- 469
WBS 1.3	PROPULSION	111-627
WBS 1.4	SECONDARY POWER	

VOLUME IVWBS 1.5AIR INDUCTION SYSTEMWBS 1.6FLIGHT CONTROLWBS 1.7PERSONNEL ACCOMMODATION AND ESC.WBS 1.8ALIGHTING AND ARRESTINGWBS 1.9MISSION AND TRAFFIC CONTROLWBS 1.10FLIGHT INDICATIONWBS 1.11TEST INSTRUMENTATIONWBS 1.12INSTALLATION, CHECKOUT & PRE-FL	IV-369 IV-469 IV-537 IV-583
--	--------------------------------------

.

PROBDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

SUBSYSTEM: AIF	R INDUCTION	WBS CODE: 1.5
<u>T</u> 3	PAGE	
WORK BREAKDOWN	IV-2	
TECHNICAL DESCH	IV-6	
WBS 1.5	Air Induction Subsystem	IV-6
WBS 1.5.1	Inlet System	IV-16
WBS 1.5.2	Bypass System	IV-21
WBS 1.5.3	Air Induction Control System	IV-26
WBS 1.5.4	Controls and Displays	IV - 36
WBS 1.5.5	Boundary Layer Control	IV- ¹ +1
WBS 1.5.6	Ground Tests	IV- ¹ + ¹ +
TECHNICAL DRIV	IV-49	
Bypass Sys	tem	IV-49
Control Sy	stem	IV-50
Sensors an	d Transducers	IV-51
DEVELOPMENT DA	TA SUMMARY	IV-52
` State-of-t	he-Art	IV-53
Percent De	veloped	IV-54
DEVELOPMENT MI	LESTONES	IV-58
DESIGN/PROGRAM	MATIC IMPACTS	IV-60
COST SUMMARY		IV-65 .
Cost Defin	ition	IV-65
Subcontrac	tor Matrix	IV-68
Detail Cos	t Data	IV-70

Volume.4

~

WBS CODE 1.5

WORK BREAKDOWN STRUCTURE

SUBSYSTEM: AIR INDUCTION

WBS LEVELS

4 5 6 7 8

1.5 AIR INDUCTION SUBSYSTEM

- 1.5.1 Inlet System
 - 1.5.1.1 Fixed Wedge
 - 1.5.1.2 External Ramp

Ramp Panel Panel Seals Hydraulic Actuator Actuator Mechanism Position Sensors Panel Hinges Limit Switches Panel Stops

1.5.1.3 Internal Ramp

Bleed Panel Panel Seals Panel Hinges

1.5.1.4 Throat Ramp

Bleed Panel Panel Seals Hydraulic Actuators Electric Trim Motor Panel Hinges Servo Valves

1.5.1.5 Rear Ramp

Bleed Panel Panel Seals Panel Rotation Hinge Panel Sliding Hinge

1.5.1.6 Duct Dividers

1.5.1.7 Inlet Lip

1.5.1.8 Throat Section

SUBSYSTEM: AIR INDUCTION

	V	TBS	LEVE	LS	
4	5	6	7	8	

1.5.1.9 Diffuser Section

1.5.1.10 Bypass Plenum

1.5.2 Bypass Section

1.5.2.1 Bypass Plenum

1.5.2.2 Main Doors

Door Panels Door Seals Hydraulic Actuator Actuator Mechanism Shock Limit Motor Door Position Sensors Bungee Override Servo Valves

1.5.2.3 Trim Doors

Door Panels Door Seals Hydraulic Actuators Master Cylinder Door Position Sensors Trim Actuator Actuation Mechanism Servo Valves Rate Bungee

1.5.3 Air Induction Control System

1.5.3.1 Shock Position Sensors

- 1.5.3.2 Shock Limit Sensors
- 1.5.3.3 Buzz Sensor Units

Pressure Level Sensor Pressure Cycle Sensor

- 1.5.3.4 Central Air Data Sensor
- 1.5.3.5 Unstart Sensor

WBS CODE 1.5

WBS CODE 1.5

SUBSYSTEM: AIR INDUCTION

WBS LEVELS

Γ 8

1.5.3.6 Overpressure Sensor

1.5.3.7 Automatic Controller

Hydraulic Filters Signal Conditioning Analog Drive Assembly Functional Switches Hydraulic Control Valving Electrical Distribution System Monitors Limit Switches Override Controls Pneumatic Valving C&D Communications Time Delay Relays Hydraulic Rate Control Valving

1.5.3.8 Local Mach Unit

Mach Sensor Servo Switch Monitor

1.5.3.9 Mechanical Follow-up and Trim

1.5.4 Controls and Displays

1.5.4.1 Control Panel

Throat Deviation Indicators Throat Position Digital Indicators Pressure Ratio Indicators Buzz/Reset Lights AICS Mode Override Switches

1.5.4.2 Co-Pilot Control Box

Mode Switches Throat Control Knobs By-Pass Control Knobs

1.5.4.3 Annunciator Panel

Unstart Lights Shock Limit Lights Bypass Door Open Lights Buzz Lights

SUBSYSTEM: AIR INDUCTION
WBS LEVELS
1.5.5 Boundary Layer Control System
1.5.5.1 Bleed Chambers
Delta "P" Valves Check Valves
1.5.5.2 BLC Ducting
1.5.5.3 External Gutter
1.5.5.4 Exhaust Porting
Reverse Flow Door
1.5.6 Ground Tests
1.5.6.1 Models
Subsonic Tests Tri-sonic Tests Full Scale Tests
1.5.6.2 Flight Simulator

1.5.6.3 Mockups

•

•

1.5.6.5 Wind Tunnel

WBS CODE 1.5

4

1.5.6.4 Engine Test Stand

TECHNICAL DESCRIPTION

SUBSYSTEM: AIR INDUCTION SUBSYSTEM

WBS CODE: 1.5

The B-70 Air Induction Subsystem (AIS) consisted of two internal-external compression multiple shock inlet duct systems, symmetrical about the centerline of the air vehicle and completely independent mechanically. Each system governed the air supply to three engines and consisted of a rectangular variable geometry "inlet", transition ducting between the inlet and the engines, a variable area bypass located immediately upstream of the engines, an inlet boundary layer air-bleed system (BLC), and an air induction control system (AICS) with its associated controls and displays. Each of the two inlets were located in the fuselage underslung after body and utilized both internal and external shock compression. On the XB-70, three fixed external ramps were provided per inlet with the required internal geometry obtained from three variable throat panels. Two splitters were provided in the main ducts, each of which supplied air to one engine. All movable panels and doors of the inlet duct systems were actuated by hydraulic actuators. Exhibit 1, Page IV-8, presents a plan view of the AIS depicting the relationship of the inlet in the fuselage underslung after body, the fixed ramps, the hinged variable panels, and the bypass doors which bypassed the air from a plenum surrounding the main duct just forward of the engines. The view shown is that of the RS-70 inlet with four variable throat panels and two fixed ramps. Since the forward throat panel was a two position panel for take-off performance only (being retracted for take-off and extended shortly thereafter), it was permanently fixed at its extended position on the XB-70 with no impact on inflight inlet performance.

Note: Throughout the balance of this section the descriptions apply to one inlet duct system, unless otherwise noted.

The AIS of the B-70 was a multi-shock, variable area, convergent-divergent inlet with essentially four regimes of operation as depicted by Exhibit 2, Page IV-9. During take-off and low subsonic flight (up to local Mach number 0.6), the bypass doors were closed and the throat panels fully retracted to provide maximum air capture area. At high subsonic-low supersonic speeds (up to local Mach number 1.1), the bypass doors were still closed while the throat panels moved from the maximum width of 48 inches to approximately 46 inches. (Note: Throat width is sometimes identified as throat height.) At the intermediate supersonic speeds (up to local Mach number 1.8), the bypass doors were opened a fixed increment while the throat panels had scheduled to an approximate width of 41 inches. Above local Mach number 1.8 and at high supersonic speeds, the bypass doors were modulated for terminal shock control while the throat panels were scheduled as a function of local Mach number to a minimum width of approximately 21 inches.

To maintain efficiency throughout the wide range of operating conditions from take-off to Mach 3 cruise, the variable geometry features of the B-70 AIS provided continuous match of inlet and engines for maximum inlet recovery and engine thrust. As previously stated, for take-off, the inlet was at maximum air capture area with the bypass doors closed to provide the volume of air demanded by the engines. At low supersonic speeds, oblique shocks formed on the external ramps for efficient deceleration of the external supersonic air flow to the subsonic speed demanded by the engines. The terminal normal shock was outside the inlet since the internal area contraction was too great to swallow the normal shock at the low supersonic approach speeds. Under these conditions, the bypass doors were opened about 10° to spill the excess inlet airflow, insure inlet stability, and decrease inlet drag. As the flight speed increased, the external normal shock was swallowed and the inlet was said to be "started". At Mach 3 cruise, the external shocks decelerated the flow to about Mach 2.3 at the cowl lip with the internal oblique shocks further reducing the flow velocity to about 1.3 Mach at the inlet throat. This oblique shock network contracted the air flow area to $\frac{1}{h}$ the free stream area and multiplied the static pressure many times. The normal shock (terminal shock) increased the static pressure by a factor of 2 while the subsonic diffuser raised the pressure to its highest level at the face of the engine. The B-70 AIS, at Mach 3 cruise, had a compression ratio approximately ten times that of the engine.

Exhibit 3, Page IV-10, presents a plan view of the B-70 inlet showing the shock patterns formed at air vehicle Mach 3. This exhibit also shows the compression ratio (to free stream static) along the different stations of the inlet and for the diffuser section. The porous panels noted were part of the boundary layer control (BLC) which bled off the turbulent skin layer to reduce inlet drag and to provide increase stability to the terminal shock. Exhibit 4, Page IV-11, presents a graph showing the pressure recovery of the AIS as estimated and as obtained in flight on air vehicle No. 1 early in the Flight Test Program. Exhibit 5, Page IV-12, presents a chart showing the allowable pressure distortion at the engine face and the distortion data obtained in flight. As indicated, the B-70 AIS provided the volume of air demanded by the engines at minimum distortion.

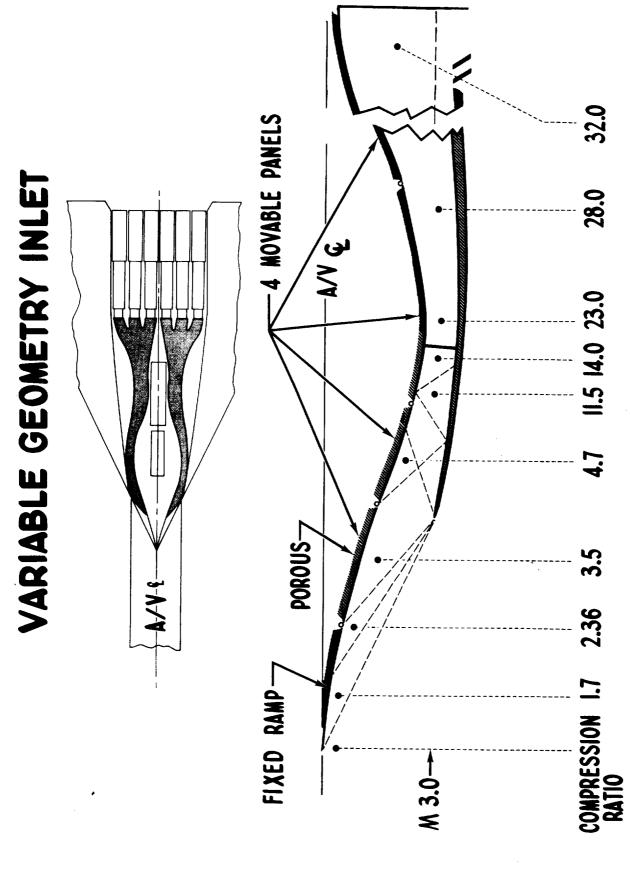
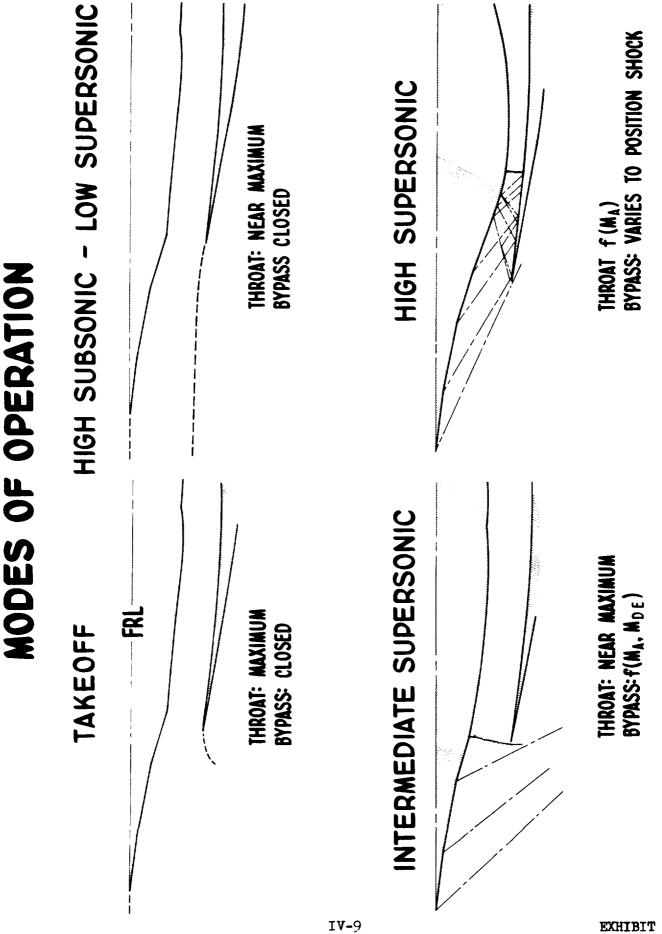
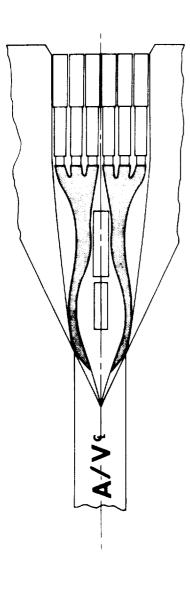
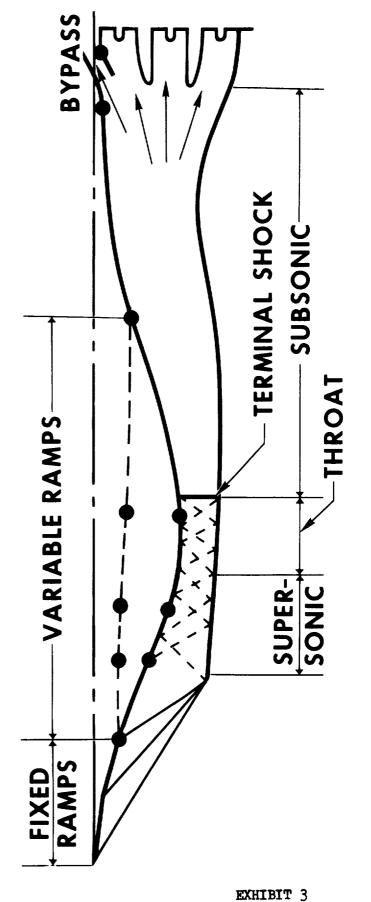
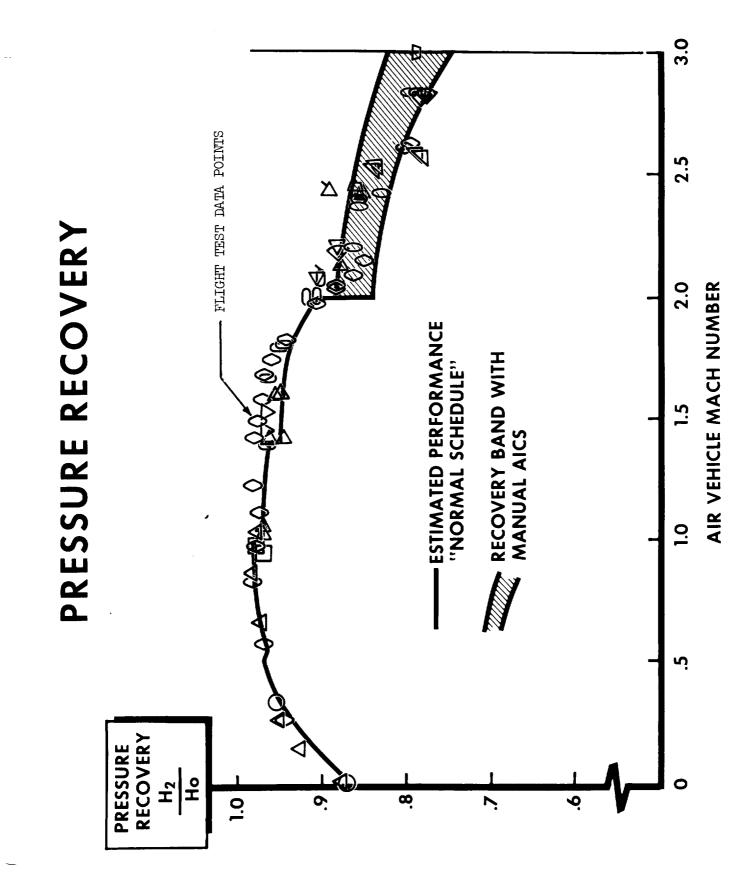



EXHIBIT 1


SD72-SH-0003



SD72-SH-0003


EXHIBIT 2

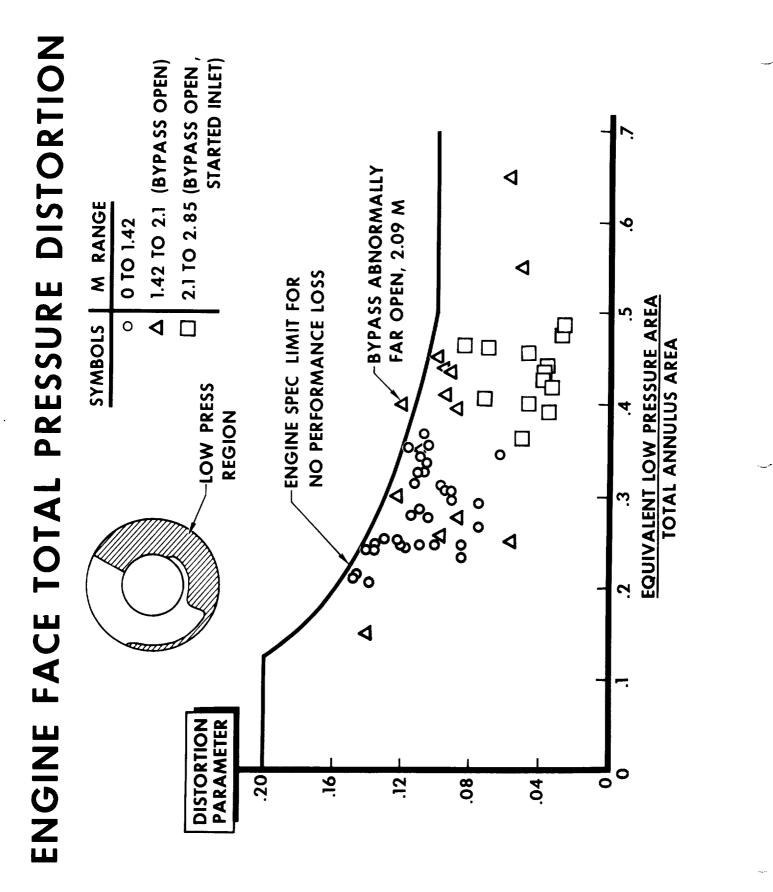


EXHIBIT 5

WBS IDENTIFICATION: AIR INDUCTION SUBSYSTEM

1.5

WBS CODE: -

Space Division North American Rockwell

* INCLUDES 40000 LBS FOR WEAPON'S BAY AICS PACKAGE

MAISISAUS	
VINDUCTION	
AIR AIR	

- WBS CODE: 1.5

										Space Div North Amer	vision ican Rockwel
A/V NO. 2 MAY 1966		81% NORM 85% HI	•		•			ł	AUTO (M _a) 	AUTO RESTARI AUTO BUSS PROTECTIC -	
A/V NO. 1 MAR 1964		76% MAN -						ERNAL	AUTO (M _G) AUTO (M _O) - MANUAL TANDBY STANDBY	F MANUAL RESTART MANUAL BUZZ ELLMIN.	LN ENVIRONMENTAL PACKAGE WATER GLYCOL (ACTUATORS) WATER JACKET (PRESS. RATIO)
FEBRUARY 1961		1 1						INI FILLIN	AUTO (M _G) _ STANDBY	AUTO RESTART AUTO BUZZ PROTECTION	LN ₂ ENVIRONAE WATER GLYCOL WATER JACKET
DECEMBER 1959		1					BLIQUE	EXTERNAL OBLIQUE WITH MULTIPLE INTERNAL	auto, - standby	TECTION RT TION N.	EQUIP. BAY
MARCH 1959		80% NORM 85% HI	916	196	94.54		EXTERNAL OBLIQUE	EXTERNAL O	AUTO, 	UNSTART DETECTION AUTO RESTART BUZZ DETECTION AUTO ELIMIN.	ELECTRONI C WATER/GLYCOL
UNIT OF MEASURE	PERCENT					SPECIFY			SPECIFY	SPECIFY	TYPE
CHARACTERISTIC	PRESSURE RECOVERY - CRUISE	MACH NO. 3.0	MACH NO. 2.0	MACH NO. 1.0	MACH NO. LESS THAN 1.0	SHOCK PATTYERNS	LESS THAN MACH 2.0	ABOVE MACH 2.0	OPERATIONAL MODES	FUNCTIONAL PROTECTION	HEAT SINK

SD72-SH-0003

WBS IDENTIFICATION: AIR INDUCTION SUBSISTEM	STSTRM			WBS CODE:	DE: 1.5		
CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO.2 MAY 1966	 ~
RELIABILITY FACTOR	NONE	8	I	1	.99513	. 99571	
MTBF	NO. OF HR	0	I	I	358	10 ⁴	
I V-1 5							`
SD72-5							North American Hockwell

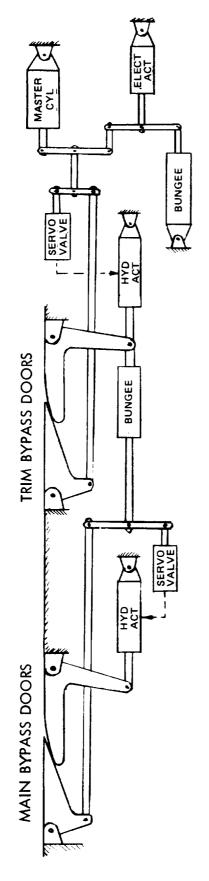
SD72-SH-0003

TECHNICAL DESCRIPTION

SUBSYSTEM:	AIR	INDUCTION SUBSYSTEM	WBS	CODE:	1.5
MAJOR ASSEMB	LY:	INLET SYSTEM	WBS	CODE:	1.5.1

The inlet system of the B-70 was designed to capture the free stream air, decelerate and compress the air efficiently and deliver the air to the engine at the volume demanded and at minimum distortion. The inlet system also supplied air for engine compartment cooling, drag chute compartment cooling, and for the reduction of boat-tail drag (increased the base pressures). As depicted by previous exhibits, the inlet system consisted of a forward fixed wedge, a fixed ramp, a fixed porous throat panel, three variable throat panels (2 porous), a diffuser section, a bypass plenum, two duct splitters and the hydraulic actuators, mechanisms, sensors, and valving necessary for the actuation of the movable components. The hydraulic and electrical power required for actuation was supplied by the Secondary Power Subsystem: WBS 1.4.

The lower half of Exhibit 6, Page IV-18, presents a schematic of the components and mechanisms incorporated for the actuation of the throat panels. The master cylinder was controlled by a electro-hydraulic valve driven by signals from the AICS for all normal throat operations. The electrical actuator was positioned by a crew controlled three position switch (momentary "INCR" or "DECR") of the AICS Standby System. The top bungee provided a pivot point for the master cylinder or electrical actuator operation while the two lower bungees provided rate controlled follow-up for the servo valves of the throat panel two hydraulic actuators.


The prime function of the electrical actuator was to provide the capability of safely decelerating (and landing) from Mach 3 cruise after a master cylinder and/or normal AICS mode failure. As indicated by the throat panel linkage, the positioning capability of the throat panels by the standby electrical actuator depended on the master cylinder position. The control range of the electrical actuator was as follows:

Master Cylinder Position	Elect. Actuator Control Range
1. Maximum throat (48 $\frac{1}{4}$ inches)	From $48\frac{1}{4}$ to 32.8 inches
2. For 40 inch throat	From $48\frac{1}{4}$ to 25 inches
3. Minimum throat (20.5 inches)	From 20.5 to 41.6 inches

Hydraulic power for the electro-hydraulic servo valve and master cylinder (single systems) was provided by the hydraulic utility system #1 (L.H. engines). The throat panel hydraulic actuators were tandem (dual actuators) and were powered by the #1 and #2 utility hydraulic systems. Since the electrical actuator was driven by two motors with each motor energized by an independent electrical system, standby throat operation capability was provided by two independent electrical and two independent hydraulic systems.

In the immediate area forward of the engines (around the duct splitters), the total circumference of the duct wall was perforated which allowed air to pass into a plenum identified as the bypass plenum. This plenum provided two major functions: (1) to supply cooling air for Regime II cooling of the engine compartments, and (2) to collect excess captured inlet air flow to be exhausted by the variable area bypass doors. Description of engine compartment cooling may be found under Propulsion Subsystem (WBS 1.3) while subsequent paragraphs describe the bypass door operation. Air Induction System Schematic Throat and Bypass Doors Mechanical Hook-Up

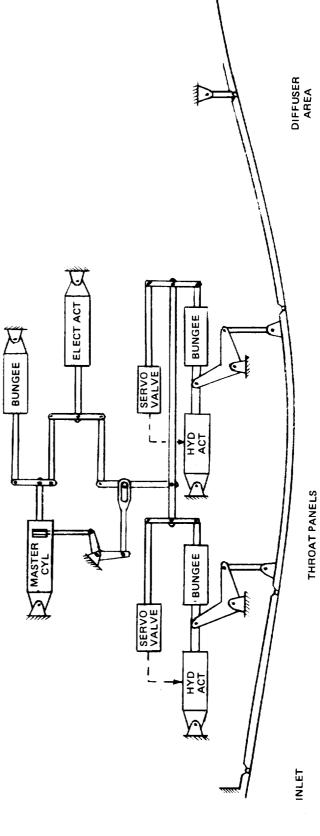


EXHIBIT 6

3	WBS IDENTIFICATION: INTET SUBSYSTEM				WBS CODE: -	DE: 1.5.1	
L	CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
l	WEI GHT	SONDO	5486	NOT AVAILABLE	NOT AVAI LABLE	3372	3462
	ENGINES PER INLET	NUMBER	e E				
	CAPTURE AREA	INCHES ²	5600				
	RAMPS (EACH INLET)	TYPE/NO. 1- 1- 1-	FIXED 7 ⁰ EXTERN. 12 ⁰ VARIABLE AUX. INLET		1 - FIXED 70 1 - EXTERN 120 3 - VARIABLE 1 - FIXED AUX. INLI 1 - FIXED VARIABLE	EXTERN 120 EXTERN 120 VARIABLE FIXED AUX. INLET	
1 V-1 9	SEALS (AERODYNAMIC)	ad YT	METALLIC ST. STEEL	METALLIC ST. STEEL SLIDING SEALS			1
	LENGTH	INCHES	935				
	HEIGHT (AT THROAT)	I NCHES	65.3				
	WIDTH (STATIC): HT. AT THROAT	INCHES	19.5 to 48.25	19.5 to 48.25	20.5 to 48.24		
	THROAT AREA VARIATION	INCHES ²	1272 to 3145	1272 to 3145	1370 to 3145		
	ACTUATION POWER	TYPE	HYD. ACTUATORS 4000 ps1	TORS			
SD72-8	SPEED - DESIGN RANGE	MACH NO.	3.0 +				
SH							

,

SD72-SH-0003

Space Division North American Rockwell

SUBSYSTEM
INLET S
z
ō
VBS IDENTIFICATION
E
2
ă
WBS

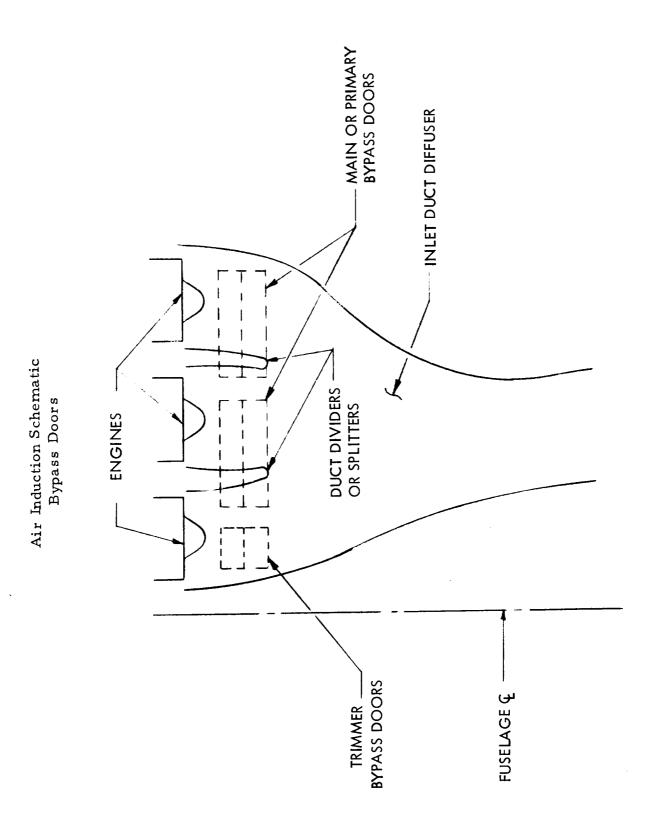
TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

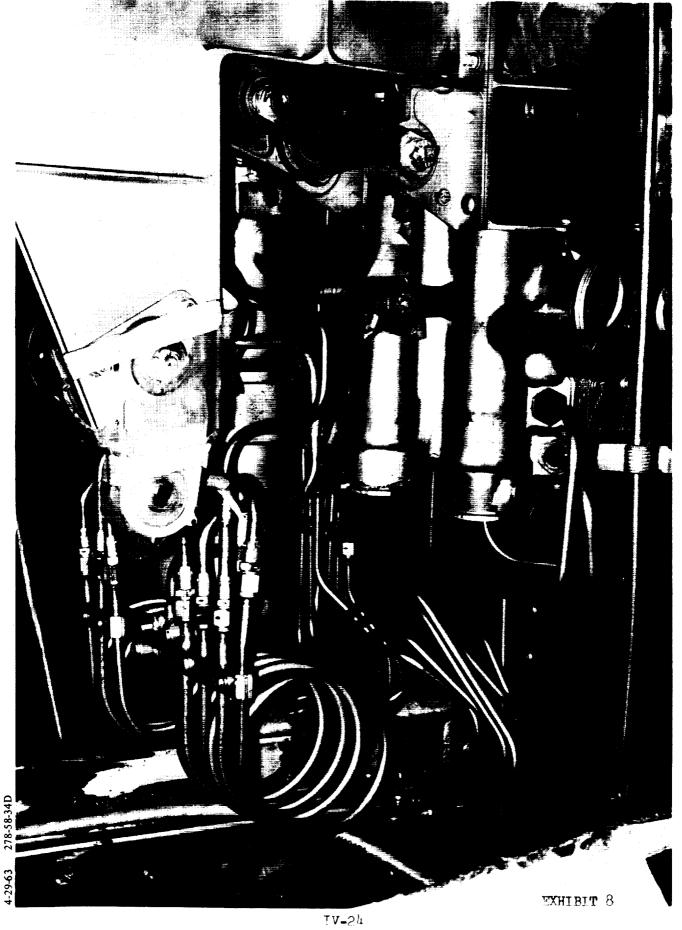
CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
NUTCAL ARM - AUTITA		Too, out	m, m			
PRESSURE RECOVERY - STATIC	PERCENT	87	87	87	87	89
PRESSURE RECOVERY - CRUISE	PERCENT					· · · · · ·
MACH LESS THAN 1.0		94.5				1
MACH 1.0		8				
MACH 2.0		91				ł
MACH 3.0		80 NORM 85 HIGH	81 NORM	B1 NORM	76	81 NORM
SHOCK PATTERNS	SPECIFY					
LLESS THAN MACH 2.0		EXTERNAL OBLIQUE	BLIQUE			1
ABOVE MACH 2.0		EXTERNAL 0	HILIM ENDITE	EXTERNAL OBLIQUE WITH MULTIPLE INTERNAL	GRNAL	
HEAT SINK	EL	STANDBY ACTU ELECTRONI CS	STANDBY ACTUATORS - WATER GLYCOL ELECTRONICS - LH2	TER GLYCOL		ł
RELIABILITY FACTOR	NONE	ŧ	1	1	. 99513	17799.
MTBF	No. OF HR.	I	I	ı	358	LOT

TECHNICAL DESCRIPTION

SUBSYSTEM: AIR INDUCTION SUBSYSTEM WBS CODE: 1.5

MAJOR ASSEMBLY: BYPASS SYSTEM


The bypass systems of the B-70 AIS were designed to maintain inlet ductengine compatibility at maximum inlet duct recovery throughout the B-70 flight regime. At supersonic speeds, the position of the normal shock essentially determined the inlet duct efficiency as related to pressure recovery, engine face distortion and inlet stability for both the "started" and "unstarted" regimes of operation. In the "unstarted" speed range, the normal shock was positioned externally near the cowl lip of the inlet to minimize captured air flow spillage behind the shock. For the "started" speed regime, since a normal shock cannot be held on a converging slope, the shock was "swallowed" and maintained on the divergent slope of the inlet throat. The closer the normal shock was maintained to the minimum area of the throat, the higher the pressure recovery of the inlet (it also required tighter shock control).


As previously stated, the engine was a constant volume demand pump while the inlet was a mass air flow device. The equalizer between the two was the normal shock phenomenon which varied the pressure recovery of the inlet. The control of the normal shock was accomplished by varying the excess air flow captured by the inlet. For a constant volume demand, a decreased bypass door area decreased the excess airflow and the normal shock moved forward; an increase in bypass area increased mass flow and the normal shock moved aft. Since inlet-engine match was determined by the normal shock positioning, it was used as the basic control of bypass door operation. The pre-determined desired position of the normal shock was controlled by the AICS which sensed the shock position by pressure taps and signaled for an increased or decreased bypass area.

The bypass system for one inlet duct was comprised of one pair of trimmer doors, two pairs of main doors, and the hydraulic actuators, mechanisms, sensors, and valving necessary for the actuation of the movable components. The bypass doors were located on the upper mold line of the wing directly over the bypass plenum as depicted by Exhibit 7, Page IV-23. Each pair of doors consisted of two panels of which one opened outward and the other inward to provide variable area nozzle conditions during the initial opening of the doors. The electrical and hydraulic power required for actuation and control of the doors was supplied by the Secondary Power Subsystem: WBS 1.4

The top half of Exhibit 6, Page IV-18, presents a schematic of the controlling mechanism for the pair of trimmer doors and one set of main doors (the other set of main doors were in parallel). Exhibit 8, Page IV-24, presents a picture of the bypass master cylinder and the dual motor electrical actuator installation. As with the throat control, normal operation of the bypass doors was through the master cylinder which was controlled by an electro-hydraulic valve driven by signals from the AICS. The electrical actuator, which had full authority as backup control for the doors. was positioned by a crew controlled three position switch (momentary "INCR" or "DECR") of the AICS Standby System. The bungee on the right of the exhibit provided the pivot point for master cylinder or electrical actuator control movements. The trimmer doors operated at a rate of approximately 400 square inches per second and were powered by a dual tandem hydraulic actuator. The primary or main doors normally operated at a rate of approximately 16 square inches per second and were also powered by dual tandem hydraulic actuators. As noted by the schematic, the main doors were slaved to the trimmer doors with the difference in travel rate absorbed by a bungee. With this arrangement, the high rate trimmer doors provided the necessary bypass for "finetuning" shock control while the large - low rate primary doors provided gross shock control.

SD72-SH-0003

1.5.2

- WBS CODE:

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

WBS IDENTIFICATION: BYPASS SUBSYSTEM

CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO.2 MAY 1966
Weight	SUNDA	1648	1648	3055	3055	312h
EXHAUST AREA - MAX	INCHES ²	5410	2410	2380	2380	2380
DOORS	TYPE/NO.	PAIRS - CO TRIMMER DO PRIMARY DO	convergent/DIVERGENT DORS (1 EACH INLET) DOORS (2 EACH INLET)	ERGENT INLET)		
DOOR LENGTH (EACH INLET)	INCHES	221	521	221	221	521
DOOR WIDTH (EFFECTIVE)	INCHES	10.9				
SEAL (AERODYNAMIC)	TYPE	METALLIC ST. STEEL				
ACTUATION POWER	ITY PE	4000 PSI HYDRAULIC	YDRAULIC			•
SPEED - DESIGN RANGE	MACH NO.	3.0 +				•
ALITITUDE - MAX DESIGN	FEF	100,000	- 000,00			•
HEAT SINK	TYPE	(SEE AIS)-				•
RELLABILITY FACTOR	NONE	•	·	ŧ	. 99513	. 99571
MTBF	NO. OF HR	1	1	8	358	10 ⁴
SD72						

Space Division North American Rockwell

SD72-SH-0003

TECHNICAL DESCRIPTION

SUBSYSTEM:	AIR	INDUCTION SUBSYSTEM	WBS	CODE:	1.5
MAJOR ASSEMB	LY:	AIR INDUCTION CONTROL SYSTEM	WBS	CODE :	1.5.3

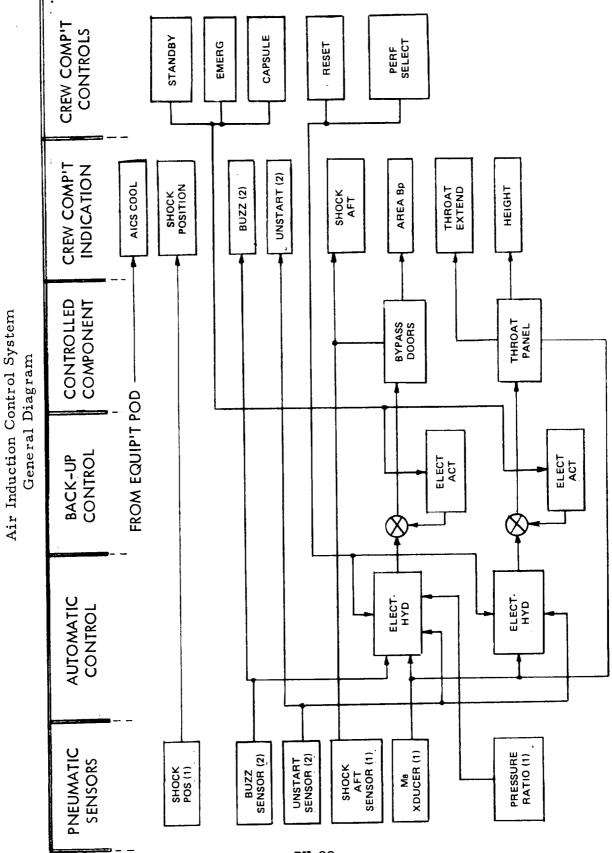
Each inlet duct system of the B-70 AIS was controlled by an Air Induction Control System (AICS). The function of the AICS was to position the throat panels and bypass doors as required to maintain high total pressure recovery, minimum inlet drag, stable inlet airflow and provide matching of inlet mass flow to engine volume demand. The AICS essentially consisted of the automatic electro-hydraulic system, the override functions and the backup or standby system. For control of the inlet duct system, the AICS used pneumatic signals from one local Mach (Ma) transducer, one pressure ratio transducer, two buzz sensors, two unstart sensors, movable surface positions, and included signals as selected by the crew for normal performance, high performance, low performance, and standby operation. Exhibit 9, Page IV-29, presents a general diagram of the AICS showing by block diagram the functions and control interfaces of the AICS.

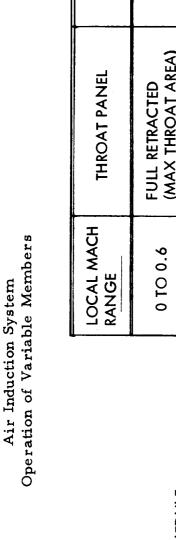
The automatic electro-hydraulic functions of the AICS utilized the various pressures and pressure ratios sensed at predetermined locations in the inlet duct system and positioned the movable components per predetermined throat and bypass schedules. Exhibit 10, Page IV-30, presents the schedules for the throat panels and bypass area as a function of Ma and shock position, respectively. As noted, during take-off, landing, and at speeds below Ma 0.6, the throat panels were full retracted and the bypass doors closed. For these flight conditions, the performance mode switch was in the standby position which shut off hydraulic pressure to the electro-hydraulic servo valves and positioned these servo valves pressure ports to hydraulic return. In this configuration, it required two distinct signals, a 0.6 Ma and an "Auto" mode selection, before the master cylinders could become operative and shift positions during this critical flight regime. At a MA of 0.6, the AICS mode switch was placed in the "Auto" position by the crew which connected the electro-hydraulic servo valves to hydraulic system pressure so that the master cylinders were operative for automatic positioning control.

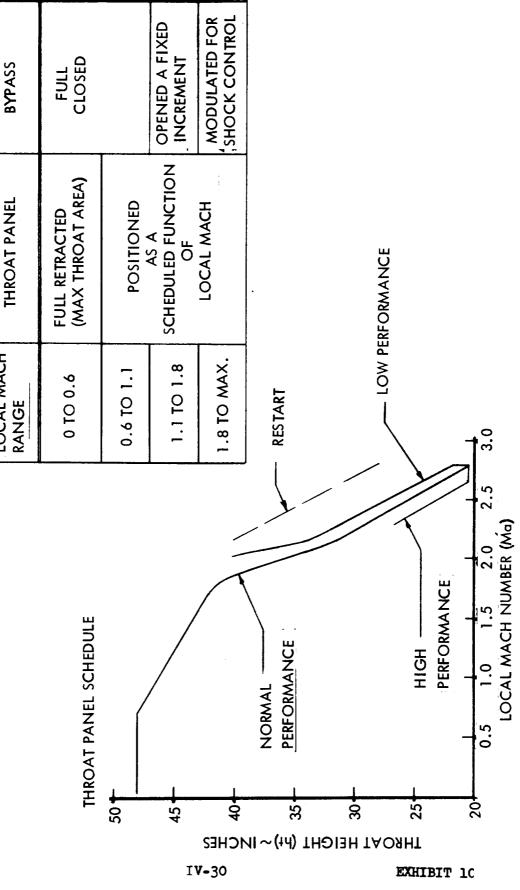
For flight speeds above Ma of 0.6, the normal performance mode of operation was selected by the crew which scheduled the throat and bypass as indicated including an automatic inlet "start" at Ma 1.86 (air vehicle Mach 2). The low performance mode could be selected by the crew if severe downstreams transients were anticipated, such as an engine shutdown. The high performance mode was selected for stabilized flight conditions only at high supersonic speeds.

The restart control function, which was an override function in the "Auto" mode, was armed at Ma 1.86 by signals from either of the two inlets local mach transducers. Upon detection of an unstart by the unstart sensors, signals were directed to the cockpit to illuminate the unstart warning lights and the AICS reset light-switch. Simultaneously, signals were transmitted which opened the throat plus 8 inches, selected a downstream shock position control, and switched the opening rate of the main bypass doors to maximum for a period of 2 seconds (after which normal rate was resumed). After restarting, the unstart warning lights went out but the AICS reset switch remained illuminated to indicate the throat panel at plus 8 inches schedule and the shock on downstream control. This inlet duct configuration was maintained until the control system was returned to the original operational mode by manually depressing the AICS reset switch.

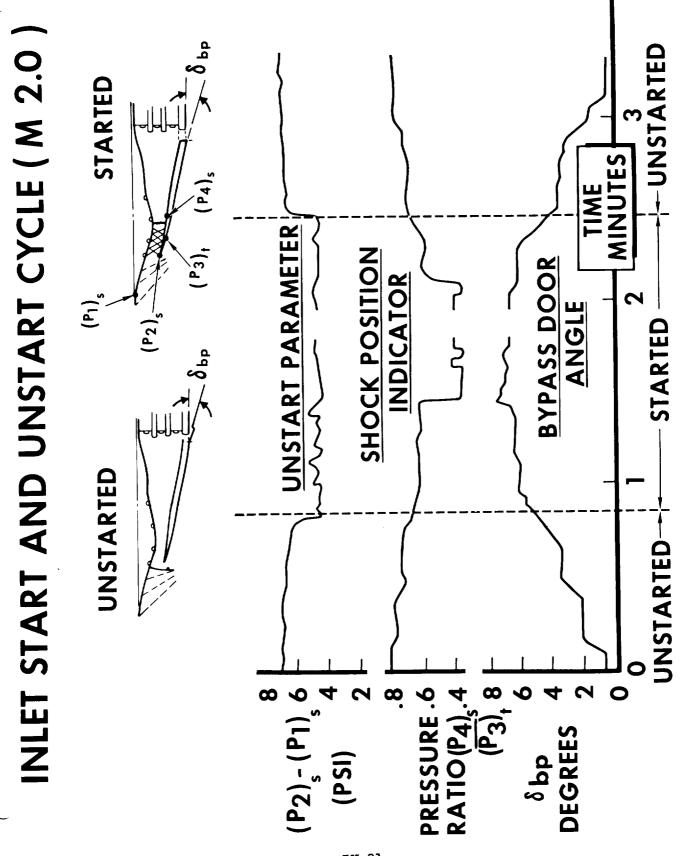
Each duct had two unstart detection systems which were independent except for the common duct pressure sources. Each system received two pressure signals from the duct. When the normal shock was at its scheduled position in the duct, the ratio of the two pressures was a given valve. With expulsion of the normal shock from the duct, the ratio became a higher valve which initiated the restart function.


Exhibit 11, Page IV-31, presents a composite graph of normal inlet starting and unstarting during a slow acceleration and deceleration through air vehicle Mach 2 (Ma = 1.86). Since this was the Mach range for normal starting (nearly a natural phenomenon during air vehicle acceleration), reaction of inlet pressures were very slow when compared to that presented by Exhibit 12, Page IV-32. This exhibit shows the rapid reaction (pressure recovery parameter) of a typical inlet unstart and restart at high supersonic speeds. As indicated by the pressure recovery parameter, there were two (plus) duct pressure cycles during the restart which was not uncommon at high mach numbers. However, six or more pressure cycles was classified as "duct buzz" which could occur very rapidly if the condition that caused the unstart prevented a satisfactory restart.


The buzz control system was armed at all times in the "Auto" mode and was an overriding function. Each duct had two independent buzz detection systems located in the duct diffuser area. When variations in the sensed pressure were of a magnitude and rate considered detrimental to structure and/or engine, the overriding buzz control function was initiated. Upon buzz detection, signals were directed to the cockpit to illuminate the buzz warning lights and the AICS reset switch. Simultaneously, signals were transmitted which selected the downstream shock position for bypass door control and switched operating rate of the main doors to maximum for a period of two seconds. After the elimination of the buzz signal, the buzz warning lights went out but the AICS reset remained illuminated to indicate the inlet was still on downstream shock control. As with the unstart, this configuration was maintained until the AICS reset switch was manually depressed.



The electro-hydraulic automatic functions of the AICS had a single system for the control of the throat panels and bypass doors. However, the backup or standby control had dual systems for the recovery of an unwanted duct configuration caused by an automatic system failure. The standby control also provided pilot control of the AICS during emergency flight conditions, such as an encapsulated deceleration and descent from high altitude supersonic cruise. The standby control of the AICS was provided via electrical actuators which positioned the power actuators control linkages as shown by Exhibit 6, Page IV-18. The electrical actuators, which were energized by switches on the copilot's panel or by either capsule control, were each driven by two motors with each motor energized by an independent electrical system.


For "Standby" control, the actuators could be energized individually to obtain the desired throat panel and/or bypass door position. For "Emergency" control, the three position switches energized the throat panel and bypass door actuators (on one inlet) simultaneously to drive the bypass doors full open and the throat to 39 inches. Simultaneously, the hydraulic power to the electro-hydraulic master cylinders was cut off, causing the cylinders to hold their position. To increase the margin to unstart in this mode, the performance selector switch had to be placed in the "low" performance position prior to movement of the mode switch to the "Emergency" position. The momentary closing of the thrust control switch in either the pilot or copilot capsule also drove the throat panels and bypass doors to the positions noted above.

SD72-SH-0003

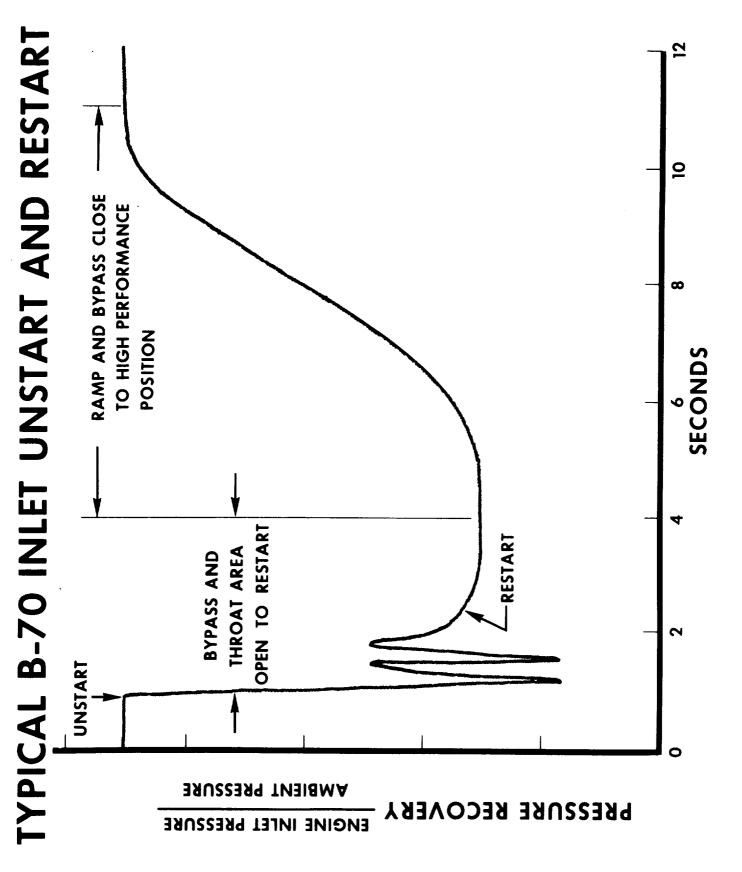


EXHIBIT 12

SD-72-SH0003

AUTO RESTART AUTO BUSS PROTECT EMERG. DESCENT EMERG. CONT. A/V NO. 2 MAY 1966 STANDBY AUTO 915 MANUAL STANDBY A/V NO. 1 **MAR 1964** AUTO 1411 MAN. RESTART BUZZ MAN. EMERG. DESGENT) WBS CODE: FEBRUARY STANDBY AUTO 1961 1411 ۱ DUAL HYDRAULIC 4000 PST DECEMBER 1959 UNSTART DETECTION (4) RESTART CAPABILITY (2) STANDBY/2 EA. THROAT 2 BYPASS AUTO/2 EACH THROAT & PART OF ELECT. EQUIPMENT BAY WEIGHT 90°,00 EMERG. DESCENT (2) EMERG. CONT. (1) 400 Hz ELECT. (v) (v) UNSTART (4) BUZZ (4) MACH (2) SHOCK P/R (SHOCK POS (BYPASS **MARCH 1959** 3.0 + 100,000 UNIT OF MEASURE AIR INDUCTION CONTROL SUBSYSTEM TYPE/NO. TYPE/NO. MACH NO. TY PE/NO. SPECIFY POUNDS FEET CHARACTERISTIC ALTITUDE - MAX DESIGN SPEED - DESIGN RANGE OVERRIDE FUNCTIONS WBS IDENTIFICATION: CONTROL POWER CONTROL MODES SENSORS WEIGHT IV-33

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

Space Division North American Rockwell

1.5.3

CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
CONTROL PARAMETERS	TYPE/NO.	MA/2 INSTART/L		L	A/V MACH IN	M _a /2 meema.em/),
		SHOCK POS/6 BUZZ/4 SHOCK AFT/2 / DI FFERENTIAL	LOCAL MACH (MA)/2	(MA)/2	Wa Ma	UNDIANAL/4 SHOCK POS/6 BUZZ/4 SHOCK AFT/2 DIFF. MA/2
ACCURACY	9	ł	ŧ	I	ı	ı
THROAT CONTROL	PERCENT FS	1.4				•
BYPASS CONTROL	PERCENT FS	1.5				
FREQUENCY RESPONSE	HERTZ	3 to 6				1
NOLLATION	INCHES ²	I	ł	I	I	ı
BTPASS		10				•
THROAT		13				
TEMPERATURE - DESIGN RANGE	DEGREES F	6300F INLAT STRUCTU 550°F SENSORS -65° TO 450°F SYSTIEM	INLET STRUCTURE SENSORS 450°F SYSTEM			ł
HEAT SINK	TYPE	ELECTRONI C WATER/GLYCO	ELECTRONIC EQUIP. BAY WATER/GLYCOL	WEAPONS BAY AICS WATER/GLYCOL FOR WATER JACKET FOR	WEAPONS BAY AICS PACKAGE: LN2 WATER/GLYCOL FOR ACTUATORS WATER JACKET FOR PRESS RATIO	PACKAGE: LN2 ACTUATORS PRESS RATIO'S

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

WBS IDENTIFICATION: AIR INDUCTION CONTROL SUBSYSTIPM

- WBS CODE: 1.5.3

SD72-SH-0003

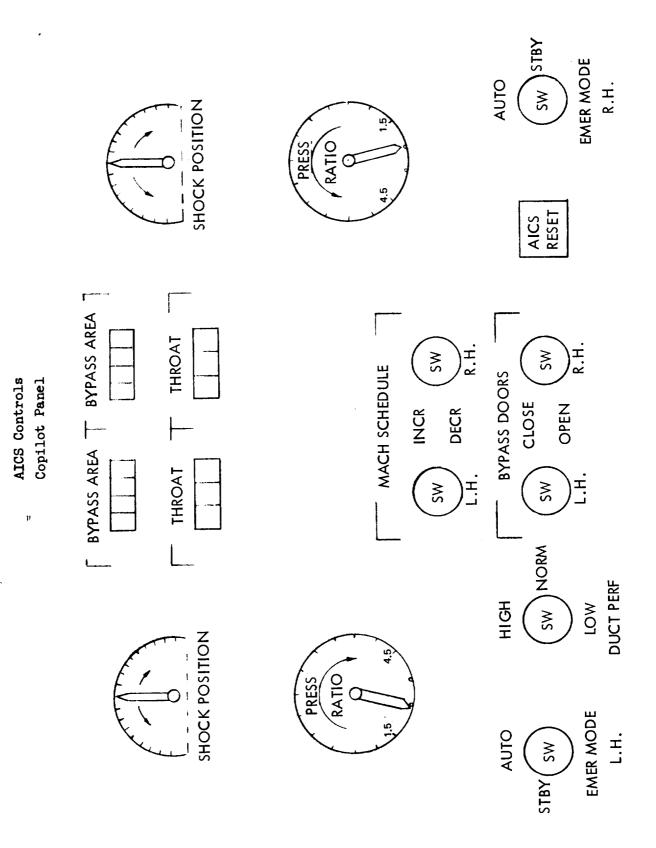
TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

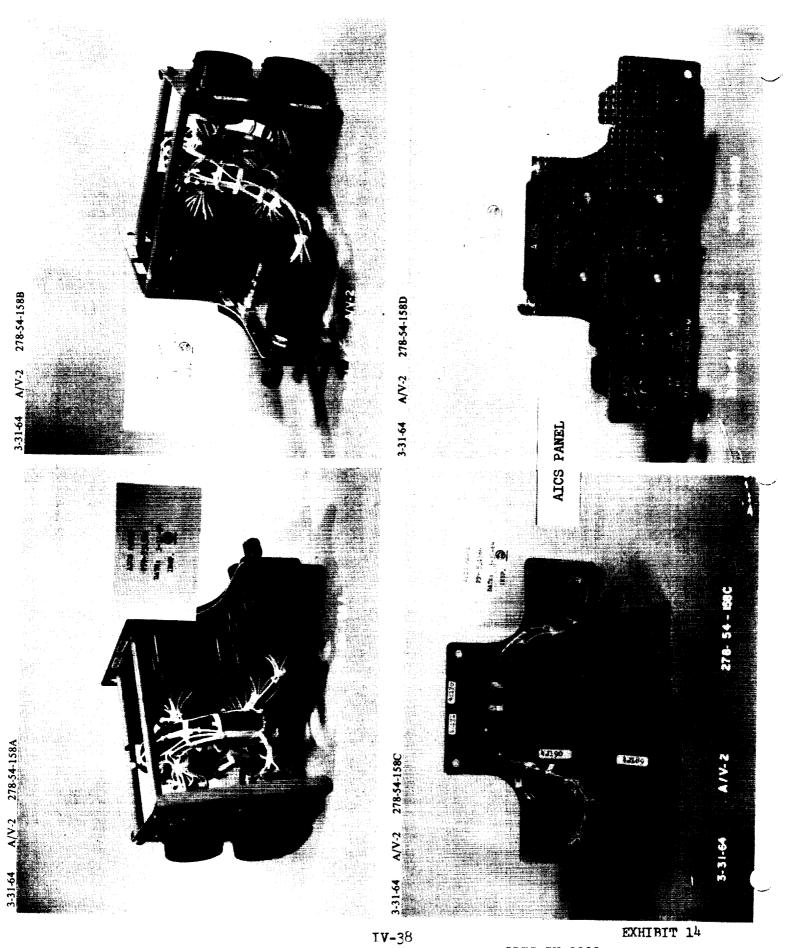
AIR INDUCTION CONTROL SUBSYSTEM WBS IDENTIFICATION:

•

1.5.3 - WBS CODE:

CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
RELIABILITY FACTOR	NONE	8	I	ł	.99513	.99571
MTBF	NO. OF HR	t	ı	ł	358	LOT
I V-3 5						


TECHNICAL DESCRIPTION


SUBSYSTEM:	AIR	INDUCTION	SUBSYSTEM	WBS	CODE:	1.5
MAJOR ASSEMB	LY:	CONTROLS	AND DISPLAYS	WBS	CODE:	1.5.4

Air Induction Control System indications were provided in the cockpit at the copilot's station for standby control and for monitoring the automatic control functions. Exhibit 13, Page IV-37, presents the basic layout for the AICS controls and displays on the copilot's instrument panel which contained the AICS switches shown in the layout of Exhibit 14, Page IV-38. The AICS warning lights were located with the other subsystem warning lights in the annunciator panels which made up the forward section of the center aisle console.

The "Throat Mach Schedule" and "Bypass Area" were digital readouts in terms of air vehicle mach number and total bypass area in square inches, respectively. These indicators were used primarily for monitoring the automatic control and override functions. However, on standby control, these indicators were used in conjunction with switch operation for correct positioning of the throat and bypass doors. The "Shock Position" indicator was a dialpointer display showing the location of the terminal normal shock in the inlet. The pointer of the instrument was positioned by a sensor which provided a signal that was a function of the ratio of a total pressure sensed at FS 1292 and a static pressure sensed at FS 1383. The "Pressure Ratio" dial indicated the duct efficiency and was essentially a monitoring indicator.

The "Buzz" and "Unstart" warning lights were provided to indicate the presence of these abnormal inlet conditions. Both the buzz and unstart indicating systems were completely dual and provided indication in all AICS control modes. As previously stated, the unstart was armed at Ma 1.86 or above while the buzz system was available at all mach numbers. A "Shock Aft" warning light was provided to indicate the shock was aft of a predetermined limit during the started inlet regime. It was also utilized to indicate that the bypass doors were not fully closed at low air vehicle speeds. The aft shock was sensed by a sensor whose output was an electrical signal as a function of pneumatic pressure ratios sensed at FS 1292 and FS 1443. A "Throat Extended" warning light was provided to inform the flight crew if the throat panels were positioned at 39 inches or less when the air vehicle speed was below Ma 1.1. The "AICS Cool" indicator light was discussed under ECS: WBS 1.2.

SD72-SH-0003

Ξ.	WBS IDENTIFICATION: CONTROLS AND DISPLAYS	[3			WBS CODE:	DE: 1.5.4	+
1	CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
1	WEIGHT	POUNDS	1	I	I	3938	3971
	I NDI CATORS	NUMBER	INTEGRATED 2 - THROAT 2 - BYPASS 2 - SHOCK F 2 - PRESS F	GRATED THROAT MACH NO. BYPASS AREA SHOCK POSITION PRESS RATIO			
IV.	FUNCTIONAL LIGHTS	NUMBER	16	4 - BUZZ CAUTION 4 - UNSTART 2 - THROAT KXTEND 2 - BYPASS GPEN	BUZZ CAUTION LT UNSTART THROAT EXTEND BYPASS GPEN	2 - THR	THRMAT IND. AICS COOL
	MODE SWITCHES	NUMBER	21	1 - POWER 1 - DUCT PERF 2 - AUTO/MAN 2 - STBY THRO 2 - STBY BYFAO 2 - PRI/ALT PA	ER PERF MAN THROAT MAN BY PASS THROAT BY FASS ALT POWER	AUTO MAN STBY	AUTO STBY
	MANUAL CONTROLS	NUMBER	1	I	I	2 (EA) 2 - Throat 2 - Bypass	2 (EA) 2 - STBY THROAT 2 - STBY BYPASS
SD72-8							

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

SD72-SH-0003

5							
L	CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
<u> </u>	INDICATOR ACCURACIES	PERCENT OF FS					
	THROAT		2.8				•
	BTPASS		2.3				ł
	SHOCK		1.4				ł
	INDICATORS RESOLUTIONS	PERCENT OF FS		- <u></u>			
I	THROAT		1.5				4
V- 40	BYPABS		1.5				ł
)	SHOCK		2.5				ł
	INDICATOR FREQUENCY RESPONSE	LERIZ	3 to 4				ł
	TEMPERATURE - DESIGN RANGE	DEGREES F	32 to 160 -				•
	RELIABILITY FACTOR	NONE	ı	I	1	.99513	.99571
	MTBF	NO. OF HR	I	ŧ	·	358	101
SD72-			-				
SI			-				

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

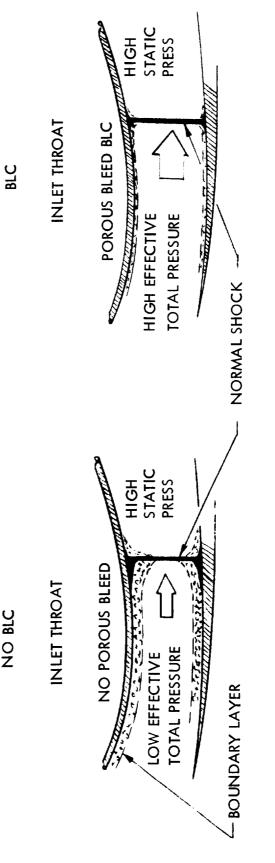
CONTROLS & DISPLAYS

1.5.4

SD72-SH-0003

Space Division North American Rockwell

TECHNICAL DESCRIPTION


SUBSYSTEM:	AIR INDUCTION SUBS	YSTEM V	VBS CODE:	1.5
MAJOR ASSEMB	LY: BOUNDARY LAYE	R CONTROL	WBS CODE:	1.5.5

The Boundary Layer Control System (BLC) was incorporated in the B-70 to remove the boundary layer air from three major areas. BLC ducting was provided between each engine air inlet and the lower wing surface to remove the boundary layer air formed under the wing forward of the inlets. This air discharged overboard through an exit on the top surface of the wing. Porous surfaces were provided on the four walls of each inlet forward of the throat to remove the boundary layer formed along these inlet surfaces. This air was bled into compartments (chamber I & II) and then ducted to exits located underneath the air vehicle below the bleed chambers. The walls of the inlet throat area were also porous and this boundary layer air was bled into compartments or chambers III, IV & V. The air from chamber III (air from chamber IV passed into chamber III through check valves) was ducted aft to the engine compartments where valving either directed the air to the base area or for engine compartment cooling (Regime III cooling; see Propulsion: WBS 1.3). The air from chamber V was ducted to the same exits as for chambers I & II.

The BLC performed a major function in the control of the inlet normal shock, increased inlet duct recovery, and reduced inlet drag. The boundary air ducted aft also increased the base area pressures and reduced the boat tail drag. The reduction in inlet drag was realized because the turbulent boundary layer air was removed from the surfaces and provided in airflow that was more laminar. The increased inlet duct recovery was due to increased efficiency in normal shock control and a larger inlet airflow capture area (relatively) due to the BLC bleed reduction of boundary layer thickness.

The increased efficiency of inlet normal shock control during the inlet "started" regime of operation is graphically shown by Exhibit 15, Page IV-42. The two pictorial presentations show an inlet throat with and without BLC bleed. Without porous bleed, in addition to a thick boundary layer, the normal shock impingements spread and creeps forward in the lower static pressures. The phenomenon of shock impingement creep and the build up of boundary layer reduces the effective total pressure area and the normal shock moves forward due to the high static pressure downstream. Once the normal shock passes the minimum throat area, it is expelled completely out of the inlet since a normal shock can not be held on a convergent surface. As shown by the presentation, an inlet with BLC bleed has a thinner boundary layer and the shock impingements are bled off which result in a stable shock and a high effective total pressure.

NO BLC

EXHIBIT 15

SD72-SH-0003

~	
έ	
Ē.	
<	
5	
=	
Σ	
\supset	
S.	
~~	
<u> </u>	
α.	
G	
TICS PROGRESS SI	
~	
5	
LL_	
S	
C	
-	
TERIST	
2	
$\overline{\mathbf{r}}$	
	
5	
Q	
<	
£	
7	
\geq	
ΞĻ.	
C)	
1	
7	
<u> </u>	
ICAL	
=	
~	
1	•
LECH	
Ē	
F	
•	

WBS IDENTIFICATION: BOUNDARY LAYER CONTROL

-wes code: ______

L	CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
	WEIGHT	FOUNDS	- 50t	50th	700	700	601
	NUMBER OF CHAMBERS	NUMBER	5 EA. INLET	F			ł
	BLEED PANELS	NUMBER	5 EA. INLET	L			•
	EXTERNAL CONTROL	SPECIFY	SECONDARY REGIME III	SECONDARY AIR-ENGINE NOZZLES REGIME III COOLING	OZZLES		
	PRESSURE	ISd	8.8 DELTA				
I	TEMPERATURE - DESIGN RANGE	DECREES F	- 65 to 630				
v -43	SPEED - DESIGN RANGE	MACH NO.	3.0 +				
	ALTITUDE - MAX DESIGN	FEET	100,000	000 , 00			
	SEALS (AERODYNAMIC)	TYPE	METALLIC				
	RELLABILITY FACTOR	NONE	1	I	1	. 99513	.99571
	MTBF	NO. OF HR	I	I	ł	358	Lon
SD72-							

Space Division North American Rockwell

SD72-SH-0003

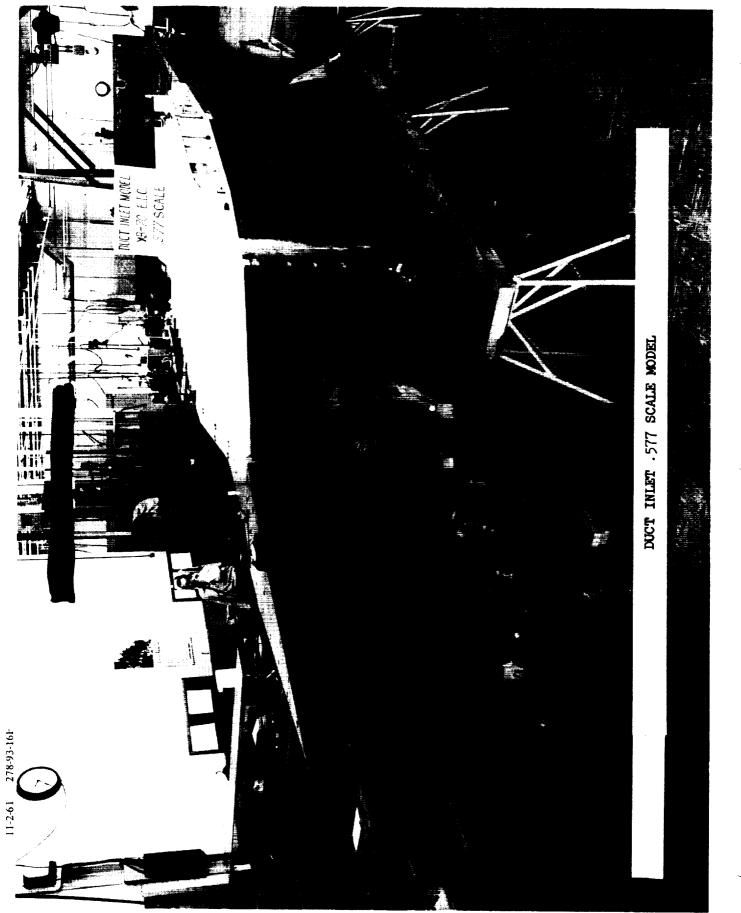
. ...

TECHNICAL DESCRIPTION

.

SUBSYSTEM:	AIR	INDUCTION SUBSYSTEM	WBS	CODE:	1.5
MAJOR ASSEMB	LY:	GROUND TESTS	WBS	CODE:	1.5.6

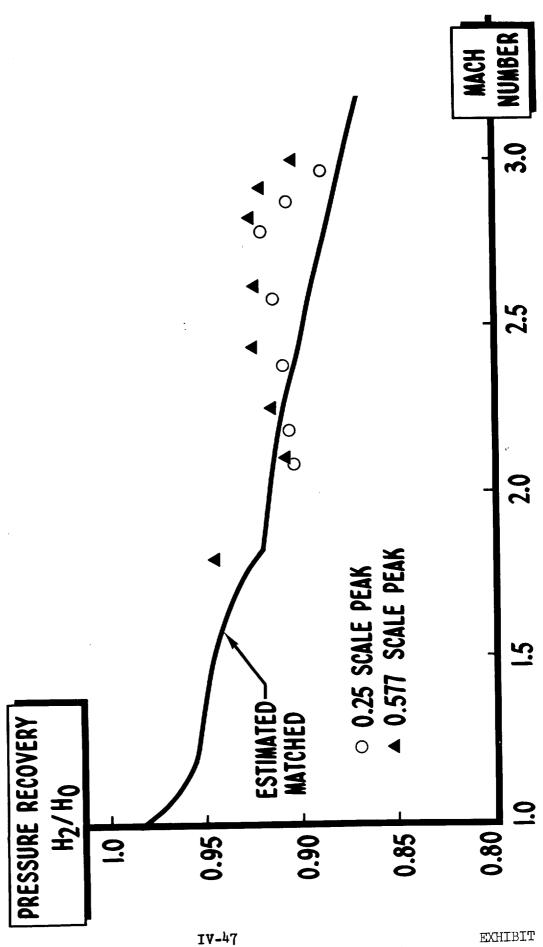
The major effort expended on ground tests of the Air Induction System was wind tunnel testing. This testing effort involved eleven different models (scaled) and two unscaled assemblies for a total of 5,235 charged tunnel hours. The test units and their scale were as follows:


Mod	lels	Scale
1.	Preliminary Inlet Duct Research	• Oft
2.	Preliminary Inlet Duct Research	.05
3.	Infinitely Variable Duct	None
4.	Base Pressure	•04
5.	Base Pressure	•045
6.	Porous Material Research	None
7.	Supersonic Diffuser	•04
8.	Inlet Control	.10
9.	Inlet Control	•25
10.	Inlet Control (HSD)	• 04
11.	Inlet, Inlet-Engine	•577
12.	Inlet Force	• 04
13.	Inlet Duct - I	.05
14.	Inlet Duct - III	.05
15.	Inlet Duct - IIIR	•05

The wind tunnel tests were conducted to establish and confirm the basic inlet geometry and to verify the control of the inlet as well as the compatibility of the inlet with the engines. The tests included 3,138 actual test hours on the .04 scale models for basic inlet geometry and 717 test hours on the .25 model in the 10 ft supersonic tunnel of Lewis Propulsion Laboratory for inlet recovery, inlet control parameters, BLC, and dynamic response. The tests conducted on the .577 model at AEDC for inlet-engine compatibility, required 560 test hours and included extensive engine operation up to Mach 3.0. In addition, 245 hours of testing were conducted utilizing the .10 scale model of the full inlet configuration, i.e., both inlets and incorporating air vehicle features, to verify control parameters and the air induction system.

Exhibit 16, Page IV-46, presents a picture of the .577 scaled model of one inlet duct system. This model was 1/3 area scale of the air vehicle or full scale for one engine. Exhibit 17, Page IV-47, presents the .577 test results. Also shown on the graph is the .25 scale tests and depicts the close agreement between the estimated match (inlet/engine) and the test results of the two models.

Other ground tests conducted on the AIS, in addition to that performed by subcontractors on the buzz, unstart, and local Mach sensors/transducers, included a "breadboard" mockup of the control system. These tests were conducted to establish circuitry, power levels, accuracy, resolution, and frequency response requirements of the control system hardware. The inlet parameters were also incorporated into the computer system of the Flight Control Simulator. This provided excellent crew training and early evaluation of system control layout, system responses, and air vehicle re-actions.



TV-46

EXHIBIT 16 SD72-SH-0003

۱

SD72-SH-0003

EXHIBIT 17

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

WBS IDENTIFICATION: GROUND TESTS

- WBS CODE: 1.5.6

	CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
	MAJOR ASSEMBLIES	TYPE/RO.	SYSTEM BREADBOARD COMPONENT AIRWORT	ADBOARD AI RWORTHI NES	SYSTEM BREADBOARD COMPONENT AIRWORTHINESS, QUAL. TEST	E	
	MODELS	TY PE/NO.	AEDC WIND TUNNEL				
<u>.</u>	MOCKUPS	TYPE/NO.	A/V - CONT	A/V - CONTROLS & DISPLAYS	AYS		ł
<u></u>	FACILITIES	TYPE/NO.	DEVELOPMENT LABS AICS SIMULATOR (DEVELOPMENT LABS AICS SIMULATOR (TRAINER)	R)		
IV-	SIST	TYPE/NO	DEVELOPMENT TESTING DYNAMIC TESTS, FREQ	•	RESPONSE		
18	ACCURACY (DATA)	PERCENT OF FS	ß	-5 to 1.5 -			•
	FREQUENCY RESPONSE (DATA)	HERTZ	0.1 TO 10.0 Hz 0.1 TO 3.0 Hz 0.1 TO 3.0 Hz 0.1 TO 3.0 Hz 0.1 TO 6.0 Hz		THROAT MASTER CYL LOCAL MACH X'DUCER TRIMMER CYL BYPASS BYPASS MASTER CYL		4
	RESOLUTION (DATA)	PERCENT OF FS	I	1.5			•
·	SPEED RANGES	MACH NO.	0 TO M. 3.0				ţ
	TEMPERATURE RANGES	DEGREES F	-65°F TO 450°F	OF			ł
D72-S							

Space Division North American Rockwell

TECHNICAL DRIVER

SUBSYSTEM: AIR INDUCTION SUBSYSTEM

WBS CODE: 1.5

WBS CODE:

1.5.2

DRIVERS: BYPASS SYSTEM BYPASS DOORS WARPING/SEALING

The bypass doors were designed to provide convergent-divergent area nozzles for the initial opening. This was accomplished by shape and by opening one door panel outward and the other panel inward: see Exhibit 6, Page IV-18. The door panels, especially the mains, were long and narrow which inherently resulted in door sealing and warping problems. (This design was necessary since the doors were located on the wing mold line and deflective surfaces had to be kept to a minimum.)

After considerable effort fitting the doors prior to flight, it was found that air loads, with the working loads, warped the doors and resulted in poor sealing at low speeds. Warped doors had little impact on system operation at supersonic speeds since shock control was a function of airflow area not door position and also, the inlet duct pressures were higher than ambient. However, at low speeds where the inlet duct pressures were less than ambient, the warped doors (poor sealing) resulted in reverse airflow causing some engine face pressure distortion.

Although rework to the doors were made to strengthen the torsional modes, complete satisfactory operation was not achieved. This was due mainly to the nature of the Flight Test Program and its objectives; within these program goals the bypass doors were satisfactory. Exhibit 6, Page IV-18, and Exhibit 7, Page IV-23, present schematics of the bypass doors.

TECHNICAL DRIVER

SUBSYSTEM:	AIR INDUCTION SUBSYSTEM	WBS CODE:	1.5
DRIVERS:	AIR INDUCTION CONTROL SYSTEM	WBS CODE:	1.5.3

At the onset, the Air Induction Control System (AICS) was a dual electromechanical system with the control packaged for installation in the electronic equipment bay. In the second quarter of 1962, a review of the control unit development program was conducted with the subcontractor to negotiate late changes (as a result of wind tunnel tests) and possible rescheduling. In June, 1962, due to the technical and scheduling problems encountered during the program review, the AICS subcontractor was terminated and the development effort of the control unit was assumed by North American Rockwell (NR).

The NR system established was a single electro-hydraulic automatic system with dual standby capabilities and utilized pneumatic and electronic techniques compatible with the established mechanical and hydraulic actuation mechanism. To facilitate design, packaging of the hardware was not to be a restraint with that equipment requiring environmental control installed in a package located in the weapons bay. This AICS package had its own ECS (see ECS: WBS 1.2) and was similar to the Flight Test Instrumentation Package located in the forward part of the weapons bay.

Since the NR design was started late and due to the complexity inherent in an automatic system development, it was decided that an interim manual system with automatic functions would be installed in air vehicle No. 1 prior to flight and retrofitted later with the full automatic system. The full automatic system was incorporated in air vehicle No. 2 prior to its first flight. This scheduling problem essentially put two AICS designs in development, however, the interim system development was mostly involved with the integration of "off-the-shelf" hardware. It differed mainly in that the buzz and restart functions were copilot initiated, the throat was scheduled by air vehicle Mach number biased by a manual copilot control, and the bypass doors were manually controlled by the copilot for shock control. The copilot manual controls for the interim system were located on a horizontal plate attached to the copilot's flight control column. Extensive training was required on the flight control simulator to train the crew in the use of the interim system.

TECHNICAL DRIVER

SUBSYSTEM:	AIR INDUCTION SYSTEM	WBS CODE:	1.5
DRIVERS :	AIR INDUCTION CONTROL SYSTEM SENSORS AND TRANSDUCERS	WBS CODE:	1.5.3

The B-70 requirements for the Air Induction Control System (AICS) dictated the development of extremely accurate high temperature sensors and transducers. The high temperature requirement in itself did not present a particular difficult problem, however, obtaining the desired accuracy at high temperature necessitated an extensive research and development program with some schedule impacts in delivery.

The initial problems encountered with the development of the buzz and unstart sensors was the late delivery of Statham transducers which were the heart of the basic sensors. The late delivery of the pressure transducers was caused by unsatisfactory signal to noise ratios. Although further development showed the high noise level to be caused by strain wire attachment techniques, it continued to plague the flight test program in specific sensor instances.

In addition to the noise problem, the local Mach transducer had an undesirable "dead band" at the Mach 3 end. This phenomenon appeared as drop-off in throat scheduling after the air vehicle had experienced slight yaws which changed the local Mach at the inlet. This small dead band at the Mach 3 end of the schedule was not satisfactorily solved during the flight test program. The impact of the condition was minimized by the copilot's inflight trimming of the throat with the standby electrical actuators.

The buzz sensor was a complex dual pressure sensing device. The sensor was designed for a bleed type bypass which was maintained as a reference point for inlet pressure levels. It also imposed on this reference point the dynamic pressure cycles during inlet dynamic conditions. The design requirement was for the sensor to provide a signal when six or more pressure cycles occurred with a given amplitude above a pre-determined inlet duct pressure level schedule. In addition to the previously mentioned noise problem, the development effort centered around determining the correct air passages and their required flows. Although the majority of buzz sensors were satisfactory, repeatability was below standard and several false inflight buzz signals did occur during the flight test program.

DEVELOPMENT DATA SUMMARY

WBS TITLE: AIR INDUCTION SUBSYSTEM WBS CODE: 1.5

STATE OF THE ART RATING: 4 (See Remarks)

PERCENT DEVELOPED MATRIX:

-	PRIOR TO F	PRIOR TO FLIGHT		
	CONFIGURATION	GROUND TEST	1	
PROGRAM LEVEL	40% (AV1) 80%(AV2)	76%	29%	
EFFORT TO GO	82% (AV1) 44%(AV2)	49%	89%	
GROUND TESTS			**************************************	

TYPE OF TEST	NUMBER OF UNITS	TEST HOURS
CONFIGURATION RESEARCH (1) (2)	10	2,700
DESIGN FEASIBILITY	-	-
DESIGN VERIFICATION (1) (2)	18	3,905
AIRWORTHINESS	15	2,500
QUALIFICATION (1)	-	-
OTHER	-	_
TOTAL	43	9,105
		1

REMARKS:

- (1) Does not include actuator testing by the Hydraulic Group WBS 1.4.1
- (2) Does not include the following wind tunnel tests:

1.	Preliminary Inlet Duct Research Preliminary Inlet Duct Research	.04 scale .05 scale
2.	Preliminary intel buck Research	no scale
3.	Infinitely Variable Duct	
4.	Base Pressure	.04 scale
5.	Base Pressure	.045 scale
6.	Porous Material Research	no scale
7.	Supersonic Diffuser	.04 scale
8.	Inlet Control	.10 scale
9.	Inlet Control	.25 scale
		.04 scale
TO*	Inlet Control (HSD)	.577 scale
11.	Inlet, Inlet/Engine	-
12.	Inlet Force	.04 scale
	Inlet Duct - I	.05 scale
	Inlet Duct - III	.05 scale
-	Inlet Duct - III R	.05 scale
15.	TUTER DACK - TIT V	-

WBS 1.5 AIR INDUCTION SUBSYSTEM

State of the Art:

The Air Induction Subsystem was assigned an overall state-of-the-art rating of 4 based on definitions established using AFSCM173-1 (11-28-67) as a guide. This rating was determined by comparing the RS-70 requirements with the existing capabilities at the RS-70 time period using state-of-the-art criteria discussed in subsequent paragraphs. The RS-70 configuration was selected for the comparison since it was the production configuration defined. This selection is considered valid since the development status at "out-the-door" and at program "end" is also based on the scheduled production configuration.

The definitions used in determining the state-of-the art ratings are described below. For ratings 3, 4, and 5, the following B-70 design criteria was used as an aid for rating selection.

- A. High temperature application
- B. High pressure/load/acoustics/etc., application
- C. Light-weight/special materials/unique processes

Rating

Description

- 1 The item was off-the-shelf commercial item or a standard military issue which was installed "as-is."
- 2 The item was off-the-shelf commercial item or a standard military issue which required only a physical modification for installation.
- 3 The item was considered within the state of the art but had no commercial or military counterpart. As an aid, the item was existing but required modification to be compatible with <u>one</u> of the design criteria. Also, any new design or process has a rating of at least 3.
- 4 The item was slightly beyond the state of the art, and some development was required. As an aid, the item was based on an existing concept but required modification to be compatible with <u>two</u> of the design criteria. Also, any new design or process required to be compatible with <u>one</u> of the design criteria will be rated 4.
- 5 The item was substantially beyond the existing state of the art and required major development work. As an aid, any new design or process required to be compatible with <u>two</u> of the design criteria will be rated 5.

WBS 1.5

At the onset of the RS-70, the Air Induction Control System (AICS) of the Air Induction Subsystem (AIS) was a total subcontractor effort and was comprised of a dual electromechanical automatic control with a single manual backup system. This system was cancelled and an NR system implemented which was a single electrohydraulic automatic control with dual manual backup. It is the opinion of the AICS Design Group that the NR system would have been satisfactory as a production configuration if repackaged and given time for full development. The AIS with the NR AICS is the overall subsystem that was assigned a state-of-the-art rating of 4 based on the established ground rules and the Design Group's declaration. It should be noted that the dual electromechanical automatic control system, if used in this appraisal, would have been assigned a state-of-the-art rating of 5.

Percent Developed:

The AIS development status percent comparisons of the XB-70 configuration to that scheduled for the RS-70, were made at two development stages; one at prior to flight or "out-the-door" of the No. 1 air vehicle and the other for the flight test programs. The same methodology developed and verified for the Airframe Structures Subsystem (WBS 1.1) percent comparisons was applied in the analyses of the AIS status. The analysis for the AIS was slightly more complex than that for the structures since three configurations are involved. The first system was the fully automatic dual electromechanical AICS upon which considerable development effort was expended before cancellation. However, the basic design criteria established during the initial phase was valid and applied in the design of the NR system. The NR AIS configuration for the No. 1 XB-70 was different than that for Air Vehicle No. 2 which had the NR fully automatic AIC3. The Nol XB-70 had an interim AICS which was manual with automatic features and was the configuration used in the percent comparisons at time of "out-the-door." For the comparisons made of the flight test programs, consideration had to be given to the fact that the XB-70 test program involved two AICS configurations. For the ground test programs, the No. 1 XB-70 configuration did not have to be considered since all effort was directed toward a fully automatic system development and the interim system was only installed due to a scheduling problem.

The fully automatic AIS installed in XB-70 No. 2 was assessed at 80% of a production level status, being downgraded essentially due to the packaging employed (electronics installed in large ECS package in weapons bay instead of the avionics bay of the air vehicle). The No. 1 XB-70 had the same packaging employed but also had the pilot in the control loop to bias control scheduling and to perform the "unstart" and "buzz" override functions. Since these functions that were performed by the pilot were a major part of the AICS, the No. 1 air vehicle was assessed as being approximately 50% of the fully automatic system installed in XB-70 No. 2. This analysis then shows that at the time of "out-the-door" the XB-70 configuration represented 40% of that planned for the RS-70.

WBS 1.5

To determine what expenditures would have been required to attain a first air vehicle production level status, the same curve used for the Structures Subsystem was utilized for the AIS; Exhibit 18, Page IV-57. Entering the exhibit on the left hand side at 40%, across to the curve and then down to the bottom scale, it shows that 82% more effort would have been required for a No. 1 RS-70 AIS configuration, excluding ground test effort. In regard to the ground test effort, the ground tests scheduled for the RS-70 at time of "out-the-door" was approximately 17,900 test hours not including the Hydraulic Design Group effort on actuators. Comparing this test effort with the 9,105 test hours expended on the XB-70 AIS, it shows that the testing level or verification level of the XB-70 to be approximately 51% of that planned for the RS-70 AIS at the prior to flight time period. This shows that 49% more testing effort was required to attain the production level status for a No. 1 air vehicle at the "out-the-door" time period. Entering Exhibit 18, Page IV-57, on the bottom scale at 51%, it shows that the No. 1 XB-70 was at a confidence level of approximately 76% prior to first flight.

The XB-70 flight test program for the AIS was established at 19% of a production level status as presented by Exhibit 13, page II-23, under Air Vehicle: WBS 1.0. This would indicate that 81% more flight testing effort than expended would be required for a production level effort. However, not only were two different configurations flown (air vehicles No. 1 and No. 2) during the flight test program, the flight envelope explored was 80% of the RS-70 envelope including "g's," yaws, rolls, etc; see Exhibit 14, page II-24, under Air Vehicle: WBS 1.0. Since the 19% flight effort established was based on a direct comparison of equivalent test hours, the effort expended must be adjusted to reflect the two different configurations flown and the envelope explored. Throughout the XB-70 flight test program, the test conditions were scheduled between air vehicles No. 1 and No. 2 so as to minimize the impact of the interim AICS in air vehicle No. 1. Based on this control scheduling, the AIS equivalent test hours were weighted at 80%. Since approximately one half of the total AIS test hours (9.5%) were flown on air vehicle No. 1, the equivalent flight test hours were reduced from 19% to 17% (80% x 9.5% + 9.5%). This 17% was used as the base in the calculations performed to reflect the XB-70 flight envelope impact in the following paragraph.

As previously established for the Airframe Structures Subsystem (WBS 1.1), the first 80% of the flight envelope requires only 60% of the total effort compared to the last 20% of the envelope which requires 40% of the total effort. For the AIS, this 2 to 3 ratio was directly applicable since all of the test hours were flown in the first 80% of the flight envelope. Using this ratio as a weight factor so that direct comparison can be made based on the RS-70 flight envelope, the flight test effort expended on the XB-70 was adjusted by the equation 2:3:: x : 17%. Based on this equation, the total flight test effort remaining to attain a production level status for the AIS would be $40\% + 60\% - (2 \times 17 + 3)$ or 89% (where 40% is that effort required for the last 20% of the flight envelope).

WBS 1.5

- In summary, the prior to flight status comparisons are: (1) the XB-70 No. 1 AIS was 40% of an RS-70 AIS and would require 82% more expenditure for configuration and 49% more ground testing effort; and (2), the XB-70 AIS flight test program was 11% of the planned RS-70 program effort with 89% more effort required to attain the production level status. All of the above comparisons are based on tooling, test articles, GSE, etc., being at the RS 70 or production level in both numbers and fidelity. Exhibit 18, Page IV-57, presents a graph showing the AIS percent comparisons.
 - NOTE: THE USE OF THE "EFFORT TO GO" PERCENTAGES FOR COST DETERMINATION SHOULD NOT BE APPLIED WITHOUT CONSULTING SECTION IV-8, VOLUME I, PAGE **310 FOR APPLICATION** CONSIDERATIONS.

02

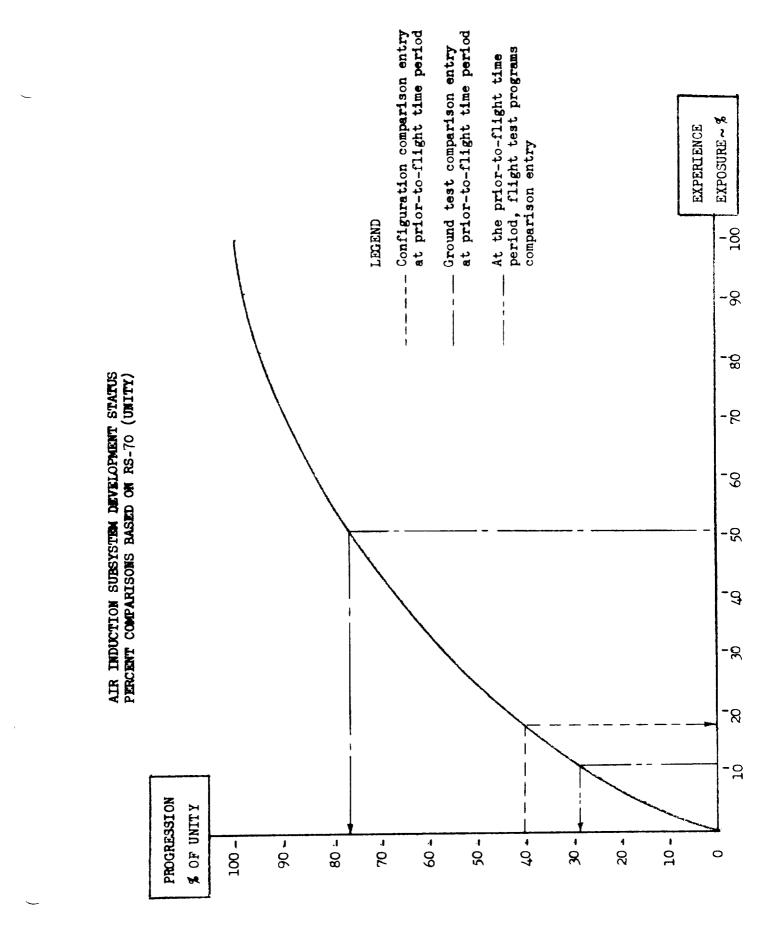
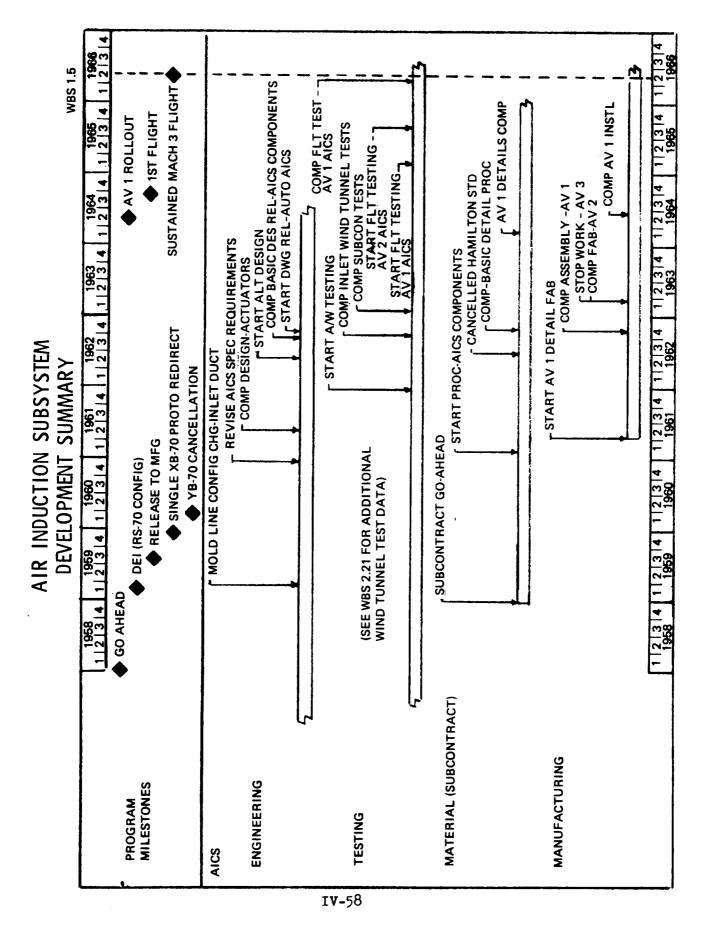



EXHIBIT 18

DEVELOPMENT SUMMARY TABULATION OF DATES

SUBSYSTEM: AIR INDUCTION

SUBSISIEM. AIR INDUCTION	"DD CODE. 1
ENGINEERING	
Mold Line Configuration Change - Inlet Duct Revise AICS Spec Requirements Complete Design-Actuators Start NR AICS System Design Complete Basic Design AICS Components Start Drawing Release - Automatic AICS System	3-20-59 12-16-60 5-26-61 6-01-62 9-17-62 10-05-62
TESTING	
Start A/W & Accept. Testing AICS Component AV #1 Complete Wind Tunnel Tests (Scale Inlet/Engine) Complete Sub/Cont. Testing AICS Components AV #1 Start Flight Testing AV #1 AICS (Flight #5) Start Flight Testing AV #2 AICS (Flight #5) Complete Flight Testing AV #1 AICS (Flight #49)	12-20-61 9-27-62 1-11-63 2-16-65 9-17-65 5-09-66
MATERIALS (SUBCONTRACT)	
Initial Subcontract Go-Ahead Start Procurement AICS Components Cancel Hamilton Standard Controller Complete Basic Detail Procurement Receive Subcontract Items AV #1 AICS at NAA	12-12-58 1-27-61 6-22-62 10-23-62 3-14-64
MANUFACTURING	
Start AV #1 Detail Fabrication Complete Fabrication & Assembly AV #1 (Excluding Sensors) Stop Work AV #3 Complete Fabrication AV #2	4-28-61 10-23-62 3-06-64 3-19-64
Complete Fabrication AV #2 Complete AV #1 Installations	6-16-64

YSTEM	IMPACTS
AIR INDUCTION SUBSYSTEM	/ PROGRAMMATIC
AIR	DES IGN

.

DESIGN/PROGRAMMATIC NARRATIVE

SUBSYSTEM: AIR INDUCTION CONTROL

WBS CODE: 1.5

3-20-59 to 6-30-59

Configuration changes affecting the mold line were made to the wing and duct inlet. Engineering authorization for fabrication in the duct area structure was delayed until July 1, 1959.

10-2-59 to 12-16-60

A problem was experienced in regard to duct deflection out of tolerance condition which resulted in a stop work on tooling. Problems ultimately resulted in revisions to AICS specifications on December 16, 1960, thus delaying submittal of firm design information to subcontractors.

12-16-60

Revision to AICS procurement specifications as a result of design changes to the inlet ducts.

10-19-61

Engineering (NAA) incorporated a change to the AICS system to preclude shock wave movement out of one engine air intake duct due to improper aperture control. The condition could cause yaw and jeopardize safety of the air vehicle.

6-22-62

A decision was reached by NAA Management to cancel the Hamilton Standard AICS controller. This caused removal of parts already installed in AV #1. An alternate design release was currently under way at NAA for the AICS. It was decided to install the modified manual AICS on a mode basis.

8-31-62

A decision was reached to install the improved manual AICS prior to the first flight of AV #1. The improved system required honeycomb panel rework, installation of eight, two-inch conduits; considerable wiring which ranged from the instrument panel to the weapons bay; and numerous long leadtime purchased items. Fabrication of an equipment package similar to that used for instrumentation was also required. Further air vehicle modification was required for the second system along with the addition of more purchased components consisting of synchros, electrohydraulic valves, and instrument panel controls. These systems affected AV #1 only.

10-31-62 to 6-8-66

Problems with Buzz and Unstart Sensors from Marquardt started with late availability of Statham Transducers. Noise level problems with the sensors developed and were thought to be caused by method of strain wire attachment to transducers. This problem continued, i.e., with sensor noise and unstarts, until the conclusion of the flight test program on AV #2. A more detailed description of the problems experienced will be reflected under the flight test area of this report.

12-31-62

Late unavailability of Statham transducers impacts delivery of Buzz and Unstart Sensors to NAA.

5-1-63

A decision was reached not to install the AICS in AV #1 until after first flight.

7-1-63

The first half shipset of sensors failed at NAA during system checkout on AV #1 and were returned to the subcontractor for analysis and repair.

3-14-64

All AV #1 AICS hardware had been received at NAA; however, problems were still being experienced with sensors at the subcontractor for AV #2.

3-27-64 to 2-17-65

Structure problems were encountered on AV #1 which actually impeded completion of installation, operations and checkout of the AICS. At this point, the AICS was not the driving factor but structure problems were. Though these problems are too numerous to mention, selected areas are defined for reference purposes as follows:

- 1. Door sealing and warping.
- 2. Sealing problems.
- 3. Bracket changes for the sensors.
- 4. Inlet ramp rigging delayed until completion of structure work.
- 5. Interference problems with AICS bypass doors.
- 6. Closeout of doors held up for structure repairs.

5-11-64 to 6-8-66

Flight test records indicate that the AICS for AV #1 was generally satisfactory in operation. This statement should be qualified to indicate satisfactory operation for a development aircraft. The Buzz and Unstart Sensor reliability was unsatisfactory but did not prove to be as problematical as for AV System #2.

The fully automatic AICS for AV #2 was generally satisfactory in operation but was classified in the "not completely developed" category due to the following problem areas that needed refinement:

1. There was local mach scheduling drop-off at high mach numbers. This resulted in improper throat scheduling at high speed and contributed to several inadvertent unstarts. This did not necessarily occur in straight flight but when the aircraft yawed.

- 2. The improper throat schedules as noted above were the major cause of unstarts or the inability of the Automatic Shock Control to prevent unstarts. One of the major goals was the development of the AICS to prevent inadvertent unstarts.
- 3. The component reliability of the AICS was not as good as desired. In particular, the Buzz and Unstart Sensors were unsatisfactory. The electronics in general, Buzz and Mach logic computer, Buzz and Unstart power supplies, valve driver and throat deviation control, and the associated computer modules were subject to malfunctions and failures.

COST DEFINITION

SUBSYSTEM: AIR INDUCTION

WBS CODE: 1.5

Total costs of \$19,060,408 presented in this WBS item include all identifiable expenditures to design, develop, ground test, fabricate and assemble all components, assemblies and developmental test hardware within the Air Induction Subsystem as defined by the WBS. Total expenditures include the following items:

- a) Development of subsystem specification requirements.
- b) Subsystem installation and integration design.
- c) Vendor coordination.
- d) In-house ground testing including the design and fabrication of models, mockups and simulators.
- e) Subcontracted hardware including the supplier costs for engineering, manufacturing, tooling and testing.
- f) In-house and subcontracted wind tunnel tests.

Specifically excluded from the expenditures are:

- g) Fabrication and assembly of the structural items of the inlet system (WBS 1.5.1) and the bypass system (WBS 1.5.2). These costs are included in the production costs of the intermediate fuselage (WBS 1.1.5). The costs can not be segregated from the intermediate fuselage.
- h) Fabrication of subsystem provisions (shelves, brackets, clips, clamps, wire harnesses, etc.).
- i) Miscellaneous purchased parts and installation materials. This includes the fabrication and purchased parts of the Air Induction Control System (WBS 1.5.3) returned in-house after the cancellation of Hamilton Standard. (See Subcontractor Data Sheet, page IV-68.
- j) Installation of the subsystem equipment into the vehicles.
- k) Subsystem, vehicle and preflight checkout.
- 1) Government furnished wind tunnel testing.

Costs for items h) through k) are contained in WBS 1.12 (Volume IV, page 647). Internal accounting procedures and the resultant cost reports do not provide a basis for establishing expenditures for these items by individual subsystems. Therefore, all costs are collected and reported in one WBS item. Refer to WBS 1.12 for additional information.

Detail of the recorded costs associated with this subsystem is provided by Element of Cost (EOC) and Subdivision of Work (SOW). Section III of Volume I provides a detail definition of these items. Further segregation of the cost data is provided by the WBS. All cost data is displayed at

WBS level 5 (Air Induction Subsystem WBS 1.5) with the exception of in-house ground testing (WBS 1.5.6). Cost data can be located on the following pages:

		Cost <u>Breakdown</u>		Phased
WBS 1.5	\$12,999,030	page IV-70	page	IV-71
WBS 1.5.6 Ground Tests	6,061,378	page IV-70	page	IV-85
Total WBS 1.5	\$19,060,408	page IV-70	page	IV-94

A summary of the subcontractor recorded cost data is provided on page IV-68. Contractual arrangements, delivery dates, costs by supplier, quantity of hardware delivered and other pertinent data is provided. Cost data includes the supplier expenditures for engineering, production, tooling and testing (where identifiable) performed at the supplier's facility. Refer to the subcontracting Element of Cost definition (Volume I, page I-26) for additional explanation.

As an aid in the definition and evaluation of the in-house engineering costs associated with this subsystem, a matrix of engineering hours has been developed. This matrix, displayed below, is a summary of all the in-house engineering groups that provided support to the design and development of the Air Induction Subsystem.

Group No.	Title	Hours Expended
4	Fluid Power System	76,006
6	Controls System	32,411
14	Wind Tunnel Models	261,674
55	Flight Control Analysis	64,054
96	Wind Tunnel Projects	24,696
99	Auxiliary Control System	107,818
132	Thermodynamics	36,131
134	Wind Tunnel Projects	24,499
155	Propulsion Sciences	3,406
	Total Engineering Hours	630,695

WBS 1.5	319,826 hours (page	IV-70)
WBS 1.5.6	310,869 hours (page	IV-70)
	630,695 hours	

Ground testing activities associated with the development of the Air Induction Subsystem have been identified and the costs assigned to WBS 1.5.6 (page IV-85). These costs reflect the in-house expenditures only.

Testing activities performed by the subcontractors where identified are included under WBS 1.5, Test/QC Subdivision of Work and the Subcontracting Element of Cost. The following is a summary of the major in-house test activities identified to this subsystem.

Description		Recorded Costs
Wind Tunnel Models .577 Scale Inlet Duct Model .10 Inlet and Ramp Flutter Model Airworthiness Testing of #2AICS Panel Actuators AICS Breadboard & Development Testing .25 Inlet Control Model AICS Airworthiness Testing of Components Airworthiness Testing of Components Airworthiness Testing of #AICS Bypass Actuator Ramps-Air Induction System - Fatigue Test Bypass Trimmer Actuator Cylinder Bypass Manual Door Actuator AICS Buzz and Unstart Sensors Bypass Shock Limiter Cylinder AICS Breadboard Various		\$2,276,514 1,355,925 607,976 241,590 207,737 150,541 109,161 106,728 92,942 66,924 60,725 52,094 21,337 17,704 17,499 538,470
	Costs (Less MPC & G&A)	\$5,923,867
	Material Procurement Cost	52,977
	General and Administrative	84,534
	Total Cost WBS 1.5.6	\$6,061,378

SUBCONTRACTOR MATRIX

Subsystem: Air Induction

WBS Code: 1.5

SUBCONTRACTOR	ENGINEERING	PROD	TOOLING	TEST	TOTAL
Hamilton Standard Marquardt Statham	6,120,046 872,077 49,361	1,151,980 702,590 138,865	31,404 - -	- 144,733 90,775	7,303,430 1,719,400 279,001
TOTAL	7,041,484	1,993,435	31.404	235,508	9.301.831

HAMILTON STANDARD was selected to produce the B-70 Air Induction Control System. Two letter contracts were awarded to Hamilton Standard for this effort:

L961-G-600108	February 19, 1959	-	December	22. 1959
LOE1-X2-600215			June 21,	

The Statement of Work for the two purchase orders directed the subcontractor to conduct analytical, design, and other necessary studies leading to the selection, optimization, and definition of an Air Induction System compatible with the B-70 Weapon System and NR Specification NA58-532 and NR Specification NA58-228.

Purchase Order 600108 was in the early stages of design and development when the contract was terminated on December 22, 1959 for the convenience of the Government. A total of 718 drawings were produced, 1600 pieces of experimental hardware were in process, and 55 fixtures had been fabricated at the time of termination.

A 1/25 scale model of the B-70 air inlet was completed and installed in the 17 inch by 17 inch Unitéd Aircraft wind tunnel. Testing was started on June 17, 1959 to determine the control characteristics for angle of attack and yaw changes in the higher flight speed regimes. A total of 170 test hours were conducted on the system before the contract was terminated. The cost of the test effort was not segregated by the subcontractor and is therefore included in the Engineering cost for Hamilton Standard.

When the B-70 program was reinstated, Letter Contract 600215 was awarded to Hamilton Standard to continue the Air Induction Control System. The Statement of Work called for the subcontractor to design, develop, fabricate, test, package and deliver the Air Induction Control System.

Purchase Order 600215 was terminated for convenience by NR on June 21, 1962 due to the magnitude of unresolved technical problems and their estimated cost and schedule impact on the program. The required system performance was beyond the current state-of-the-art. It was determined that 59.2% of the effort was completed at the time of termination.

WBS CODE 1.5

<u>MARQUARDT</u> was selected to produce the Duct Buzz and Inlet Unstart Sensors for the Air Induction System of the XB-70.

Letter Contract L2E1-YJ.-600416 was awarded to Marquardt on August 1, 1962 and terminated March 6, 1964.

The Statement of Work called for the subcontractor to design, develop, fabricate, test, package, and deliver the Duct Buzz and Inlet Unstart Sensors including Power Supplies and data for the XB-70 Air Vehicles 1, 2, and 3. The negotiated schedule called for the airworthiness test report by December 1, 1962 and hardware delivery from November 26, 1962 through Febiryary 1, 1963. Air Vehicle 3 was 50% complete at time of termination.

The residual inventory identified to Purchase Order 600416 was co-mingled with the residual inventory from Purchase Order L3E1-X0-600540 which was issued for spare parts. The inventory was shipped to NR for spare parts requirement except items which were considered to be of no potential use. The usable tooling was delivered to NR for storage and disposal. All proceeds were credited to the above contract.

The final cost of spares contract 600450 was \$72,775.

STATHAM was awarded Letter Contract L3E1-X0-600543 for High Temperature Transducers for the Air Induction Control System for the XB-70 Air Vehicles 1 and 2 on August 7, 1963 and closed August 6, 1964.

The Statement of Work called for Statham Instruments to perform research, development, testing, and related engineering studies in connection with material and fabrication processes to manufacture the required transducers for Air Vehicles 1 and 2.

The principal effort in this program was the improvement goal of optimizing the strain wire, strain wire attachment method, insulators, diaphram material, and compensating resistor stabilization.

Certain items of residual inventory were retained by Statham in the amount of \$3,447. The remaining inventory was delivered to NR for disposition, and the proceeds credited to the appropriate contract.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM

		6-M ASSY	6-M ASSY	
		0	06	
		HOURS	HOURS	
		DGLLARS	DOLLARS	
DESIGN/ENGINEERING		319826	310869	630605
LABOR AT \$ 4.931		1656005	1451077	
ENGR BURDEN AT \$	4.282	1477416	1223197	2700615
SHOP SUPPORT			151065	151045
LABOR AT \$ 3.113				
TEST/QC			10036	470196
LABOR AT \$ 3.115				
MEG BURDEN AT \$	3.908		21204	31264
			029014	629614
ENGR MATERIAL			514224	F1 (0 0 1
SUBCONTRACT		9301931	240220	546226
MPC		360004	52977	9301831
WIND TUNNEL		0066666	52977	412883
OTHER COST				1243178
		*	326113	326113
SUB-TOTAL		12795238	5976844	18772082
GEN & ADMIN		203792	84534	288326
TOTAL COST		12999030	6061378	19060408

SUBDIVISION OF WORK COST DETAIL - SEE PAGE IV-71 IV-85 IV-94

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDEP NASA CONTRACT NAS9-12100

COST BREAKDOWNS B-70 AIRCRAFT STUDY

 4-SYSTEM
 1

 5-SUBSYSTEM
 05

 6-MAJASSY
 0

AIR INDUCTION SUBSYSTEM

	DESIGN ZENGR HOURS DOLLARS	PROD Hours Dollars	TCOLING AND STE HOURS DCELLARS	TEST ZOC HOURS OOLLARS
DESIGNZENGINEERING LABOR AT \$ 5.178 ENGE BURDEN AT \$ 4.619	319826 1656085 1477416			
SUBCONTRACT MPC	7041484 249370	1993435 90243	31404 1089	2355 08 19205
SUB-TOTAL	10424355	2083678	32492	25471.3
GEN & ADMIN	165151	33367	480	4794
TOTAL COST	10589506	2117045	32972	259507

TIME-PHASED COST				
DETAIL - SEE PAGE	IV-73	IV-77	IV-78	IV-79

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM056-MAJASSY0

AIR INDUCTION SUBSYSTEM

	TOTAL HCURS DOLLARS
DESIGN/ENGINEERING LABOR AT \$ 5.178 ENGR BURDEN AT \$ 4.619	319826 1656085 1477416
SUBCONTRACT MPC	9301831 359906
SUB-TCTAL	12795238
GEN & ADMIN	203792
TOTAL COST	12999030

TIME-PHASED COST	
DETAIL - SEE PAGE	IV-81

APRIL 1972

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM15-SUBSYSTEM056-MAJ ASSY0SUBD OF WORKDESIGN/ENGINEERING

	MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DCLLARS		LABOR + Burden \$
Q-1 58 Q-2 58	3.0	563	4.668	2628	2561	5189
Q-3 58 Q-4 58	36.0	6170	4.327	26699	24231	50 93 0
Q = 1 59 Q = 2 59	49.5	8406	4.359	36638	28866	65504
Q-3 59 Q-4 59	57.0	10159	4.246	43136	36366	79502
Q = 1 60 Q = 2 60	160.5	27893	4.558	127123	102668	229791
$Q = 2 \ 60$ $Q = 3 \ 60$ $Q = 4 \ 60$	211.5	35427	4.680	165808	127830	293638
Q = 1 61 Q = 2 61	268.5	45876	4.761	218424	153063	371487
Q - 3 61 Q - 4 61	135.0	24591	5.172	127191	113203	240 394
Q - 1 62 Q - 2 62	153.0	26149	5.414	141568	119814	261382
Q-3 62 Q-4 62	181.5	30478	5.359	163345	152911	316256
Q = 1 63 Q = 2 63	180.0	30662	5.598	171647	164500	336147
Q-3 63 Q-4 63	153.0	25619	5.632	144287	145006	289293
Q = 1 63 Q = 1 64 Q = 2 64	120.0	20496	5.800	118880	129469	248349
Q - 3 64 Q - 4 64	106.5	18658	5.817	108535	118739	227278
Q-1 65	39.0	6717	6.844	45968	44312	90280

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM 6-MAJ ASSY 0 SUBD CF WORK DESIGN/ENGINEERING

ON-SITE LABOR

.

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABUR + BURDEN \$
Q-2 65 Q-3 65	10 (1)					
	12.0	1962	7. 24 C	14204	13877	28081
TOTAL	1866.0	319826		1656035	1477415	3133501

~~~

•

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

\_\_\_\_\_

-

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM056-MAJASSY0SUBDUF WORK DESIGN/ENGINEERING

|                  | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>RATE | LABOR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>Burden \$ | SUBC          |
|------------------|----------------|-----------------|---------------|------------------|---------------------|----------------------|---------------|
| <b>Q-1</b> 58    | 3.0            | 563             | 4.668         | 2628             | 2561                | 5189                 |               |
| Q-2 53           |                |                 |               |                  |                     |                      |               |
| 0-3 53           | 36.0           | 6170            | 4.327         | 26699            | 24231               | 50930                |               |
| Q-4 58           |                | o / <b>o</b> /  | 1 35 0        | 2/120            | 20.044              | 65504                | 65441         |
| 0-1 59           | 49.5           | 8406            | 4.359         | 36638            | 28866               | -0770 <del>4</del>   | 0,741         |
| 6-2 59           | 57.0           | 10159           | 4.246         | 43136            | 36366               | 79502                | 933030        |
| Q-3 59<br>Q-4 59 | 57.0           | 10155           | 40240         | 47170            | 50500               | .,,,,,               |               |
| 0 - 1 = 60       | 160.5          | 27893           | 4.558         | 127123           | 102668              | 229791               | 680229        |
| Q-2 60           | 10000          |                 |               |                  | -                   |                      |               |
| Q - 3 60         | 211.5          | 35427           | 4.680         | 165808           | 127830              | 293638               | 242842        |
| 9-4 60           |                |                 |               |                  |                     |                      |               |
| Q-1 61           | 268.5          | 45876           | 4.7ó1         | 218424           | 153063              | 371487               | 825792        |
| Q-2 61           |                |                 |               |                  |                     |                      | 77/5/7        |
| Q-3 61           | 135.C          | 24591           | 5.172         | 127191           | 113203              | 240394               | 736562        |
| Q-4 61           |                |                 |               |                  | 11001/              | 241202               | 1416569       |
| Q-1 62           | 153.0          | 26149           | 5.414         | 141568           | 119814              | 261382               | 1410009       |
| Q-2 62           |                | 20170           | 5 250         | 163265           | 152911              | 316256               | 1416568       |
| Q-3 62           | 181.5          | 30478           | 5.359         | 163345           | 192911              | 510250               | 1110500       |
| 0-4 62           | 100 0          | 30662           | 5.598         | 171647           | 164500              | 336147               | 595101        |
| Q-1 63<br>Q-2 63 | 180.0          | 50002           | 20 270        | 111041           | 104900              |                      |               |
| Q-3 53           | 153.0          | 25619           | 5.632         | 144287           | 145006              | 289293               | <b>9</b> 9055 |
| Q-4 63           | 17500          |                 |               |                  |                     |                      |               |
| Q-1 64           | 120.0          | 20496           | 5.800         | 11888C           | 129469              | 248349               | 30295         |
| Q-2 64           |                |                 |               |                  |                     |                      |               |
| 0-3 64           | 106.5          | 18658           | 5.817         | 108539           | 118739              | 227278               |               |
| Q-4 64           |                |                 |               |                  |                     |                      |               |
| Q-1 65           | 39.0           | 6717            | 6.844         | 45968            | 44312               | 90280                |               |
| Q-2 65           |                |                 |               | 1 / 0.0 /        | 10077               | 29.0.9.1             |               |
| Q-3 65           | 12.0           | 1962            | 7.240         | 14204            | 13877               | 28081                |               |
| TOTAL            | 1866.0         | 319826          |               | 1656085          | 1477416             | 3133501              | 7041484       |

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM 6-MAJ ASSY 0 SUBD CF WORK DESIGN/ENGINEERING

|                            | MPC    | SUB<br>Total | GEA    | TOTAL<br>COST |
|----------------------------|--------|--------------|--------|---------------|
| Q-1 58<br>Q-2 58           |        | 5189         |        | 5185          |
| Q-3 58<br>Q-4 58           |        | 50930        |        | 5093C         |
| Q-4 58<br>Q-1 59<br>Q-2 59 | 1734   | 132679       |        | 132679        |
| Q-3 59<br>Q-4 59           | 25495  | 1038027      |        | 1038027       |
| Q-1 60<br>Q-2 60           | 40357  | 950377       | 18108  | 968485        |
| Q-3 60<br>Q-4 60           | 14408  | 550888       | 10496  | 561384        |
| Q-1 61<br>Q-2 61           | 23659  | 1220938      | 22689  | 1243627       |
| Q-3 61<br>Q-4 61           | 21103  | 598059       | 18547  | 1016606       |
| • Q-1 62<br>Q-2 62         | 45021  | 1722972      | 28920  | 1751892       |
| Q-3 62<br>Q-4 62           | 44980  | 1777804      | 29840  | 1807644       |
| Q-1 63<br>Q-2 63           | 25270  | 956518       | 15993  | 972511        |
| Q-3 63<br>Q-4 63           | 3183   | 391531       | 6546   | 393077        |
| Q-1 64<br>Q-2 64           | 4160   | 282804       | 6018   | 283822        |
| Q-3 64<br>Q-4 64           |        | 227278       | 4836   | 232114        |
| Q-1 65<br>Q-2 65           |        | 90230        | 2409   | 92689         |
| Q-3 65                     |        | 28081        | 749    | 28830         |
| TOTAL                      | 249370 | 10424355     | 165151 | 10589506      |

**APRIL 197**2

\_\_\_\_

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

| 4–SYSTEM<br>5–SUBSYSTEM    | - | AIR INDUCTION SUBSYSTEM |
|----------------------------|---|-------------------------|
| 6-MAJ ASSY<br>Subd of Work | - |                         |

|                  | SUBC    | MPC   | SUB<br>Total | GEA   | TOTAL<br>CCST |
|------------------|---------|-------|--------------|-------|---------------|
| Q-1 59           | 13396   | 355   | 13751        |       | 13751         |
| Q-2 59<br>Q-3 59 | 189018  | 5164  | 194182       |       | 194182        |
| Q-4 59<br>Q-1 60 | 137266  | 8143  | 145409       | 277C  | 148179        |
| Q-2 60<br>Q-3 60 | 43459   | 2578  | 46 03 7      | 877   | 46914         |
| Q-4 60<br>Q-1 61 | 151799  | 4062  | 155861       | 2896  | 158757        |
| Q-2 61<br>Q-3 61 | 134883  | 3864  | 138747       | 2578  | 141325        |
| Q-4 61<br>Q-1 62 | 297342  | 9450  | 306792       | 5150  | 311942        |
| Q-2 62<br>Q-3 62 | 298641  | 9482  | 308123       | 5172  | 313295        |
| Q-4 62<br>Q-1 63 | 395086  | 16776 | 411862       | 6886  | 418748        |
| Q-2 63<br>Q-3 63 | 145453  | 4674  | 150127       | 2510  | 152637        |
| Q-4 63<br>Q-1 64 | 187092  | 25695 | 212787       | 4528  | 217315        |
| TOTAL            | 1993435 | 90243 | 2083678      | 33367 | 2117045       |

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM356-MAJ ASSY0SUBD OF WORK TOOLING AND STE

|                  | SUBC  | MPC  | SUB<br>TUTAL          | G & A | TOTAL<br>CCST |
|------------------|-------|------|-----------------------|-------|---------------|
| Q-1 59<br>Q-2 59 | 341   | 9    | 35 C                  |       | 350           |
| Q-3 59<br>Q-4 59 | 4867  | 132  | <b>4</b> 9 <b>9 9</b> |       | 4999          |
| Q-1 60<br>Q-2 60 | 3549  | 210  | 3759                  | 72    | 3831          |
| Q-3 60<br>Q-4 60 | 1274  | 75   | 1349                  | 26    | 1375          |
| Q-1 61<br>Q-2 61 | 4320  | 123  | 4443                  | 83    | 4526          |
| Q-3 61<br>Q-4 61 | 3860  | 110  | 3970                  | 74    | 4044          |
| Q-1 62<br>Q-2 62 | 7050  | 224  | 7274                  | 122   | 7 3 9 6       |
| Q-3 62<br>Q-4 62 | 5790  | 183  | 5973                  | 100   | 6073          |
| Q-1 63<br>Q-2 63 | 30    | 1    | 31                    |       | 31            |
| Q-3 63<br>Q-4 63 | 208   | 6    | 214                   | `     | 214           |
| Q-1 64           | 115   | 15   | 130                   | 3     | 133           |
| TOTAL            | 31404 | 1088 | 32492                 | 48 C  | 32972         |

#### **APRIL 1972**

----

~

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

-----

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 6-MAJ ASSY 0 SUBD OF WORK TEST/QC

# AIR INDUCTION SUBSYSTEM

|                  | MAN-<br>MUN TH S | L ABOR<br>Hours | LABOR<br>RATE | LABOR<br>DOLLARS | BURDEN<br>DOLLARS | LABOR +<br>BURDEN \$ | SUBC   |
|------------------|------------------|-----------------|---------------|------------------|-------------------|----------------------|--------|
| Q-1 62           |                  |                 |               |                  |                   |                      | 9838   |
| Q-2 62<br>Q-3 62 |                  |                 |               |                  |                   |                      | 9801   |
| 2-4 62           |                  |                 |               |                  |                   |                      |        |
| Q-1 63<br>Q-2 63 |                  |                 |               |                  |                   |                      | 73413  |
| Q-3 63           |                  |                 |               |                  |                   |                      | 38968  |
| 0-4 63<br>Q-1 64 |                  |                 |               |                  |                   |                      | 103488 |
| TOTAL            |                  |                 |               |                  |                   |                      | 235508 |

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

AIR INDUCTION SUBSYSTEM

4-SYSTEM 1 5-SUBSYSTEM 05 6-MAJ ASSY 0 SUBD OF WORK TEST/QC

|        | MPC   | SUB<br>TOTAL | GδΑ  | TOTAL<br>COST |
|--------|-------|--------------|------|---------------|
| 2-1 60 |       |              |      |               |
| 9-2 60 |       |              |      |               |
| Q-3 60 |       |              |      |               |
| Q-4 60 |       |              |      |               |
| 2-1 61 |       |              |      |               |
| Q-2 61 |       |              |      |               |
| Q-3 61 |       |              |      |               |
| 2-4 61 |       |              |      |               |
| Q-1 62 | 312   | 1 01 50      | 170  | 10320         |
| Q-2 62 |       |              |      | 10520         |
| 2-3 62 | 311   | 10112        | 169  | 10281         |
| 2-4 62 |       |              |      |               |
| 2-1 63 | 3117  | 76530        | 1280 | 77810         |
| 2-2 63 |       |              |      |               |
| Q-3 63 | 1252  | 40220        | 671  | 40891         |
| Q-4.63 |       |              |      |               |
| 2-1 64 | 14213 | 117701       | 2504 | 120205        |
| TOTAL  | 10005 |              |      |               |
| TOTAL  | 19205 | 254713       | 4794 | 259507        |

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

AIR INDUCTION SUBSYSTEM

#### DESIGN/ENGINEERING

4-SYSTEM15-SUBSYSTEM056-MAJASSY0

|                  | MAN-<br>MON THS | LABOR<br>HOURS | LABOR<br>RATE | LABOR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>BURDEN \$ |
|------------------|-----------------|----------------|---------------|------------------|---------------------|----------------------|
| Q-1 58<br>Q-2 58 | 3.0             | 563            | 4.668         | 2628             | 2561                | 5189                 |
| Q-3 58<br>Q-4 58 | 36.0            | 6170           | 4.327         | 26699            | 24231               | 50930                |
| Q-1 59<br>Q-2 59 | 49.5            | 8406           | 4.359         | 36638            | 28866               | 65504                |
| Q-3 59<br>Q-4 59 | 57.0            | 10159          | 4.246         | 43136            | 36366               | 79502                |
| Q-1 60<br>Q-2 60 | 160.5           | 27893          | 4.558         | 127123           | 102668              | 229791               |
| Q-3 60<br>Q-4 60 | 211.5           | 35427          | 4.680         | 165808           | 127830              | 293638               |
| Q-1 61<br>Q-2 61 | 268.5           | 45876          | 4.761         | 218424           | 153063              | 371487               |
| Q-3 61<br>Q-4 61 | 135.0           | 24591          | 5.172         | 127191           | 113203              | 240394               |
| Q-1 62<br>Q-2 62 | 153.0           | 26149          | 5.414         | 141568           | 119814              | 261382               |
| Q-3 62<br>Q-4 62 | 181.5           | 30478          | 5.359         | 163345           | 152911              | 316256               |
| Q-1 63<br>Q-2 63 | 180.0           | 30662          | 5.598         | 171647           | 164500              | 336147               |
| Q-3 63<br>Q-4 63 | 153.0           | 25619          | 5.632         | 144287           | 145006              | 289293               |
| Q-1 64<br>Q-2 64 | 120.0           | 20496          | 5.800         | 11888C           | 129469              | 248349               |
| Q-3 64<br>Q-4 64 | 106.5           | 18658          | 5.817         | 108539           | 118739              | 227278               |
| Q-1 65<br>Q-2 65 | 39.0            | 6717           | 6.844         | 45968            | 44312               | 90280                |

~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

|              | DESIGN/ENGINEERING |                         |  |  |
|--------------|--------------------|-------------------------|--|--|
| 4-SYSTEM     | 1                  |                         |  |  |
| 5-SUB SYSTEM | 05                 | AIR INDUCTION SUBSYSTEM |  |  |
| 6-MAJ ASSY   | 0                  | AIN INDUCTION SUBSISTEM |  |  |

|        | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>RATE | LABUR<br>DOLLAR S | BURDEN<br>DOLLARS | LABOR +<br>BURDEN \$ |
|--------|----------------|----------------|---------------|-------------------|-------------------|----------------------|
| Q-3 65 | 12.0           | 1962           | 7.24C         | 14204             | 13877             | 28081                |
| TOTAL  | 1866.0         | 319826         |               | 1656085           | 1477416           | 3133501              |

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM056-MAJASSY0

-----

#### AIR INDUCTION SUBSYSTEM

|                                              | MAN-   | LABOR  | LABOR | LABOR   |         | LABOR +    |         |
|----------------------------------------------|--------|--------|-------|---------|---------|------------|---------|
|                                              | MONTHS | HOURS  | RATE  | DCLLARS | DOLLARS | BURDEN \$  | SUBC    |
| Q-1 58<br>Q-2 58                             | 3.0    | 563    | 4.658 | 2628    | 2 56 1  | 5189       |         |
| Q-3 58<br>Q-4 58                             | 36.0   | 6170   | 4.327 | 26699   | 24231   | 50930      |         |
| Q-1 59<br>Q-2 59                             | 49.5   | 8406   | 4.359 | 36638   | 28866   | 65504      | 79178   |
| Q - 3 59<br>Q - 4 59                         | 57.0   | 10159  | 4.246 | 43136   | 36366   | 79502      | 1126915 |
| Q - 1 60<br>Q - 2 60                         | 160.5  | 27893  | 4.558 | 127123  | 102668  | 229791     | 821044  |
| Q = 3 60<br>Q = 4 60                         | 211.5  | 35427  | 4.68C | 165808  | 127830  | 293638     | 287575  |
| $Q = 4 \ 80$<br>$Q = 1 \ 61$<br>$Q = 2 \ 61$ | 268.5  | 45876  | 4.761 | 218424  | 153063  | 371487     | 981911  |
| Q-3 61<br>Q-4 61                             | 135.0  | 24591  | 5.172 | 127191  | 113203  | 240394     | 875305  |
| Q = 4 81<br>Q = 1 62<br>Q = 2 62             | 153.0  | 26149  | 5.414 | 141568  | 119814  | 261382     | 1730799 |
| Q = 2  62<br>Q = 3  62<br>Q = 4  62          | 181.5  | 30478  | 5.359 | 163345  | 152911  | 316256     | 1730800 |
| Q-1 63                                       | 180.0  | 30662  | 5.598 | 171647  | 164500  | 336147     | 1963630 |
| Q-2 63<br>Q-3 63<br>Q-4 63                   | 153.0  | 25619  | 5.632 | 144287  | 145006  | 289293     | 283684  |
| Q-1 64                                       | 120.0  | 20496  | 5.800 | 118880  | 129469  | 248349     | 320990  |
| Q-2 64<br>Q-3 64                             | 106.5  | 18658  | 5.817 | 108535  | 118739  | 227278     |         |
| Q-4 64<br>Q-1 65                             | 39.0   | · 6717 | 6.844 | 45968   | 44312   | 90280      |         |
| Q-2 65<br>Q-3 65                             | 12.0   | 1962   | 7.240 | 14204   | 13877   | 28081      |         |
| TOTAL                                        | 1866.0 | 319826 |       | 1656085 | 1477416 | 31 33 50 1 | 9301831 |

•

|      | PHASED EXPEND. |
|------|----------------|
| 8-70 | AIRCRAFT STUDY |

4-SYSTEM15-SUBSYSTEM056-MAJASSY0

|                          | MPC    | SUB<br>Total | GδA          | TOTAL<br>COST |
|--------------------------|--------|--------------|--------------|---------------|
| Q-1 58<br>Q-2 58         |        | 5189         |              | 5185          |
| Q-3 58<br>Q-4 58         |        | 50930        |              | 5093C         |
| Q-1 59<br>Q-2 59         | 2098   | 146730       |              | 146780        |
| 0-3 59<br>0-4 59         | 30791  | 1237208      |              | 1237208       |
| Q-1 60<br>Q-2 60         | 48710  | 1099545      | 20950        | 1120495       |
| Q-3 60<br>Q-4 60         | 17061  | 598274       | 11399        | 609673        |
| Q = 1  61<br>Q = 2  61   | 27 944 | 1381242      | 25668        | 1406910       |
| Q - 3 = 61<br>Q - 4 = 61 | 25077  | 1140776      | 21179        | 1161975       |
| $Q - 1  62 \\ Q - 2  62$ | 55007  | 2047188      | 34362        | 2081550       |
| Q-3 62<br>Q-4 62         | 54956  | 2102012      | 35281        | 2137293       |
| Q-1 63<br>Q-2 63         | 45164  | 1444941      | 24155        | 1469100       |
| Q-3 63<br>Q-4 63         | 9115   | 582092       | 9 <b>727</b> | 591819        |
| 0-1 64<br>Q-2 64         | 44083  | 613422       | 13053        | 626475        |
| Q-3 64<br>Q-4 64         |        | 227278       | 4836         | 232114        |
| Q-1 65<br>Q-2 65         |        | 90230        | 2409         | 92689         |
| Q-3 65                   |        | 28081        | 749          | 23830         |
| TOTAL                    | 359906 | 12795238     | 203792       | 12999030      |
|                          |        |              |              |               |

#### COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 6-MAJ ASSY 06 AIR INDUCTION GROUND TESTS

|                    |       | TEST           |         |
|--------------------|-------|----------------|---------|
|                    |       | / QC           | TOTAL   |
|                    |       | HOURS          | HOURS   |
|                    |       | DOLLARS        | DOLLARS |
| DESIGN/ENGINEERING |       | 310869         | 310869  |
| LABOR AT \$ 4.677  |       |                | 1454077 |
| ENGR BURDEN AT \$  | 3.935 | 1223199        | 1223199 |
| SHOP SUPPORT       |       | 151065         | 151065  |
| LABOR AT \$ 3.113  |       | <b>47019</b> 6 | 470196  |
| TEST/QC            |       | 10036          | 10036   |
| LABOR AT \$ 3.115  |       | 31264          | 31264   |
| MFG BURDEN AT \$   | 3.908 | . 629614       | 629614  |
| ENGR MATERIAL      |       | 546226         | 546226  |
| MPC                |       | 52977          | 52977   |
| WIND TUNNEL        |       | 1243178        | 1243178 |
| OTHER COST         |       | 326113         | 326113  |
| SUB-TOTAL          |       | 5976844        | 5976844 |
| GEN & ADMIN        |       | 84534          | 84534   |
| TOTAL COST         |       | 6061378        | 6061378 |

| TIME-PHASED COST  | 0.1   |       |
|-------------------|-------|-------|
| DETAIL - SEE PAGE | IV-86 | IV-86 |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

#### DESIGN/ENGINEERING 1

| 4-SYSTEM     | 1       | NOTHEERING                 |
|--------------|---------|----------------------------|
| 5-SUB SYSTEM | 05      | AIR INDUCTION GROUND TESTS |
|              | 06      |                            |
| SUBD OF WORK | TEST/QC |                            |

#### **CN-SITE LABOR**

|                  | MAN-<br>MONTHS | LABOR<br>HOUR S | LABUR<br>Rate | LABOR<br>DOLLARS | BURDEN<br>DOLLARS | LABOR +<br>BURDEN \$ |
|------------------|----------------|-----------------|---------------|------------------|-------------------|----------------------|
| Q-1 58<br>Q-2 58 | 42.0           | 7153            | 4.378         | 31314            | 32546             | 63860                |
| Q-3 58<br>Q-4 58 | 160.5          | 26851           | 4.152         | 111473           | 105090            | 216563               |
| Q-1 59<br>Q-2 59 | 196.5          | 33500           | 4.170         | 139698           | 114973            | 254671               |
| Q-3 59<br>Q-4 59 | 147.0          | 25743           | 4.101         | 105565           | 92521             | 198086               |
| Q-1 60<br>Q-2 60 | 301.5          | 52177           | 4.521         | 235877           | 190853            | 426730               |
| Q-3 60<br>Q-4 60 | 237.0          | 39923           | 4.596         | 183471           | 144184            | 327655               |
| Q-1 61<br>Q-2 61 | 199.5          | 34050           | 4.677         | 159282           | 113580            | 272862               |
| Q-3 61<br>Q-4 61 | 144.0          | 26230           | 5.072         | 133042           | 116958            | 250000               |
| Q-1 62<br>Q-2 62 | 198.0          | 33 <b>7</b> 25  | 5.423         | 182899           | 152716            | 335615               |
| Q-3 62<br>Q-4 62 | 117.C          | 19768           | 5.366         | 106077           | 97031             | 203108               |
| Q-1 63<br>Q-2 63 | 61.5           | 10388           | 5.554         | 57691            | 54457             | 112148               |
| Q-3 63<br>Q-4 63 | 3.0            | 392             | 5.000         | <b>196</b> C     | 2235              | 4195                 |
| Q-1 64<br>Q-2 64 | 3.0            | 438             | 4.893         | 2143             | 2631              | 4774                 |
| Q-3 64<br>Q-4 64 |                | 50              | 5.840         | 292              | 321               | 613                  |
| Q-1 65           | 1.5            | 381             | 6.992         | 2664             | 2512              | 5176                 |

نمب

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION GROUND TESTS 6-MAJ ASSY 06 SUBD OF WORK TEST/QC

|                                      | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>RATE | LABUR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>Burden \$ |
|--------------------------------------|----------------|----------------|---------------|------------------|---------------------|----------------------|
| Q-2 65<br>Q-3 65<br>Q-4 65<br>Q-1 66 |                | 90             | 6.989         | 629              | 591                 | 1220                 |
| TOTAL                                | 1812.0         | 310869         |               | 1454077          | 1223199             | 2677276              |

#### NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

|              | SHOP S | UPPORT                     |
|--------------|--------|----------------------------|
| 4-SYSTEM     | 1      |                            |
| 5-SUBSYSTEM  | 05     | AIR INDUCTION GROUND TESTS |
| 6-MAJ ASSY   | 06     |                            |
| SUBD OF WORK | TEST/Q | C                          |

#### ON-SITE LABOR

|                  | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>RATE | LABOR<br>DCLLARS | BUR DEN<br>Doll Ars | LABOR +<br>Burden \$ |
|------------------|----------------|-----------------|---------------|------------------|---------------------|----------------------|
| Q-1 59<br>Q-2 59 | 7.5            | 1286            | 3.171         | 4076             | 3941                | 8019                 |
| Q-3 59<br>Q-4 59 |                |                 |               |                  | 30                  | 30                   |
| Q-1 60<br>Q-2 60 | 15.0           | 2592            | 3.029         | 7852             | 8502                | 16354                |
| Q-3 60<br>Q-4 60 | 58.5           | 9713            | 3.178         | 30864            | 31 920              | 62784                |
| Q-1 61<br>Q-2 61 | 49.5           | 8446            | 3.188         | 26925            | 28532               | 55457                |
| Q-3 61<br>Q-4 61 | 100.5          | 18172           | 2.995         | 54428            | 69 <b>4</b> 88      | 123916               |
| Q-1 62<br>Q-2 62 | 279.0          | 47626           | 3.148         | 149907           | 182945              | 332852               |
| Q-3 62<br>Q-4 62 | 142.5          | 23964           | 3.146         | 75385            | 100661              | 176046               |
| Q-1 63<br>Q-2 63 | 76.5           | 13115           | 3.092         | 40554            | 63831               | 104385               |
| Q-3 63<br>Q-4 63 | 129.0          | 21731           | 3.043         | 66122            | 118105              | 184227               |
| Q-1 64<br>Q-2 64 | 10.5           | 1743            | 3.122         | 5441             | 9172                | 14613                |
| Q-3 64<br>Q-4 64 | 10.5           | 1741            | 3.125         | 544C             | 9169                | 14609                |
| Q-1 65<br>Q-2 65 | 4.5            | 655             | 3.418         | 2239             | 2322                | 4561                 |
| Q-3 65<br>Q-4 65 | 1.5            | 262             | 3.420         | 896              | 629                 | 1525                 |
| Q-1 66           |                | 19              | 3.421         | 65               | 367                 | 432                  |
| TOTAL            | 885.0          | 151065          |               | 470196           | 629614              | 1099810              |

~~

~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

------

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION GROUND TESTS 6-MAJ ASSY 06 SUBD OF WORK TEST/QC

|                         | MAN-<br>MON THS | LABOR<br>HOUR S | LABOR<br>Rate | LABOR<br>DCLLARS | BURDEN<br>DOLLARS | LABOR +<br>Burden \$ |
|-------------------------|-----------------|-----------------|---------------|------------------|-------------------|----------------------|
| 0-1 59<br>Q-2 59        |                 | 2               | 2.000         | 4                |                   | 4                    |
| Q-3 59<br>Q-4 59        |                 |                 |               |                  |                   |                      |
| Q-1 60<br>Q-2 60        |                 | 34              | 3.059         | 104              |                   | 104                  |
| Q-3 60<br>Q-4 60        | 1.5             | 136             | 3.654         | 497              |                   | 497                  |
| Q-1 61<br>Q-2 61        | 3.0             | 386             | 3.187         | 1230             |                   | 1230                 |
| Q-3 61<br>Q-4 61        | 7.5             | 1267            | 2.954         | 3743             |                   | 3743                 |
| Q-1 62<br>Q-2 62        | 15.0            | 2562            | 3.074         | 7875             |                   | 7875                 |
| Q-3 62<br>Q-4 62        | 7.5             | 1174            | 3.221         | 3782             |                   | 3782                 |
| Q-1 63<br>Q-2 63        | 10.5            | 1838            | 3.077         | 5655             |                   | 5655                 |
| Q-3 63<br>Q-4 63        | 13.5            | 2179            | 3.132         | 6825             |                   | 6825                 |
| Q-1 64<br>Q-2 64        | 1.5             | 227             | 3.339         | 758              |                   | 758                  |
| Q-3 64<br>Q-4 64        | 1.5             | 227             | 3.339         | 758              |                   | 758                  |
| <b>Q-1</b> 65<br>Q-2 65 |                 | 3               | 8.000         | 24               |                   | 24                   |
| 0-3 65                  |                 | 1               | 9.000         | 9                |                   | . <b>9</b>           |
| TOTAL                   | 61.5            | 10036           |               | 31264            |                   | 31264                |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPAREC UNCER NASA CONTRACT NAS9-12100

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 6-MAJ ASSY 06 AIR INDUCTION GROUND TESTS

|                  | MAN-<br>MONTHS | LABOR<br>HUURS | LABOR<br>FATE | LABOR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>Burden \$ | ENGR<br>MATL |
|------------------|----------------|----------------|---------------|------------------|---------------------|----------------------|--------------|
| Q-1 58           | 42.0           | 7153           | 4.378         | 31314            | 32 546              | 63360                |              |
| Q-2 58           |                |                |               |                  | 51 910              | 00000                |              |
| Q-3 58           | 160.5          | 26351          | 4.152         | 111473           | 105090              | 216563               |              |
| Q-4 58           |                |                |               |                  |                     |                      |              |
| Q-1 59<br>Q-2 59 | 204.0          | 34788          | 4.133         | 143780           | 118914              | 262694               | 42.8         |
| Q-3 59           | 147.0          | 75717          | 4. 1.0.1      |                  |                     |                      |              |
| Q-4 59           | 147.0          | 25743          | 4.101         | 105565           | 92551               | 198116               |              |
| Q-1 60           | 316.5          | 54803          | 4.449         | 243833           | 199355              | 663190               | 1.0.0        |
| Q-2 60           |                |                |               | 243033           | 122277              | 443188               | 189          |
| Q-3 60           | 297.0          | 49772          | 4.316         | 214832           | 176104              | 390936               | 12102        |
| Q-4 60           |                |                |               |                  | 110134              | 590950               | 13102        |
| Q-1 61           | 252.0          | 42892          | 4.370         | 187437           | 142112              | 329549               | 52777        |
| Q-2 61           |                |                |               |                  |                     |                      | 26.111       |
| Q-3 61<br>Q-4 61 | 252.0          | 45669          | 4.187         | 191213           | 186446              | 377659               | 103089       |
| 0 - 1 62         | 492.0          | 83913          |               |                  |                     |                      |              |
| <b>G-2</b> 62    | 492.00         | 03913          | 4.060         | 340681           | 335661              | 676342               | 164090       |
| 9-3 62           | 267.0          | 44906          | 4.125         | 185244           | 107(00              | 20000                | _            |
| Q-4 62           |                |                | 70123         | 107244           | 197692              | 382936               | 72663        |
| Q-1 63           | 148.5          | 25341          | 4.100         | 103900           | 118288              | 222188               | 72020        |
| Q-2 63           |                |                |               | 203700           | 110200              | 222100               | 72039        |
| Q-3 63           | 145.5          | 24302          | 3.082         | 74907            | 120340              | 195247               | 26249        |
| Q-4 63           |                |                |               |                  |                     | 177247               | 20273        |
| Q-1 64           | 15.0           | 2408           | 3.464         | 8342             | 11803               | 20145                | 22396        |
| Q-2 64           |                |                |               |                  |                     |                      |              |
| Q-3 64           | 12.0           | 2018           | 3.216         | 6490             | 9490                | 15980                | 22310        |
| Q-4 64           |                |                |               |                  |                     |                      |              |
| Q-1 65           | 6 • C          | 1039           | 4.742         | 4927             | 4834                | 9761                 | -2174        |
| Q-2 65           | • -            | -              |               |                  |                     |                      |              |
| Q-3 65           | 1.5            | 353            | 4.346         | 1534             | 1220                | 2754                 | - 970        |

~\_\_\_

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

\_

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 6-MAJ ASSY 06 AIR INDUCTION GROUND TESTS

.

|                  | MAN-<br>MONTHS | LABUR<br>HOURS | LABOR<br>RATE | LABOR<br>DOLLARS | BUR DEN<br>DULL ARS | LABUR +<br>BURDEN \$ | ENGR<br>MATL |
|------------------|----------------|----------------|---------------|------------------|---------------------|----------------------|--------------|
| Q-4 65<br>Q-1 66 |                | 19             | 3.421         | 65               | 367                 | 432                  | -62          |
| TOTAL            | 2758.5         | 471970         |               | 1955537          | 1852813             | 3808350              | 546226       |

NORTH AMERICAN RCCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CUNTRACT NAS9-12100

#### TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 6-MAJ ASSY 06 AIR INDUCTION GROUND TESTS

|                  | MPC                    | WIND<br>TUNNEL | UTHER<br>COST           | TOTAL<br>D/C \$ | SUB<br>TOTAL                                                   | GEA   | TOTAL<br>Cost |
|------------------|------------------------|----------------|-------------------------|-----------------|----------------------------------------------------------------|-------|---------------|
| Q-1 58           |                        | 17037          |                         | 17037           | 80897                                                          |       | 6000 <b>-</b> |
| Q-2 58           |                        |                |                         |                 | 00011                                                          |       | 80897         |
| Q-3 58           |                        | 110870         |                         | 110870          | 327433                                                         |       | 327433        |
| 0-4 58           |                        |                |                         |                 |                                                                |       | 521455        |
| 0-1 59           | 36                     | 177104         |                         | 177104          | 440262                                                         |       | 440262        |
| Q-2 59<br>Q-3 59 |                        |                |                         |                 |                                                                |       | 1402.02       |
| Q-4 59           |                        | 201828         |                         | 201328          | 399544                                                         |       | 399944        |
| Q - 1 6C         | 24                     | 100500         |                         |                 |                                                                |       | .,            |
| Q-2 60           | 24                     | 182582         |                         | 182582          | 625583                                                         | 11927 | 637910        |
| Q-3 6C           | 1723                   | 165266         |                         | • • • •         |                                                                |       |               |
| Q-4 60           | <b>*</b> • 7, <b>3</b> | 109200         |                         | 165265          | 571027                                                         | 10880 | 581907        |
| Q-1 61           | 4460                   | 133435         |                         | 122425          | <b>F</b>                                                       |       |               |
| Q-2 61           |                        | * 7 7 7 7 7 7  |                         | 133435          | 520221                                                         | 9667  | 529888        |
| Q-3 61           | 8711                   | 99635          | 4574                    | 104209          | 507//0                                                         |       |               |
| Q-4 61           |                        |                |                         | 10420.7         | 593668                                                         | 11032 | 604700        |
| Q-1 62           | 12930                  | 64343          | 39674                   | 104017          | 957379                                                         | 16070 |               |
| Q-2 62           |                        |                |                         | 10.01.          | 12120                                                          | 16070 | 973449        |
| Q-3 62           | 5726                   | 30245          | 92708                   | 122953          | 584278                                                         | 9807  | 501005        |
| Q-4 62           |                        |                |                         |                 | <i><i><i>v</i></i> • • <b><i>z</i></b> • • <b><i>v</i></b></i> | 2007  | 594085        |
| Q-1 63           | 7096                   | 31133          | 8418                    | 39551           | 340874                                                         | 5699  | 346573        |
| Q-2 63           |                        |                |                         |                 |                                                                | 2077  | 540715        |
| Q-3 63<br>Q-4 63 | 2586                   | 29695          | <b>1</b> 80 <b>64</b> 9 | 210348          | 434430                                                         | 7264  | 441694        |
| Q = 1 64         | 2207                   |                |                         |                 |                                                                |       |               |
| Q = 2 64         | 2387                   | 1              | 24                      | 25              | 44953                                                          | 957   | 45910         |
| Q-3 64           | 8116                   | •              | • •                     |                 |                                                                |       |               |
| Q-4 64           | 0110                   | -1             | 23                      | 22              | 46428                                                          | 988   | 47416         |
| Q-1 65           | -650                   | 1              | 2.0                     |                 |                                                                |       |               |
| 9-2 65           |                        | 1              | 30                      | 31              | 6 56 8                                                         | 186   | 7154          |
| Q-3 65           | -155                   |                | 12                      | 12              | 1741                                                           | 46    | 1787          |

----

NORTH AMERICAN ROCKWELL COPP. SPACE DIVISION DATA PPEPARED UNDER NASA CONTRACT NAS9-12100

#### COST BREAKDOWNS 8-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM

|                                                                    | DESIGN<br>Zengr<br>Huurs<br>Dollars | PR CP<br>HOUR S<br>D CE LARS | TOOLING<br>AND STE<br>HOURS<br>DOLLARS | VQC<br>HOURS                                   |
|--------------------------------------------------------------------|-------------------------------------|------------------------------|----------------------------------------|------------------------------------------------|
| DESIGN/ENGINEERING<br>LABER AT \$ 4.931<br>ENGR BURDEN AT \$ 4.282 | 319826<br>1656085                   |                              |                                        | 310869<br>1454077                              |
|                                                                    | 1477416                             |                              |                                        | 1223199                                        |
| SHUP SUPPORT<br>LABOR AT \$ 3.113<br>Test/go                       |                                     |                              |                                        | 151065<br>470196                               |
| LABER AT \$ 3.115                                                  |                                     |                              |                                        | 10036<br>31264                                 |
| MEG BURDEN AT \$ 3.908                                             |                                     |                              |                                        | 529614                                         |
| ENGE MATERIAL<br>SUBCUNTRACT<br>MPC<br>WIND TUNNEL<br>CTHER COST   |                                     | 1993435<br>90243             | 31404<br>1088                          | 546228<br>235505<br>72122<br>1243178<br>326113 |
| SUB-ΤGTAL                                                          | 10424355                            | 2083678                      | 32492                                  | 6231557                                        |
| GEN & ADMIN                                                        | 165151                              | 33367                        | 480                                    | 89323                                          |
| TUTAL COST                                                         | 10589506                            | 2117045                      | 32972                                  | 6320885                                        |

| TIME-PHASED COST  |       |        |        |        |
|-------------------|-------|--------|--------|--------|
| DETAIL - SEE PAGE | IV-96 | IV-100 | IV-101 | IV-102 |

(-2.

ORIGINAL PAGE IS OF POOR QUALITY

IV-94

\_\_\_\_

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 6-MAJ ASSY 06 AIR INDUCTION GROUND TESTS

| TOTAL<br>Cost | G & A | SUB<br>TOTAL | TOTAL<br>0/c \$ | OTHER<br>COST | WIND<br>TUNNEL | MPC   |        |
|---------------|-------|--------------|-----------------|---------------|----------------|-------|--------|
|               |       |              |                 |               |                |       | Q-4 65 |
| 369           | 11    | 358          | 1               | 1             |                | -13   | Q-1 65 |
| 6061378       | 84534 | 5976844      | 1569291         | 326113        | 1243178        | 52977 | TUTAL  |

é

#### COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM

|                       | ICTAL      |
|-----------------------|------------|
|                       | HCURS      |
|                       | DELLARS    |
| DESIGNZENGINEERING    | 630695     |
| LABER AT \$ 4.931     | 3110162    |
| ENGR BURDEN AT \$ 4.2 | 82 2700515 |
| SHOP SUPPORT          | 151065 .   |
| LABER AT \$ 3.113     | 470196     |
| TEST/QC               | 10036      |
| LASCR AT \$ 3.115     | 31254      |
| MEG BURDEN AT \$ 3.9  | 03 629514  |
| ENGR MATERIAL         | 546226     |
| SUBCONTRACT           | 9301831    |
| MPC                   | 412883     |
| WIND TUNNEL           | 1243178    |
| STHER COST            | 326113     |
| SUB-TOTAL             | 18772082   |
| GEN & ADMIN           | 238326     |
| TOTAL COST            | 19060408   |

#### TIME-PHASED COST DETAIL - SEE PAGE IV-112

~

#### NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 05 SUBD OF WORK DESIGN/ENGINEERING

|                  | MAN-<br>MUNTHS | LABOR         | LABOR<br>Rate | LABOR<br>DOLLAR S | BURLEN<br>DULLARS | LABUR +<br>Burden \$ |
|------------------|----------------|---------------|---------------|-------------------|-------------------|----------------------|
| 0-1 58<br>0-2 58 | 3.0            | 563           | 4.668         | 262 F             | 2561              | 5189                 |
| 0-3 58<br>0-4 53 | 36.0           | 6170          | 4. 327        | 26699             | 24231             | 50930                |
| ଦ−1 59<br>ହ−2 5ବ | 49.5           | 8405          | 4.359         | 3663 g            | 23865             | 65504                |
| Q-3 59<br>Q-4 59 | 57.0           | 10159         | 4.246         | 43136             | 36366             | 79502                |
| Q−1 60<br>Q−2 60 | 160.5          | 27893         | 4.558         | 127123            | 102668            | 229791               |
| Q-3 60<br>Q-4 60 | 211.5          | 3542 <b>7</b> | 4.680         | 165808            | 127830            | 293638               |
| Q-1 61<br>Q-2 61 | 268.5          | 45376         | 4.761         | 218424            | 153063            | 371487               |
| Q-3 61<br>Q-4 61 | 135.0          | 24591         | 5.172         | 127191            | 113203            | 240394               |
| 0-1 62<br>0-2 62 | 153.0          | 2614 c        | 5.414         | 141568            | 119814            | 261382               |
| Q-3 62<br>Q-4 62 | 181.5          | 30478         | 5.359         | 163345            | 152911            | 316256               |
| Q-1 63<br>Q-2 63 | 180.0          | 30652         | 5.598         | 171647            | 164500            | 336147               |
| 0-3 63<br>G-4 63 | 153.0          | 25619         | 5.632         | 144287            | 1450 16           | 289293               |
| ତ-1 64<br>ତ-2 64 | <b>120.</b> 0  | 20496         | 5.800         | 113380            | 129469            | 243349               |
| Q-3 64<br>Q-4 64 | 106.5          | 18658         | 5.817         | 106539            | 118739            | 227278               |
| 0−1 65<br>©−2 65 | 39.0           | 6 <b>717</b>  | 6.844         | 45968             | 44312             | 90280                |

----

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

# DESIGN/ENGINEERING 4-SYSTEM 1 AIR INDUCTION SUBSYSTEM 5-SUBSYSTEM 05 SUBD OF WORK DESIGN/ENGINEERING

|        | MAN-<br>MON TH S | LABOR<br>HOURS | LABOR<br>RATE | LABOR<br>DCLLARS | BURDEN<br>Doll Ars | LABOR +<br>Burden \$ |
|--------|------------------|----------------|---------------|------------------|--------------------|----------------------|
| Q-3 65 | 12.0             | 1962           | 7.240         | 14204            | 13877              | 28081                |
| TOTAL  | 1866.0           | 319826         |               | 1656085          | 1477416            | 3133501              |

#### NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM1AIR INDUCTION SUBSYSTEM5-SUBSYSTEM05SUBD OF WORKDESIGN/ENGINEERING

|                  | MAN-<br>MONTHS | LABOR<br>HOUP S | LABOR<br>RATE | LABOR<br>DOLLARS | BURDEN<br>DOLL ARS | LABOR +<br>BURDEN \$ | SUBC          |
|------------------|----------------|-----------------|---------------|------------------|--------------------|----------------------|---------------|
| Q-1 58<br>Q-2 58 | 3.0            | 563             | 4.668         | 2628             | 2561               | 5189                 |               |
| Q-3 58<br>Q-4 58 | 36.0           | 6170            | 4.327         | 26699            | 24231              | 50 <b>930</b>        |               |
| Q-1 59<br>Q-2 59 | 49.5           | 8406            | 4.359         | 36638            | 28866              | 65504                | 65441         |
| Q-3 59<br>Q-4 59 | 57.0           | 10159           | 4.246         | 43136            | 36366              | 79502                | 933030        |
| Q-1 60<br>Q-2 60 | 160.5          | 27893           | 4.558         | 127123           | 102668             | 229791               | 680229        |
| Q-3 60<br>Q-4 60 | 211.5          | 35427           | 4.680         | 165808           | 127830             | 293638               | 242842        |
| Q-1 61<br>Q-2 61 | 268.5          | 45876           | 4.761         | 218424           | 153063             | 371487               | 825792        |
| Q-3 61<br>Q-4 61 | 135.0          | 24591           | 5.172         | 127191           | 113203             | 240394               | 736562        |
| Q-1 62<br>Q-2 62 | 153.0          | 26149           | 5.414         | 141568           | 119814             | 261382               | 1416569       |
| Q-3 62<br>Q-4 62 | 181.5          | 30478           | 5.359         | 163345           | 152911             | 316256               | 1416568       |
| Q-1 63<br>Q-2 63 | 180.C          | 30662           | 5.598         | 171647           | 164500             | 336147               | 595101        |
| Q-3 63<br>Q-4 63 | 153.0          | 25619           | 5.632         | 144287           | 145006             | 289293               | <b>9</b> 9055 |
| Q-1 64<br>Q-2 64 | 120.0          | 20496           | 5.80C         | 113880           | 129469             | 248349               | 30295         |
| Q-3 64<br>Q-4 64 | 106.5          | 18658           | 5.817         | 108539           | 118739             | 227278               |               |
| Q-1 65<br>Q-2 65 | 39.0           | 6717            | 6.844         | 45968            | 44312              | 90280                |               |
| Q-3 65           | 12.0           | 1962            | 7.240         | 14204            | 13877              | 28081                |               |
| TOTAL            | 1866.0         | 319326          |               | 1656085          | 1477416            | 3133501              | 7041484       |

~

----

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

\_\_\_\_

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM1AIR INDUCTION SUBSYSTEM5-SUBSYSTEM05SUBD OF WORKDESIGN/ENGINEERING

|            |            | MPC    | SUB<br>TOTAL   | GEA    | TOTAL<br>COST |
|------------|------------|--------|----------------|--------|---------------|
| Q-1        | 58         |        | 5189           |        | 5189          |
| Q-2        | 58         |        |                |        |               |
| Q-3        | 58         |        | 50930          |        | 50930         |
| Q-4        | 58         | 1 73 / | 132679         |        | 132679        |
| Q-1<br>Q-2 | 59<br>59   | 1734   | 102013         |        | 1949.1        |
| Q-3        | 59         | 25495  | 1038027        |        | 1038027       |
| Q-4        | 59         |        |                |        |               |
| Q-1        | 60         | 40357  | 95037 <b>7</b> | 18108  | 963485        |
| Q-2        | <b>6</b> 0 | 14408  | 550888         | 10496  | 561384        |
| Q-3<br>0-4 | 60<br>60   | 14400  | JJ00000        |        |               |
| Q-1        | 61         | 23659  | 1220938        | 22689  | 1243627       |
| Q-2        | 61         |        |                |        |               |
| 0-3        | 61         | 21103  | 558059         | 18547  | 1016606       |
| 0-4        |            | 45021  | 1722972        | 28920  | 1751892       |
| Q-1<br>Q-2 | 62<br>62   | 45021  | 1122 712       | 20720  |               |
| 0 - 3      |            | 44980  | 1777804        | 29340  | 1807644       |
| Q-4        | 62         |        |                |        |               |
| Q-1        |            | 25270  | 956518         | 15993  | 972511        |
| 0-2        |            | 21.27  | 391531         | 6540   | 398077        |
| Q-3<br>0-4 |            | 3183   | 291201         | 0,740  |               |
| 0-4<br>0-1 |            | 4160   | 282804         | 6018   | 238322        |
| Q-2        |            |        |                |        |               |
| Q-3        |            |        | 227279         | 4836   | 232114        |
| 0-4        |            |        | 90280          | 2409   | 92689         |
| Q-1<br>Q-2 |            |        | 90200          | 2437   | 12001         |
| Q-3        |            |        | 28081          | 749    | 28830         |
| TO         | TAL        | 249370 | 10424355       | 165151 | 10589506      |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

| 4-SYSTEM     | 1          |                         |
|--------------|------------|-------------------------|
| 5-SUB SYSTEM |            | AIR INDUCTION SUBSYSTEM |
| SUBD OF WORK | PRODUCTION |                         |

|                  | SUBC    | MPC   | SUB<br>Total | G&A          | TOTAL<br>COST |
|------------------|---------|-------|--------------|--------------|---------------|
| Q-1 59<br>Q-2 59 | 23370   | 355   | 13751        |              | 13751         |
| Q-3 59<br>Q-4 59 | 101010  | 5164  | 194182       |              | 194182        |
| Q-1 60<br>Q-2 60 |         | 8143  | 145409       | 2770         | 148179        |
| Q-3 60<br>Q-4 60 | 12125   | 2578  | 46 C3 7      | 877          | 46 91 4       |
| Q-1 61<br>Q-2 61 |         | 4062  | 155861       | 2896         | 158757        |
| Q-3 61<br>Q-4 61 | 134883  | 3864  | 138747       | 2578         | 141325        |
| Q-1 62<br>Q-2 62 |         | 9450  | 306792       | 5150         | 311 942       |
| Q-3 62<br>Q-4 62 |         | 9482  | 308123       | 5172         | 313295        |
| 0-1 63<br>0-2 63 | 395086  | 16776 | 411862       | 6886         | 418748        |
| Q-3 63<br>Q-4 63 | 145453  | 4674  | 150127       | <b>251</b> C | 152637        |
| Q-1 64           | 187092  | 25695 | 212787       | 4528         | 217315        |
| TOTAL            | 1993435 | 90243 | 2083678      | 33367        | 2117045       |

~\_~

~

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM1AIR INDUCTION SUBSYSTEM5-SUBSYSTEM05SUBD OF WORKTOOLING AND STE

|                      | SUBC          | MPC  | SUB<br>Total | G&A | TOTAL<br>CCST |
|----------------------|---------------|------|--------------|-----|---------------|
| Q-1 59<br>Q-2 59     | 341           | 9    | 350          |     | 350           |
| Q-3 59<br>Q-4 59     | 4867          | 132  | 4999         |     | <b>49</b> 99  |
| Q-1 60<br>Q-2 60     | 3549          | 210  | 3759         | 72  | 3831          |
| Q-3 60<br>Q-4 60     | 1274          | 75   | 1349         | 26  | 1375          |
| Q - 1 61<br>Q - 2 61 | 4320          | 123  | 4443         | 83  | 4526          |
| Q-3 61<br>Q-4 61     | 3860          | 110  | 3970         | 74  | 4044          |
| Q-1 62<br>Q-2 62     | 7050          | 224  | 7274         | 122 | 7396          |
| Q-3 62<br>Q-4 62     | 5 <b>7</b> 90 | 183  | 5973         | 100 | 6073          |
| Q-1 63<br>Q-2 63     | 30            | 1    | 31           |     | 31            |
| Q-3 63<br>Q-4 63     | 208           | 6    | 214          |     | 214           |
| Q-1 64               | 115           | 15   | 130          | 3   | 133           |
| TOTAL                | 31404         | 1088 | 32492        | 480 | 32972         |

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM SUBD OF WORK TEST/QC

|                      | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>RATE | LABUR<br>DELLARS | BUR DEN<br>DOLL ARS | LABOR +<br>Burden \$ |
|----------------------|----------------|-----------------|---------------|------------------|---------------------|----------------------|
| 9-1 58<br>9-2 58     | 42.0           | 7153            | 4.378         | 31314            | 32 546              | 63860                |
| Q-3 58<br>Q-4 58     | 160.5          | 26351           | 4.152         | 111473           | 105090              | 216563               |
| Q-1 59<br>Q-2 59     | 196.5          | 33500           | 4.170         | 139698           | 114973              | 254671               |
| Q-3 59<br>Q-4 59     | 147.0          | 25743           | 4.101         | 105565           | 92521               | 198086               |
| Q-1 60<br>Q-2 60     | 301.5          | 52177           | 4.521         | 235877           | 190853              | 426730               |
| Q-3 60<br>Q-4 60     | 237.0          | 39923           | 4.596         | 183471           | 144184              | 327655               |
| Q-1 61<br>Q-2 61     | 199.5          | 34960           | 4.677         | 159282           | 113580              | 272862               |
| Q-3 61<br>Q-4 61     | 144.0          | 26230           | 5.072         | 133042           | 116558              | 250000               |
| 0-1 62<br>0-2 62     | 198.0          | 33725           | 5.423         | 182899           | 152716              | 335615               |
| Q-3 62<br>Q-4 62     | 117.0          | 19768           | 5.366         | 106077           | 97031               | 203108               |
| Q-1 63<br>Q-2 63     | 61.5           | 10388           | 5.554         | 57691            | 54457               | 112148               |
| Q-3 63<br>Q-4 63     | 3.0            | 392             | 5.00C         | 1960             | 2235                | 4195                 |
| Q = 1 64<br>Q = 2 64 | 3.0            | 438             | 4.893         | 2143             | 2631                | 4774                 |
| Q−3 64<br>Q−4 64     |                | 50              | 5.840         | 292              | 321                 | 613                  |
| Q-1 65<br>Q-2 65     | 1.5            | 381             | 6.992         | 2664             | 2512                | 5176                 |

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

#### DESIGN/ENGINEERING

| 4-SYSTEM     | 1       |                         |
|--------------|---------|-------------------------|
| 5-SUB SYSTEM | 05      | AIR INDUCTION SUBSYSTEM |
| SUBD OF WORK | TEST/QC |                         |

|                            | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>RATE | LABUR<br>DOLLARS | BURDEN<br>DOLLARS | LABOR +<br>BURDEN \$ |
|----------------------------|----------------|----------------|---------------|------------------|-------------------|----------------------|
| Q-3 65<br>Q-4 65<br>Q-1 66 |                | 90             | 6.989         | 629              | 591               | 1220                 |
| TOTAL                      | 1812.0         | 310869         |               | 1454077          | 1223199           | 2677276              |

١

### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

|              | SHOP SUPPORT               |
|--------------|----------------------------|
| 4-SYS TEM    | 1                          |
| 5-SUBSYSTEM  | 05 AIR INDUCTION SUBSYSTEM |
| SUBD CF WORK | TEST/QC                    |

|                  | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>RATE | LABOR<br>DOLLAR S | BUR DEN<br>Doll Ars | LABOR +<br>Burden \$ |
|------------------|----------------|----------------|---------------|-------------------|---------------------|----------------------|
| Q-1 59<br>Q-2 59 | 7.5            | 1286           | 3.171         | 4078              | 3941                | 8019                 |
| 0-3 59           |                |                |               |                   | 20                  |                      |
| Q-4 59           |                |                |               |                   | 30                  | 30                   |
| Q-1 60           | 15.0           | 2592           | 3.029         | 7852              | 8502                | 14251                |
| Q-2 67           |                |                |               | 1002              | 0.772               | 16354                |
| Q-3 60           | 58.5           | 9713           | 3.178         | 30854             | 31920               | 62784                |
| Q-4 60           |                |                |               |                   | 51760               | 02104                |
| Q-1 61           | 49.5           | 8446           | 3.188         | 26925             | 28532               | 55457                |
| Q-2 61           |                |                |               |                   |                     |                      |
| Q-3 61           | 100.5          | 18172          | 2.995         | 54428             | 69438               | 123916               |
| Q = 4 61         |                |                |               |                   |                     |                      |
| Q-1 62<br>Q-2 62 | 279.0          | 47626          | 3.148         | 149967            | 182945              | 332852               |
| Q-2 62<br>Q-3 62 | 142 5          |                | _             |                   |                     |                      |
| Q-4 62           | 142.5          | 23964          | 3.146         | 75335             | 100661              | 176046               |
| Q-1 63           | 76.5           | 12115          | 2 2 2 2 2     |                   |                     |                      |
| Q - 2 63         | 10.5           | 13115          | 3.092         | 40554             | 63831               | 104385               |
| Q-3 63           | 129.0          | 21731          | 3 6 ( )       |                   |                     |                      |
| Q-4 63           | 16.700         | 21751          | 3.043         | 66122             | 118105              | 184227               |
| Q-1 64           | 10.5           | 1743           | 2 1 2 2       |                   |                     |                      |
| Q-2 64           | 1005           | 1743           | 3.122         | 5441              | 9172                | 14613                |
| Q-3 64           | 10.5           | 1741           | 3.125         | 5440              | 01/0                |                      |
| Q-4 64           |                |                | 5.125         | 9440              | 9169                | 14609                |
| Q-1 65           | 4.5            | 655            | 3.418         | 2239              |                     |                      |
| Q-2 65           |                |                | 54110         | 6.6.37            | 2322                | 4561                 |
| Q-3 65           | 1.5            | 262            | 3.420         | 896               | 629                 | 1625                 |
| Q-4 65           |                |                |               | 0,0               | 029                 | 1525                 |
| Q-1 66           |                | 19             | 3.421         | 65                | 367                 | 432                  |
| TUTAL            | 885.0          | 151065         |               | 470196            | 629614              | 1099810              |

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

·

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 AIR INDUCTION SUBSYSTEM 5-SUBSYSTEM 05 SUBD OF WORK TEST/QC

#### ON-SITE LABOR

|                            | MAN-<br>MON THS | LABOR<br>HOUR S | LABOR<br>Rate | LABOR<br>DOLLAR S | BUR DEN<br>DOLL ARS | LABOR +<br>BURDEN \$ |
|----------------------------|-----------------|-----------------|---------------|-------------------|---------------------|----------------------|
| Q-1 59<br>Q-2 59<br>Q-3 59 |                 | 2               | 2.000         | 4                 |                     | 4                    |
| Q-4 59<br>Q-1 60<br>Q-2 60 |                 | 34              | 3.059         | 104               |                     | 104                  |
| Q-3 60<br>Q-4 60           | 1+5             | 136             | 3.654         | 497               |                     | 497                  |
| Q-1 61                     | 3.0             | 386             | 3.187         | 1230              |                     | 1230                 |
| Q-2 61<br>Q-3 61<br>Q-4 61 | 7.5             | 1267            | 2.954         | 3743              |                     | 3743                 |
| Q-1 62<br>Q-2 62           | 15.0            | 2562            | 3.074         | 7875              |                     | 7875                 |
| Q-3 62<br>Q-4 62           | 7.5             | 1174            | 3.221         | 3782              |                     | 3782                 |
| Q-1 63<br>Q-2 63           | 10.5            | 1838            | 3.077         | 5655              |                     | 5655                 |
| Q-3 63<br>Q-4 63           | 13.5            | 2179            | 3.132         | 6825              |                     | 6825                 |
| Q-1 64                     | 1.5             | 227             | 3.339         | 758               |                     | 758                  |
| Q-2 64<br>Q-3 64           | 1.5             | 227             | 3.339         | 758               |                     | 758                  |
| Q-4 64<br>Q-1 65           |                 | 3               | 8.000         | 24                |                     | 24                   |
| Q-2 65<br>Q-3 65           |                 | 1               | 9.000         | 9                 |                     | 9                    |
| TOTAL                      | 61.5            | 10036           |               | 31264             |                     | 31264                |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

AIR INDUCTION SUBSYSTEM

4-SYSTEM 1 5-SUBSYSTEM 05 SUBD OF WORK TEST/QC

Q - 4 65

MAN-LABOR LABOR LABOR BUR DEN LABUR + ENGR MONTHS HOURS RATE DOLLARS DOLL ARS BURDEN \$ MATE Q-1 58 42.0 7153 4.378 31314 32 546 63860 Q-2 58 Q-3 53 160.5 26851 4.152 111473 105090 216563 Q-4 58 Q-1 59 204.0 34788 4.133 14379C 118914 262694 428 Q-2 59 2-3 59 147.0 25743 4.101 105565 92551 198116 0-459Q-1 60 316.5 54803 4.449 243833 199355 443188 189 Q-2 60 Q-3 60 297.0 49772 4.316 214832 176104 390936 13102 0-4 60 Q - 1 61252.0 42892 4.370 187437 142112 329549 52777 Q-2 61 Q-3 61 252.0 45669 4.187 191213 185446 377659 103089 Q-4 61 Q-1 62 492.0 83913 4.060 340631 335661 676342 164090 0-2 62 Q-3 62 267.0 4.125 44906 185244 197692 382936 72663 Q-4 62 Q-1 63 148.5 25341 4.100 103900 118288 222188 72039 Q-2 63 Q-3 63 145.5 24302 3.082 74907 120340 195247 26249 Q-4 63 Q-1 64 15.0 2408 3.464 8342 11803 20145 22396 Q-264Q-3 64 12.0 2018 3.216 6490 9490 15980 22310 Q-4 64 Q-1 65 6.0 1039 4.742 4927 4834 9761 -2174Q-2 65 Q-3 65 1.5 353 4.346 1534 1220 2754 -870

1955537 1852813 3808350 546226

1

NORTH AMERICAN ROCKWELL COPP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

.

|     | 4-SYSTEM<br>5-SUBSYSTEM<br>SUBD OF WORK | 1<br>05<br>TEST/QC | AIR INDUCTI   | on subsystem     |                    |                      |              |
|-----|-----------------------------------------|--------------------|---------------|------------------|--------------------|----------------------|--------------|
|     | MAN-<br>MONTH                           |                    | LABOR<br>Rate | LABOR<br>DOLLARS | BUR DEN<br>DCLLARS | LABOR +<br>Burden \$ | ENGR<br>MATL |
| Q-1 | 66                                      | 19                 | 3.421         | 65               | 367                | 432                  | -62          |

TOTAL 2758.5 471970

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

## TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

AIR INDUCTION SUBSYSTEM

4-SYSTEM 1 5-SUBSYSTEM 05 SUBD OF WORK TEST/QC

|                                  | SUBC   | TOTAL<br>MATERIAL | MPC           | WIND<br>TUNNEL | OTHER<br>COST | TOTAL<br>C/C \$ | SUB<br>TOTAL |
|----------------------------------|--------|-------------------|---------------|----------------|---------------|-----------------|--------------|
| Q-1 58<br>Q-2 58                 |        |                   |               | 17037          |               | 17037           | 80897        |
| Q-3 58<br>Q-4 58                 |        |                   |               | 110870         |               | 110870          | 327433       |
| Q-1 59<br>Q-2 59                 |        | 428               | 36            | 177104         |               | 177104          | 440262       |
| Q-3 59<br>Q-4 59<br>Q-1 60       |        |                   |               | 201826         |               | 201828          | 399944       |
| Q = 1 60<br>Q = 2 60<br>Q = 3 60 |        | 189               | 24            | 182582         |               | 182582          | 625983       |
| Q-4 60<br>Q-1 61                 |        | 13102             | 1723          | 165266         |               | 165266          | 571027       |
| Q-2 61<br>Q-3 61                 |        | 52777             | 4460          | 133435         |               | 133435          | 520221       |
| Q-4 61<br>Q-1 62                 | 9838   | 103039            | 8711          | 99635          | 4574          | 104209          | 593668       |
| Q-2 62<br>Q-3 62                 | 9801   | 173928<br>82464   | 13242         | 64343          | 39674         | 104017          | 967529       |
| Q-4 62<br>Q-1 63                 | 73413  | 145452            | 6037<br>10213 | 30245          | 92703         | 122953          | 594390       |
| Q-2 63<br>Q-3 63                 | 38968  | 65217             | 3838          | 31133<br>29699 | 8418          | 39551           | 417404       |
| 0-4 63<br>Q-1 64                 | 103488 | 125884            | 16600         | 29099          | 180649        | 210348          | 474650       |
| Q-2 64<br>Q-3 64                 |        | 22310             | 8116          | -1             | 24<br>23      | 25              | 162654       |
| Q-4 64<br>Q-1 65                 |        | -2174             | -650          | 1              | 30            | 22              | 46428        |
| Q-2 65<br>Q-3 65                 |        | -870              | -155          | 1              | 12            | 31<br>12        | 6968         |
| Q-4 65                           |        |                   |               |                | **            | 12              | 1741         |

~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

~

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

| 5-     | SYSTEM<br>SUBSYSTEM<br>3D OF WORK | 1<br>05<br>TEST/QC | AIR INDUCT | ION SUBSYSTEM  | l              |                 |              |
|--------|-----------------------------------|--------------------|------------|----------------|----------------|-----------------|--------------|
|        | SUBC                              | TOTAL<br>MATERIAL  | MPC        | WINC<br>TUNNEL | OT HER<br>COST | TOTAL<br>O/C \$ | SUB<br>Total |
| Q-1 66 |                                   | -62                | -13        |                | 1              | 1               | 358          |
| TOTAL  | 235508                            | 781734             | 72182      | 1243178        | 326113         | 1569291         | 6231557      |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

AIR INDUCTION SUBSYSTEM

4-SYSTEM 1 5-SUBSYSTEM C5 SUBD CF WORK TEST/QC

|                            | GδA           | TUTAL<br>Cost    |
|----------------------------|---------------|------------------|
| Q-1 58                     |               | 8089 <b>7</b>    |
| Q-2 58<br>Q-3 53<br>Q-4 58 |               | 327433           |
| Q-1 59<br>Q-2 59           |               | 440262           |
| Q-3 59<br>Q-4 59           |               | 399944           |
| R-1 60<br>R-2 60           | 12097         | 638090           |
| Q-3 60<br>Q-4 60           | 11049         | 582076           |
| 0-1 61<br>0-2 61           | 10947         | 531168           |
| Q-3 51<br>Q-4 61<br>Q-1 62 | 11703         | 605371           |
| Q = 2 62<br>Q = 3 62       | 18574<br>9807 | 986103           |
| Q-4 62<br>Q-1 63           | 5659          | 6C4197<br>4231J3 |
| Q-2 63<br>Q-3 63           | 7264          | 481914           |
| Q-4 63<br>Q-1 64           | 957           | 163611           |
| Q-2 64<br>Q-3 64           | 588           | 47416            |
| Q-4 64<br>Q-1 65           | 186           | 7154             |
| Q-2 65<br>Q-3 65           | 46            | 1737             |
| Q-4 65                     |               |                  |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM05SUBD OF WORK TEST/QC

|               | GEA   | TOTAL<br>Cost |
|---------------|-------|---------------|
| <b>Q-1</b> 66 | 11    | 369           |
| TOTAL         | 89328 | 6320885       |

•

IV-111

**APRIL 1972** 

.

NORTH AMERICAN RCCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM

# UN-SITE LABOR

|                  | MAN-<br>MON TH S | LABOR<br>HOUR S | LABOR<br>RATE | LABCR<br>DCLLARS | BUR DEN<br>Doll Ars | LABOR +<br>BURDEN \$ |
|------------------|------------------|-----------------|---------------|------------------|---------------------|----------------------|
| 0-1 58<br>0-2 58 | 46.5             | 7716            | 4.399         | 33942            | 35107               | 69049                |
| Q-3 58<br>Q-4 58 | 196.5            | 33021           | 4.184         | 138172           | 129321              | 267493               |
| Q-1 59<br>Q-2 59 | 246.0            | 41906           | 4.208         | 176336           | 143839              | 320175               |
| Q-3 59<br>Q-4 59 | 204.0            | 35902           | 4.142         | 148701           | 128887              | 277588               |
| Q-1 60<br>Q-2 60 | 462.0            | 80070           | 4.534         | 363000           | 293521              | 656521               |
| 0-3 60<br>Q-4 60 | 448.5            | 75350           | 4.635         | 349275           | 272014              | 621293               |
| Q-1 61<br>Q-2 61 | 468.0            | 79936           | 4.725         | 377706           | 266643              | 644349               |
| Q-3 61<br>Q-4 61 | 280.5            | 50821           | 5.121         | 260233           | 230161              | 490394               |
| Q-1 62<br>Q-2 62 | 351.0            | 59874           | 5.419         | 324467           | 272530              | 596997               |
| Q-3 62<br>Q-4 62 | 298.5            | 50246           | 5.362         | 269422           | 249942              | 519364               |
| Q-1 63<br>Q-2 63 | 240.0            | 41050           | 5.587         | 229338           | 218957              | 449295               |
| Ω−3 63<br>Ω−4 63 | 154.5            | 26011           | 5.623         | 146247           | 147241              | 293488               |
| Q-1 64<br>Q-2 64 | 123.0            | 20934           | 5.781         | 121023           | 132100              | 253123               |
| Q-3 64<br>Q-4 64 | 106.5            | 18708           | 5.817         | 108831           | 119060              | 227891               |
| Q-1 65<br>Q-2 65 | 40.5             | 7098            | 6.852         | 48632            | 46824               | 95456                |

IV-112

----- .

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

- - - -----

### TIME PHASED EXPEND. B-70 AIRCRAFT STUCY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM

•

•

#### ON-SITE LABOR

|                            | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>RATE | LABOR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>BURDEN \$ |
|----------------------------|----------------|-----------------|---------------|------------------|---------------------|----------------------|
| Q-3 65<br>Q-4 65<br>Q-1 66 | 12.0           | 2052            | 7.229         | 14833            | 14468               | 29301                |
| TOTAL                      | 3678.0         | 630695          |               | 3110162          | 2700615             | 5810777              |

# I**V-11**3

NORTH AMERICAN RCCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM

### ON-SITE LABUR

|                  | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>RATE | LABOR<br>DOLLARS | BUR DEN<br>DOLLARS | LABOR +<br>BURDEN \$ |
|------------------|----------------|-----------------|---------------|------------------|--------------------|----------------------|
| Q-1 59<br>Q-2 59 | 7.5            | 1286            | 3.171         | 4078             | 3941               | 8019                 |
| 0-3 59<br>0-4 59 |                |                 |               |                  | 30                 | 30                   |
| Q-1 60<br>Q-2 60 | 15.0           | 2592            | 3.029         | 7852             | 8502               | 16354                |
| Q-3 60<br>Q-4 60 | 58.5           | 9713            | 3.178         | 30864            | 31920              | 62784                |
| Q-1 61<br>Q-2 61 | 49.5           | 8446            | 3.188         | 26925            | 28532              | 55457                |
| 0-3 61<br>Q-4 61 | 100.5          | 18172           | 2.995         | 5442 B           | 69488              | 123916               |
| Q-1 62<br>Q-2 62 | 279.0          | 47626           | 3.148         | 149907           | 182945             | 332852               |
| Q-3 62<br>Q-4 62 | 142.5          | 23964           | 3.146         | 75385            | 100661             | 176046               |
| 0-1 63<br>Q-2 63 | 76.5           | 13115           | 3.092         | 40554            | 63831              | 104385               |
| Q-3 63<br>Q-4 63 | 129.0          | 21731           | 3.043         | 66122            | 118105             | 184227               |
| Q-1 64<br>Q-2 64 | 10.5           | 1743            | 3.122         | 5441             | 9172               | 14613                |
| Q-3 64<br>Q-4 64 | 10.5           | 1741            | 3.125         | 544C             | 9169               | 14609                |
| Q-1 65<br>Q-2 65 | 4.5            | 655             | 3.418         | 2239             | 2322               | 4561                 |
| Q-3 65<br>Q-4 65 | 1.5            | 262             | 3.420         | 896              | 629                | 1525                 |
| Q-1 66           |                | 19              | 3.421         | 65               | 367                | 432                  |
| TOTAL            | 885.0          | 151065          |               | 470196           | 629614             | 1099810              |

-----

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

### TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM

6.2

#### ON-SITE LABOR

|                                  | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>RATE  | LABOR<br>DOLLARS | BUR DEN<br>DCLLARS | LABOR +<br>BURDEN \$ |
|----------------------------------|----------------|----------------|----------------|------------------|--------------------|----------------------|
| Q-1 59<br>Q-2 59<br>Q-3 59       |                | 2              | 2.000          | 4                |                    | 4                    |
| Q = 3 59<br>Q = 4 59<br>Q = 1 60 |                | 34             | 3.059          | 104              |                    | 104                  |
| Q-2 60<br>Q-3 60                 | 1.5            | 136            | 3.654          | 497              |                    | 497                  |
| Q-4 60<br>Q-1 61<br>Q-2 61       | 3.0            | 386            | 3.187          | 1230             |                    | 1230                 |
| Q-3 61<br>Q-4 61                 | 7.5            | 1267           | 2.954          | 3743             |                    | 3743                 |
| Q-1 62<br>Q-2 62                 | 15.0           | 2562           | 3.074          | 7875<br>3782     |                    | 7875<br>3782         |
| Q-3 62<br>Q-4 62<br>Q-1 63       | 7.5<br>10.5    | 1174<br>1838   | 3.221<br>3.C77 | 5655             |                    | 5655                 |
| Q-2 63<br>Q-3 63                 | 13.5           | 2179           | 3.132          | 6825             |                    | 6825                 |
| Q-4 63<br>Q-1 64<br>Q-2 64       | 1.5            | 227            | 3.339          | 758              |                    | 758                  |
| Q-3 64<br>Q-4 64                 | 1.5            | 227            | 3,339          | 758              |                    | 758                  |
| Q-1 65<br>Q-2 65                 |                | 3              | 8.COC<br>9.COO | 24               |                    | 24                   |
| Q-3 65<br>TOTAL                  | 61.5           | 10036          | 7.UUU          | 31264            |                    | 31264                |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

### TIME PHASED EXPEND. B-7C AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM

|                   |    | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>RATE | LABCP<br>DCLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>Burden \$ | ENGR<br>MATL |
|-------------------|----|----------------|----------------|---------------|------------------|---------------------|----------------------|--------------|
| Q-1<br>Q-2        | -  | 46.5           | 7716           | 4.399         | 33942            | 35107               | 69049                |              |
| Q-2<br>Q-3<br>Q-4 | 58 | 196.5          | 33021          | 4.184         | 138172           | 129321              | 267493               |              |
| Q-1<br>Q-2        | 59 | 253.5          | 43194          | 4.177         | 180418           | 147780              | 328198               | 428          |
| Q-3<br>Q-4        |    | 204.0          | 35902          | 4.142         | 148701           | 128917              | 277618               |              |
| Q-1<br>Q-2        | 60 | 477.0          | 82696          | 4.486         | <b>37</b> 0956   | 302023              | 672979               | 189          |
| Q-3<br>Q-4        | 60 | 508.5          | 85199          | 4.468         | 38064C           | 303934              | 684574               | 13102        |
| Q-1<br>Q-2        | 61 | 520.5          | 88768          | 4.572         | 405861           | 295175              | 701036               | 52777        |
| Q-3<br>Q-4        | 61 | 388.5          | 70260          | 4 • 532       | 318404           | 299649              | 618053               | 103089       |
| Q-1<br>Q-2        | 62 | 645.0          | 110062         | 4.382         | 482249           | 455475              | 937724               | 164090       |
| Q-3<br>Q-4        | 62 | 448.5          | 75384          | 4.624         | 348585           | 350603              | 699192               | 72663        |
| Q-1<br>Q-2        | 63 | 327.0          | 56003          | 4.920         | 275547           | 282738              | 558335               | 72039        |
| Q-3<br>Q-4        |    | 297.0          | 49921          | 4.391         | 219194           | 265346              | 484540               | 26249        |
| Q-1<br>Q-2        | 64 | 135.0          | 22904          | 5.555         | 127222           | 141272              | 268494               | 22396        |
| Q-3<br>Q-4        | 64 | 118.5          | 20676          | 5.563         | 115025           | 128229              | 243258               | 22310        |
| Q-1<br>Q-2        | 65 | 45.0           | 7756           | 6.562         | 5)895            | 49146               | 100041               | -2174        |
| Q-3<br>Q-4        | 65 | 13.5           | 2315           | 6.798         | 15738            | 15097               | 30835                | -870         |

 $\smile$ 

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

------

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM

|        | MAN-<br>MON THS | LABOR<br>HOUR S | LABOR<br>RATE | LABOR<br>DOLLAR S | BUR DEN<br>DOLL AR S | LABUR +<br>BURDEN \$ | ENGR<br>MATL |
|--------|-----------------|-----------------|---------------|-------------------|----------------------|----------------------|--------------|
| Q-1 66 |                 | 19              | 3.421         | 65                | 367                  | 432                  | -62          |
| TOTAL  | 4624.5          | 791796          |               | 3611622           | 3330229              | 6941851              | 546226       |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

## TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM

|                  | SUBC    | TOTAL<br>MATERIAL | MPC           | WIND<br>TUNNEL | CTHER<br>COST | TƏTAL<br>D/c \$ | SUB<br>Total    |
|------------------|---------|-------------------|---------------|----------------|---------------|-----------------|-----------------|
| Q-1 58<br>Q-2 58 |         |                   |               | 17037          |               | 17037           | 86036           |
| Q-3 58<br>Q-4 58 |         |                   |               | 110870         |               | 110870          | 3 <b>7</b> 8363 |
| Q−1 59<br>Q−2 59 | 79178   | 79606             | 2134          | 177104         |               | 177104          | 587042          |
| Q-3 59<br>Q-4 59 | 1126915 | 1126915           | 30791         | 201828         |               | 201828          | 1637152         |
| Q-1 60<br>Q-2 60 | 821044  | 821233            | 48734         | 182582         |               | 182582          | 1725528         |
| Q-3 60<br>Q-4 60 | 287575  | 300677            | 18784         | 165266         |               | 165266          | 1169301         |
| Q-1 61<br>Q-2 61 | 981911  | 1034688           | 32304         | 133435         |               | 133435          | 1901463         |
| Q-3 61<br>Q-4 61 | 875305  | 578394            | 33788         | 99635          | 4574          | 104209          | 1734444         |
| Q-1 62<br>Q-2 62 | 1730799 | 1894889           | 67937         | 64343          | 39674         | 104017          | 3004567         |
| Q-3 62<br>Q-4 62 | 1730800 | 1803463           | 6C68 <b>2</b> | 30245          | 92708         | 122953          | 2586290         |
| Q-1 63<br>Q-2 63 | 1063630 | 1135669           | 5226C         | 31133          | 8418          | 39551           | 1785815         |
| Q-3 63<br>Q-4 63 | 283684  | 309933            | 11701         | 29699          | 190649        | 210348          | 1016522         |
| Q-1 64<br>Q-2 64 | 320990  | 343386            | 46470         | 1              | 24            | 25              | 658375          |
| Q-3 64<br>Q-4 64 |         | 22310             | 8116          | - 1            | 23            | 22              | 273706          |
| Q-1 65<br>Q-2 65 |         | -2174             | -650          | 1              | 30            | 31              | 97248           |
| Q-3 65<br>Q-4 65 |         | -87C              | -155          |                | 12            | 12              | 29822           |

~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNCER NASA CONTRACT NAS9-12100

### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 AIP INDUCTION SUBSYSTEM

,

|        | SUBC    | TOTAL<br>MATERIAL | MPC    | WIND<br>TUNNEL | CTHER<br>CCST | TOTAL<br>C/C \$ | SUB<br>TOTAL |
|--------|---------|-------------------|--------|----------------|---------------|-----------------|--------------|
| Q-1 66 |         | -62               | -13    |                | 1             | 1               | 358          |
| TOTAL  | 9301831 | <b>5848057</b>    | 412883 | 1243178        | 326113        | 1569291         | 18772082     |

~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM

|                            | GEA            | TUTAL<br>CCST   |
|----------------------------|----------------|-----------------|
| 9-1 58<br>9-2 58           |                | 86086           |
| Q-3 53<br>Q-4 58           |                | 378363          |
| Q-1 59<br>Q-2 59           |                | 587042          |
| Q-3 59<br>Q-4 59           |                | 1637152         |
| Q-1 60<br>Q-2 60           | 32877          | 1758405         |
| Q-3 60<br>Q-4 60           | 22279          | 1191580         |
| Q-1 61<br>Q-2 61           | 35335          | 1936798         |
| Q-3 61<br>Q-4 61           | 32231          | 1766675         |
| Q-1 62<br>Q-2 62           | 50432          | 3054999         |
| Q-3 62<br>Q-4 62<br>Q-1 63 | 45088          | 2731378         |
| Q-2 63<br>Q-3 63           | 29858          | 1815673         |
| Q-4 63<br>Q-1 64           | 16991<br>14010 |                 |
| Q-2 64<br>Q-3 64           | 5824           | 672385          |
| Q-4 64<br>Q-1 65           | 2595           | 279530<br>99843 |
| Q-2 65<br>Q-3 65           | 795            | 30617           |
| Q-4 65                     | ( 7 )          | 20011           |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 05 AIR INDUCTION SUBSYSTEM

|        | GεA | TOTAL<br>COST |
|--------|-----|---------------|
| Q-1 66 | 11  | 369           |

TOTAL 288326 19060408



PRECEDING PAGE BLANK NOT FILMED

~

| TABLE OF CONTENTS                                   |             |
|-----------------------------------------------------|-------------|
| SUBSYSTEM: FLIGHT CONTROL WBS                       | 5 CODE: 1.6 |
| TITLE                                               | PAGE        |
| WORK BREAKDOWN STRUCTURE                            | IV-124      |
| TECHNICAL DESCRIPTIONS AND CHARACTERISTICS          | IV-128      |
| WBS 1.6 Flight Control                              | IV-128      |
| WBS 1.6.1 Primary Flight Control System             | IV-134      |
| WBS 1.6.2 Secondary Flight Control System           | IV-146      |
| WBS 1.6.3 Flight Augmentation Control System (FACS) | IV-152      |
| WBS 1.6.4 Ground Tests                              | IV-158      |
| DEVELOPMENT DATA SUMMARY                            | IV-168      |
| State-of-the-Art                                    | IV-169      |
| Percent Developed                                   | IV-170      |
| DEVELOPMENT MILESTONES                              | IV-173      |
| DESIGN/PROGRAMMATIC IMPACTS                         | IV-175      |
| COST SUMMARY                                        | IV-180      |
| Cost Definition                                     | IV-180      |
| Subcontractor Matrix                                | IV-183      |
| Detail Cost Data                                    | IV-184      |

I**V-123** 



SUBSYSTEM: FLIGHT CONTROL

WBS CODE: 1.6

WBS LEVELS

# 1.6 FLIGHT CONTROL SUBSYSTEM

8

1.6.1 Primary Flight Control

1.6.1.1 Crew Station Control

Control Wheels Control Columns Storage Bungee Storage Thrusters Rudder Pedals Pedal Adjusters Longitudinal Bobweight Lateral Bobweight Forward Pitch FeelBungee Aft Pitch Feel Bungee Forward Roll Feel Bungee Aft Roll Feel Bungee Yaw Feel Bungee Emergency FACS disengage Gearing Train Brake Pedals Nose Wheel Steering Longitudinal Position Trim Wheel

1.6.1.2 Elevon Control

Outboard Actuators Outboard Actuator Mechanism Drivers Roll Master Actuator Pitch Master Actuator Pitch Override Bungee Roll Override Bungee Centering Bungee Fold Interlock Elevon Actuator Mechanism Aero Sealing Elevon Hinges Position Sensors Elevon Stops



SUBSYSTEM: FLIGHT CONTROL

WBS CODE: 1.6

WBS LEVELS 8 T 5 6 7 1.6.1.3 Yaw Control Gearing Changer Yaw Override Bungee Vertical Stabilizer Actuator Stabilizer Position Sensors Centering Bungee Hydraulic Interconnecting Valving 1.6.1.4 Cable System Forward Tension Regulator Forward Bellows Seals Forward Tension/Grad Bungee Forward Pulleys Forward Guides Aft Tension Regulator Aft Bellows Seals Aft Tension/Grad Bungee Aft Pulleys Aft Guides 1.6.1.5 Ancillary Control Electrical Actuator Bungees Electronics Positioner Assys Servo Valves 1.6.2 Secondary Flight Control 1.6.2.1 Pitch Trim Actuators Linear Guarded Transducers Servo Position Transmitters Position Sensors 1.6.2.2 Roll Trim Actuators Linear Guarded Transducers Servo Position Transmitters Position Sensors 1.6.2.3 Standby Trim Electronics Servo Position Transmitters Trim Switch



#### SUBSYSTEM: FLIGHT CONTROL

Τ

WBS CODE: 1.6

WBS LEVELS 6 8 5 7 1.6.2.4 Yaw Trim Actuators Linear Guarded Transducers Servo Position Transmitters Position Sensors 1.6.2.5 Horizontal Pitch Trim Actuators Linear Guarded Transducer Servo Position Transmitters Position Sensors 1.6.2.6 Flap Actuator Position Sensors Limit Switches Flap Stops Servo Position Transmitters 1.6.2.7 Roll Primary Trim Switch Assy 1.6.2.8 Pitch Primary Trim Switch Assy 1.6.2.9 Trim For Take-Off Push Button Control Assy Position Switches Position Summation Unit Oleo Disengage Switch 1.6.2.10 Wing Tip Fold Actuation Hydraulic Motors Position Sensors Position Summation Unit Limit Switches Gear Trains Motor Interconnects Hinges Hydraulic Flow Regulators



SUBSYSTEM: FLIGHT CONTROL

WBS CODE: 1.6

WBS LEVELS

1.6.3 Flight Augmentation Control System

1.6.3.1 FACS Panel

8

Mode Selector Switches Engage/Disengage Switch Trim for Take-Off Light FACS Engage Light Lateral Bobweight Switch

1.6.3.2 FACS Computer

Stabilization Generator Input Control System Monitors Rate Limiter Command Output Signal Conditioning Power Supply

- 1.6.3.3 Linear Displacement Transducer
- 1.6.3.4 Linear Guarded Transducer
- 1.6.3.5 Rotary Pitch Trim Transducer
- 1.6.3.6 Pitch Augmentation Servo Actuator
- 1.6.3.7 Roll Augmentation Servo Actuator
- 1.6.3.8 Yaw Augmentation Servo Actuator

#### 1.6.4 Ground Tests

- 1.6.4.1 Flight Control Simulator
- 1.6.4.2 Test Beds
- 1.6.4.3 Mockups
- 1.6.4.4 Wind Tunnel



#### TECHNICAL DESCRIPTION

SUBSYSTEM: FLIGHT CONTROL

WBS CODE: 1.6

The B-70 control surfaces, developed to provide long-range supersonic cruise capability, featured a thin low aspect ratio delta-wing with folding tips, elevon surfaces for combined pitch-roll maneuvering, twin vertical stabilizers with rudders, and a movable canard-type horizontal stabilizer with trailing edge flaps. Exhibit 1, page IV-131, presents the various aerodynamic surfaces of the B-70 used for control of the air vehicle. The folding wing tips (three positions) offered the advantages of providing satisfactory directional stability without the necessity of using large vertical stabilizers and resulted in less drag and lower control power requirements. As discussed under Wing Structures (WBS 1.1.2), the folding wing tips also minimized supersonic speed trim drag due to reduced longitudinal stability caused by the forward shift in the aerodynamic load centroid.

The elevons, which consisted of six segmented surfaces on each wing, provided pitch control through symmetrical movement and roll control through differential movement. The elevons were segmented to minimize the effects of wing spanwise bending with the two outboard segments (wing fold portion) returned to neutral when the tips were folded. Exhibit 2, page IV-132, presents an elevon compartment showing three elevon segments. The yaw control was provided by twin canted-hinge rudders that were actuated in unison. The twin rudder configuration was chosen over a conventional design due to an overall system weight savings. Flaps were provided on the canard type horizontal stabilizer for use during takeoffs and landings. As discussed under Horizontal Stabilizer Structures (WBS 1.1.1), the nose-up pitching moment of the horizontal stabilizer flaps was balanced by positive lift and the nose-down movement of the elevons resulted in increased overall lift for a given attitude. This phenomenon reduced the angle-of-attack (relatively) for landing approaches and increased the visibility.

The selection of the systems for the control of the B-70 aerodynamics surfaces was based largely upon specific airframe and aerodynamic characteristics. The aerodynamic characteristics indicated the functions which had to be provided by the control system to obtain optimum flying qualities while the airframe dictated the methods of accomplishing the function. The dynamic stability, surface effectiveness, and speed stability were the aerodynamic characteristics which influenced selection while air vehicle length, flexibility, and surface configuration were airframe characteristics which had to be considered. In addition, the air vehicle mission, as related to vulnerability, survivability, and pilot work load, also influenced the selection of control systems.

The unaugmented damping and response characteristics of the B-70 were adequate to perform the mission. However, in the pitch axis, both pitch



rate and normal acceleration were sensed and surfaces moved accordingly to improve the dynamic longitudinal stability. In roll and yaw axes, roll rate and yaw rate only were sensed to generate damping signals. In addition, altitude scheduling was used in the pitch and yaw axes to compensate for variations in damping.

The forward horizontal stabilizer was simultaneously operated with the elevons for pitch control to provide essentially a constant effectivity over the entire speed range. The forward horizontal stabilizer effectivity increased in the high speed range and compensated for the deterioration in elevon effectivity. Conversely, during low speed flight, elevon effectiveness compensated for the deterioration in the canard effectivity. In roll, the pilot wheel force and roll rate were combined to obtain a roll rate command loop while in the yaw axis, pedal-to-surface gearing was modified by the landing gear position to compensate for the variation in rudder effectiveness. Large pitch and roll surface movements were utilized to provide damping and control sensitivity compensation. Since the hardover failure of a large authority servo was unsafe, the holding capability of dual tandem actuators under failure conditions were utilized to provide safety. In yaw, limited authority servos provided satisfactory performance and fail safety over the flight range. The flight control systems were designed to have sufficiently fine resolution and small amplitude controllability to provide adequate control at high effectiveness flight conditions encountered during the B-70 mission.

The extreme length of the B-70 necessitated special design features in the flight control systems. For minimum friction felt by the pilot and minimum freeplay by the differential servo operating loop, master cylinders were provided in the pitch and roll control systems. The master cylinder also provided a ground point for augmentation inputs. The B-70 flexibility was another factor in the design of the flight control. The cable routing and effective system balance were designed to minimize the induced surface motions due to fuselage vibration and flextures. Surface actuators and augmentation servos were selected with natural frequencies and maximum rates which would not excite fuselage natural modes of oscillation. Augmentation sensors were located at a point along the fuselage where the combined fuselage bending and air vehicle motions experienced by the sensors resulted in optimum damping. The selection of gains and provisions of adequate filtering were required to insure stability of the higher order flexible modes.

The Flight Control Subsystem of the B-70 consisted of the Primary, Secondary, and Flight Augmentation Control Systems. The Primary Flight Control System (PFCS) was the mechanical and hydromechanical connection from the pilot's control to the control surfaces. The Secondary Flight Control System (SFCS) was the pitch, roll, and yaw trim control, the flap control, and the wing folding control. The Flight Augmentation Control System (FACS) was the



electronic system containing air vehicle response sensors and hydromechanical servos which, operating through the PFCS, provided augmentation and damping functions to the air vehicle. Each of these systems are discussed in subsequent paragraphs as identified by the WBS.

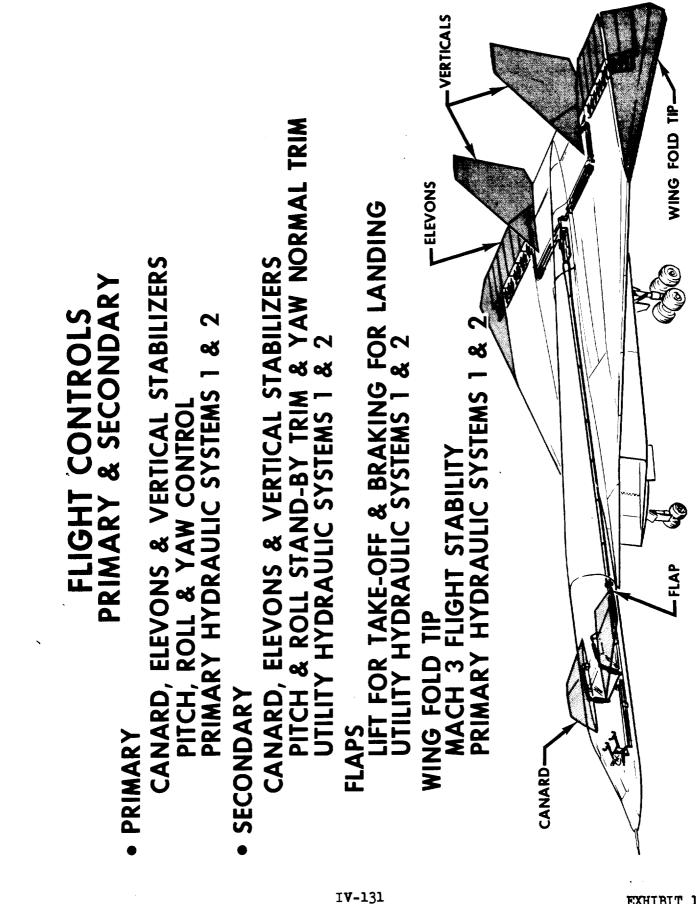




EXHIBIT 1



T**V-1**32

SD72-SH-0003

| WE            | WBS IDENTIFICATION: FILGHT CONTROL SUBSYSTEM | WHISTS                 |                                                 |                                    | WBS CODE: -      | )DE: 1.6              |                       |
|---------------|----------------------------------------------|------------------------|-------------------------------------------------|------------------------------------|------------------|-----------------------|-----------------------|
| L             | CHARACTERISTIC                               | UNIT OF<br>MEASURE     | MARCH 1959                                      | DECEMBER<br>1959                   | FEBRUARY<br>1961 | A/V NO. 1<br>MAR 1964 | A/V NO. 2<br>MAY 1966 |
|               | WEICHT                                       | FOUNDS                 | 1577                                            | NOT AVAIL                          | NOT AVAIL        | 0197                  | 7705                  |
|               | MAJOR SUBSYSTEM                              | FILL                   | PRIMARY<br>SECONDARY<br>FACS<br>AFCS            | FRIMARY -<br>SECONDARY -<br>FACS - | I                | I                     | <b>•</b> • • •        |
| I             | POWER SOURCE                                 | SPECLEY                | HYDRAULLC<br>4000 FSI<br>ELECTRLC-AC<br>400 CPS |                                    |                  |                       | Ŵ                     |
| <b>v-</b> 133 | TEMPERATURE - DESIGN RANGE                   | DEGREES F              | -65 TO 630                                      |                                    |                  |                       |                       |
|               | SPEED - MAX DESIGN                           | MACH NO.               | с<br>Г                                          |                                    |                  |                       | •                     |
|               | ALTITUDE - MAX DESIGN                        | FEET                   | 000,011                                         | - 000 <b>,</b> 08                  |                  |                       | •                     |
|               | AIR LOADS (Q,) - MAX DESIGN                  | FOUNDS/FT <sup>2</sup> | 1,550 -                                         |                                    |                  |                       |                       |
|               | RELLABILITY FACTOR                           | NONE                   | - 99813                                         |                                    |                  |                       |                       |
|               | MITHE                                        | NO. OF HR              | - 335                                           |                                    |                  |                       | •                     |
| SD72-         |                                              |                        |                                                 |                                    |                  |                       |                       |

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

SD72-SH-0003



**Space Division** North American Rockwell

1.6



#### TECHNICAL DESCRIPTION

SUBSYSTEM: FLIGHT CONTROL

WBS CODE: 1.6 WBS CODE: 1.6.1

MAJOR ASSEMBLY: PRIMARY FLIGHT CONTROL SYSTEM

The Primary Flight Control System (PFCS) consisted of mechanical and hydromechanical components extending from the pilot's controls to and including the hydraulic actuators which powered the aerodynamic surfaces. The PFCS also incorporated provisions for receiving inputs from the Flight Augmentation Control System (FACS) servocylinders and for displacement of the neutral (zero force) position by the Secondary Flight Control System (SFCS). Full control of the air vehicle throughout its entire flight envelope was provided placing no restrictions on the air vehicle with respect to allowable or attainable limits of altitude, speed, range, rate of climb, normal acceleration, and environment operating conditions.

The PFCS pitch and roll control components consisted essentially of interconnected control columns and associated wheels, feel system, cable system, mechanical mixer, pitch and roll master cylinders, horizontal stabilizer surface actuators, elevon surface actuators, override bungees, and an elevon control fold mechanism. The control column and wheel for the pilot and copilot were interconnected and moved in unison. The wheel was a twin-grip, two-spoke, cast magnesium structure. Integrally attached to the wheel was a rotary transmitter, two push button switches, a rocker arm switch, and internal wiring. A special pilot's control wheel was provided for flight testing purposes and contained, in addition to the above, an instrumentation record switch, event marker, and force measuring instrumentation for pitch and roll. The control wheel attached to the control column by means of a shaft which was in turn connected to a lower offset control column shaft by means of a gear drive. A ball bearing assembly arrangement within the control column permitted linear movement of the control column shaft and transmitted rotary motion of the control column shaft. Each control column had its individual column stowage mechanism. Stowage was accomplished either manually or automatically and the mechanism consisted of a locking device, a manual plunger integral with the column support assembly, a thruster and an engagement mechanism. Exhibit 3, page IV-139, and Exhibit 4, page IV-140, present views of the cockpit showing the control columns and wheels.

In the pitch system, artificial feel was provided by a dynamic pressure bellows with contribution toward feel from an overcenter spring, a hydraulic damper, and a bobweight. In the roll system. artificial feel was provided by a single-acting overcenter, compression spring type feel bungee. The artificial feel for the yaw system was provided by a double-acting spring type feel bungee.

The cables used throughout the pitch and roll systems were steel clad (stainless steel tubing swaged over stainless steel cable) with the exception of the cross ship cables between the horizontal stabilizer actuators, which



were bare stainless steel flexible cables. At approximately ten foot intervals in the forward cable system, each control cable was supported by a three-roller carriage running in a limited length cylindrical tube. Six such cylindrical tubes were in turn commonly affixed to a guided carriage which could be withdrawn from the aft end of the integral control tunnel that extended through the fuel cells. Spaced equally between the cable supports in the forward cable system were control cable fairleads affixed to each of nine guided carriages. Forward of the control tunnel the cable fairleads were interspaced between the supports and seals. The cable seal was a round shaft positioned within a cylindrical spacer with a minimum of radial clearance. The close dimensionally controlled radial clearance between the shaft and the spacer resulted in a controlled leakage through the seals. The cable tension regulator consisted of three separate four-bar parallelogram linkages supported by an idler bell crank. Primary flight commands were transmitted through each respective parallelogram linkage; cable tension regulation provided by compression bungees was transmitted through the rotatable idler bell crank.

The mechanical mixer was a four-bar parallelogram linkage supported by an idler bell crank. Roll commands were transmitted through the parallelogram linkage while the pitch commands were transmitted through the idler bell crank. The pitch and roll master cylinders were of the stationary, dual tandem, hydraulically unbalanced type supplied simultaneously by primary hydraulic systems No. 1 and No. 2. The dual servo valve was mounted on the cylinder and was controlled by an external follow-up linkage. The horizontal stabilizer actuators were of the dual tandem, unbalanced type controlled by an external follow-up linkage. Exhibit 5, page IV-141 presents a view showing part of the mixer bay.

Each elevon segment was actuated by two single system hydraulically balanced actuators. Power to one actuator per segment was supplied by primary hydraulic system No. 1 while the other actuator was supplied by primary hydraulic system No. 2. The inboard elevon segment actuators in each wing received inputs from the pitch and roll control systems. The actuators of the remaining elevon segments were controlled from the output side of the outboard actuator of the inboard elevon segment. Each actuator had a single servo valve and was controlled by an external follow-up linkage. The actuator valves were linked together through the input control linkage so that simultaneous movement of all actuators in each wing was effected. Exhibit 6, page IV-142, presents a view showing an elevon compartment and the elevon actuators. The elevon control mechanism at the wing tip fold consisted of a linkage which provided the function of disengaging and centering the outboard elevon linkage during the wing folding operation. This was essentially two bell cranks double acting type utilizing a single compression spring. Each override bungee had a preload sufficient to produce an unjamming force on any servo valve spool within the respective system.



The manual pitch and roll inputs were transmitted from the control column and wheel through mechanical elements and master cylinders to full-powered irreversible surface actuators. From the control wheel to the mechanical mixer the manual pitch and roll inputs were separated. From the mixer to the surface actuators the input motion was either pitch or roll or a combination of both. The pitch differential servo and pitch master cylinder combined outputs exceeded available surface travel. This excess travel, when it occurred, was absorbed by the pitch override bungee. The roll override bungee provided the same function in the roll axis, however, its preload was lower that the pitch override bungee to prevent reduction of pitch commands through roll inputs. The cable supports maintained cable alignment and prevented excessive catenary sag of the control cables. The three-roller carriage was constructed so that minimum of control system friction was obtained. In the event of loss of cable rig, the fairleads afforded push-pull transmission of pilot commands to overcome the normal operating loads of the control valves. The cable tnesion regulator allowed independent pitch, roll, and yaw primary flight control operation while maintaining cable tension in all axes. The regulator compensated not only for the effect of changes in temperature  $(-65^{\circ}F$  to  $450^{\circ}F)$ , but also for deflection of structure under air loading. Motion of the regulator did not induce primary flight control commands.

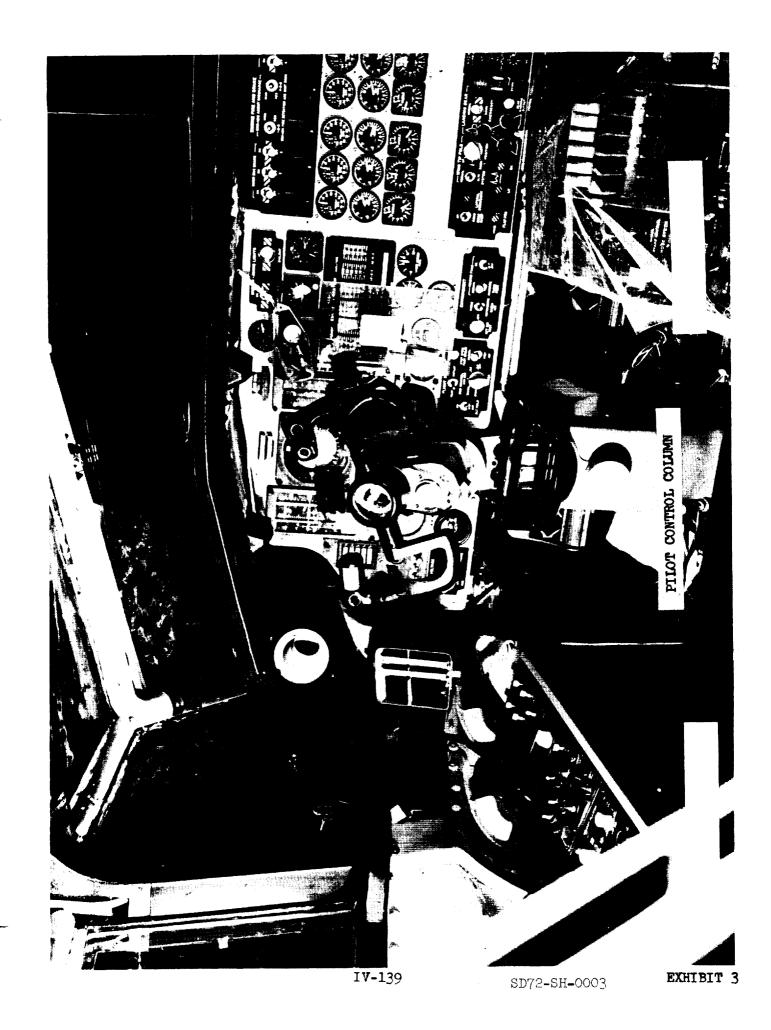
The mechanical mixer was capable of receiving roll command inputs or pitch command inputs individually or simultaneously and issuing outputs to cause elevon controls to move differentially for roll or symmetrically for pitch commands. Stops were located at the mechanical mixer parallelogram linkage to limit roll motion while the linkage connected to the idler bell crank had stops to limit the pitch motion.

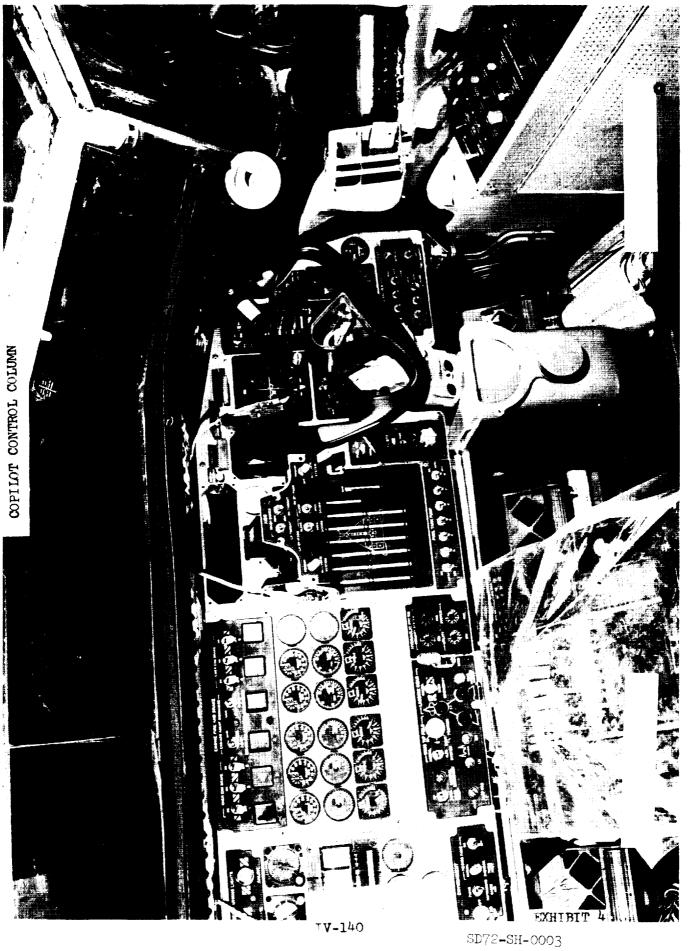
The portion of the PFCS which provided manual control to the rudders was referred to as yaw control. The yaw control consisted essentially of pilot and copilot interconnected rudder pedals, cable system, yaw gearing changer system, yaw override bungee, and rudder actuators. The rudder pedals were of rectangular cast lattice construction with adequate width to accommodate a heavily-booted foot and at a height such that braking pressure could be applied by the most desirable portion of the foot. The pedals were pivoted about the lower edge and suspended from a set of links which provided essentially straight line motion of the pedal. Angular altitude of the pedal was dictated by the brake rod bungee. A rotary pedal position adjustment knob, actuation of which adjusted both pedals simultaneously, was provided on the pedal support structure at the centerline of each crew station.

The yaw gearing changer system consisted of a changer actuator and connecting linkages. The actuator was a dual-tandem, unbalanced, hydraulic actuator with an integral valve that was operated by landing gear pressure. Built-in flow restrictors slowed the shifting of pedal-to-surface gearing to an operating time of 5 to 10 seconds. The changer linkage was essentially a four bar linkage whose input link had a fixed pivot and whose movable output link pivot was positioned by the actuator. A change in position of the



movable pivot resulted in a change of gearing between input and output arms of the changer. Stops on the input arm of the changer provided limits for the combined yaw command inputs of the pedals and the FACS servocylinders. Such yaw input commands were accordingly transmitted through the changer linkage and were modified only when the landing gear was up and a resulting change in gearing of the input and output arms of the changer linkage had been made. Each rudder was actuated by a dual tandem, unbalanced, hydraulic actuator with a dual servo valve controlled by an external follow-up linkage. Power to the actuators was supplied simultaneously by primary hydraulic systems No. 1 and No. 2.


Pedal deflections for yaw control were transmitted through mechanical elements directly to the control valves on the rudder actuators. The inputs could be modified by motion of the FACS yaw servocylinders. The yaw control pedals provided for the pilot and copilot were interlinked in the cockpit region so that operation of one pedal resulted in movement of all pedals in the applicable direction. Travel was essentially linear and parallel to the cabin floor. Angular altitude of the pedal varied throughout the range of travel to afford a relaxed ankle position. The air vehicle wheel braking utilizes electrical control consisting of dual linear potentiometers that were integral with the brake feel bungees.


The ancillary control was an electrical control which operated in parallel with the mechanical portions of the PFCS aft of the master cylinders in the pitch and roll axes. The ancillary system consisted of two separate control channels, one for operating in parallel with the right-hand elevon cable system and the other operated in parallel with the left-hand elevon cable system. Each channel was composed of a valve driver, a servocylinder, an override bungee, and linear displacement transducers. The valve drivers were transistorized and packaged or printed circuit boards of modular form. The electronics were located in the FACS yaw-roll computer. The servocylinder was composed of a single-piston, rotary-output, balanced, hydraulic cylinder and a four way electro-mechanical servovalve. The ancillary servocylinder was mounted directly on the inboard elevon surface actuator and received hydraulic power through face seals in its mounting. The ancillary control utilized eight rectilinear, variable-permeance transducers to indicate the shaft position of the pitch and roll master cylinders, pitch and roll differential servos, and the ancillary actuators. The ancillary override bungee was a double-acting, preloaded compression spring which tied the ancillary servocylinder output to the mechanical portion of the PFCS.

For roll commands, the right hand and left hand ancillary actuators were driven differentially by the transducer outputs produced by shaft displacement of the roll master cylinder and/or roll differential servocylinder. Master cylinder and differential servo position were sensed by dualized linear transducers which were shared with the FACS roll axis. Excitation of each channel of FACS was 180 electrical degrees out of phase with each other. Thus a given roll input produced two singles equal in magnitude but 180 degrees apart. Outputs of the roll master cylinder and differential servo in one channel were fed to the right hand ancillary valve driver, and those



in the other channel to the left hand ancillary valve driver. Consequently, since the ancillary valve drivers utilized a common reference supply, and the control valves were connected in the same manner, the 180 degree shift in signal phase caused the ancillary servo cylinders to drive in opposite directions to operate the surfaces as ailerons. For pitch commands, a pitch master cylinder position transducer and a pitch differential servo position transducer, which was independent of the FACS pitch axis, were electronically summed. The resultant output signal controlled both ancillary valve drivers. Since the signal to both valve drivers were identical in both magnitude and phase, the ancillary actuators were driven in unison to operate the surfaces as elevators. For normal operation the ancillary control operated in unison with the PFS and only assumed control if the mechanical portion became disconnected.





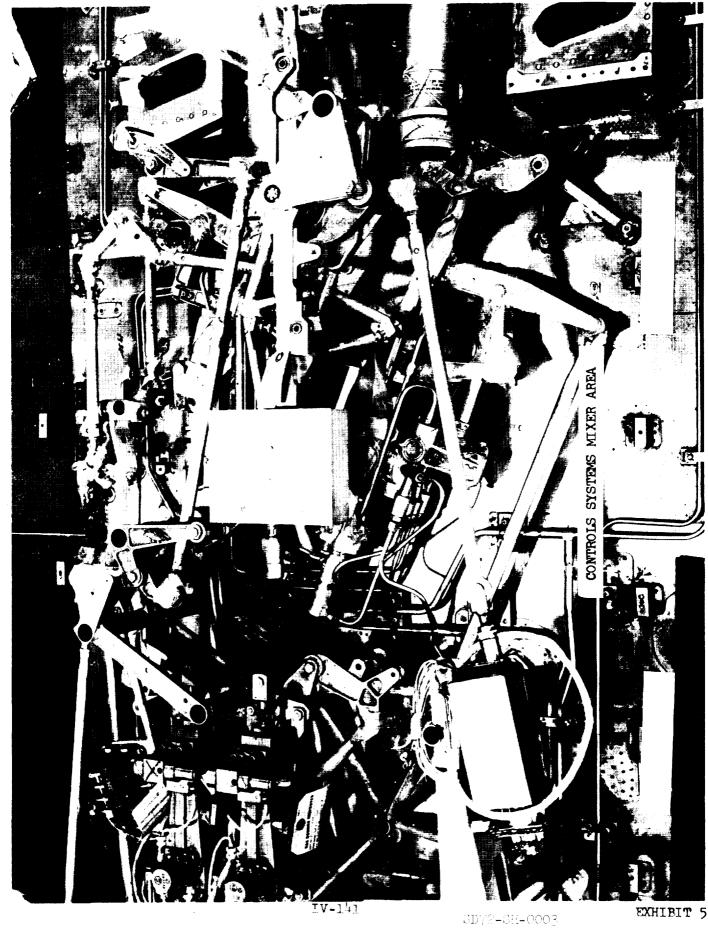



EXHIBIT 5



----

| VI CHARACTERISTICS PROGRESS SUMMARY |  |
|-------------------------------------|--|
| CHA                                 |  |
|                                     |  |

WBS IDENTIFICATION: PRIMARY FLIGHT CONTROL

WBS CODE: 1.6.1

| CHARACTERISTIC               | UNIT OF<br>MEASURE | MARCH 1959                                            | DECEMBER<br>1959 | FEBRUARY<br>1961 | A/V NO. 1<br>MAR 1964 | A/V NO. 2<br>MAY 1966 |
|------------------------------|--------------------|-------------------------------------------------------|------------------|------------------|-----------------------|-----------------------|
| WEI GHT                      | FOUNDS             | 4 <b>,</b> 236                                        | NOT AVAIL        | NOT AVAIL        | 4 <b>,</b> 433        | 4,502                 |
| CREW CONTROL STATTONS        | NUMBER             | 0                                                     |                  |                  |                       | t                     |
| CREW LATERAL CONTROL         | HAP                | WHEEL                                                 |                  |                  |                       |                       |
| CREW LONGITUDINAL CONTROL    | TYPE               | COLUMN                                                |                  |                  |                       |                       |
| CREW YAW CONTROL             | TYPE               | PEDALS                                                |                  |                  |                       |                       |
| FEEL FORCE                   | TYPE               | BOBWEIGHT                                             |                  |                  |                       |                       |
| "G" GRADIENT FORCE           | "2"/3EL            | 45<br>CONSTANT                                        | 45<br>CONSTANT   | 35 TO 45         |                       | t                     |
| WHEEEL TRAVEL                | DEGREES            | °06<br>+1                                             |                  |                  |                       | ł                     |
| COLUMN TRAVEL                | LITNEAR/EQUIV.     | 9.625 INCHES                                          | ស្អ              |                  |                       | ł                     |
| FRIMARY CONFROL TRANSMISSION | IIIII              | LOCKCLAD<br>CABLE AND<br>LINKAGE<br>PILOT<br>ASSISTED |                  |                  |                       | ł                     |
| BACK-UP CONTROL TRANSMISSION | IIYPE              | DUAL MECH.<br>FACS ELECT                              |                  |                  |                       | 4                     |

I**V-1**43



Space Division North American Rockwell

| TECHNICAL CHARACTERISTICS PROGRESS SUMMARY |  |
|--------------------------------------------|--|
|                                            |  |
|                                            |  |

WBS IDENTIFICATION: PRIMARY FILICHT CONTROL

- WBS CODE: 1.6.1

| CHARACTERISTIC            | UNIT OF<br>MEASURE | MARCH 1959                                       | DECEMBER<br>1959 | FEBRUARY<br>1961 | A/V NO. 1<br>MAR 1964 | A/V NO. 2<br>MAY 1966 |
|---------------------------|--------------------|--------------------------------------------------|------------------|------------------|-----------------------|-----------------------|
| CABLE LENGTH              | FEET               | FWD 130<br>AFT 33                                |                  |                  |                       | ł                     |
| CABLE DLAMETTER           | INCHES             | 1/8 DIA (201<br>DIA CLAD)                        |                  |                  |                       | ł                     |
| CONTROL SURFACES          | TYPE/NO.           | ELEVON/12<br>RUDDER/2 -<br>STABILIZER            |                  |                  |                       |                       |
| CONTROL SURFACE AREAS     | FEEL               | ELEVONS 396<br>RUDDER 468<br>STABLILIZER<br>4.15 |                  |                  |                       | ł                     |
| RUDDER TRAVEL (GEAR DOWN) | DEGREES            | 위<br>+1                                          |                  |                  |                       | •                     |
| RUDDER TRAVEL (GEAR UP)   | DEGREES            | €<br>€<br>1<br>1<br>1                            |                  |                  |                       | 1                     |
| FOWER SOURCE              | <b>THI OHAS</b>    | DUAL HYD.<br>4000 PSI                            |                  |                  |                       | ł                     |
| MAX TRAVEL RATE - PITCH   | DEGREES/SEC        | 28 (SURF)                                        |                  |                  |                       | 1                     |
| MAX TRAVEL RATE - ROLL    | DEGREES/SEC        | SURFACE<br>DIFFERENTIAL                          |                  |                  |                       | •                     |

IV-144



**Space Division** North American Rockwell

| RIMARY FILIGHT CONTROL<br>ISTIC UNIT OF<br>MEASURE<br>RANGE DEGREES F<br>TYPE/NO.<br>TYPE/NO.<br>ESTGN MAX GPM<br>ESTGN MAX AMPS, VOLINS<br>NONE NO. OR HR. | WBS CODE:1.6.1         | 1 1959         DECEMBER         FEBRUARY         A/V NO. 1         A/V NO. 2           1 1959         1 961         MAR 1964         MAY 1966 | RF.)<br>KLIN)<br>KLIN<br>La BAL/<br>2-1<br>                                                                                                                                                                                                                                                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| RIMARY FLIGHT CONTR<br>ISTIC<br>SURE<br>SURE<br>ESIGN MAX<br>ESIGN MAX<br>ESIGN MAX                                                                         |                        | MARCH 1959                                                                                                                                    | 12 (SURF.)<br>630 (SKIN)<br>51NGLE BAL/<br>SINGLE BAL/<br>LUAL UNBAL/<br>huoto PSI<br>1,<br>hooo PSI<br>hooo PSI<br>blooo PSI<br>blooo PSI<br>blooo PSI<br>blooo PSI<br>blooo PSI<br>17500 HR                                                                                                                 |  |
|                                                                                                                                                             | PRIMARY FILGHT CONTROL |                                                                                                                                               | MAX TRAVEL RATE - YAW DEGREE<br>TEMPERATURE - DESIGN RANGE DEGREE<br>ACTUATORS - DESIGN RANGE DEGREE<br>ACTUATOR SEALS<br>ACTUATOR SEALS<br>ACTUATOR WORKING PRESSURE FSI<br>ACTUATOR WORKING PRESSURE FSI<br>HYD FLOW REQUIRED - DESIGN MAX GPM<br>ELEC FWR REQUIRED - DESIGN MAX GPM<br>MIEF<br>MIEF NO. OF |  |

I**V-1**45

**TECHNICAL CHARACTERISTICS PROGRESS SUMMARY** 



**Space Division** North American Rockwell



## TECHNICAL DESCRIPTION

| SUBSYSTEM:    | FLIGHT CONTROL              | WBS CODE: | 1.6   |
|---------------|-----------------------------|-----------|-------|
| MAJOR ASSEMBL | Y: SECONDARY FLIGHT CONTROL | WBS CODE: | 1.6.2 |

The secondary flight control system (SFCS) consisted of those components required to provide the functions of trim in the pitch, roll, and yaw axes and operation of the flaps and wing folding tips.

Two linear electro-mechanical pitch trim actuators were utilized. They consisted of 115V 3-phase motor and associated gearing. A linear position transducer was mounted on the primary pitch trim actuator to indicate actuator shaft position. There were two modes of pitch trim, namely primary trim and standby trim. Primary trim, controlled by a knob on each control wheel, was proportional to the knob rotation. Standby trim, controlled by a three position switch, was accomplished by actuation of the momentary switch until the desired trim position was attained. The controls for actuating standby trim and located on the FACS panel are shown in Exhibit 7, page IV-147.

There were two means provided for establishing lateral trim. The controls were located on the center aisle console. A primary roll trim knob was used to provide position trim and a three-position switch was used to provide standby (rate) trim. The knob operation provided an output through the flight augmentation control system (FACS) to reposition the elevons.

The control for directional trim was provided by a three-position switch on the center aisle console. This control, when operated, caused the trim actuator to move at a fixed rate which repositioned the zero force point of the directional control feel bungee.

A trim for the takeoff (TTO) **push** button was mounted on the FACS control panel to provide the pilot with a quick and easy method of positioning the primary surfaces for takeoff. Pressing and holding the TTO would automatically position all the air vehicle primary control surfaces to their respective takeoff positions. The TTO button would illuminate when all surfaces were properly positioned for takeoff and the flaps were lowered.

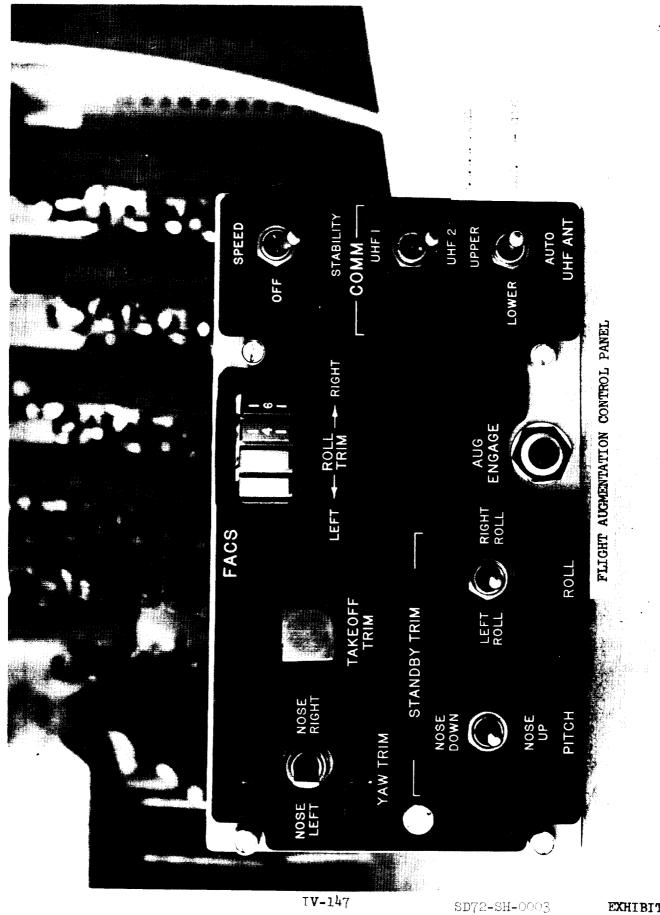



EXHIBIT 7

| АВҮ         |  |
|-------------|--|
| S SUMM      |  |
| GRESS       |  |
| ICS PROGRES |  |
| TERISTI     |  |
| ARACT       |  |
| AL CH/      |  |
| CHNIC       |  |
| ŢE          |  |
|             |  |

SECONDARY FLICHT CONTROL WBS IDENTIFICATION: \_\_\_\_

1.6.2 - WBS CODE: --

| CHARACTERISTIC             | UNIT OF<br>MEASURE | MARCH 1959             | DECEMBER<br>1959 | FEBRUARY<br>1961 | A/V NO. 1<br>MAR 1964 | A/V NO. 2<br>MAY 1966  |
|----------------------------|--------------------|------------------------|------------------|------------------|-----------------------|------------------------|
| WEIGHT                     | FOUNDS             | 3145                   | NOT AVAIL        | NOT AVAIL        | 2818                  | 2842                   |
| CREW CONTROL STATIONS      | NUMBER             | ณ                      |                  |                  |                       |                        |
| ELEVON TRIM TRAVEL - PLICH | SHERE              | 25 UP<br>15 DN         | 25 UP<br>15 DN   | 25 UP<br>15 DN   | 25 UP<br>15 ND        | 20 UP<br>20 DN         |
| ELEVON TRIM TRAVEL - DIFF  | DEGREES            | + 7.50                 |                  |                  |                       | 1                      |
| STAND-BY TRIM TRAVEL       | DEGREES            | 25 UP<br>15 DN         | 25 UP<br>15DN    | 25 UP<br>15 DN   | 25 UP<br>15 DN        | <b>2</b> 0 UP<br>20 DN |
| PITCH TRIM MOTORS          | TYPE/NO.           | ELECTRO-<br>MECHANICAL |                  |                  |                       | ţ                      |
|                            |                    | 2 REQ.<br>115 VAC 3 FH |                  |                  |                       |                        |
| ROLLI TRIM MOTORS          | TYPE/NO.           | ELECTRO-<br>MECHANTCAL |                  |                  |                       |                        |
|                            |                    | 2 REQ.                 |                  |                  |                       |                        |
| YAW TRIM TRAVEL            | DEGREES            | FILAPS UP $\pm$        |                  |                  |                       | ł                      |
|                            |                    | FLAPS DN +<br>1.4      |                  |                  |                       |                        |
| YAW TRIM MOTOR             | TYPE/N0.           | ELECTRO-MECH           |                  |                  |                       | Å                      |
|                            |                    | HI S VAC 3 FH          |                  |                  |                       |                        |

\_



WBS IDENTIFICATION: SECONDARY FILIGHT CONTROL

-WBS CODE: 1.6.2

| CHARACTERISTIC                 | UNIT OF<br>MEASURE    | MARCH 1959                       | DECEMBER<br>1959 | FEBRUARY<br>1961 | A/V NO. 1<br>MAR 1964 | A/V NO. 2<br>MAY 1966 |
|--------------------------------|-----------------------|----------------------------------|------------------|------------------|-----------------------|-----------------------|
| TRIM ACTUATORS                 | TYPE/NO.              | ELECTRO-MECH<br>4 REQ.           |                  |                  |                       | r.                    |
| PITCH TRIM ELEC POWER REQUIRED | AMPS, VOLITS          | 200 VA                           |                  |                  |                       |                       |
| ROLL TRIN ELEC POWER REQUIRED  | AMPS, VOLITS          | 200 VA                           |                  |                  |                       | 1                     |
| YAW TRIM FLEC POWER REQUIRED   | AMPS, VOLTS           | 200 VA                           |                  |                  |                       | ł                     |
| PLTCH TRIM MAX RATE            | DEGRESS PER<br>SECOND | 1.5 STANDBY-                     |                  |                  |                       |                       |
| ROLL TRIM MAX RATE             | DEGREES PER<br>SECOND | 2.0 DIFF<br>STANDBY              |                  |                  |                       | · •                   |
| YAW TRIM MAX RATE              | DEGREES PER<br>SECOND | 1 GEAR UP<br>4 GEAR DN           |                  |                  |                       | ł                     |
| TRIM SIGNAL TRANSMISSION       | ЫТУРЕ                 | ELECTRICAL<br>ANALOG             |                  |                  |                       | t                     |
| TEMPERATURE - DESIGN RANGE     | DEGREES F             | -65 TO 475                       |                  |                  |                       |                       |
| FLAPS POSIFICON MOTOR          | TYPE/NO               | LINEAR<br>HYDRAULLIC<br>ACTUATOR |                  |                  |                       |                       |
| FLAP POSITION TRAVEL           | DEGREES               | 00                               |                  |                  |                       | t                     |
|                                |                       |                                  |                  |                  |                       |                       |



Space Division North American Rockwell

| > | WBS IDENTIFICATION: SECONDARY FLIGHT CONTROL        | CONTROL            |                                           |                  | WBS CODE: -      | DE: 1.6.2             | N                     |
|---|-----------------------------------------------------|--------------------|-------------------------------------------|------------------|------------------|-----------------------|-----------------------|
|   | CHARACTERISTIC                                      | UNIT OF<br>MEASURE | MARCH 1959                                | DECEMBER<br>1959 | FEBRUARY<br>1961 | A/V NO. 1<br>MAR 1964 | A/V NO. 2<br>MAY 1966 |
|   | FLAP ACTUATOR                                       | • ON/EdYT          | TANDEM<br>UNBALANCED<br>2 REQ.            |                  |                  |                       |                       |
|   | TRIM POSITION SENSORS                               | TYPE/NO.           | LINEAR ELECT<br>(LVDT)<br>8 REQ.          |                  |                  |                       | •                     |
|   | WING-TIP FOLD TRAVEL - MAX                          | DEGREES            | @ 1.04°/SEC @ 1.04°/SEC                   |                  | @ 1.040/SEC      |                       |                       |
|   | WING TIP FOLD TRAVEL - INTERMED                     | DEGREES            | 25                                        |                  |                  |                       | 1                     |
|   | WING-TIP FOLD ACTUATOR                              | TYPE/NO.           | HYD. MOTORS-<br>EPICYCLIC                 |                  |                  |                       |                       |
|   |                                                     |                    | GEALING<br>MECHANICAL<br>ONE PER          |                  |                  |                       |                       |
|   | WING-TIP FOLD GEARING RATIO                         | NONE               | 31812 TO 1                                |                  |                  |                       |                       |
|   | WING-TIP FOLD FOS SENSORS                           | TYPE/NO.           | ROTARY<br>SYNCHRO<br>ELECTRICAL<br>2 REQ. |                  |                  |                       | ł                     |
|   | HYD FRESS WING-TIF FOLD<br>HYD FLOW - WING-TIF FOLD | MJD<br>ISJ         | 1000 FSI                                  |                  |                  |                       |                       |
|   | * LINEAR VELOCITY DISPLACEMENT TRANSDUCER           | MENT TRANSDUCE     | ~                                         |                  |                  |                       |                       |



**Space Division** North American Rockwell

WBS IDENTIFICATION: SECONDARY FILIGHT CONTROL

.

**TECHNICAL CHARACTERISTICS PROGRESS SUMMARY** 

**1.6.**2 - WBS CODE: -

| CHARACTERISTIC                | UNIT OF<br>MEASURE | MARCH 1959                   | DECEMBER<br>1959 | FEBRUARY<br>1961 | A/V NO. 1<br>MAR 1964 | A/V NO. 2<br>MAY 1966 |
|-------------------------------|--------------------|------------------------------|------------------|------------------|-----------------------|-----------------------|
| -O.T - NOTIUISER MIRT NOV-    | DEGREES            | 1+ 0•1                       |                  |                  |                       |                       |
| ROLL TRIM CENTERING - T.O.    | DEGREES            |                              |                  |                  |                       | ł                     |
| YAW TRIM CENTERING - T.O.     | DEGREES            |                              |                  |                  |                       | ţ                     |
| HORIZ STAB. RESOLUTION - T.O. | DEGREES            | + 0°02                       |                  |                  |                       |                       |
| TRIM FOR TAKEOFF CONTROL      | ЯДЛІ               | SINGLE POINT<br>THROUGH FACS |                  |                  |                       | ţ                     |
| FITCH TRIM CONTROLS           | TYPE/NO.           | POSITION<br>WITH RATE        |                  |                  |                       |                       |
|                               |                    | STANDBY<br>(DUAL)            |                  |                  |                       |                       |
| ROLL TRIM CONTROLS            | TYPE/NO.           | FOSTITON<br>(IJUAL)          |                  |                  |                       | 1                     |
| YAW TRIM CONTROLS             | TYPE/NO.           | RATE (SINGLE)                |                  |                  |                       | •                     |
| RELIABILITY FACTOR            | NONE               | ſ                            | 1                | .99823           | . 99823               | .99823                |
| MIBF                          | NO. OF HR.         | 1                            | ,<br>I           | 988              | 988                   | 886                   |
|                               |                    |                              |                  |                  |                       |                       |
|                               |                    |                              |                  |                  |                       |                       |
|                               |                    |                              |                  |                  |                       |                       |





#### TECHNICAL DESCRIPTION

SUBSYSTEM: FLIGHT CONTROL

WBS CODE: 1.6

MAJOR ASSEMBLY: FLIGHT AUGMENTATION CONTROL SYSTEM (FACS) WBS CODE: 1.6.3

The FACS augments basic air vehicle control characteristics in three axes to provide improved manual control and maneuverability throughout the flight envelope. The functions of the FACS were dynamic stability augmentation, maneuver control augmentation, speed stability augmentation, primary roll trim and trim for take-off.

The FACS was designed as an electrical control system operating in parallel with the mechanical primary flight control system to enhance flight control performance of the air vehicle. The FACS was designed to transform pilot inputs and air vehicle motion into electrical signals which drive the air vehicle surfaces through the differential servocylinders to produce the desired damping, maneuver control, and trim characteristics. In each axis the FACS servocylinder, controlled by these signals, was in effect seriesmounted with respect to the mechanical primary flight control system and was free to add or subtract from pilot inputs to the mechanical system.

The FACS pitch axis was designed to transform pilot column deflection and air vehicle motion about the pitch axis into displacements of the pitch servocylinder. The column and air vehicle motion inputs were sensed independently by two identical channels of transducers and electronics, and the resultant electrical signals then fed into separate servo valves on the pitch servocylinder. The servocylinder shaft displacement commanded by these signals then would drive the mechanical control system linkages.

The FACS roll axis was designed to transform pilot wheel rotation, primary trim inputs, and air vehicle motion about the air vehicle roll axis into displacements of the roll servocylinder. The wheel and air vehicle motion inputs were sensed independently by two identical channels of transducers and electronics, and the resultant electrical signals fed into separate servovalves on the roll servocylinder. The servocylinder shaft displacement commanded by these signals then would drive the mechanical control system linkages.

| ЧΥ      |
|---------|
| AMMU    |
| SU      |
| ROGRESS |
| Ш<br>Ш  |
| PRO     |
| ICS PF  |
| ERISTI  |
| E B     |
| 5       |
| RA      |
| 4       |
| Ч.      |
| AL      |
| Ę       |
| E       |
| Щ       |
| •       |

1.6.3

- WBS CODE: --

WBS IDENTIFICATION: FLIGHT AUGMENTATION CONTROL SUBSYSTEM (FACS)

A/V NO. 2 MAY 1966 361 A/V NO. 1 MAR 1964 359 FEBRUARY 1961 ខ្ព NOT AVAIL SHAPED 1.6 DECEMBER 1959 NOT AVAIL 2 TRIM COMMAND ACCELERATION SERVO POS FLOW INTEG RATE SERVO POS FLOW INTEG COLUMN POS **MARCH 1959** RATE SERVO POS WHEEL, POS TRIM POS 370 N 50 10 2 RATE UNIT OF MEASURE POUNDS NUMBER HERTZ HERTZ HERTZ TYPE FREQUENCY RESPONSE - PITCH FREQUENCY RESPONSE - ROLL FREQUENCY RESPONSE - YAW CHARACTERISTIC CREW CONTROL STATIONS CONTROL PARAMETERS PITCH ROLL YAW WEIGHT



| АRΥ         |
|-------------|
| NMM)        |
| s sí        |
| GRESS S     |
| G<br>B<br>B |
| RO<br>RO    |
| S.          |
| ST C        |
| ERIS        |
| CTE         |
| RĄ          |
| HΑ          |
| ບ<br>       |
| CA          |
| NH          |
| С<br>Ш      |
|             |
|             |

FLIGHT AUCMENTATION CONTROL SUBSYSTEM (FACS) WBS IDENTIFICATION: \_\_\_\_

6.3 WBS CODE:

| CHARACTERISTIC              | UNIT OF<br>MEASURE    | MARCH 1959                                         | DECEMBER<br>1959 | FEBRUARY<br>1961 | A/V NO. 1<br>MAR 1964 | A/V NO. 2<br>MAY 1966 |
|-----------------------------|-----------------------|----------------------------------------------------|------------------|------------------|-----------------------|-----------------------|
| PITCH SERVO                 | TYPE/NO.              | TANDEM<br>UNBALANCED<br>1                          |                  |                  |                       | ţ                     |
| ROLL SERVO                  | TYPE/NO.              | TANDEM<br>UNBALANCED<br>1                          |                  |                  |                       |                       |
| YAW SERVO                   | TYPE/NO.              | SINGLE<br>BALANCED<br>2                            |                  |                  |                       | •                     |
| POWER SOURCE                | TYPE                  | 4000 PSI<br>400 CPS.AC                             |                  |                  |                       | ł                     |
| HYDRAULIC FLOW DEMAND - MAX | GPM                   | 5.4                                                |                  |                  |                       | 4                     |
| ELEC POWER DEMAND - MAX     | AMPS, VOLTS           | 660 VA                                             |                  |                  |                       | 1                     |
| NORMAL ACCELEROMETER        | TYPE/NO.              | FLUID DAMPED<br>PENDULOUS<br>MASS, A.C.<br>PICKOFF |                  |                  |                       | •                     |
| NORMAL ACCEL FREQ RESPONSE  | HERTZ                 | 16 OR LESS -                                       |                  |                  |                       | ł                     |
| NORMAL ACCELERATION RANGE   | FEET/SEC <sup>2</sup> | +128 TO<br>-32                                     |                  |                  |                       |                       |



Space Division North American Rockwell

FLIGHT AUGMENTATION CONTROL SUBSYSTEM (FACS) WBS IDENTIFICATION: \_\_

WBS CODE: 1.6.3

| IT OF MARCH 1959 DECEMBER FEBRUARY A/V NO. 1 A/V NO. 2<br>SURE MAR 1964 MAY 1966 1961 MAR 1964 MAY 1966 |                 | AL FLUDIF                     | ¥.                         | 2 82                      | FLUID DAMPED<br>AC PICKOFF | Z ABOVE 30                   | FS 0.3                    | FS 0.3                   | FLUID DAMPED<br>AC PICKOFF | Z ABOVE 30                  | FS 0.3                   | FS 0.3                  | cres/sec 28             |  |
|---------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|----------------------------|---------------------------|----------------------------|------------------------------|---------------------------|--------------------------|----------------------------|-----------------------------|--------------------------|-------------------------|-------------------------|--|
|                                                                                                         |                 |                               |                            |                           |                            |                              |                           |                          |                            |                             |                          |                         |                         |  |
|                                                                                                         | FLUID DAMPED    | AL FLUDIF                     |                            | 0.3                       | FLUID DAMPED<br>AC PICKOFF | ABOVE 30                     | 0.3                       | 0.3                      | FLUID DAMPED<br>AC PICKOFF | ABOVE 30                    | 0.3                      | 0.3                     | 28                      |  |
| UNIT OF<br>MEASURE                                                                                      | TYPE            | HERTZ                         | 24 UF                      | 0F                        | TYPE                       | HERTZ                        | & OF FS                   | \$ OF FS                 | TYPE                       | HERTZ                       | % OF FS                  | % OF FS                 | DEGREES/SEC             |  |
| CHARACTERISTIC                                                                                          | PITCH RATE GYRO | PITCH RATE GYRO FREQ RESPONSE | PITCH RATE GYRO HYSTERESIS | PITCH RATE GYRO LINEARITY | ROLL RATE GYRO             | ROLL RATE GYRO FREQ RESPONSE | ROLL RATE GYRO HYSTERESIS | ROLL RATE GYRO LINEARITY | YAW RATE GYRO              | YAW RATE GYRO FREQ RESPONSE | YAW RATE GYRO HYSTERESIS | YAW RATE GYRO LINEARITY | PITCH MAX RATE LIMITING |  |



**Space Division** North American Rockwell

FLIGHT AUGMENTATION CONTROL SUBSYSTEM (FACS) WBS IDENTIFICATION:

WBS CODE: 1.6.3

| CHARACTERISTIC                                | UNIT OF<br>MEASURE | MARCH 1959                                                             | DECEMBER<br>1959 | FEBRUARY<br>1961 | A/V NO. 1<br>MAR 1964 | A/V NO. 2<br>MAY 1966 |
|-----------------------------------------------|--------------------|------------------------------------------------------------------------|------------------|------------------|-----------------------|-----------------------|
| ROLL MAX RATE LIMITING                        | Decrees/Sec        | 56<br>DIFFERENTIAL                                                     |                  |                  |                       |                       |
| YAW MAX RATE LIMITING                         | DEGREES/SEC        | <br>ส                                                                  |                  |                  |                       |                       |
| PITCH MAX DISPLACEMENT                        | DEGREES            | 01                                                                     | 01               | 0†               | 20                    | 50                    |
| ROLL MAX DISPLACEMENT                         | DEGREES            | 30                                                                     |                  |                  |                       | •                     |
| YAW MAX DISPLACEMENT                          | DEGREES            | $\begin{array}{l} \text{GEAR UP} = 1\\ \text{GEAR DN} = 4 \end{array}$ |                  |                  |                       | •                     |
| LINEAR DISPLACEMENT XDUCERS                   | TYPE/NO.           | LVDT *6                                                                |                  |                  |                       |                       |
| LINEAR GUARDED XDUCERS                        | TYPE/NO.           | LVDT *                                                                 |                  |                  |                       | •                     |
| ROTARY PITCH TRIM XDUCERS                     | TYPE/NO.           | CONTROL<br>TRANSFORMER<br>2                                            |                  |                  |                       | •                     |
| NUMBER OF DISPLAYS                            | NUMBER             | 3                                                                      |                  |                  |                       | <b>A</b>              |
| NUMBER OF CONTROLS                            | NUMBER             | ۳<br>۲                                                                 |                  |                  |                       | 1                     |
| EMERGENCY DISENGAGE                           | TYPE               | ON-OFF<br>ELECTRICAL<br>SWITCH                                         |                  |                  |                       | •                     |
| DODATION AND MARADARY AND A MARADARY CARACTER |                    | UNTIMO                                                                 |                  |                  |                       |                       |



Space Division North American Rockwell

FLIGHT AUGMENTATION CONTROL SUBSYSTEM (FACS) WBS IDENTIFICATION:

1.6.3 - WBS CODE: -

|                 | CHARACTERISTIC     | UNIT OF<br>MEASURE | MARCH 1959 | DECEMBER<br>1959 | FEBRUARY<br>1961 | A/V NO. 1<br>MAR 1964 | A/V NO. 2<br>MAY 1966 |
|-----------------|--------------------|--------------------|------------|------------------|------------------|-----------------------|-----------------------|
|                 | RELLABILITY FACTOR | NONE               |            |                  | - 586660         | - 396666              | - <del>2</del> 86666  |
|                 | MTBF               | NO. OF HR          |            |                  | 117,450          | 117,450               | 117,450               |
| 1 <b>V-</b> 157 |                    |                    |            |                  |                  |                       |                       |
| SD72-SH         |                    |                    |            |                  |                  |                       |                       |



Space Division North American Rockwell



#### TECHNICAL DESCRIPTION

SUBSYSTEM: FLIGHT CONTROL

WBS CODE: 1.6 WBS CODE: 1.6.4

MAJOR ASSEMBLY: GROUND TESTS

To provide an efficient means of complete system development and to accurately demonstrate in-flight performance and safety prior to flight, a full scale functional mockup of the B-70 flight control system was designed and built. This flight control system simulator was designed to: (1) verify system design, (2) evaluate system performance including actual representation of system non-linearities which were difficult to describe for system analysis, (3) demonstrate compatible subsystem integration, (4) provide system familiarization for flight maintenance crews, and (5) to some degree, demonstrate reliability and isolate potential reliability problems. The simulator consisted of those systems and components normally used in aircraft control.

The simulation effort in the development of the flight control was continuous beginning at initiation of preliminary analysis and ending at completion of flight test support. The initial simulations utilized were comprised of complete analog representations of pilot, control system and aerodynamics. As the system development progressed and experimental or actual equipment became available, the analoged simulations of the control loop were replaced by their real counterparts with the complete system available and in operation before flight.

The flight control system simulator permitted complete pilot evaluation of the system throughout the mission of the B-70 while in a realistic environment. The development phase emphasized the testing associated with system performance and the effects of component cnaracteristics.

The flight control simulator provided a complete air vehicle control installation, within practical limits, for development testing. This generally included all major cockpit controls and displays, all significant control linkages which affect control or feel, all surface actuators and hydraulic and electrical power similar to that provided in the actual aircraft. Air vehicle hardware and components fabricated to production drawings were used wherever possible.

The pilot's forward view was the same as that in the air vehicle. Optical displays external to the simulator were provided to indicate particular phases of flight.

The development program was established as three phases. Phase I was classified as Evaluation and Finalization of overall system requirements and components effecting feel characteristics and handling qualities. Phase II covered evaluation of preliminary control configuration for design verification and integration compatibility. Phase III covered evaluation and verification of final control configuration, demonstration of flight control and safety prior to flight.



WBS CODE: 1.6.4

The development test program for both the Primary and Secondary Flight Control Systems consisted of operational tests, design verification system parameter evaluation, system parameter optimization and subsystem integration tests. Operational tests consisted of the normal tests performed during simulator buildup and were to assure proper component fit, acceptable buildup tolerances and adequate design margins. Design verification testing included the Force and Displacement characteristics tests, Dynamic characteristics tests and Trim characteristic tests. The force and displacement characteristics tests determined the force and displacement relationship between the control column, wheel, pedal, feel bungee, "q" bellows master cylinders. Surface actuators outputs column force vs. rate characteristics were also checked. These data were used to verify displacement characteristics such as gradient, authority, linearity, freeplay, backlash, hysteresis, resolution, centering and cable stretch. The force characteristics verified were force gradient, linearity, friction, preload breakout unbalance and elasticity of spring constants.

In the system parameter evaluation the parameters of interest were control and trim gradients throughout the entire flight envelope and were evaluated with respect to pilot physical tolerances and control characteristics such as sensitivity, overcontrol, and induced oscillations. System parameter optimization involved displacement gradient, bungee location and gradient, preload and friction. The cable failure tests were used to determine the adequacy of backup provisions of the forward and aft cable system and the effect of intentional cable failures on static and dynamic system characteristics.

The development tests for the Flight Augmented Control System (FACS) consisted of design verification, performance evaluation and system optimization tests. The design verification tests verified the installation and operation of the FACS electronics, servo-actuators and transducers. Performance characteristic tests were conducted to evaluate the controllability and adequacy of the system under normal and failed conditions.

Flight instruments, both experimental and prototype flight instruments, were installed as an integral part of the cockpit of the flight control simulator. The instrument system was subjected to a performance evaluation of all instruments and mission analyses for complete instruments system adequacy.

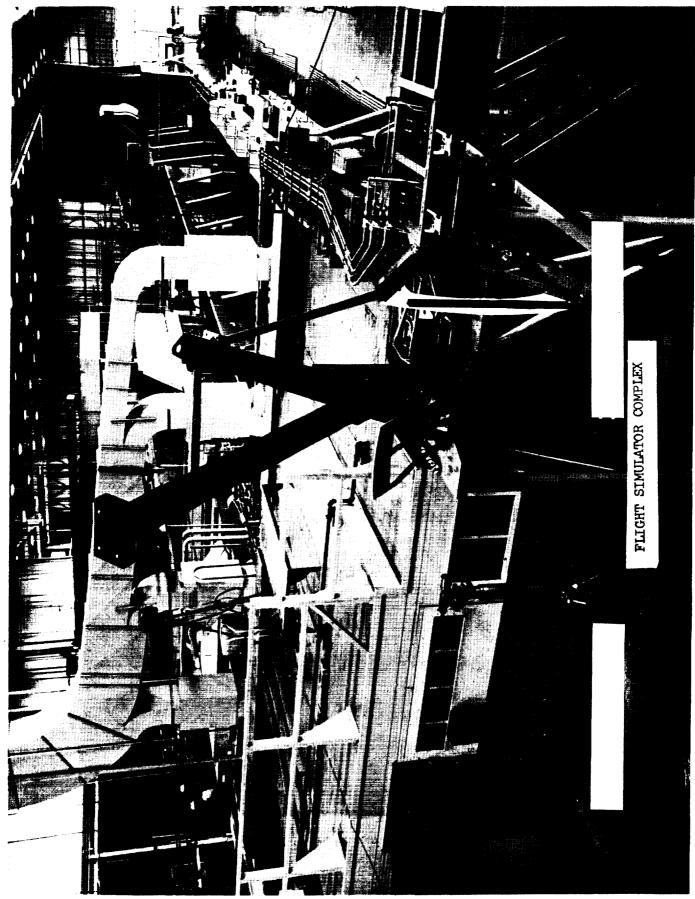
Hydraulic power supplied to the flight simulator came from actual air vehicle system components. System design parameters such as pressure, flow, response, temperature, service life, vibrations, fluid compressibility and surge characteristics were verified. Characteristics of the individual pumps, various combinations of redundancy, and master slave arrangements were evaluated. Additional effort included verifying the Braking and Steering Subsystem and pilot familiarization and training.



WBS Code: 1.6.4

The simulator complex, control console and cabin simulator are shown in Exhibits 8 through 12. Reports indicate that effort expended as of February 1962 was 3352 hours, 4416 hours as of June 1962 and 5174 hours through November 1962. Within the total hours there were 1822 hours of testing of the primary (PFCS) and secondary flight control systems (SFCS), 1333 hours of flight augmentation control system (FACS) testing, 672 hours of flying qualities evaluation and 500 hours of flight display evaluation which resulted in approximately 500 hours of "flight time" on the simulator. Through July 1964 an accumulative test time of 7800 hours had been accomplished consisting of 2600 hours on the PFCS and SFCS, 2350 hours on the FACS, 1300 hours on flying qualities, 1050 hours miscellaneous and 500 hours on flight display. These test categories consisted of the following:

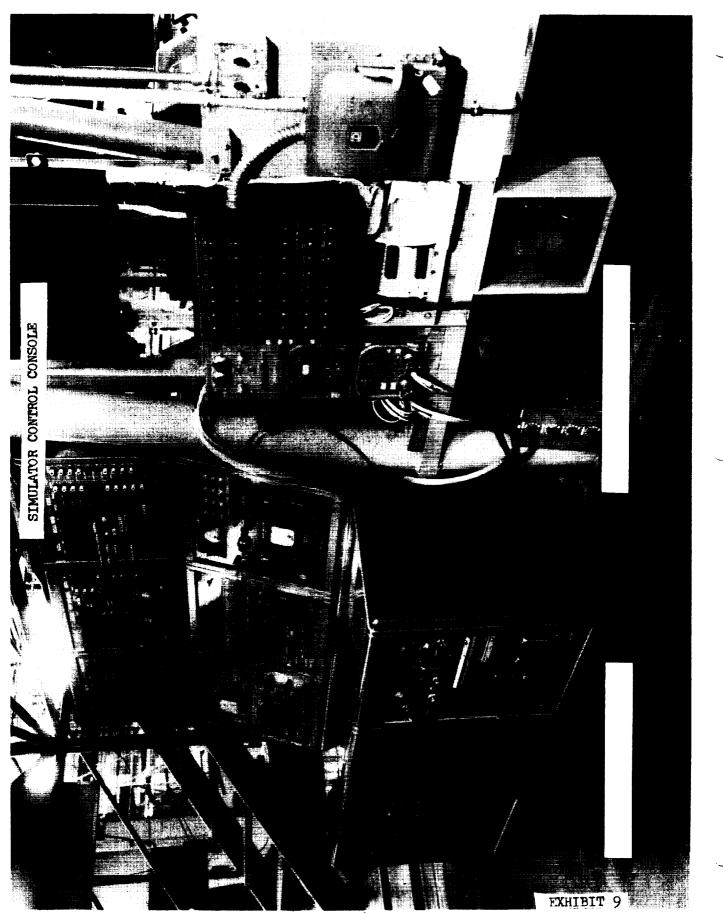
<u>PFCS and SFCS</u> - Static and dynamic performance characteristics, fail safety, overall system operation for handling qualities investigations.


FACS - Performance, fail safety, overall operation for handling qualities investigations.

<u>Flying Qualities</u> - Landing, first flight missions, trimability, accelerated stability, speed stability, dynamic stability, inlet instant, flap transients.

Flight Display - Controllability of air vehicle during instrument flying.

Miscellaneous - Throttle control, hydraulic system performance.


Cumulative "flight time" through July 1964 was 758 hours with 382 hours for test pilots and 376 hours for engineers. "Flight time" was defined as simulator operation time with a pilot at the controls performing maneuvers for handling qualities or control equipment evaluation, or flying mission profiles.




TV-161

SD72-SH-0003

FXHIBTT 8

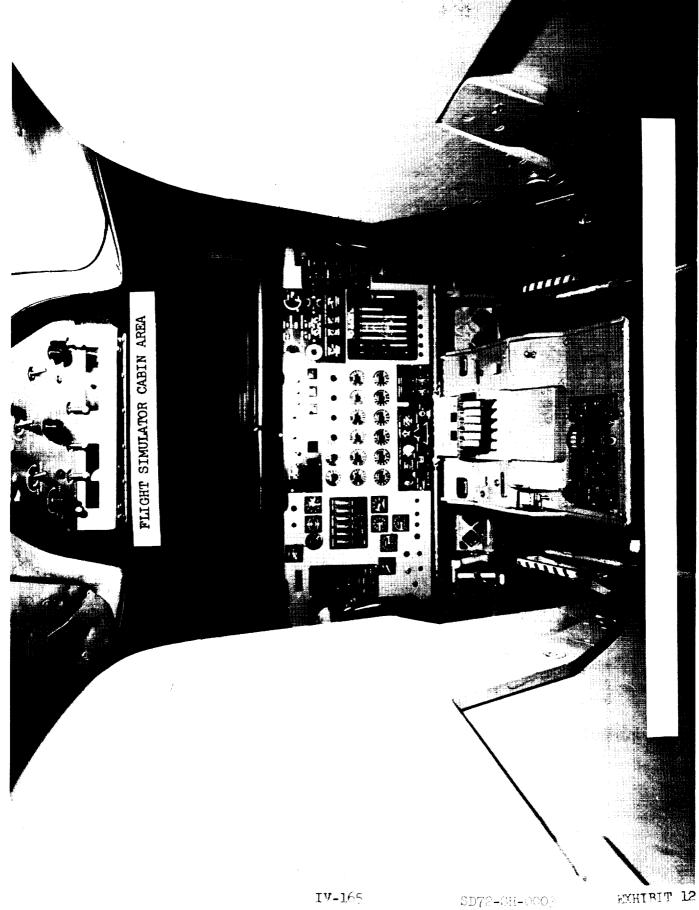


IV-162



IV-163

SD72-SH-0003


EXHIBIT 10

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



IV-164

# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



| GROUND TESTS        |  |
|---------------------|--|
| WBS IDENTIFICATION: |  |

-WBS CODE: 1.6.4

| CHARACTERISTIC            | UNIT OF<br>MEASURE | MARCH 1959                                   | DECEMBER<br>1959 | FEBRUARY<br>1961 | A/V NO. 1<br>MAR 1964 | A/V NO. 2<br>MAY 1966 |
|---------------------------|--------------------|----------------------------------------------|------------------|------------------|-----------------------|-----------------------|
| MAJOR ASSEMBLIES          | TYPE/NO.           | X-Y PLOTTER<br>STRLP<br>RECORDER             |                  |                  |                       | •                     |
| MOCKUPS/BREADBOARDS       | TYPE/NO.           | WOOD (1)<br>BREADBOARD (8)<br>HOT MOCKUP (1) |                  |                  |                       | ł                     |
| MODELS                    | TYPE/NO.           | NONE                                         |                  |                  |                       | 1                     |
| TEST BEDS                 | TYPE/NO.           | FULL SCALE<br>SIMILATOR<br>1                 |                  |                  |                       | •                     |
| TESTS                     | TYPE/NO.           | DYNAMIC AND<br>STATIC 24                     |                  |                  |                       | Å                     |
| MEASUREMENTS (DATA)       | н                  | POSITION RATE<br>FORCE                       |                  |                  |                       | ł                     |
| ACCURACY (DATA)           | % OF FS            | 0.5                                          |                  |                  |                       | •                     |
| FREQUENCY RESPONSE (DATA) | HERIZ              | UP TO 30                                     |                  |                  |                       |                       |
| RESOLUTION (DATA)         | % OF FS            | 0.5 TO 2.0                                   |                  |                  |                       |                       |
| SPEED TEST RANGE          | MACH NO.           | TO 3.0                                       |                  |                  |                       | •                     |
| ALITITUDE TEST RANGE      | FERT               | TO 80,000                                    |                  |                  |                       | •                     |
|                           |                    |                                              |                  |                  |                       |                       |



Space Division North American Rockwell

1.6.4

- WBS CODE: -

WBS IDENTIFICATION: GROUND TESTS

•

| CHARACTERISTIC                 | UNIT OF<br>MEASURE    | MARCH 1959            | DECEMBER<br>1959 | FEBRUARY<br>1961 | A/V NO. 1<br>MAR 1964 | A/V NO. 2<br>MAY 1966 |
|--------------------------------|-----------------------|-----------------------|------------------|------------------|-----------------------|-----------------------|
| TEMPERATURE TEST RANGE         | DEGREES F             | - 01                  |                  |                  |                       |                       |
| DYNAMIC INPUT TEST RANGE       | HERIZ                 | 3 TO 10               |                  |                  |                       | ł                     |
| ACCELLERATION INPUT TEST RANGE | FEET/SEC <sup>2</sup> | 128<br>10<br>32<br>32 |                  |                  |                       | ł                     |
|                                |                       |                       |                  |                  |                       |                       |
| IV-                            |                       |                       |                  |                  |                       |                       |
| 167                            |                       |                       |                  |                  |                       |                       |
|                                |                       |                       |                  |                  |                       |                       |
|                                |                       |                       |                  |                  |                       |                       |
|                                |                       |                       |                  |                  |                       |                       |
|                                |                       |                       |                  |                  |                       | a                     |
|                                |                       |                       |                  |                  |                       |                       |
| 2-5                            |                       |                       |                  |                  |                       |                       |



**Space Division** North American Rockwell

•

•



## DEVELOPMENT DATA SUMMARY

WBS TITLE: FLIGHT CONTROL SUBSYSTEM WBS CODE: 1.6

STATE OF THE ART RATING: 4 (See Remarks)

| PERCENT DEVELOPED MATRIX | PRIOR TO      | FLIGHT      | FLIGHT TEST |
|--------------------------|---------------|-------------|-------------|
|                          | CONFIGURATION | GROUND TEST |             |
| PROGRAM LEVEL            | 95%           | 85%         | 20%         |
| EFFORT TO GO             | 18%           | 37%         | 93%         |

GROUND TESTS (1)

| Тү                   | PE OF TEST | NUMBER OF UNITS | TEST HOURS |
|----------------------|------------|-----------------|------------|
| CONFIGURATION RESEAR | сн         | -               | -          |
| DESIGN FEASIBILITY   |            | 10              | 500        |
| DESIGN VERIFICATION  | (2)        | 22              | 24,950     |
| AIRWORTHINESS        | (2)        | 32              | 10,350     |
| QUALIFICATION        | (3)        | 60              | 600        |
| OTHER                |            | -               | -          |
| TOTAL                |            | 124             | 36,400     |

REMARKS:

ł

- (1) Hydraulic actuators and electrical solenoid development testing not included: See WBS 1.4, Secondary Power Subsystem.
- (2) Includes full scale Flight Simulator operational tests.
- (3) Test hours shown were for vibration and acoustics tests.



WBS 1.6

State of the Art:

The Flight Control Subsystem was assigned an overall state-of-the art rating of 4 based on definitions established using AFSCM173-1 (11-28-67) as a guide. This rating was determined by comparing the RS-70 requirements with the existing capabilities at the RS-70 time period using state-of-the-art criteria discussed in subsequent paragraphs. The RS-70 configuration was selected for the comparison since it was the production configuration defined. This selection is considered valid since the development atatus at "out-the-door" and at program "end" is also based on the scheduled production configuration.

The definitions used in determining the state-of-the-art ratings are described below. For ratings 3, 4, and 5, the following B-70 design criteria was used as an aid for rating selection.

- A. High temperature application
- B. High pressure/load/acoustics/etc., application
- C. Light-weight/special materials/unique processes

## Rating

## Description

- 1 The item was off-the-shelf commercial item or a standard military issue which was installed "as-is."
- 2 The item was off-the-shelf commercial item or a standard military issue which required only a physical modification for installation.
- 3 The item was considered within the state of the art but had no commercial or military counterpart. As an aid, the item was existing but required modification to be compatible with <u>one</u> of the design criteria. Also, any new design or process has a rating of at least 3.
- 4 The item was slightly beyond the state of the art, and some development was required. As an aid, the item was based on an existing concept but required modification to be compatible with <u>two</u> of the design criteria. Also, any new design or process required to be compatible with <u>one</u> of the design criteria will be rated 4.
- 5 The item was substantially beyond the existing state of the art and required major development work. As an aid, any new design or process required to be compatible with <u>two</u> of the of the design criteria will be rated 5.

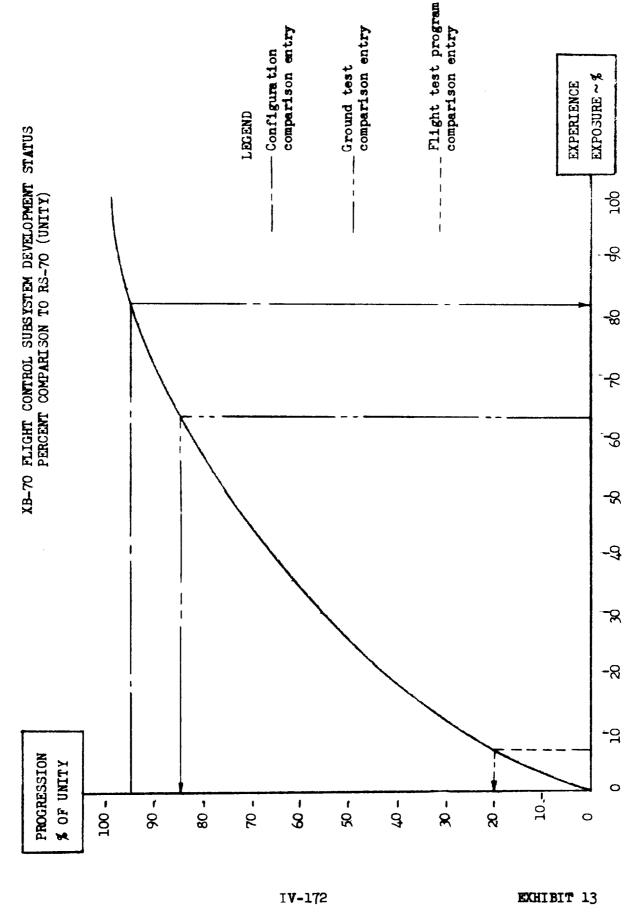


## WBS 1.6

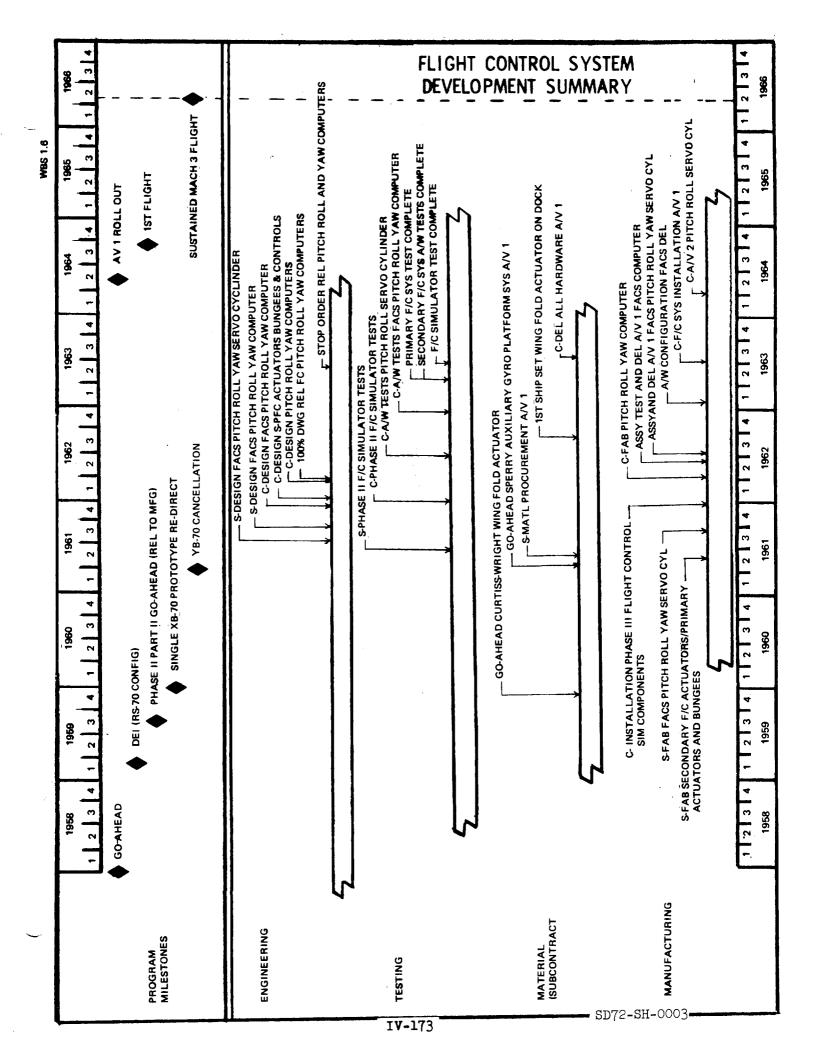
The Flight Control Subsystem planned for the RS-70 was essentially the same as installed in the XB-70 except for the "hold" functions, identified as: altitude hold, Mach hold, attitude, and "station keeping" (position hold function for inflight refueling). The "hold" functions, which were automatic functions in the simplest form, were to receive their control signals from the Bombing and Navigation Stable Platform and were to supplement the pilot's tasks to relieve fatigue. In the assessment of the RS-70 configuration, based only on its functional requirements, the Flight Control Subsystem was assigned a state-of-the-art rating of 3. However, the design of the subsystem was impacted by the high temperature and acoustic environments, size of the air vehicle, and the large structural deflections inherent with the B-70 type design. Based on these design factors, the state-of-theart rating was upgraded and assigned a rating of 4.

## Percent Developed:

The development status percent comparisons of the XB-70 Flight Control Subsystem to that scheduled for the RS-70, were made at two development stages; one at prior to flight or "out-the-door" of the No. 1 air vehicle, and the other for the flight test programs. The same methodology developed and verified for the Airframe Structures Subsystem (WBS 1.1) percent comparisons was applied in the analyses of the Flight Control Jubsystem status. As noted above, the XB-70 configuration lacked only the "hold" functions of the planned RS-70 configuration which were automatic functions in the simplest form. Based on this, the XB-70 configuration at the time of "out-the-door" was assessed as being 95% representative of that planned for the RS-70 for the same time period. To determine what expenditure would have been required to attain a first air vehicle production level status, the same curve used for the Structures Subsystem was utilized for the Flight Control Subsystem, Exhibit 13, page IV-172. Entering the exhibit on the left hand side at 95%, acorss to the curve and then down to the bottom scale, it shows that 18% more effort would have been required for a No. 1 RS-70 Flight Control Subsystem, excluding ground test effort. In regard to the ground test effort, the ground tests scheduled for the RS-70 at time of "out-the-door" was apprximately 57,600 test hours not including the hydraulic and electrical design test hours noted under "Remarks" or subcontractor effort. Comparing this scheduled test effort with the 36,400 test hours expended, it shows that the testing level or verification level of the XB-70 to be approximately 63% of that planned for the RS-70 at the time of "out-the-door." This shows that 37% more testing effort was required to attain the production level status for the No. 1 air vehicle prior to flight. Entering Exhibit 13, page IV-172, on the bottom scale at 63%, it shows that the No. 1 XB-70 was at a confidence level of approximately 85% for the flight controls prior to flight. The XB-70 flight test program for the Flight Control Subsystem was established at 11% of a production level status as presented by Exhibit 13, page II-23, under Air Vehicle: WBS 1.0. However, this percentage was obtained based on a direct comparison of equivalent test hours and must be adjusted to reflect the flight envelope flown during the XB-70 program. As previously established for the AirFrame Structures Subsystem (WBS 1.1), the first 80% of the flight envelope requires only 60% of the




WBS 1.6


total effort compared to the last 20% of the envelope which requires 40% of the total effort. For the Flight Control Subsystem, this 2 to 3 ratio was directly applicable since all of the test hours were flown in the first 80% of the flight envelope. Using this ratio as a weight factor so that direct comparison can be made based on the RS-70 flight envelope, the flight test effort expended on the XB-70 was adjusted by the equation 2:3:: X:11%. Based on this equation, the total flight test effort remaining to attain a production level status for the Flight Control Subsystem would be  $40\% + 60\% - (2 \times 11 + 3)$  or 93% (where 40% is that effort required for the last 20% of the flight envelope).

In summary, the prior to flight status comparisons are: (1) the XB-70 No. 1 Flight Control Subsystem was 95% of an RS-70 system and would have required 18% more expenditure for configuration and 37% more ground testing effort; and (2), the XB-70 Flight Control Subsystem flight test program was 7% of the planned RS-70 program effort and would have required 93% more flight test effort to attain a production level status. All of the above comparisons are based on tooling, test articles, GSE, etc., being at the RS-70 or production level in both numbers and fidelity. Exhibit 13, page IV-172, presents a graph showing the percent comparisons.

NOTE: THE USE OF THE "EFFORT TO GO" PERCENTAGES FOR COST DETERMINATION SHOULD NOT BE APPLIED WITHOUT CONSULTING SECTION IV-8, VOLUME I, PAGE I-310 FOR APPLICATION CONSIDERATIONS.



. . I<sup>m</sup> . .





## DEVELOPMENT SUMMARY TABULATION OF DATES

## Subsystem: Flight Control

WBS 1.6

## Engineering

| Start Design FACS Pitch Roll Yaw Servo Clyinder<br>Start Design FACS Pitch Roll Yaw Computer<br>Complete Design FACS Pitch Roll Yaw Computer<br>Complete Redesign Secondary-Prime F/C Actuators Bungees                                                                                                                           | 8-28-61<br>9-1-61<br>11-10-61                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| and Controls<br>Complete redesign Pitch Roll Yaw Computers<br>Complete 100% Drawing Release for Pitch Roll Yaw Computer<br>Stop Order Release Pitch Roll Yaw Computers                                                                                                                                                            | 1-19-62<br>3-1-62<br>3-23-62<br>6-7-63                   |
| Testing                                                                                                                                                                                                                                                                                                                           |                                                          |
| Start Phase II Flight Control Simulator<br>Complete Phase II Flight Control Simulator<br>Complete A/W Tests Pitch Roll Servo Cylinder<br>Complete A/W Tests Pitch Roll Yaw Computer<br>Complete Primary Flight Control System Test<br>Complete Secondary Flight Control System A/W Test<br>Complete Flight Control Simulator Test | 6-61<br>1-72<br>6-62<br>12-21-62<br>5-62<br>5-62<br>6-63 |
| Material (Subcontract)                                                                                                                                                                                                                                                                                                            |                                                          |
| Go-Ahead Curtiss-Wright Wing Fold Actuators                                                                                                                                                                                                                                                                                       | 12-8-59                                                  |
| Go-Ahead Sperry Auxiliary Gyro Platform System, Air Vehicle<br>No. 1                                                                                                                                                                                                                                                              | 5-5-61                                                   |
| Start Material Procurement, Air Vehicle No. 1                                                                                                                                                                                                                                                                                     | 6-30-61                                                  |
| First Shipset Wing Fold Actuators on Dock                                                                                                                                                                                                                                                                                         | 9-2-62                                                   |
| Complete Delivery All Hardware, Air Vehicle No. 1                                                                                                                                                                                                                                                                                 | 8-1-63                                                   |
| Manufacturing                                                                                                                                                                                                                                                                                                                     |                                                          |
| Start Fabrication Secondary F/C Actuators/Primary F/C                                                                                                                                                                                                                                                                             |                                                          |
| Actuators and Bungees                                                                                                                                                                                                                                                                                                             | 5-26-61                                                  |
| Start Fabrication FACS Pitch Roll Yaw Servo Clyinders                                                                                                                                                                                                                                                                             | 9-15-61                                                  |
| Complete Installation Phase III F/C Simulator Components                                                                                                                                                                                                                                                                          | 12-26-61                                                 |
| Complete Fabrication Pitch Roll Yaw Computers                                                                                                                                                                                                                                                                                     | 4-16-62                                                  |
| Assembly, Test and Delivery, Air Vehicle No. 1 FACS<br>Computer                                                                                                                                                                                                                                                                   | 6-8-62                                                   |
| Assembly, Delivery Air Vehicle No. 1 FACS Pitch Roll Yaw                                                                                                                                                                                                                                                                          | 0 0 02                                                   |
| Servo Cylinder                                                                                                                                                                                                                                                                                                                    | 7-14-62                                                  |
| Delivery A/W Configuration FACS Cylinders and Computers                                                                                                                                                                                                                                                                           | 1-30-63                                                  |
| Complete F/C System Installations, Air Vehicle No. 1                                                                                                                                                                                                                                                                              | 7-63                                                     |
| Complete Air Vehicle No. 2 Pitch-Roll Servo Cylinder                                                                                                                                                                                                                                                                              | 4-64                                                     |

\_

WBS 1.6 - NOSE GEAR SERVO VALVE FILTER CONTAMINATION (AV 2) RUDDER BUZZ AND PITCH OSCILLATION IN FACS (AV 2) - FLAP SYS VALVE MALFUNCTION IN FLIGHT - NOSE WHEEL STEERING MALFUNCTION (AV 1) - FLIGHT CONTROL SYSTEM LINKAGE DESIGN CHANGE DESIGN/PROGRAMMATIC IMPACTS COUNTER BALANCE WEIGHT ADDED TO HORIZONTAL STABILIZER - WING TIP FOLD MALFUNCTION (AV 1) WING TIP POWER SHAFT FAILURE (AV 2) EXPERIENCED FEED BACK ON PILOTS PEDALS (AV 1) FLAP INDICATION SYSTEM DESIGN CHANGE (AV 1) PITCH CONTROL SERVO MALEUNCTION - WING FOLD ACTUATOR DRIVE REWORKED (AV 1) - EXPERIENCED FLAP INDICATOR PROBLEM (AV 1) FLIGHT CONTROL SYSTEM - PRESSURE SURGE CHECK VALVE ADDED NOSE WHEEL STEERING RETORQUED (AV 1) FLAP ELECTRICAL CONTROLS DESIGN CHANGE VERTICAL STABILIZER ACTUATOR DESIGN CHANGE 2 3 4 CONTROL WHEEL REPLACED (AV 1) 1966 -- FACS LINKAGE DESIGN CHANGE ACTUATOR VALVE DESIGN CHANGE 4 FACS SERVO CYLINDER ACTUATOR BREAKAGE З · CONTROL WHEEL SAFETY OF FLIGHT CHANGE - FLAP INDICATOR SYSTEM DESIGN CHANGE 1965 FACS TEST EQUIPMENT REDESIGN 2 LATERAL BOBWEIGHT DESIGN CHANGE - SIMULATOR LATERAL STABILITY STUDIES 4 FACS STABILITY MECHANISM REWORK WING TIP HINGE DISASSEMBLY ო 1961 3 - FLIGHT CONTROL ACTUATORS DESIGN CHANGE WING TIP FOLD MALFUNCTION ELEVON CONTROL DESIGN CHANGE FLIGHT CONTROL SIMULATOR PUMP FAILURE 4 ო 1963 3 FACS DEVELOPMENT PROBLEMS 4 ო 1962 3 4 ო 1961 2

C.4



## DESIGN/PROGRAMMATIC IMPACTS

## Subsystem: Flight Control

WBS 1.6

## June 1961

Development problems were encountered in the FAC3 during development tests. Failures caused delays to delivery of acceptable units due to design changes/rework.

During Phase II testing on the Flight Control Simulator, failure of the purchased hydraulic pumps was encountered. The pumps were returned to the supplier (Vickers) for repair and recycle.

## July 1961

Due to problems encountered during Flight Control Simulator tests, the 18 actuators required rework. The rework was due to design changes of the hydraulic barrier seal. Approximately 70 seals were scrapped and replaced.

## February 1962

Design changes to the Elevon Control System due to operational tests on the Flight Control Simulator and airworthiness tests and checkout; data showed a high friction rate (three to four times above basic design requirements) in valves and actuators.

## July 1962

Delays were experienced when wing tip fold hydraulic package was found to be defective and was returned to the supplier for rework/repairs.

## August 1962

Studies were conducted as the result of lateral stability problems discovered during F/C simulator testing. Studies were conducted to revise Air Vehicle No. 1 Control System in order to improve lateral directional control and add 5 degrees dihedral to Air Vehicle No. 2 and Air Vehicle No. 3 wing.

## August 1962

Speed Stability. Analysis showed that there was a probability of flight control reversal between Mach .8 and l.l. Engineering released an EWA to revise the FACS speed stability mechanism. This required design and fabrication of electrical control amplifiers and the addition of a "black box." Changes were incorporated prior to first flight.

## January 1963

A "safety of flight" EWA was released to lower the pilot's control wheel due to inadequate clearance between the wheels and instrument panel shroud. Rework was accomplished.



# WBS 1.6

#### January 1963

The wing tip fold actuator power hinge was disassembled and cleaned as the result of oil being added by mistake. Replacement of the speed reducer housings on the wing fold hydraulic package due to failure of parts during airworthiness vibration tests was made.

The horizontal stabilizer actuator broke during tests and scored the servo cylinder barrel. Safety of flight changes were incorporated into Air Vehicle No. 1 prior to first flight. Some delays were encountered with delivery of pitch and roll servo cylinders to Palmdale due to acceptance testing delays.

# February 1963

Design change was released for a new centering spring for the lateral bobweight, and rework was accomplished.

#### March 1963

Design change to the flap indicator position system. Due to problems encountered during airworthiness tests, the change was made to show when both flaps are in position.

## August 1963

FACS test equipment redesign was necessary for the pitch computer and auxiliary function computer. Redesign and modification of the yaw, roll and auxiliary computers was necessary due to speed stability (Reference EWA-191).

# December 1963

Design change released (reference EWA 259-206) yaw control to change the valve input linkage of the vertical stabilizer actuators. Excessive friction in the actuator valve was affecting pilot control. Fabrication of a new bellcrank support, link bellcrank and retainers was required.

#### January 1964

Failure during yaw control system tests on the Flight Control Simulator. Oscillation occurred when a pulse excited the system. An EWA was released to revise the vertical stabilizer actuator override bungee balance weight (EWA 259-209).

#### February 1964

Engineering EWA-211 was released to install a counter balance weight to each horizontal linkage to dampen out oscillation; change authorized as the result of flight control analysis.

March 1964

Redesign of the FACS pitch and roll servo attachment (EWA-210) on Air Vehicle No. 1 and No. 2 input linkage to correct FACS pitch and roll servo centering problem. Simulator tests showed some improvements. The design changes were the result of problems at Autonetics in obtaining consistent recentering at high temperatures. The new design

SD72-SH-0003



## WBS 1.6

separated the servo centering mechanism by adding linkage arms and modifying existing bellcranks and supports.

## May 1964

Redesign of Air Vehicle No. 1 Flap Electrical Control System (reference EWA-182) revised the system to prevent flap flutter and power loss during switching of electrical systems.

## August 1964

During taxi runs, problems were encountered with nose wheel steering. The system was checked out using hydraulic and electrical power and cockpit controls. The steering torque was measured and retorqued prior to the next taxi run.

#### September 1964

First Flight. The flap indicator changed to a "barber pole" indication just above 8000 feet, even though the flap handle had not been removed from the down position. The flaps appeared okay to the chase plane.

## October 1964

The flap indicator stuck in a "barber pole" position and the primary pitch trim was intermittently inoperative. Air Vehicle No. 2 wing fold actuator drive assembly was reworked by machining the lip to match the inside diameter of the snap ring. Curtiss Wright was responsible for the rework.

Air Vehicle No. 1, Flight No. 3. With the landing gear lowered, and yaw damper on, feedback through the rudder pedals was sufficient to "knock" the pilot's feet off the pedals. Prior to fourth flight, the wing fold actuator system Hayden microswitches were replaced.

On October 20, the Air Vehicle No. 1 pilot's control wheel was removed and replaced with Air Vehicle No. 2's pilot wheel in order to improve pitch and roll sensitivity.

## November 1964

Air Vehicle No. engineering (EWA-182) change incorporated to the flap system position and pressure indication system.

## December 1964

EWA 249, 250, and 281-8, Flight Control System Linkage Revision. Implemented to provide an overcenter linkage mechanism for the horizontal stabilizer and to the flap under connecting linkage to prevent loads in the horizontal stabilizer to flap interconnector linkage. A design study was conducted to move the bobweight to the aft mechanism compartment forward of the pitch master cylinder at fuselage station 1912.5. The change was to eliminate the excitation caused by symmetrical strut bending mode experienced at the present location fuselage station 391.



## January 1965

Design change was released (EWA 254) and implemented for the Air Vehicle No. 1 elevon actuators. The design change involved revision of the rod seal return lines on the elevon actuators due to failures caused by pressure surges entering and rupturing the lines. The change provided a new ball check valve and seal to the nearest trunk line on each elevon actuator to reduce surges.

## May 1965

Malfunctions in flight of the flight control pitch augmentation servo necessitated modification by the addition of stops to the pitch servo, to prevent recurrence in flight.

## June 1965

Failure of Air Vehicle No. 2 wing tip power shaft necessitated the removal and torque of all the shafts. Failure was attributed to a poor braze attachment between the shaft and splined fitting. A replacement part from Curtiss Wright was installed in the airplane.

# July 1965

Damage to the nose gear drag link trunnion fitting occurred to Air Vehicle No. 2 during a "hard right" steering condition, while taxiing to the parking area. Investigation revealed that the servo valve filter was clogged with contamination. This condition would permit fluid to bypass the filter and contaminate the valve. Duplication of a hard right condition was simulated in the laboratory with a clogged filter. Engineering EWA was released authorizing the use of an Air Vehicle No. 3 surplus part for use on Air Vehicle No. 2. Air Vehicle No. 1 filter inspection was also conducted for contamination.

## August 1965

Wing fold tip malfunction during preflight on Air Vehicle No. 1, causing flight to be cancelled. Troubleshooting revealed faulty relays which were removed and replaced.

During Flight No. 3, Air Vehicle No. 2 rudder buzz and pitch oscillation occurred in the FACS. Recalibration of instruments and bench check of FACS yaw and roll computer was accomplished.

December 1965

The nose wheel steering malfunctioned after landing of Flight No. 27, Air Vehicle No. 1, which necessitated towing the airplane to the run pad.

March 1966

Flight No. 35, on March 3. Shortly after takeoff the flap system malfunctioned and an alternate flight of subsonic testing was followed. Prior to Flight No. 36, the flap valves were removed and replaced.



## COST DEFINITION

# SUBSYSTEM: FLIGHT CONTROL

WBS CODE: 1.6

Total costs presented in this WBS item include all identifiable expenditures to design, develop, ground test, fabricate and assemble all components, assemblies and developmental test hardware within the Flight Control Subsystem as defined by the WBS. Total costs of \$24,435,028 include the following items:

- a) Developing subsystem specification requirements.
- b) Subsystem installation and integration design.
- c) Vendor coordination.
- d) In-house ground testing including design and fabrication of models, mockups and simulators.
- e) Subcontracted hardware including the suppliers costs for engineering, manufacturing, tooling and testing.

Excluded from the cost displayed for this subsystem are the in-house costs associated with the:

- f) Fabrication of subsystem provisions.
- g) Miscellaneous purchased parts and installation materials.
- h) Installation of the subsystem into the vehicles.
- i) Subsystem, vehicle and preflight checkouts.

Costs for items f) through i) are contained in WBS 1.12 (Volume IV, page 647). Internal accounting procedures and the resultant cost reports do not provide a basis for establishing expenditures for these items by individual subsystems. Therefore, all costs are collected and reported in one WBS item. Refer to WBS 1.12 for additional information.

Detail of the recorded costs associated with this subsystem is provided by Element of Cost (EOC) and Subdivision of Work (SOW). Section III of Volume I provides a detail definition of these items. Further segregation of the cost data is provided by the WBS. All cost data is displayed at WBS level 5 (Flight Control Subsystem WBS 1.6) with the exception of inhouse ground testing (WBS 1.6.4). Cost data can be located on the following pages:

|                        |              | Cost<br><u>Breakdown</u> | Time-<br>Deta | Phased<br>ail |
|------------------------|--------------|--------------------------|---------------|---------------|
| WBS 1.6                | \$18,407,365 | <b>page</b> IV-184       | page          | IV-185        |
| WBS 1.6.4 Ground Tests | 6,027,663    | <b>page</b> IV-184       | page          | IV-205        |
| Total WBS 1.6          | \$24,435,028 | <b>page</b> IV-184       | page          | IV-216        |

A summary of the subcontractor recorded cost data is provided on page IV-183. Contractual arrangements, delivery dates, costs by supplier, quantity of hardware delivered and other pertinent data is provided. Cost data includes the supplier expenditures for engineering, production, tooling



WBS CODE: 1.6

and testing (where identifiable) performed at the supplier's facility. Refer to the subcontracting Element of Cost definition (Volume I, page I-26) for additional explanation.

As an aid in the definition and evaluation of the in-house engineering costs associated with this subsystem, a matrix of engineering hours has been developed. This matrix, displayed below, is a summary of all the inhouse engineering groups that provided support to the design and development of the Flight Control Subsystem.

| Group No. | <u>Title</u>                        | Hours Expended |
|-----------|-------------------------------------|----------------|
| - 4       | Fluid Power Systems                 | 18,277         |
| 6         | Controls System                     | 184,732        |
| 10        | Structural Analysis                 | 8,204          |
| 12        | Checking                            | 16,410         |
| 34        | Structural Projects                 | 35,779         |
| 48        | Communication and Indicating System | n 73,369       |
| 49        | Avionics Integration and Control    | 31,721         |
| 55        | Flight Controls Analysis            | 231,404        |
| 57        | Engineering Specifications          | 34,440         |
| 64        | Design Support                      | 7,576          |
| 75        | Non-Metallics                       | 11,816         |
| 94        | Flight Simulation                   | 178,540        |
| 95        | Electrical System Design            | 26,992         |
| 97        | Laboratory Services                 | 39,404         |
| 99        | Auxiliary Control System            | 89,739         |
| 109       | Hydraulics Lab                      | 60,007         |
| 125       | Electrical System Equipment         | 35,979         |
| -         | Miscellaneous                       | 45,765         |
|           | Total Hours                         | 1,130,155      |

| WBS 1.6   | 1,041,371 hours (page | e IV-184) |
|-----------|-----------------------|-----------|
| WBS 1.6.4 | 88,784 hours (page    | e IV-184) |
|           | 1,130,155 hours       |           |

Ground testing activities associated with the development of the Flight Control Subsystem have been identified and the costs assigned to WBS 1.6.4 (page IV-205). These costs reflect the in-house expenditures only. Testing activities performed by the subcontractors where identified are included under WBS 1.6, Test/QC Subdivision of Work and the subcontracting Element of Cost. The following is a summary of the major in-house test activities identified to this subsystem.



# WBS CODE: 1.6

# Description

.

Recorded Costs

| Flight Simulator - Phase III<br>Flight Simulator - Phase II<br>Flight Control Simulator<br>Fabrication of Actuators for Airworthiness Tests<br>Fabrication of Parts for Airworthiness Testing<br>Flight Control System Component Tests<br>Vertical Stabilizer Actuator Test<br>Horizontal Stabilizer Actuator Test<br>Flight Control Actuator Parts Test<br>Flight Control Actuator Parts Test<br>Flap Actuator Test<br>Inboard Elevon Actuator Test<br>Electrical Equipment Lab Tests<br>Minimum Airworthiness Test of Hydraulic Pitch<br>Control Feel Damper<br>Various | 171,785<br>116,592<br>87,526<br>84,235<br>79,912<br>52,804<br>50,120<br>46,377<br>30,265 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,123,446                                                                                |
| Costs (less MPC & G&A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,801,240                                                                                |
| Material Procurement Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122,342                                                                                  |
| General and Administrative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104,081                                                                                  |
| Total Cost WBS 1.6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$6,027,663                                                                              |



#### SUBCONTRACTOR MATRIX

## Subsystem: Flight Control

## WBS Code: 1.6

| SUBCONTRACTOR | ENGINEERING | PROD      | TOOLING | TEST | TOTAL     |
|---------------|-------------|-----------|---------|------|-----------|
| Curtis Wright | 2,188,837   | 4,768,647 | 467,552 | -    | 7,425,036 |

<u>CURTIS WRIGHT</u> was selected to produce the Wingtip Fold Actuating Subsystem for the B-70. Letter Contract LOJI-XZ-600204 was awarded to Curtis Wright on March 28, 1960 for this effort and completed March 6, 1964.

The Statement of Work called for the subcontractor to provide designs, development, fabrication, testing, and packaging effort required to produce the Wingtip Fold Actuating Subsystem for Air Vehicles 1, 2, and 3.

The design, development and fabrication of hardware for Air Vehicles 1 and 2 was completed prior to termination of the contract. Air Vehicle 3 was 81% complete on March 28, 1960, the date of termination.

The residual hardware not utilized for flight spares was delivered to NR with the special tooling for salvage and the proceeds credited to the contract.

# COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM

|                    |       | 6-M ASSY | 6-M ASSY |          |
|--------------------|-------|----------|----------|----------|
|                    |       | 0        |          | TOTAL    |
|                    |       | HOURS    | HOURS    | HOURS    |
|                    |       | DCLLARS  | DOLLARS  | DOLLARS  |
| DESIGN/ENGINEEFING |       | 1041371  | 83784    | 130155   |
| LABOR AT \$ 4.926  |       | 5210925  | 3560.98  | 5567012  |
| ENGR BURDEN AT \$  | 4.529 | 4720343  | 397278   | 5118121  |
| SHOP SUPPORT       |       | 27592    | 545765   | 573357   |
| LABGR AT \$ 2.987  |       | 78582    |          |          |
| TEST/QC            |       | 309      | 33784    | 34093    |
| LABOR AT \$ 3.230  |       | 1264     | 108876   | 110126   |
| MFG BURDEN AT \$   | 3.676 | 104151   | 2128551  | 2232702  |
| ENGR MATERIAL      |       | 6715     | 1166739  | 1173454  |
| SUBCUNTRACT        |       | 7425036  |          | 7425036  |
| MPC                |       | 304782   | 122342   |          |
| OTHER COST         |       |          | 9549     |          |
| SUB-TOTAL          |       | 18100713 | 5923582  | 24024295 |
| GEN & ADMIN        |       | 306652   | 104081   | 410733   |
| TOTAL COST         |       | 18407365 | 6027663  | 24435028 |
|                    |       |          |          |          |

SUBDIVISION OF WORK COST DETAIL - SEE PAGE IV-185 IV-205 IV-216 -----

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

## COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM066-MAJASSY0

FLIGHT CONTROL SUBSYSTEM

|                |       |                                  | HOUKS    | HUUK2   | TOOLING<br>AND STE<br>HOURS<br>DOLLARS | HUUKS          |
|----------------|-------|----------------------------------|----------|---------|----------------------------------------|----------------|
| DESIGN/ENGINEE | RING  | 1                                | 041371   |         | 1                                      | 041371         |
| LABOR AT \$    |       |                                  | 5210925  |         |                                        | 5210925        |
| ENGR BURDEN    |       |                                  | 4720843  |         |                                        | 4720843        |
| SHOP SUPPORT   |       |                                  | 27592    |         |                                        | 27592          |
| LABOR AT \$    | 2.848 |                                  | 78582    |         |                                        | 78582          |
| TEST/QC        |       |                                  | 309      |         |                                        | 309            |
| LABOR AT \$    | 4.091 |                                  | 1264     |         |                                        | 1264           |
| MFG BURDEN     | AT \$ | 3.733                            | 104151   |         |                                        | 104151         |
| ENGR MATERIAL  |       |                                  | 6715     |         |                                        | 6715           |
| SUBCONTRACT    |       |                                  |          |         | 467552                                 |                |
| MPC            |       |                                  | 96706    | 188630  | 19446                                  | 304782         |
| OTHER COST     |       |                                  | 248415   |         |                                        | 248415         |
| SUB-TOTAL      |       |                                  | 12656438 | 4957277 | 486998                                 | 18100713       |
| GEN & ADMIN    |       |                                  | 206000   | 91893   | 8759                                   | 306652         |
| TUTAL COST     |       |                                  | 12862438 | 5049170 | 495757                                 | 18407365       |
|                |       | IME-PHASED COS<br>ETAIL - SEE PA |          | IV-194  | <b>IV-19</b> 6                         | <b>IV-</b> 197 |

.

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

# DESIGN/ENGINEERING

4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

# ON-SITE LABOR

|            |     | MAN-<br>MON THS | LABOR<br>HOUR S | LABOR<br>RATE | LABUR<br>Dellars | BUR DEN<br>Doll Ars | LABOR +<br>Burden \$ |
|------------|-----|-----------------|-----------------|---------------|------------------|---------------------|----------------------|
| Q-1<br>Q-2 |     | 40.5            | 6891            | 4.800         | 33076            | 31 352              | 64428                |
| Q-3<br>Q-4 | 58  | 198.0           | 33360           | 4.469         | 149077           | 131368              | 280445               |
| Q-1<br>Q-2 | 59  | 231.0           | 39382           | 4.537         | 178659           | 135264              | 313923               |
| Q-3<br>Q-4 | 59  | 479.5           | 84379           | 4.334         | 365662           | 301498              | 667150               |
| Q-1<br>Q-2 | 60  | 588.0           | 101943          | 4.658         | 474885           | 382234              | 857119               |
| Q-3<br>Q-4 | 60  | 592.5           | 99616           | 4.808         | 478995           | 370123              | 849118               |
| Q-1<br>Q-2 | 61  | 769.0           | 131185          | 4.728         | 620302           | 446 983             | 1067285              |
| Q-3<br>Q-4 | 61  | 484.5           | 87832           | 4.992         | <b>43</b> 842C   | 408087              | 846507               |
| Q-1<br>Q-2 | 62  | 580.5           | 99064           | 5.218         | 516960           | 457046              | 974006               |
| Q-3<br>Q-4 | 62  | 534.0           | 89740           | 5.135         | 460856           | 461039              | 921895               |
| Q-1<br>Q-2 | 63  | 435.0           | 74289           | 5.492         | 407995           | 403202              | 811201               |
| Q-3<br>Q-4 | 63  | 400.0           | 67198           | 5.479         | <b>36</b> 3192   | 385318              | 753510               |
| Q-1<br>Q-2 | 64  | 319.5           | 54571           | 5.574         | 304155           | 344978              | 649133               |
| Q-3<br>0-4 | 64  | 294.0           | 51666           | <b>5.6</b> 00 | 289326           | 329457              | 618783               |
| Q-1        | - • | 82.5            | 14346           | 6.183         | 88704            | 95044               | 183748               |

----

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

|                            | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>Rate | LABOR<br>DOLLARS | BURDEN<br>DOLLARS | LABOR +<br>BURDEN \$ |
|----------------------------|----------------|----------------|---------------|------------------|-------------------|----------------------|
| Q-2 65<br>Q-3 65<br>Q-4 65 | 24.0           | 4106           | 7.953         | 32654            | 35026             | 67680                |
| 0-1 66                     | 10.5           | 1803           | 1.666         | 3003             | 2834              | 5837                 |
| TOTAL                      | 6063.0         | 1041371        |               | 5210925          | 4720843           | 9931768              |

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

# SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

# **ON-SITE LABOR**

|                  | MAN-<br>MON THS | LABOR<br>HOURS | LABOR<br>Rate | LABOR<br>DGLLARS | BUR DEN<br>DCLLARS | LABUR +<br>Burden \$ |
|------------------|-----------------|----------------|---------------|------------------|--------------------|----------------------|
| Q-1 59<br>Q-2 59 |                 | 40             | 2.025         | 81               | 148                | 229                  |
| Q-3 59<br>Q-4 59 | 13.5            | 2320           | 2.809         | 6516             | 8194               | 14710                |
| Q-1 60<br>Q-2 60 | 25.5            | 4456           | 3.112         | 13868            | 17528              | 31 39 6              |
| Q-3 60<br>Q-4 60 | 57.0            | 9525           | 2.875         | 27383            | 35792              | 63175                |
| Q-1 61<br>Q-2 61 | 51.0            | 866 <b>6</b>   | 2.694         | 23350            | 30665              | 54015                |
| Q-3 61<br>Q-4 61 | 3 61 12.0       | 230 <b>7</b>   | 2.840         | 6553             | 10502              | 17055                |
| Q-1 62<br>Q-2 62 |                 | 93             | 3.172         | 295              | 424                | 719                  |
| Q-3 62<br>Q-4 62 |                 | -40            | .150          | -6               | -184               | -190                 |
| Q-1 63<br>Q-2 63 |                 | 73             | 3.000         | 219              | 294                | 513                  |
| Q-3 63<br>Q-4 63 |                 | -31            | <b>7.</b> 548 | -234             | -134               | -368                 |
| Q-1 64<br>Q-2 64 |                 | 115            | 3.052         | 351              | 564                | 915                  |
| Q-3 64           |                 | 68             | 3.029         | 20 <b>6</b>      | 358                | 564                  |
| TOTAL            | 159.0           | 27592          |               | 78582            | 104151             | 182733               |

.

1

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD CF WORK DESIGN/ENGINEERING

|                                                                              | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>Rate | LABOR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>BURDEN \$ |
|------------------------------------------------------------------------------|----------------|-----------------|---------------|------------------|---------------------|----------------------|
| Q-3 59                                                                       |                | 18              | 2.889         | 52               |                     | 52                   |
| Q-4 59<br>Q-1 60                                                             |                | 64              | 3.438         | 220              |                     | 220                  |
| Q-2 60<br>Q-3 60                                                             | 1.5            | 194             | 4.407         | 855              |                     | 855                  |
| Q-4 60<br>Q-1 61                                                             |                | 21              | 4.810         | 101              |                     | 101                  |
| Q-2 61<br>Q-3 61<br>Q-4 61<br>Q-1 62<br>Q-2 62<br>Q-3 62<br>Q-4 62<br>Q-1 63 |                | 6               | 2.500         | 15               |                     | 15                   |
| Q-2 63<br>Q-3 63<br>Q-4 63                                                   |                |                 |               |                  |                     |                      |
| Q-1 64                                                                       |                | 1               | 2.000         | 2                |                     | 2                    |
| Q-2 64<br>Q-3 64                                                             |                | 5               | 3.600         | 18               |                     | 18                   |
| Q-4 64<br>Q-1 65                                                             |                |                 |               | 1                |                     | 1                    |
| TOTAL                                                                        | 1.5            | 309             |               | 1264             |                     | 1264                 |

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

S TO AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD CF WORK DESIGN/ENGINEERING

|     |     | MAN-    | LABOR  | LABOR            | LABOR   | BURDEN    | LABUR +   | ENGR |
|-----|-----|---------|--------|------------------|---------|-----------|-----------|------|
|     |     | MONTHS  | HOURS  | RATE             | DOLLARS | DOLLARS   | BURDEN \$ | MATL |
| 0-1 |     | 40.5    | 6891   | 4.800            | 33076   | 31 352    | 64428     |      |
| Q-2 |     |         |        |                  |         | 22322     | 04420     |      |
| Q-3 |     | 198.C   | 33360  | 4.469            | 149077  | 131363    | 280445    |      |
| Q-4 |     |         |        |                  |         | 101000    | 200440    |      |
| Q-1 |     | 231.0   | 39422  | 4.534            | 178740  | 135412    | 314152    |      |
| Q-2 |     |         |        |                  |         | 132412    | 214125    |      |
| Q-3 |     | 493.0   | 86717  | 4.292            | 372230  | 309682    | 681912    | 1097 |
| Q-4 |     |         |        |                  |         | 207002    | 001712    | 1054 |
| Q-1 |     | 613.5   | 106463 | 4.593            | 488973  | 399762    | 888735    | 1100 |
| Q-2 | 60  |         |        | · · · •          |         | 377102    | 000155    | 1102 |
| Q-3 |     | 651.0   | 109335 | 4.639            | 507233  | 405915    | 913148    | 1241 |
| Q-4 | 60  |         |        |                  | 201233  | 100010    | 713140    | 1281 |
| Q-1 |     | 820.0   | 139872 | 4.602            | 643753  | 477648    | 1121401   | 7/1  |
| ସ-2 | 61  |         |        | · · · · <b>-</b> | 010100  | 111040    | 1121401   | 761  |
| Q-3 | 61  | 496.5   | 90145  | 4.936            | 444988  | 418589    | 047577    | 100  |
| Q-4 |     |         |        |                  | 11,700  | 410 20 3  | 863577    | 193  |
| Q-1 | 62  | 580.5   | 99157  | 5.217            | 517255  | 457470    | 07/705    |      |
| Q-2 | 62  |         |        | 20021            | 201222  | JIFIC     | 974725    | 88   |
| Q-3 | 62  | 534.0   | 8970C  | 5.138            | 46085C  | 460855    | 0.21 70 5 |      |
| Q-4 | 62  |         |        | 20130            | 4000000 | 400000    | 921705    | 51   |
| Q-1 | 63  | 435.0   | 74362  | 5.490            | 408218  | 403496    | 011714    |      |
| Q-2 | 63  |         |        |                  | 400210  | 403490    | 811714    | 120  |
| Q-3 | 63  | 400.0   | 67167  | 5.478            | 367958  | 205104    | 7531/0    |      |
| Q-4 | 63  |         | 0.101  | 20110            | 201326  | 385184    | 753142    | 1812 |
| 0-1 |     | 319.5   | 54687  | 5.568            | 304508  | 3/55/3    |           |      |
| Q-2 | 64  |         | 21001  | 0.00             | 204206  | 345542    | 650050    | 79   |
| Q-3 |     | 294.0   | 51739  | 5.596            | 200550  | 2.20.01.5 |           |      |
| Q-4 |     |         | 71137  | Je 320           | 28955C  | 329815    | 619365    | 174  |
| Q-1 |     | 82.5    | 14346  | 6.183            | 0.0705  | <b>.</b>  |           |      |
| 0-2 |     | V 6 9 J | 14340  | 0.100            | 83705   | 95044     | 183749    |      |
| 0-3 |     | 24.0    | 4106   | 7 05 7           | 22/5/   |           |           |      |
|     | ~ > | 2 780   | 4100   | 7.953            | 32654   | 35026     | 67680     |      |

-----

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

•

## TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM066-MAJ ASSY0SUBD DF WORKDESIGN/ENGINEERING

|                  | MAN-<br>Months | LABOR<br>HOURS | LABOR<br>RATE | L ABOR<br>DOLLAR S | BURDEN<br>DCLLARS | LABOR +<br>Burden \$ | ENGR<br>MATL |
|------------------|----------------|----------------|---------------|--------------------|-------------------|----------------------|--------------|
| Q-4 65<br>Q-1 66 | 10.5           | 1803           | 1.666         | 3003               | 2834              | 5837                 |              |
| TOTAL            | 6223.5         | 1069272        |               | 5290771            | 4824 594          | 10115765             | 6715         |

•

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

# TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

|                  | SUBC       | TUTAL<br>MATERIAL | MPC     | OTHER<br>CUST | SUB<br>Total | G&A   | TOTAL<br>CUST |
|------------------|------------|-------------------|---------|---------------|--------------|-------|---------------|
| Q-1 58<br>Q-2 58 |            |                   |         | 3433          | 67861        |       | 67861         |
| Q-3 58           |            |                   |         |               |              |       | 0.001         |
| Q-4 58           |            |                   |         | 4486          | 284931       |       | 284931        |
| Q-1 59           |            |                   |         | · · · · ·     |              |       |               |
| Q-2 59           |            |                   |         | 5137          | 319239       |       | 3192.89       |
| Q-3 59<br>Q-4 59 | 137905     | 138959            | 3 85 7  | 14883         | 839611       |       | 839611        |
| Q-1 60<br>Q-2 60 | 87905      | 89007             | 5360    | 23033         | 1006185      | 19171 | 1025356       |
| Q-3 60<br>Q-4 60 | 3 52 6 4 6 | 353927            | 21091   | 25159         | 1313325      | 25023 | 1338348       |
| Q-1 61<br>Q-2 61 | 372425     | 373186            | 10734   | 19807         | 1525128      | 28341 | 1553469       |
| Q-3 61<br>Q-4 61 | 112999     | 113192            | 3253    | 17605         | 997627       | 18539 | 1016166       |
| Q-1 62<br>Q-2 62 | 340167     | 340255            | 10818   | 13326         | 1339124      | 22477 | 1361601       |
| Q-3 62<br>Q-4 62 | 340166     | 340217            | 10819   | 18651         | 1291392      | 21676 | 1313068       |
| Q-1 63<br>Q-2 63 | 280355     | 280475            | 11 91 6 | 26319         | 1130424      | 18901 | 1149325       |
| Q-3 63<br>Q-4 63 | 37558      | 39370             | 1 38 5  | 24568         | 818465       | 13685 | 832150        |
| Q-1 64<br>Q-2 64 | 126711     | 126790            | 17410   | 17029         | 811279       | 17262 | 828541        |
| Q-3 64<br>Q-4 64 |            | 174               | 63      | 13947         | 633549       | 13481 | 647030        |
| Q-1 65<br>Q-2 65 |            |                   |         | 14687         | 198436       | 5294  | 203730        |
| Q-3 65           |            |                   |         | 5875          | 73 555       | 1962  | 75517         |

1**V-19**2

0-3.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

----

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM066-MAJ ASSY0SUBD OF WORKDESIGN/ENGINEERING

|                  | SUBC    | TUTAL<br>MATERIAL | MPC            | OTHER<br>COST | SUB<br>Total | G & A  | TOTAL<br>Cost |
|------------------|---------|-------------------|----------------|---------------|--------------|--------|---------------|
| Q-4 65<br>Q-1 66 |         |                   |                | 420           | 6257         | 188    | 6445          |
| TOTAL            | 2188837 | <b>219555</b> 2   | 96 <b>7</b> 06 | 248415        | 12656438     | 206000 | 12862438      |

I**V-1**93



NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

FLIGHT CONTROL SUBSYSTEM

4-SYSTEM 1 5-SUBSYSTEM 06 6-MAJ ASSY 0 SUBD CF WORK PRODUCTION

.

MAN-LABOR LABOR LABOR **BUR DEN** LABUR + MONTHS HOURS RATE DCLLARS DOLLARS BURDEN \$ SU8C Q-3 59 24595 0-4 59 Q-1 60 64120 Q-2 60 Q-3 60 217831 Q-4 60 Q-1 61 1129142 Q-2 61 Q-3 61 881846 Q-4 61 Q-1 62 741028 Q-2 62 Q-3 62 741027 Q-4 62 Q-1 63 610732 Q-2 63 Q-3 63 81818 Q - 4 63Q-1 64 276458 TOT AL 4768647



NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

| 4-SYSTEM     | 1          |                          |
|--------------|------------|--------------------------|
| 5-SUB SYSTEM | 06         | FLIGHT CONTROL SUBSYSTEM |
| 6-MAJ ASSY   | 0          |                          |
| SUBD OF WORK | PRODUCTION |                          |

|                  |        | SUB     |             | TOTAL           |
|------------------|--------|---------|-------------|-----------------|
|                  | MPC    | TOTAL   | G&A         | COST            |
| Q-3 59<br>Q-4 59 | 672    | 25267   |             | 25267           |
| Q-1 60<br>Q-2 60 | 3804   | 67924   | 1294        | 69218           |
| Q-3 60<br>Q-4 60 | 12927  | 230808  | 4398        | 235206          |
| Q-1 61<br>Q-2 61 | 32351  | 1161493 | 21584       | 1183077         |
| Q-3 61<br>Q-4 61 | 25265  | 907111  | 16857       | 923968          |
| Q-1 62<br>Q-2 62 | 23551  | 764579  | 12833       | 777412          |
| Q-3 62<br>Q-4 62 | 23529  | 764556  | 12833       | 777389          |
| Q-1 63<br>Q-2 63 | 25934  | 636666  | 13989       | 650655          |
| Q-3 63<br>Q-4 63 | 2629   | 84447   | 1415        | 85862           |
| Q-1 64           | 37968  | 314426  | <b>6690</b> | 321116          |
| TOTAL            | 188630 | 4957277 | 91 893      | <b>504917</b> 0 |

.

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM066-MAJ ASSY0SUBD CF WORK TOOLING AND STE

|                  | SUBC   | MPC   | SUB<br>Total | GξΑ         | TOTAL<br>Cost |
|------------------|--------|-------|--------------|-------------|---------------|
| Q-1 60<br>Q-2 60 | 10475  | 621   | 11096        | 211         | 11307         |
| Q-3 60<br>Q-4 60 | 49033  | 2909  | 51 94 2      | <b>99</b> 0 | 52932         |
| Q-1 61<br>Q-2 61 | 100958 | 2892  | 103850       | 1930        | 105780        |
| Q-3 61<br>Q-4 61 | 66890  | 1916  | 68806        | 1278        | 70084         |
| Q-1 62<br>Q-2 62 | 72694  | 2310  | 75004        | 1259        | 76263         |
| Q-3 62<br>Q-4 62 | 72696  | 2308  | 75004        | 1259        | 76263         |
| Q-1 63<br>Q-2 63 | 59913  | 2544  | 62457        | 1044        | 63501         |
| Q-3 63<br>Q-4 63 | 8026   | 257   | 8283         | 138         | 8421          |
| Q-1 64           | 26867  | 3689  | 30556        | 650         | 31206         |
| TOTAL            | 467552 | 19446 | 486598       | 8759        | 495757        |

APRIL 1972

----

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

# DESIGN/ENGINEERING

.

| 4-SY S TEM   | 1  |                          |
|--------------|----|--------------------------|
| 5-SUB SYSTEM | 06 | FLIGHT CONTROL SUBSYSTEM |
| 6-MAJ ASSY   | 0  |                          |

.

•

.

|                | I  | MAN-<br>Months | LABOR<br>HOURS | LABOR<br>RATE  | LABOR<br>DOLLARS | BUR DEN<br>DOLL AR S | LABOR +<br>BURDEN \$ |
|----------------|----|----------------|----------------|----------------|------------------|----------------------|----------------------|
| Q-1 9<br>Q-2 9 |    | 40.5           | 6891           | 4.80C          | 33076            | 31 352               | 64428                |
| Q-3<br>Q-4     | 58 | 198.0          | 33360          | 4.469          | 149077           | 131368               | 280445               |
| Q-1<br>Q-2     | 59 | 231.0          | 39382          | 4.537          | 178659           | 135264               | 313923               |
| Q-3<br>Q-4     | 59 | 479.5          | 84379          | 4.334          | 365662           | 301488               | 667150               |
| Q-1<br>Q-2     | -  | 588.0          | 101943         | 4.658          | 474885           | 382234               | 857119               |
| Q-3<br>Q-4     |    | 592.5          | 99616          | 4.808          | 478995           | 370123               | 849118               |
| Q-1<br>Q-2     |    | 769.0          | 131185         | 4.728          | 620302           | 446983               | 1067285              |
| Q-3<br>Q-4     | 61 | 484.5          | 87832          | 4.992          | 438420           | 408087               | 846507               |
| Q-1<br>Q-2     | 62 | 580.5          | 99064          | 5.218          | 516960           | 457046               | 974006               |
| Q-3<br>Q-4     | 62 | 534.0          | 89740          | 5.135          | 460856           | 461039<br>403202     | 921895<br>811201     |
| Q-1<br>Q-2     | 63 | 435.0          | 74289          | 5.492<br>5.479 | 407999<br>368192 | 385318               | 753510               |
| Q-3<br>Q-4     | 63 | 400.0          | 67198<br>54571 | 5.574          | 304155           | 344 978              | 649133               |
| Q-1<br>Q-2     | 64 | 319.5          | 51666          | 5.600          | 289326           | 329457               | 618783               |
| Q-3<br>Q-4     | 64 | 294.0          |                | 6.183          | 88704            | 95044                |                      |
| Q-1<br>Q-2     |    | 82.5           | 14346          | 0.103          | 00104            | 77044                | 102140               |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM 6-MAJ ASSY 0

|                  | MAN-<br>MON TH S | LABOR<br>HOURS | LABOR<br>RATE | L 480R<br>DOLLARS | BUR DEN<br>DOLL AR S | LABOR +<br>Burden \$ |
|------------------|------------------|----------------|---------------|-------------------|----------------------|----------------------|
| Q-3 65<br>Q-4 65 | 24.0             | 4106           | 7.953         | 32654             | 35026                | 67680                |
| Q-1 66           | 10.5             | 1803           | 1.666         | 3003              | 2834                 | 5837                 |
| TOTAL            | 6063.0           | 1041371        |               | 5210925           | 4720843              | 9931 <b>76</b> 8     |

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

|              | SHOP | SUPPORT                  |
|--------------|------|--------------------------|
| 4-SYSTEM     | 1    |                          |
| 5-SUB SYSTEM | 06   | FLIGHT CONTROL SUBSYSTEM |
| 6-MAJ ASSY   | 0    |                          |

|                  | MAN-<br>Months | LABOR<br>HOUR S | LABOR<br>RATE | LABOR<br>DOLLARS | BUR DEN<br>Doll Ar S | LABOR +<br>Burden \$ |
|------------------|----------------|-----------------|---------------|------------------|----------------------|----------------------|
| Q-1 59           |                | 40              | 2.025         | 81               | 148                  | 229                  |
| Q-2 59<br>Q-3 59 | 13.5           | 2320            | 2.809         | 6516             | 8194                 | 14710                |
| Q-4 59<br>Q-1 60 | 25.5           | 4456            | 3.112         | 13868            | 17528                | 31396                |
| Q-2 60<br>Q-3 60 | 57.0           | 9525            | 2.875         | 27383            | 35792                | 63175                |
| Q-4 60<br>Q-1 61 | 51.0           | 8666            | 2.694         | 23350            | 30665                | 54015                |
| Q-2 61<br>Q-3 61 | 12.0           | 230 <b>7</b>    | 2.840         | 6553             | 10502                | 17055                |
| Q-4 61<br>Q-1 62 |                | 93              | 3.172         | 295              | 424                  | 719                  |
| Q-2 62<br>Q-3 62 |                | -40             | .150          | -6               | -184                 | -190                 |
| Q-4 62<br>Q-1 63 |                | 73              | 3.000         | 219              | 294                  | 513                  |
| Q-2 63<br>Q-3 63 |                | - 31            | 7.548         | -234             | -134                 | -368                 |
| Q-4 63<br>Q-1 64 |                | 115             | 3.052         | 351              | 564                  | 915                  |
| Q-2 64<br>Q-3 64 |                | 68              | 3.029         | 206              | 358                  | 564                  |
| TOTAL            | 159.0          | 27592           |               | 78582            | 104151               | 182733               |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 06 6-MAJ ASSY 0

# FLIGHT CONTROL SUBSYSTEM

|                                                | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>RATE | L ABOR<br>DOLLARS | BUR CEN<br>DOLL ARS | LABOR +<br>BURDEN \$ |
|------------------------------------------------|----------------|----------------|---------------|-------------------|---------------------|----------------------|
| Q-3 59<br>Q-4 59                               |                | 18             | 2.889         | 52                |                     | 52                   |
| Q-1 60<br>Q-2 60                               |                | 64             | 3.438         | 220               |                     | 220                  |
| Q-3 60<br>Q-4 60                               | 1.5            | 194            | 4.407         | 855               |                     | 855                  |
| Q-1 61<br>Q-2 61                               |                | 21             | 4.810         | 101               |                     | 101                  |
| Q-3 61<br>Q-4 61<br>Q-1 62                     |                | 6              | 2.500         | 15                |                     | 15                   |
| Q-2 62<br>Q-3 62<br>Q-4 62<br>Q-1 63<br>Q-2 63 |                |                |               |                   |                     |                      |
| Q-3 63<br>Q-4 63                               |                |                |               |                   |                     |                      |
| Q-1 64<br>Q-2 64                               |                | 1              | 2.000         | 2                 |                     | 2                    |
| Q-3 64<br>Q-4 64                               |                | 5              | 3.600         | 18                |                     | 18                   |
| Q-1 65                                         |                |                |               | 1                 |                     | 1                    |
| TOTAL                                          | 1.5            | 309            |               | 1264              |                     | 1264                 |

-

NORTH AMERICAN ROCKWELL CORP. Space Division Data Prepared Under NASA CONTRACT NAS9-12100

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM066-MAJASSY0

•

FLIGHT CONTROL SUBSYSTEM

|                                  | MAN<br>Months    | LABOR<br>HOURS | LABOR<br>RATE | LABOR<br>DOLLARS |         | LABOR +<br>Burden \$ | ENGR<br>MATL |
|----------------------------------|------------------|----------------|---------------|------------------|---------|----------------------|--------------|
| Q-1 5                            |                  | 6891           | 4.800         | 33076            | 31 352  | 64428                |              |
| Q-2 5<br>Q-3 5                   | 58 198.0         | 33360          | 4.465         | 149077           | 131368  | 280445               |              |
| Q-4 5<br>Q-1 5                   | 59 231.0         | 39422          | 4.534         | 178740           | 135412  | 314152               |              |
| Q-2 5<br>Q-3 5                   | 59 <b>493.</b> 0 | 86717          | 4.292         | 372230           | 309682  | 681912               | 1054         |
| Q-4 5<br>Q-1 6                   | <b>613.5</b>     | 106463         | 4.593         | 488973           | 399762  | 888735               | 1102         |
| Q-2 6<br>Q-3 6<br>Q-4 6          | 651.0            | 109335         | 4.639         | 507233           | 405915  | 913148               | 1281         |
| Q-1 6<br>Q-2 6                   | 820.0            | 139872         | 4.602         | 643753           | 477648  | 1121401              | 761          |
| ୁ କୁଳ 2 କ<br>ୁ କିଳ 3 କ<br>ଇଳ 4 କ | 61 496.5         | 90145          | 4.936         | <b>44</b> 4988   | 418589  | 863577               | 193          |
| Q~1 0<br>Q-2 0                   | 52 580.5         | 99157          | 5.217         | 517255           | 457470  | 974725               | 88           |
| Q-3 6                            | 52 <b>534.0</b>  | 89700          | 5.138         | 460850           | 460 855 | 921705               | 51           |
| 0-1 0                            | 63 435.0         | 74362          | 5.490         | 408218           | 403496  | 811714               | 120          |
| Q-3 0<br>Q-4 0                   | 63 400.0         | 67167          | 5.478         | 367958           | 385184  |                      | 1812         |
| Q-1 (<br>Q-2 (                   |                  | 54687          | 5.568         | 304508           | 345542  |                      | 79           |
| Q-3 (<br>Q-4 (                   |                  | 51739          | 5.596         | 289550           | 329815  | 619365               | 174          |
| Q-1 (<br>Q-2 (                   |                  | -              | 6.183         | 88705            | 95044   | -                    |              |
| Q-3<br>Q-4                       |                  | 4106           | 7.953         | 32654            | 35026   | 67680                |              |

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPAREC UNDER NASA CONTRACT NAS9-12100

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

| 5-S    | 4-SYSTEM 1<br>5-SUBSYSTEM 06<br>6-MAJ ASSY 0 |                 | FLIGHT CONT   |                  |                   |                      |              |
|--------|----------------------------------------------|-----------------|---------------|------------------|-------------------|----------------------|--------------|
|        | MAN-<br>MONTHS                               | LABOR<br>HOUR S | LABOR<br>Rate | LABOR<br>DCLLARS | BURDEN<br>DOLLARS | LABOR +<br>Burcen \$ | ENGR<br>Matl |
| Q-1 66 | 10.5                                         | 1803            | 1.666         | 3003             | 2834              | 5837                 |              |
| TOTAL  | 6223.5                                       | 1069272         |               | 5290771          | 4824594           | 10115765             | 6715         |

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 6-MAJ ASSY 0

.

.

# FLIGHT CONTROL SUBSYSTEM

|                      | SUBC    | TOTAL<br>MATERIAL | MPC     | OTHER<br>COST | SUB<br>TO TAL | G&A   | TOTAL<br>COST |
|----------------------|---------|-------------------|---------|---------------|---------------|-------|---------------|
| Q-1 58               |         |                   |         | 3433          | 67861         |       | 67861         |
| Q-2 58<br>Q-3 58     |         |                   |         | 4486          | 284931        |       | 284931        |
| Q-4 58               |         |                   |         |               |               |       | 201751        |
| 0-1 59               |         |                   |         | 5137          | 319289        |       | 319289        |
| Q-2 59               |         |                   |         |               |               |       |               |
| Q-3 59<br>Q-4 59     | 162500  | 163554            | 4529    | 14883         | 864878        |       | 864878        |
| Q = 1 60<br>Q = 2 60 | 162500  | 163602            | 9785    | 23083         | 1085 205      | 20676 | 1105881       |
| Q-3 60<br>Q-4 60     | 619560  | 620841            | 36 92 7 | 25159         | 1596075       | 30411 | 1626486       |
| Q-1 61<br>Q-2 61     | 1602525 | 1603286           | 45977   | 19807         | 2790471       | 51855 | 2842326       |
| Q-3 61<br>Q-4 61     | 1061735 | 1061928           | 30434   | 17605         | 1973544       | 36674 | 2010218       |
| Q-1 62<br>Q-2 62     | 1153889 | 1153977           | 36679   | 13326         | 2178707       | 36569 | 2215276       |
| Q-3 62<br>Q-4 62     | 1153889 | 1153940           | 36656   | 18651         | 2130952       | 35768 | 2166720       |
| Q-1 63<br>Q-2 63     | 951000  | 951120            | 40394   | 26319         | 1829547       | 33934 | 1863481       |
| Q-3 63<br>Q-4 63     | 127402  | 129214            | 4271    | 24568         | 911195        | 15238 | 926433        |
| Q-1 64<br>Q-2 64     | 430036  | 430115            | 59067   | 17029         | 1156261       | 24602 | 1180863       |
| Q-3 64<br>Q-4 64     |         | 174               | 63      | 13947         | 633549        | 13481 | 647030        |
| Q-1 65<br>Q-2 65     |         |                   |         | 14687         | 198436        | 5294  | 203730        |
| Q-3 65<br>Q-4 65     |         |                   |         | 5875          | 73555         | 1962  | 75517         |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

FLIGHT CONTROL SUBSYSTEM

.

4-SYSTEM15-SUBSYSTEM066-MAJASSY0

| TOTAL<br>COST | GεA    | SUB<br>Total | OT HE R<br>C OS T | MPC    | TOTAL<br>MATERIAL | SUBC    |        |
|---------------|--------|--------------|-------------------|--------|-------------------|---------|--------|
| 6445          | 188    | 6257         | 42 C              |        |                   |         | Q-1 66 |
| 18407365      | 306652 | 18100713     | 248415            | 304782 | 7431 751          | 7425036 | TOTAL  |

# COST BREAKDOWNS 8-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 6-MAJ ASSY 04 FLIGHT CONTROL GROUND TESTS

.

.

|                    |            | HOURS          | TOTAL<br>HOURS<br>DOLLARS |
|--------------------|------------|----------------|---------------------------|
| DESIGN/ENGINEERING |            | 88784          | 88784                     |
| LABOR AT \$ 4.011  |            | 356088         | 3560.88                   |
| ENGR BURDEN AT \$  | • 475      | 397278         | 397278                    |
| SHOP SUPPORT       | 5          | 545765         | 545765                    |
| LABOR AT \$ 2.994  |            | 1634165        | 1634165                   |
| TEST/QC            |            | 33784          | 33784                     |
| LABOR AT \$ 3.223  |            | 108370         | 108870                    |
| MFG BURDEN AT \$ 3 |            | 2128551        |                           |
| ENGR MATERIAL      |            | 1166739        | 1166739                   |
| MPC                |            | 122342         | 122342                    |
| OTHER COST         |            | 9549           | 9549                      |
| SUB-TOTAL          |            | 5923582        | 5923582                   |
| GEN & ADMIN        |            | 104081         | 104081                    |
| TOTAL COST         |            | 6027663        | 6027663                   |
| TIME-P             | HASED COST | <b>T</b> I 00( | <b></b>                   |

IV-206 IV-206 DETAIL - SEE PAGE

## TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

## DESIGN/ENGINEERING 1

4-SYSTEM 5-SUBSYSTEM 06 FLIGHT CONTROL GROUND TESTS 6-MAJ ASSY 04 SUBD OF WORK TEST/QC

|               | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>RATE | LABOR<br>DOLLARS | BURDEN<br>DOLLARS | LABOR +<br>Burden s |
|---------------|----------------|-----------------|---------------|------------------|-------------------|---------------------|
| <b>Q-1</b> 53 |                |                 | •             |                  |                   | -                   |
| Q-2 53        |                |                 |               |                  |                   |                     |
| Q-3 58        |                |                 |               |                  |                   |                     |
| Q-4 58        |                |                 |               |                  |                   |                     |
| Q-1 59        |                |                 |               |                  |                   |                     |
| 0-2 59        |                |                 |               |                  |                   |                     |
| Q-3 59        |                |                 |               |                  |                   |                     |
| Q-4 59        |                |                 |               |                  |                   |                     |
| Q-1 60        |                |                 |               |                  |                   |                     |
| Q-2 60        |                |                 |               |                  |                   |                     |
| Q-3 60        | 73.5           | 12334           | 3.917         | 48314            | 45972             | 94286               |
| Q-4 60        |                |                 | 3             | 10011            | 47712             | 94200               |
| Q-1 61        | 82.5           | 14193           | 3.996         | 56717            | 48446             | 105163              |
| Q-2 61        |                |                 |               | 20111            | 40440             | 105165              |
| Q-3 61        | 70.5           | 12794           | 3.917         | 5011C            | 56599             | 106709              |
| Q-4 61        |                |                 |               | 20110            | 20277             | 100109              |
| Q-1 62        | 73.0           | 12418           | 4.113         | 51C7C            | 55208             | 106278              |
| Q-2 62        |                |                 |               |                  | 35200             | 100210              |
| Q-3 62        | 135.0          | 22785           | 2.976         | 67812            | 82 67 2           | 149884              |
| Q-4 62        |                |                 |               | ovore            | 02012             | 111004              |
| Q-1 63        | 42.0           | 7121            | 7.369         | 52047            | 71025             | 123072              |
| Q-2 63        |                |                 |               | 22011            |                   | LEJUIE              |
| Q-3 63        | 19.5           | 3389            | 4.402         | 14919            | 20956             | 35875               |
| Q-4 63        |                |                 |               |                  | 20770             | 55075               |
| Q-1 64        | 9.0            | 1479            | 3.853         | 5699             | 6271              | 11970               |
| Q-2 64        |                |                 |               |                  | ~                 |                     |
| Q-3 64        | 9.0            | 1469            | 3.849         | 5654             | 6224              | 11878               |
| Q-4 64        |                |                 |               |                  |                   |                     |
| Q-1 65        | 3.0            | 561             | 4.674         | 2622             | 3153              | 5775                |

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

1

# TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL GROUND TESTS 6-MAJ ASSY 04 SUBD OF WORK TEST/QC

|                            | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>Rate | LABOR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>Burden \$ |
|----------------------------|----------------|----------------|---------------|------------------|---------------------|----------------------|
| Q-2 65<br>Q-3 65<br>Q-4 65 | 1.5            | 225            | 4.667         | 1050             | 1 262               | 2312                 |
| Q-1 66                     |                | 16             | 4.625         | 74               | 90                  | 164                  |
| TOTAL                      | 518.5          | 88784          |               | 356088           | 397278              | 753366               |

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL GROUND TESTS 6-MAJ ASSY 04 SUBD CF WORK TEST/QC

|                      | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>Rate | LABOR<br>DOLLARS | BURDEN<br>DOLLARS | LABOR +<br>BURDEN \$ |
|----------------------|----------------|-----------------|---------------|------------------|-------------------|----------------------|
| Q-3 58               |                | 127             | 2.551         | 324              | 557               | 881                  |
| Q-4 58<br>Q-1 59     |                | r / r           |               |                  |                   | _                    |
| Q = 259              |                | 565             | 2.750         | 1554             | 2147              | 3701                 |
| Q-3 59               |                | 31100           | 2.981         | 92702            | 118620            | 211223               |
| 0-4 59               |                | JIIOG           | 2.01          | 32102            | 110020            | 211322               |
| Q-1 60               |                | 72640           | 2.912         | 211514           | 286481            | 497995               |
| Q-2 60               |                |                 |               |                  | 200.02            |                      |
| Q-3 60               |                | 63453           | 2.878         | 182637           | 220167            | 402804               |
| Q-4 60               |                |                 |               |                  |                   |                      |
| Q-1 61               |                | 119602          | 2.950         | 352834           | 415685            | 768519               |
| 0-2 61               |                |                 |               |                  |                   |                      |
| Q-3 61<br>Q-4 61     |                | 117666          | 3.040         | <b>3577</b> 25   | 477999            | 835724               |
| Q = 1 62             |                | 59781           | 2 040         | 101767           | 220(02            | (00/01               |
| Q-2 62               | -              | 19101           | 3.040         | 181743           | 220688            | 402431               |
| Q-3 62               |                | 47019           | 3.074         | 144547           | 196076            | 340623               |
| Q-4 62               |                |                 |               |                  | 1900/0            | 340023               |
| Q-1 63               | <b>9.</b> 0    | 1531            | 4.651         | 7120             | 13771             | 20891                |
| Q-2 63               |                |                 |               |                  |                   |                      |
| 0-3 63               |                | 17048           | 2.962         | <b>50499</b>     | 96014             | 146513               |
| Q-4 63               |                |                 |               |                  |                   |                      |
| Q-1 64               | -              | 6841            | 2.578         | 17639            | 31979             | 49618                |
| Q-2 64<br>Q-3 64     |                | 4.04.9          | 1 5/1         | 10202            | 21 100            | 10570                |
| Q = 3 64<br>Q = 4 64 |                | 4048            | 4.544         | 18393            | 31 180            | 49573                |
| Q = 1 65             |                | 3041            | 3.439         | 10457            | 12034             | 22491                |
| 0-2 65               |                | 5011            | J + 7 J J     |                  | 12034             | 26771                |
| Q-3 65               |                | 1216            | 3.436         | 4178             | 4 809             | 8987                 |

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

> > .

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL GROUND TESTS 6-MAJ ASSY 04 SUBD GF WORK TEST/QC

|                  | MAN-<br>MON THS | LABOR<br>HOURS  | LABOR<br>Rate | LABOR<br>DOLLARS | BURDEN<br>DOLLARS | LABOR +<br>BURDEN \$ |
|------------------|-----------------|-----------------|---------------|------------------|-------------------|----------------------|
| Q-4 65<br>Q-1 66 |                 | 87              | 3.437         | 299              | 344               | 643                  |
| TOTAL            | 3158.0          | 545 <b>7</b> 65 |               | 1634165          | 2128551           | 3762716              |

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

# TEST/QC

4-SYSTEM 1 5-SUBSYSTEM 06 6-MAJ ASSY 04 SUBD OF WORK TEST/QC

# FLIGHT CONTROL GROUND TESTS

|                  | MAN-     | LABOR | LABOR  | LABOR     | <b>BURDEN</b> | LABOR +   |
|------------------|----------|-------|--------|-----------|---------------|-----------|
|                  | MONTHS   | HUURS | RATE   | DOLLARS   | DOLLARS       | BURDEN \$ |
| Q-3 58           |          | 26    | 3.231  | 84        |               | 9.4       |
| Q-4 58           |          |       |        | <b>UT</b> |               | 84        |
| Q-1 59           |          | 29    | 2.897  | 84        |               | 84        |
| Q-2 59           |          |       |        |           |               | 04        |
| Q-3 59           | 3.0      | 644   | 2.887  | 1859      |               | 1859      |
| Q-4 59           |          |       |        |           |               | 10,77     |
| Q-1 60           | 18.0     | 3149  | 3.100  | 9762      |               | 9762      |
| Q-2 60           |          |       |        |           |               |           |
| Q-3 60           | 24.0     | 4082  | 3.226  | 1317C     |               | 13170     |
| Q-4 60           |          |       |        |           |               | 10110     |
| Q - 1 61         | 46.5     | 8047  | 3.196  | 25721     |               | 25721     |
| 0-2 61           |          |       |        |           |               |           |
| Q-3 61           | 51.0     | 9303  | 3.320  | 30890     |               | 30890     |
| Q-4 61           | <b>.</b> |       |        |           |               |           |
| Q-1 62           | 24.0     | 4184  | 3.264  | 13658     |               | 13658     |
| Q-2 62           |          |       |        |           |               |           |
| Q-3 62           | 18.0     | 3127  | 3.130  | 9786      |               | 9786      |
| Q-4 62           |          |       |        |           |               |           |
| Q-1 63           | 1.5      | 379   | 4.364  | 1654      |               | 1654      |
| Q-2 63<br>Q-3 63 | ( 0      |       |        |           |               |           |
| Q-4 63           | -6.C     | -1104 | 2.722  | -3005     |               | -3005     |
| Q = 1 64         | 7.5      | 1250  | 2 45 1 |           |               |           |
| Q - 2 64         | 1.5      | 1359  | 3.051  | 4146      |               | 4146      |
| Q-3 64           | 7.5      | 1250  | 2 05 4 |           |               |           |
| Q = 4 64         | 1.5      | 1358  | 3.054  | 4147      |               | 4147      |
| Q = 1 65         | -3.0     | -559  | 2 9/4  | 21/6      |               |           |
| Q-2 65           | - J • U  | -009  | 3.864  | -2160     |               | -2160     |
| Q-3 65           | -1.5     | -224  | 3 057  | 07.4      |               |           |
|                  | 1.07     | -224  | 3.857  | -864      |               | -864      |

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

TINE PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL GROUND TESTS 6-MAJ ASSY 04 SUBD OF WORK TEST/QC

## ON-SITE LABOR

|                  | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>RATE | LABOR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>BURDEN \$ |
|------------------|----------------|-----------------|---------------|------------------|---------------------|----------------------|
| Q-4 65<br>Q-1 66 |                | -16             | 3.875         | -62              |                     | -62                  |
| TOTAL            | 190.5          | 33784           |               | 108870           |                     | 108870               |

٠

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 6-MAJ ASSY 04 FLIGHT CONTROL GROUND TESTS

.

|                  | MAN-<br>MON TH S | LABUR<br>HOUR S | LABOR<br>Rate | LABOR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>Burden \$ | FNCR<br>Matl |
|------------------|------------------|-----------------|---------------|------------------|---------------------|----------------------|--------------|
| Q-1 58           |                  |                 |               |                  |                     |                      |              |
| Q-2 58           |                  |                 |               |                  |                     |                      |              |
| Q-3 58           | 1.0              | 153             | 2.667         | 408              | 557                 | 965                  | 196          |
| Q-4 58           |                  |                 |               |                  |                     | 70 5                 | 190          |
| Q-1 59           | 3.0              | 594             | 2.758         | 1638             | 2147                | 3785                 | 1138         |
| Q-2 59           |                  |                 |               |                  |                     | 3103                 | 11,70        |
| Q-3 59           | 180.0            | 31744           | 2.979         | 94561            | 118620              | 213181               | 15372        |
| Q-4 59           |                  |                 |               |                  |                     |                      |              |
| Q-1 60           | 436.5            | 75789           | 2.920         | 221276           | 286481              | 507757               | 20774        |
| Q-2 60<br>Q-3 60 | 475 C            | 700/0           |               |                  |                     |                      |              |
| Q = 4 60         | 475.5            | 79869           | 3.057         | 244121           | 266139              | 510260               | 216466       |
| Q-1 61           | 829.5            | 141842          | 2 04 0        |                  |                     |                      |              |
| Q-2 61           | 02 3 . 5         | 141042          | 3.069         | 435272           | 464131              | 899403               | 70117        |
| Q-3 61           | 771.C            | 139763          | 3.139         | 433725           | 52/500              | 070000               |              |
| 0-4 61           |                  | 237103          | 5.157         | 1002             | 534598              | 973323               | 397177       |
| Q-1 62           | 447.5            | 76383           | 3.227         | 246471           | 275896              | 522367               | 74110        |
| Q-2 62           |                  |                 |               | 2.00111          | 215050              | 722301               | 76118        |
| Q-3 62           | 433.5            | 72931           | 3.046         | 222145           | 278148              | 500293               | 128791       |
| Q-4 62           |                  |                 |               |                  |                     | 200275               | 120771       |
| Q-1 63           | 52.5             | 9031            | 6.735         | 60821            | 84796               | 145617               | 149796       |
| Q-2 63           |                  |                 |               |                  |                     |                      |              |
| Q-3 63           | 115.5            | 19333           | 3.228         | 62413            | 116970              | 179383               | 16421        |
| Q-4 63           |                  |                 |               |                  |                     |                      |              |
| Q-1 64           | 57.0             | 9679            | 2.840         | 27484            | 38250               | 65734                | 32874        |
| Q-2 64<br>Q-3 64 | 30.0             | ( 0 <b>7</b> 5  |               |                  |                     |                      |              |
| Q-4 64           | 39.0             | 6875            | 4.101         | 28194            | 37404               | 65598                | 32845        |
| Q-1 65           | 18.0             | 3043            | 3 500         | 10010            | 15107               |                      |              |
| Q-2 65           | I U O U          | 2042            | 3.588         | 10919            | 15187               | 26106                | 6057         |
| Q-3 65           | 7.5              | 1217            | 3.586         | 4364             | 6071                | 10435                | 2422         |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 6-MAJ ASSY 04 FLIGHT CONTROL GROUND TESTS

|                  | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>RATE | LABOR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABUR +<br>Burden \$ | ENGR<br>MATL |
|------------------|----------------|-----------------|---------------|------------------|---------------------|----------------------|--------------|
| Q-4 65<br>Q-1 66 |                | 87              | 3.575         | 311              | 434                 | 745                  | 175          |
| TOTAL            | 3867.0         | 668333          |               | 2099123          | 2525829             | 4624952              | 1166739      |

#### 

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 6-MAJ ASSY 04 FLIGHT CONTROL GROUND TESTS

|                |          | MPC   | OTHER<br>COST | SUB<br>TOTAL | G & A | TGTAL<br>COST |
|----------------|----------|-------|---------------|--------------|-------|---------------|
| Q-1            | 58       |       | 10            | 10           |       | 10            |
| Q-2            | 58       |       |               |              |       | 20            |
| Q-3            | 58       | 11    | -10           | 1162         |       | 1162          |
| Q-4            |          |       |               |              |       |               |
| 0-1            | 59       | 96    |               | 5019         |       | 5019          |
| Q-2            | 59       |       |               |              |       |               |
| 0-3            |          | 1302  |               | 229855       |       | 229855        |
| 0-4            | 59       |       |               |              |       |               |
| Q-1<br>Q-2     | 60<br>60 | 2731  |               | 531262       | 10122 | 541334        |
|                | 60       | 28465 |               | 755191       | 14389 | 740500        |
| Q-4            |          | 20105 |               | 133131       | 14207 | 769580        |
| Q-1            | 61       | 5525  |               | 975445       | 18127 | 993572        |
| Q-2            | 61       |       |               |              | 10121 | 112212        |
| Q-3            | 61       | 33561 | 8506          | 1412567      | 2625C | 1438817       |
| Q-4            |          |       |               |              |       |               |
| Q - 1          |          | 5998  | 1127          | 60561C       | 10165 | 615775        |
| Q-2            |          |       |               |              |       |               |
| Q-3            |          | 10149 | 2180          | 641413       | 10766 | 652179        |
| Q-4            |          |       |               |              |       |               |
| Q-1            |          | 14754 | -1905         | 308262       | 5154  | 313416        |
| Q-2<br>Q-3     |          | 1/17  |               |              |       |               |
| Q = 3<br>Q = 4 |          | 1617  | -640          | 196781       | 3290  | 200071        |
| Q = 1          |          | 3 504 | 88            | 102200       | 2175  |               |
| Q-2            | 64       |       | 60            | 102200       | 2175  | 104375        |
| Q-3            | 64       | 11949 | 87            | 110479       | 2351  | 112023        |
| 0-4            |          | ••••• | 51            | 110413       | 100   | 112830        |
| Q-1            |          | 1812  | 74            | 34049        | 908   | 34957         |
| Q-2            |          |       | ••            |              |       | 54751         |
| Q-3            |          | 432   | 30            | 13319        | 355   | 13674         |

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 6-MAJ ASSY 04 FLIGHT CONTROL GROUND TESTS

|                  | мрс    | OTHER<br>Cost | SUB<br>Total | G&A    | TOTAL<br>COST |
|------------------|--------|---------------|--------------|--------|---------------|
| Q-4 65<br>Q-1 66 | 36     | 2             | 95 8         | 29     | 987           |
| TOTAL            | 122342 | 9549          | 5923582      | 104081 | 6027663       |

•--

•

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

# COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM

|                    |       | HOURS    | PRÚD<br>Húurs<br>Dollars | AND STE<br>HOURS | TEST<br>700<br>HOURS<br>DOLLARS |
|--------------------|-------|----------|--------------------------|------------------|---------------------------------|
| DESIGN/ENGINEERING |       | 1041371  |                          |                  | 88784                           |
| LABCR AT \$ 4.926  |       | 5210-925 |                          |                  | 356088                          |
| ENGR BURDEN AT \$  | 4.529 |          |                          |                  | 397278                          |
| SHOP SUPPORT       |       | 27592    |                          |                  | 545765                          |
| LABCR AT \$ 2.987  |       | 78582    |                          |                  | 1634165                         |
| TEST/QC            |       | 309      |                          |                  | 33784                           |
| LABOR AT \$ 3.230  |       | 1264     |                          |                  | 108870                          |
| MFG BURDEN AT \$   | 3.676 | 104151   |                          |                  | 2128551                         |
| ENGR MATERIAL      |       | 6715     |                          |                  | 1166739                         |
| SUBCONTRACT        |       | 2198837  | 4768647                  | 467552           |                                 |
| MPC                |       | 96706    | 188630                   | 19446            | 122342                          |
| OTHER COST         |       | 248415   |                          |                  | 9549                            |
| SUB-TOTAL          |       | 12656438 | 4957277                  | 486998           | <b>5</b> 923582                 |
| GEN & ADMIN        |       | 206000   | 91893                    | 8759             | 104081                          |
| TOTAL COST         |       | 12862438 | 5C49170                  | 495757           | 6027663                         |
|                    |       |          |                          |                  |                                 |

| TIME-PHASED COST  |        |        |        |        |
|-------------------|--------|--------|--------|--------|
| DETAIL - SEE PAGE | IV-218 | IV-226 | IV-228 | IV-229 |

#### COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM

•

|                    |            | TGTAL    |
|--------------------|------------|----------|
|                    |            | HOURS    |
|                    |            | DOLLARS  |
| DESIGN/ENGINEERING | 3          | 1130155  |
| LABOR AT \$ 4.9    |            | 5567013  |
| _                  | 1 \$ 4.529 | 5118121  |
| SHOP SUPPORT       |            | 573357   |
| LABOR AT \$ 2.0    | 987        | 1712747  |
| TEST/OC            |            | 34093    |
| LABOR AT \$ 3.2    | 230        | 110134   |
| MFG BURDEN A       | T\$ 3.676  | 2232702  |
| ENGR MATERIAL      |            | 1173454  |
| SUBCONTRACT        |            | 7425036  |
| MPC                |            | 427124   |
| OTHER COST         |            | 257964   |
|                    |            |          |
| SUB-TOTAL          |            | 24024295 |
| GEN & ADMIN        |            | 410733   |
|                    |            |          |
| TOTAL COST         |            | 24435028 |

| TIME-PHA | SED COST |        |
|----------|----------|--------|
| DETAIL - | SEE PAGE | IV-239 |

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

# DESIGN/ENGINEERING

|              | DESIGNTENDINEERING         |
|--------------|----------------------------|
| 4-SYSTEM     | 1 FLIGHT CONTROL SUBSYSTEM |
| 5-SUBSYSTEM  | 06                         |
| SUBD OF WORK | DESIGN/ENGINEERING         |

|                   | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>Rate | LABOR<br>DOLLAR S | BUR DEN<br>DOLL ARS | LABOR +<br>Burden \$ |
|-------------------|----------------|-----------------|---------------|-------------------|---------------------|----------------------|
| 0−1 58<br>·0−2 58 | 40.5           | 6891            | 4.800         | 33076             | 31 352              | 64428                |
| Q-3 58<br>Q-4 58  | 198.0          | 33360           | 4.469         | 149077            | 131368              | 280445               |
| Q-1 59<br>Q-2 59  | 231.0          | 39382           | 4.537         | 178659            | 135264              | 313923               |
| Q-3 59<br>Q-4 59  | <b>479.</b> 5  | 84379           | 4.334         | 365662            | 301488              | 667150               |
| 9-1 60<br>9-2 60  | 588.0          | 101943          | 4.658         | 474885            | 382234              | 857119               |
| Q-3 60<br>Q-4 60  | 592.5          | 99616           | 4.808         | 478995            | 370123              | 849118               |
| Q-1 61<br>Q-2 61  | 769.0          | 131185          | 4.728         | <b>62</b> 0302    | 446983              | 1067285              |
| Q-3 61<br>Q-4 61  | 484.5          | 87832           | 4.992         | <b>43842</b> 0    | 408087              | 846507               |
| Q-1 62<br>Q-2 62  | 580.5          | 990 <b>64</b>   | 5.218         | 516960            | 457046              | 974006               |
| Q-3 62<br>Q-4 62  | 534 <b>.</b> C | 89740           | 5.135         | <b>46</b> 0856    | 461039              | 921895               |
| Q-1 63<br>Q-2 63  | 435.0          | 74289           | 5.492         | 407999            | 403202              | 811201               |
| Q-3 63<br>Q-4 63  | 400.0          | 67198           | 5.479         | 368192            | 385318              | 753510               |
| Q-1 64<br>Q-2 64  | 319.5          | 54571           | 5.574         | 304155            | 344978              | 649133               |
| Q-3 64<br>Q-4 64  | 294.0          | 51666           | 5.600         | 289326            | 329457              | 618783               |
| Q-1 65<br>Q-2 65  | 82.5           | 14346           | 6.183         | 83704             | 95044               | 183748               |

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

#### DESIGN/ENGINEERING

4-SYSTEM 1 5-SUBSYSTEM 06 SUBD OF WORK DESIGN/ENGINEERING

|                  | MAN-<br>Months | LABOR<br>HOUR S | LABOR<br>RATE | LABOR<br>Dollars | BURDEN<br>DOLLARS | LABOR +<br>Burden \$ |
|------------------|----------------|-----------------|---------------|------------------|-------------------|----------------------|
| Q-3 65<br>Q-4 65 | 24.0           | 4106            | 7.953         | 32654            | 35026             | 67680                |
| Q-1 66           | 10.5           | 1803            | 1.666         | 3003             | 2834              | 583 <b>7</b>         |
| TOTAL            | 6063.0         | 1041371         |               | 5210925          | 4720843           | 9931768              |

.

.

# TIME PHASED EXPENC. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 FLIGHT CONTROL SUBSYSTEM 5-SUBSYSTEM 06 SUBD OF WORK DESIGN/ENGINEERING

|                        | MAN-<br>MONTHS | LABUR<br>HOUR S | LABOR<br>RATE | LABOR<br>DCLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>Burden \$ |
|------------------------|----------------|-----------------|---------------|------------------|---------------------|----------------------|
| Q-1 59<br>Q-2 59       |                | 40              | 2.025         | 81               | 148                 | 229                  |
| Q-3 59<br>Q-4 59       | 13.5           | 2320            | 2.809         | 6516             | 8194                | 14710                |
| Q-1 60<br>Q-2 60       | 25.5           | <b>445</b> 6    | 3.112         | 13868            | 17528               | 31396                |
| 0-3 60<br>Q-4 60       | 57.0           | 9525            | 2.875         | 27383            | 35 <b>7</b> 92      | 63175                |
| Q = 1  61<br>Q = 2  61 | 51.0           | 8666            | 2.694         | 23350            | 30665               | 54015                |
| Q-3 61<br>Q-4 61       | 12.0           | 2307            | 2.840         | 6553             | 10502               | 17055                |
| Q-1 62<br>Q-2 62       |                | 93              | 3.172         | 295              | 424                 | 719                  |
| Q-3 62<br>Q-4 62       |                | -40             | .150          | -6               | -184                | -190                 |
| Q-1 63<br>Q-2 63       |                | 73              | 3.000         | 219              | 294                 | 513                  |
| 0-3 63<br>Q-4 63       |                | -31             | 7.548         | -234             | -134                | -368                 |
| Q-1 64<br>Q-2 64       |                | 115             | 3.052         | 351              | 564                 | 915                  |
| Q-3 64                 |                | 68              | 3.029         | 206              | 358                 | 564                  |
| TOTAL                  | 159.0          | 27592           |               | 78582            | 104151              | 182733               |

+

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 FLIGHT CONTROL SUBSYSTEM 5-SUBSYSTEM 06 SUBD OF WORK DESIGN/ENGINEERING

|                            | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>RATE | L ABOR<br>DOLL AR S | BUR DEN<br>DOLL ARS | LABOR +<br>Burden \$ |
|----------------------------|----------------|----------------|---------------|---------------------|---------------------|----------------------|
| Q-3 59<br>Q-4 59           |                | 18             | 2.889         | 52                  |                     | 52                   |
| Q-1 60<br>Q-2 60           |                | 64             | 3.438         | 220                 |                     | 220                  |
| Q-3 60<br>Q-4 60           | 1.5            | 194            | 4.407         | 855                 |                     | 855                  |
| Q-1 61<br>Q-2 61           |                | 21             | 4.810         | 101                 |                     | 101                  |
| Q-3 61<br>Q-4 61           |                | 6              | 2.500         | 15                  |                     | 15                   |
| Q-1 62<br>Q-2 62<br>Q-3 62 |                |                |               |                     |                     |                      |
| Q-4 62<br>Q-1 63           |                |                |               |                     |                     |                      |
| Q-2 63<br>Q-3 63           |                |                |               |                     |                     |                      |
| Q-4 63<br>Q-1 64<br>Q-2 64 |                | 1              | 2.000         | 2                   |                     | 2                    |
| Q-3 64<br>Q-4 64           |                | 5              | 3.600         | 18                  |                     | 18                   |
| Q-1 65                     |                |                |               | 1                   |                     | 1                    |
| TOTAL                      | 1.5            | 309            |               | 1264                |                     | 1264                 |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-1210C

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 SUBD CF WORK DESIGN/ENGINEEPING

|                               |    | MAN-<br>MONTHS          | LABGR<br>HOUR S | LABOR<br>RATE  | L ABOR<br>DOLLAR S | BURDEN<br>DOLLARS | LABOR +<br>SURDEN \$ | ENGR<br>MATL |
|-------------------------------|----|-------------------------|-----------------|----------------|--------------------|-------------------|----------------------|--------------|
| Q-1<br>Q-2                    |    | 40.5                    | 6891            | 4.800          | 33076              | 31 352            | 64428                |              |
| Q-4                           | 58 | <b>198</b> .C           | 33360           | 4.469          | 149077             | 131368            | 280445               |              |
| Q-1<br>Q-2                    | 59 | 231.0                   | 39422           | 4.534          | 173740             | 135412            | 314152               |              |
| 0-3<br>Q-4                    |    | 493.0                   | 86 <b>717</b>   | 4.292          | 372230             | 309682            | 681912               | 1054         |
| Q-1<br>Q-2                    |    | 613.5                   | 106453          | 4.593          | 483973             | 399762            | 888735               | 1102         |
| Q-3<br>Q-4                    | 60 | 651.0                   | 109335          | 4.639          | 507233             | 405915            | 913148               | 1281         |
| Q-1<br>Q-2                    | 61 | 820.C                   | 139872          | 4.602          | 643753             | 477648            | 1121401              | 761          |
| Q-3<br>Q-4                    | 61 | 496.5                   | 90145           | 4.936          | 444938             | 418589            | 863577               | 193          |
| Q-1<br>Q-2                    | 62 | 580.5                   | 99157           | 5.217          | 517255             | 457470            | 974725               | 88           |
| Q-3 (<br>Q-4 (                | 62 | 534.0                   | 8970C           | 5.138          | <b>46 3</b> 850    | 460 85 <b>5</b>   | 921705               | 51           |
| Q-1 (<br>Q-2 (                | 63 | 435.0                   | 74362           | 5.490          | 408218             | 403496            | 811714               | 120          |
| Q-3 (<br>Q-4 (<br>Q-1 (       | 63 | 400.C                   | 67167           | 5.478          | 367958             | 385184            | 753142               | 1812         |
| Q-2 (<br>Q-3 (                | 64 | 319 <b>.</b> 5<br>294.0 | 54687           | 5.568          | 304508             | 345542            | 650050               | 79           |
| Q = 3 (<br>Q = 4 (<br>Q = 1 ( | 64 | 82.5                    | 51739<br>14346  | 5.596<br>6.183 | 28955C             | 329815            | 619365               | 174          |
| Q-2 (<br>Q-3 (                | 65 | 24.0                    | 4106            | <b>7.</b> 953  | 83705              | 95044             | 183749               |              |
| Q-4 6                         |    | 270U                    | 4100            | 1072           | 32654              | 35026             | 67680                |              |

\_

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

| 4-SYSTEM<br>5-SUBSYSTEM | 1 FLIGHT CONTROL SUBSYSTEM |
|-------------------------|----------------------------|
| SUBD OF WORK            | DESIGN/ENGINEERING         |

|        | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>RATE | LABOF<br>DCLLARS | BUR DEN<br>Doll Ars | LABOR +<br>BURDEN \$ | ENGR<br>Matl |
|--------|----------------|----------------|---------------|------------------|---------------------|----------------------|--------------|
| Q-1 66 | 10.5           | 1803           | 1.666         | 3003             | 2834                | 5837                 |              |
| TOTAL  | 6223.5         | 1069272        |               | 5290771          | 4824 994            | 10115765             | 6715         |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

•

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM1FLIGHT CONTROL SUBSYSTEM5-SUBSYSTEM06SUBD OF WORKDESIGN/ENGINEERING

|                            | SUBC   | TOTAL<br>MATERIAL | MPC   | OTHER<br>COST | SUB<br>TOTAL | G & A | TOTAL<br>Cost |
|----------------------------|--------|-------------------|-------|---------------|--------------|-------|---------------|
| Q-1 53                     |        |                   |       | 3433          | 67861        |       | 67861         |
| 0-2 53<br>0-3 58           |        |                   |       | 4486          | 284931       |       | 284931        |
| Q-4 58                     |        |                   |       |               |              |       | 201101        |
| Q-1 59                     |        |                   |       | 5137          | 319289       |       | 319289        |
| Q-2 59<br>Q-3 57           | 137905 | 138959            | 2057  | 14.000        | 020/11       |       |               |
| Q-4 59                     | 131303 | 130939            | 3857  | 14883         | 839611       |       | 839611        |
| Q-1 60<br>Q-2 60           | 87905  | 89007             | 5360  | 23083         | 1006185      | 19171 | 1025356       |
| 0-3 60                     | 352646 | 353927            | 21091 | 25159         | 1313325      | 25023 | 1338348       |
| Q-4 60<br>Q-1 61           | 372425 | 777104            | 10127 | 10007         |              |       |               |
| 0-2 61                     | 512925 | 373186            | 10734 | 1980 <b>7</b> | 1525128      | 28341 | 1553469       |
| $Q-3 \ 61$<br>$Q-4 \ 61$   | 112999 | 113192            | 3253  | 17605         | 957627       | 13539 | 1016166       |
| Q-1 62<br>Q-2 62           | 340167 | 340255            | 10818 | 13326         | 1339124      | 22477 | 1361601       |
| Q-3 62<br>Q-4 62           | 340166 | 340217            | 10819 | 19651         | 1291392      | 21676 | 1313068       |
| Q-4 62<br>Q-1 63<br>Q-2 63 | 280355 | 280475            | 11916 | 26319         | 1130424      | 18901 | 1149325       |
| Q-3 63<br>Q-4 63           | 37558  | 39370             | 1385  | 24568         | 818465       | 13685 | 832150        |
| Q = 1 64<br>Q = 2 64       | 126711 | 126790            | 17410 | 17029         | 811279       | 17262 | 828541        |
| Q-3 64                     |        | 174               | 63    | 13947         | 633549       | 13481 | 647030        |
| Q-4 64<br>Q-1 65<br>Q-2 65 |        |                   |       | 14687         | 198436       | 5294  | 203730        |
| Q-2 65<br>Q-3 65<br>Q-4 65 |        |                   |       | 5875          | 73555        | 1962  | 75517         |

\_

. -

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

# 4-SYSTEM1FLIGHT CONTROL SUBSYSTEM5-SUBSYSTEM06SUBD OF WORKDESIGN/ENGINEERING

|        | SUBC    | TOTAL<br>MATERIAL | MPC   | OTHER<br>COST | SUB<br>Total | G&A    | TOTAL<br>Cost |
|--------|---------|-------------------|-------|---------------|--------------|--------|---------------|
| Q-1 66 |         |                   |       | 420           | 6257         | 188    | 6445          |
| TOTAL  | 2183837 | 2195552           | 96706 | 248415        | 12656438     | 206000 | 12862438      |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM1FLIGHT CONTROL SUBSYSTEM5-SUBSYSTEM06SUBD OF WORK PRODUCTION

|                |    | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>Rate | LABOR<br>DCLLARS | BURDEN<br>DOLLARS | LABOR<br>BURDEN | SUBC    |
|----------------|----|----------------|----------------|---------------|------------------|-------------------|-----------------|---------|
| Q-3            |    |                |                |               |                  |                   |                 | 24595   |
| Q-4<br>Q-1     |    |                |                |               |                  |                   |                 |         |
| Q-2            |    |                |                |               |                  |                   |                 | 64120   |
| Q-3            |    |                |                |               |                  |                   |                 | 212001  |
| Q-4            |    |                |                |               |                  |                   |                 | 217881  |
| Q-1            |    |                |                |               |                  |                   |                 | 1129142 |
| Q-2            |    |                |                |               |                  |                   |                 |         |
| Q-3            |    |                |                |               |                  |                   |                 | 881346  |
| Q-4            |    |                |                |               |                  |                   |                 |         |
| Q-1<br>Q-2     |    |                |                |               |                  |                   |                 | 741028  |
| Q = 2<br>Q = 3 |    |                |                |               |                  |                   |                 |         |
| Q-4            |    |                |                |               |                  |                   |                 | 741027  |
| Q-1            |    |                |                |               |                  |                   |                 | 410722  |
| Q-2            | 63 |                |                |               |                  |                   |                 | 610732  |
| Q-3            |    |                |                |               |                  |                   |                 | 81818   |
| Q-4            |    |                |                |               |                  |                   |                 | 2010    |
| Q-1            | 64 |                |                |               |                  |                   |                 | 276458  |
| тот            | ۹L |                |                |               |                  |                   |                 | 4768647 |

~

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

| 4-SYSTEM<br>5-SUBSYSTEM<br>SUBD OF WORK | 06 | FLIGHT | CONTROL | SUBSYSTEM |
|-----------------------------------------|----|--------|---------|-----------|
|-----------------------------------------|----|--------|---------|-----------|

|     |    |        | SUB     |               | TOTAL   |
|-----|----|--------|---------|---------------|---------|
|     |    | MPC    | TOTAL   | GEA           | COST    |
| Q-3 |    | 672    | 25267   |               | 25267   |
| 0-4 |    |        |         |               |         |
| 0-1 | 60 | 3804   | 67924   | 1294          | 69218   |
| Q-2 | 6C |        |         |               |         |
| Q-3 | 60 | 12927  | 230808  | 4398          | 235206  |
| Q-4 | 60 |        |         |               |         |
| Q-1 | 61 | 32351  | 1161493 | 21584         | 1183077 |
| Q-2 | 61 |        |         |               |         |
| Q-3 | 61 | 25265  | 907111  | 16857         | 923968  |
| 0-4 | 61 |        |         |               |         |
| Q-1 | 62 | 23551  | 764579  | 12833         | 777412  |
| Q-2 | 62 |        |         |               |         |
| Q-3 | 62 | 23529  | 764556  | 12833         | 777389  |
| Q-4 | 62 |        |         | 12000         | 111307  |
| Q-1 | 63 | 25934  | 636666  | 13989         | 650655  |
| Q-2 | 63 |        |         | 13737         | 030033  |
| Q-3 |    | 2629   | 84447   | 1415          | 85862   |
| Q-4 |    |        | •••••   | 1 (1)         | 0,002   |
| 0-1 |    | 37968  | 314426  | 6690          | 321116  |
| тот | AL | 188630 | 4957277 | <b>91</b> 893 | 5049170 |

**APRIL** 1972

•

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

| 4-SYSTEM<br>5-SUBSYSTEM | 1<br>06 |     | FLIGHT | CONTROL | SUBSYSTEM |  |
|-------------------------|---------|-----|--------|---------|-----------|--|
| SUBD OF WORK            | TOOLING | AND | STE    |         |           |  |

|                        | SUBC          | MPC   | SUB<br>Total | ĜδΔ           | TOTAL<br>COST |
|------------------------|---------------|-------|--------------|---------------|---------------|
| Q-1 60<br>Q-2 60       | 10475         | 621   | 11096        | 211           | 11307         |
| Q-3 60<br>Q-4 60       | 49033         | 2909  | 51 94 2      | 99 C          | 52932         |
| Q = 1  61<br>Q = 2  61 | 100958        | 2892  | 103850       | 1930          | 105780        |
| Q-3 51<br>Q-4 61       | <b>66</b> 890 | 1916  | 68806        | 1278          | 70084         |
| Q-1 62<br>Q-2 62       | 72694         | 2310  | 75004        | 1259          | 76263         |
| Q-3 52<br>Q-4 62       | 72696         | 2308  | 75004        | 1259          | 76263         |
| Q-1 63<br>Q-2 63       | 59913         | 2544  | 62457        | 1044          | 63501         |
| Q-3 63<br>Q-4 63       | 8026          | 257   | 8283         | 138           | 8421          |
| Q-1 64                 | 26867         | 3639  | 30 55 6      | 65 C          | 31 206        |
| TOTAL                  | 467552        | 19446 | 486998       | 8 <b>7</b> 59 | 495757        |

# TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

|              | DESIGN/EN | GINEERING                |
|--------------|-----------|--------------------------|
| 4-SYSTEM     | 1         |                          |
| 5-SUB SYSTEM | 66        | FLIGHT CONTROL SUBSYSTEM |
| SUBD OF WORK | TEST/QC   |                          |

|                          | MAN-<br>MON TH S | LABOR<br>HOUR S | LABOR<br>RATE | LABOR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABUR +<br>BURDEN \$ |
|--------------------------|------------------|-----------------|---------------|------------------|---------------------|----------------------|
| Q-1 58                   |                  |                 |               |                  |                     |                      |
| Q-2 58                   |                  |                 |               |                  |                     |                      |
| Q-3 53                   |                  |                 |               | ,                |                     |                      |
| Q-4 58                   |                  |                 |               |                  |                     |                      |
| Q-1 59                   |                  |                 |               |                  |                     |                      |
| 0-2 59                   |                  |                 |               |                  |                     |                      |
| Q-3 59                   |                  |                 |               |                  |                     |                      |
| Q-4 59                   |                  |                 |               |                  |                     |                      |
| Q-1 60                   |                  |                 |               |                  |                     |                      |
| Q-2 60                   |                  |                 |               |                  |                     |                      |
| Q-3 60                   | 73.5             | 12334           | 3.917         | 48314            | 45972               | 94286                |
| Q-4 60                   |                  |                 |               | _                |                     |                      |
| 0-1 61                   | 82.5             | 14193           | 3.996         | 56717            | 48446               | 105163               |
| Q-2 61                   |                  |                 |               |                  |                     |                      |
| Q-3 61                   | 70.5             | 12794           | 3.917         | 50110            | 56599               | 106709               |
| 0-4 61                   | 72.0             | 12/10           | 4 112         | <b>61030</b>     | FF 000              |                      |
| Q = 1  62                | 73.0             | 12418           | 4.113         | 51070            | 55 208              | 106278               |
| 9-2 62<br>9-3 62         | 135.0            | 22265           | 2.976         | 47013            | 02072               | 140004               |
| y = 3 - 62<br>y = 4 - 62 | 100.0            | 22785           | 2.910         | 67812            | 82072               | 149884               |
| 0-1 63                   | 42.0             | 7121            | 7.309         | 52047            | 71025               | 123072               |
| 0 - 2 - 63               | 72.0             | 1121            | 1.304         | J2041            | 11025               | 125012               |
| Q-3 63                   | 19.5             | 3389            | 4.402         | 14919            | 20956               | 35875                |
| Q-4 63                   | 1703             | 2207            | ( IUL         |                  | 20000               |                      |
| Q-1 64                   | 9.0              | 1479            | 3.853         | 5699             | 6271                | 11970                |
| Q-2 64                   | •••              | • • • • •       |               |                  |                     |                      |
| Q-3 64                   | 9.0              | 1469            | 3.849         | 5654             | 6224                | 11878                |
| Q-4 64                   |                  | -               |               |                  |                     |                      |
| 0-1 65                   | 3.0              | 561             | 4.674         | 2622             | 3153                | 5775                 |
| Q-2 65                   |                  |                 |               |                  |                     |                      |
|                          |                  |                 |               |                  |                     |                      |

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 06 SUBD OF WORK TEST/QC

| LABOR +<br>Burden \$ | BURDEN<br>DOLLARS | LABOR<br>DOLLARS | LABOR<br>Rate | LABUR<br>HOURS | MAN-<br>MON THS |                  |
|----------------------|-------------------|------------------|---------------|----------------|-----------------|------------------|
| 2312                 | 1262              | 1050             | 4.667         | 225            | 1.5             | Q-3 65<br>Q-4 65 |
| 164                  | 90                | 74               | 4.625         | 16             |                 | Q-1 66           |
| 753366               | 397278            | 356088           |               | 38784          | 518.5           | TOTAL            |

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHUP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 06 SUBD OF WORK TEST/QC SHUP SUPPORT FLIGHT CONTROL SUBSYSTEM

|                            | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>RATE  | LABOR<br>DOLLARS | BURDEN<br>DOLLARS | LABOR +<br>BURDEN \$ |
|----------------------------|----------------|----------------|----------------|------------------|-------------------|----------------------|
| 0-3 53                     | 1.0            | 127            | 2.551          | 324              | 557               | 881                  |
| 0-4 58<br>0-1 59<br>0-2 59 | 3.0            | 565            | 2.750          | 1554             | 2147              | 3701                 |
| 0-3 59<br>0-4 59           | 177.0          | 31100          | 2.981          | 92702            | 118620            | 211322               |
| Q-1 60<br>Q-2 60           | 418.5          | 72540          | 2.912          | 211514           | 286481            | 497995               |
| Q-3 60<br>Q-4 60           | 378.0          | 63453          | 2.878          | 182637           | 220167            | 402804               |
| Q-1 61<br>Q-2 61           | 700.5          | 119602         | 2.950          | 352834           | 415685            | 768519               |
| Q-3 61<br>Q-4 61           | 649.5          | 117666         | 3.040          | 357725           | 477999            | 835724               |
| Q−1 62<br>Q−2 62           | 350.5          | 59781          | 3 • 04 0       | 181743           | 220683            | 402431               |
| 9-3 62<br>9-4 62           | 280.5          | 47019          | 3.074          | 144547           | 196076            | 340623               |
| Q-1 63<br>Q-2 63           | 9.0            | 1531           | 4.651          | 7120             | 13771             | 20891                |
| Q-3 63<br>Q-4 63           | 102.0          | 17048          | 2.962          | 50499            | 96014             | 146513               |
| 0-1 64<br>0-2 64           | 40.5           | 6841           | 2.578          | 17639            | 31979             | 49618<br>49573       |
| Q-3 64<br>Q-4 64<br>Q-1 65 | 22.5<br>18.0   | 4048<br>3041   | 4.544<br>3.439 | 18393<br>10457   | 31 180<br>12034   | 22491                |
| Q-2 65<br>Q-3 65           | 7.5            | 1216           | 3.436          | 4178             | 4809              | 8987                 |
| Q-4 65                     | ( • )          | 1210           | 5.490          |                  |                   |                      |

# TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHUP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM SUBD OF WORK TEST/QC

# ON-SITE LABOR

|        | MAN-<br>MONTHS | LABOR<br>HOUR S | LABUR<br>Rate | LABOR<br>DOLLAR S | BUR CEN<br>DOLL ARS | LABOR +<br>Burden \$ |
|--------|----------------|-----------------|---------------|-------------------|---------------------|----------------------|
| Q-1 66 |                | 87              | 3.437         | 299               | 344                 | 643                  |
| TOTAL  | 3158.0         | 545765          |               | 1634165           | 2128551             | 3762716              |

~~~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

	TEST/QC			
4-SYSTEM	1			
5-SUBSYSTEM	06	FLIGHT	CONTROL	SUBSYSTEM
SUBD OF WORK	TEST/QC			

	MAN- MONTHS	LABOR HOUR S	LABOR PATE	LABUR DOLLAR S	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-3 59		26	3.231	84		84
Q-4 53						
0-1 59		29	2.897	84		84
Q-2 59						
Q-3 59	3.0	644	2.887	1859	•	1859
6-4 59						
0-1 50	18.0	3149	3.100	9762		9762
6-2 60						
9-3 60	24.0	4082	3.226	13170		13170
0-4 60		00/7	2 2 4 4			
Q = 1 61	46.5	8C47	3.196	25721		25 721
Q-2 61	E1 0	0202	2	20000		
Q-3 61 Q-4 61	51.C	9303	3.320	30890		30 89C
Q = 1 62	24.0	4184	3.264	13658		12(50
Q-2 62	2700	4104	J. 207	10000		13658
Q-3 62	18.0	3127	3.130	9786		9786
G -4 62		2161	20190	<i>7100</i>		7100
Q-1 63	1.5	279	4.364	1654		1654
0-2 63		2				1051
0-3 63	-6.0	-1104	2.722	-3005		-3005
Q-4 63						
0-1 64	7.5	1359	3.051	4146		4146
Q-2 64						
0-3 64	7.5	1358	3.054	4147		4147
Q-4 64						
0-1 65	-3.0	-559	3.864	-2160		-2160
Q-2 65						
Q-3 65	-1.5	-224	3.857	-864		-864
Q-4 65						

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC

4-SYSTEM 1 5-SUBSYSTEM 06 SUBD CF WORK TEST/QC

ON-SITE LABOR

	MAN- MUN THS	LABOR HOUR S	LABOR Rate	LABOR DOLLARS	BUR DEN DCLL ARS	LABOR + BURDEN \$
Q-1 66		-16	3.875	-62		-62
TOTAL	190.5	33784		10887C		108870

CS.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

•

.

4-SYSTEM15-SUBSYSTEM06SUBD OF WORK TEST/QC

		MAN- MON THS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$	ENGR Matl
ର−1	58							
Q-2								
<u>0-3</u>		1.0	153	2.667	408	557	965	196
0-4	58							• / •
Q-1	59	3.0	594	2.758	1638	2147	3785	1138
Q-2	59							
Q-3	59	180.0	31744	2.979	94561	118620	213181	15372
Q-4	59							
Q-1	60	436.5	75789	2.920	221276	286481	507757	20774
Q-2	60							
Q-3	60	475.5	79869	3.057	244121	266139	510260	216466
Q-4	60							
Q-1	61	325.5	141842	3.069	435272	464131	899403	70117
Q-2	61							
Q-3	51	771.0	139763	3.139	438725	5345 98	973323	39717 7
Q-4								
0-1		447.5	76383	3.227	246471	275896	52236 7	76118
Q-2								
Q-3	62	433.5	72931	3.046	222145	278148	500 293	128791
Q-4								
Q-1		52.5	9031	6.735	60821	84 796	145617	149796
Q-2								
Q-3		115.5	19333	3.228	62413	116970	179383	16421
0-4								
Q -1		57.0	96 79	2.840	27484	38250	65734	32874
Q-2								
Q-3		39.0	6875	4.101	28194	37404	65598	32845
Q-4								
Q-1		18.0	3043	3.588	10919	15187	26 106	6057
0-2	-			a r a <i>i</i>			10/00	~
Q-3		7.5	1217	3.586	4364	6071	10435	2422
Q-4	65							

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIPCRAFT STUDY

5-	-SYSTEM -SUBSYSTEM JBD OF WORK	1 06 TEST/QC	FLIGHT CONI	ROL SUBSYSTE	M		
	MAN- MON THS		LABOR FATE	LABGR DCLLARS	BURDEN Doll Ars	LABUR + Burden \$	ENGR Matl
Q-1 66		97	3,575	311	434	745	175
TUTAL	3867.0	668333		2099123	2525829	4624952	1166739

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM06SUBD CF WORK TEST/QC

	MPC	OTHER COST	SUB Tutal	G & A	TO FAL COST
Q -1 58		10	10		10
Q-2 58					
Q-3 58	11	-10	1162		1162
Q-4 58					
Q-1 59	96		5019		5019
0-2 59					
0-3 59	1302		229855		229855
0-4 59			533.04.0	10100	£ 1 3 9 4 1
0-1 60	2731		531262	10122	541 384
Q-2 60 Q-3 60	29445		755101	1 (200	740500
ୟ−3 ଶ୍ Q−4 60	28465		755191	14389	769580
0-1 61	5925		975445	18127	993572
9-2 61	1120		112112	TOTEL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Q-3 61	33561	8506	1412567	26250	1439817
Q-4 61					
Q-1 62	5998	1127	605610	10165	615775
Q-2 62					
Q-3 62	10149	2180	641413	10766	652179
Q-4 62					
Q-1 63	14754	-1905	308262	5154	313416
0-2 63	1 (1 7		10/701	2000	0 2 0 0 7 7
Q-3 63	1617	-640	196781	3290	200071
Q-4 63 Q-1 64	3504	88	102200	2175	104375
Q = 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +		00	102200	2115	104373
Q-3 64	11949	87	110479	2351	112830
Q - 4 64				2002	
Q-1 65	1812	74	34049	908	34957
Q-2 65					
0-3 65	432	30	13319	355	13674
Q-4 65					

.

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM	1		
5-SUB SYSTEM	06	FLIGHT CONTROL	SUBSYSTEM
SUBD OF WORK	TEST/QC		

	MPC	OTHER COST	SUB TOTAL	G & A	TOTAL CCST
Q-1 66	36	2	95.8	29	98 7
TOTAL	122342	9549	5923582	104081	60 27663

APRIL 1972

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM

ON-SITE LABOR

	MAN- MONTHS	LABOR	LABOR RATE	LABOR DOLLARS	BURDEN DOLLARS	LABOR + BURDEN \$
Q-1 58	40.5	6891	4.80C	33076	31 352	64428
Q-2 58 Q-3 58	198.0	33360	4.465	149077	131368	280445
Q-4 58	1,0.0	2000	4 • 40)	149511	131300	200449
Q-1 59 Q-2 59	231.0	39382	4.537	178659	135264	313923
Q-3 59 Q-4 59	479.5	84379	4.334	365662	301488	667150
0-1 60 0-2 60	588.C	101943	4.658	474885	382234	857119
Q-3 60	666.0	111950	4.710	527309	416095	943404
Q-4 60 Q-1 61	852.C	145378	4.657	677019	495429	1172448
Q-2 61 Q-3 61	555.0	100626	4.855	488530	464686	953216
Q-4 61 Q-1 62	653.5	111482	5.095	568030	512254	1080284
Q-2 62 Q-3 62	670.0	112525	4.698	528668	543111	1071779
Q-4 62 Q-1 63	477.0	81410	5.651	460046	474227	934273
Q-2 63 Q-3 63	420.0	70587	5.428	383111	406274	789385
Q-4 63 Q-1 64	328.5	5605C	5.528	309854	351249	661103
Q-2 64 Q-3 64	301.5	53135	5.552	294980	335681	630 <mark>661</mark>
Q-4 64 Q-1 65 Q-2 65	85.5	14907	6.126	91 32 6	98197	189523

· · · · · · · · ·

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

•

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM

ON-SITE LABOR

	MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL AR S	LABOR + Burden s
Q-3 65 Q-4 65	25.5	4331	7.782	33704	36288	69992
Q-1 66	10.5	1819	1.692	3077	2924	6001
TOTAL	6582.0	1130155		5567013	5118121	10685134

~

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM

		MAN- MONTHS	LABOR HOUR S	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL AR S	LABOR + BURDEN \$
Q-3	58	1.0	127	2.551	324	557	881
Q-4	58						
	59 59	3.0	605	2.702	1635	2 2 9 5	3930
Q-3	-	190.5	33420	2.969	99218	126814	226022
Q-4			33420	2. 707	77210	120814	226032
Q-1	-	445.C	77096	2.923	225382	304009	529391
Q-2			_				
Q-3 (Q-4 (435.0	72978	2.878	210020	255959	465979
Q-1		751.5	128268	2.933	376184	446350	822534
Q-2 (61						
0-3		661.5	119973	3.036	364278	488501	852779
Q-4 (~ ~ ~ ~ .				
Q-1 (Q-2 (351.0	59874	3.040	182038	221112	403150
Q-3		279.0	46979	3.077	144541	195892	340433
Q-4 (62						
Q-1 (Q-2 (9.0	1604	4.575	7339	14065	21404
Q-3 (101.5	17017	2.954	50265	95 88 0	146145
Q-4 (57205	12 0.90	110113
G-1 (40.5	6956	2.586	17990	32 54 3	50533
Q-2 (
Q-3 (24.0	4116	4.519	18599	31538	50137
Q-4 (÷ .	10.0	2011	2 / 2 2	10/53	10.05	00/07
Q-1 (Q-2 (18.0	3041	3.439	10457	12034	22491
0-3 (7.5	1216	3.436	4178	4809	8987
Q-4 (65						

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

•

.

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM

ON-SITE LABOR

	MAN- MONTHS	LABOR HOUR S	LABOP RATE	LABOP DOLLARS	BUR DEN DOLLARS	LABUR + BURDEN \$
Q-1 66		87	3.437	299	344	643
TOTAL	3318.0	573357		1712747	2232702	3945449

 \sim

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM

ON-SITE LABOR

		MAN- MONTHS	LABOR HOUR S	LABOR RATE	L ABOR DOLL AR S	BURDEN DOLL ARS	LABOR + BURDEN \$
Q-3	53		26	3.231	84		84
Q-4							04
Q-1			29	2.897	84		84
Q-2		, <u> </u>					
Q-3 Q-4		4.5	662	2.887	1911		1911
Q-4 Q-1		10.0	2 2 1 2				
Q-2		19.0	3213	3.107	9982		9982
Q-3		25.5	4276	3.280	14025		1.005
Q-4		27.5	4210	J. 200	14025		14025
0-1		48.0	8068	3.201	25822		25822
Q-2	61				LIGLE		20022
Q-3	61	51.0	9309	3.320	30905		30905
Q-4							30703
Q-1		24.0	4184	3.264	13658		13658
Q-2							
Q-3		18.0	3127	3.130	9786		9786
Q-4 Q-1		1.6	276				
Q-2		1.5	379	4.364	1654		1654
Q-3		-6.0	-1104	2.722	. 2005		2005
0-4		0.0	1104	2.162	-3005		-3005
Q-1		7.5	1360	3.050	4148		4148
ହ−2	64				1110		4140
Q-3	64	7.5	1363	3.056	4165		4165
Q-4							1205
ଦ-1		-3.0	-559	3.862	-2159		-2159
Q-2							
Q-3		-1.5	-224	3.857	-864		-864
Q-4	65						

APRIL 1972

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

> > .

.

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM

	MAN- MONTHS	LABOR HOUR S	LABOR Rate	LABOR DOLLARS	BURDEN DOLLARS	LABUR + BURDEN \$
Q-1 66		-16	3.875	-62		-62
TOTAL	195.0	34093		110134		110134

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM	1	
5-SUB SYSTEM	06	
FLIGHT COM	NTROL	SUBSYSTEM

	MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DOLLAR S	BURDEN DOLLARS	LABOR + Burden \$	ENGR MATL
Q-1 58 Q-2 58	40.5	6891	4.800	33076	31 352	64428	
Q-3 58 Q-4 58	199.0	33513	4.461	149485	131925	281410	196
Q-1 59 Q-2 59	234.0	40016	4.508	180378	137559	317937	1138
Q-3 59 Q-4 59	674.5	118461	3.940	466791	428302	895093	16426
Q-1 60 Q-2 60	1051.0	182252	3.897	710249	686243	1396492	21876
Q-3 60 Q-4 60	1126.5	189204	3.971	751354	672054	1423408	217747
Q-1 61 Q-2 61	1651.5	281714	3.830	1079025	941779	2020804	70878
Q-3 61 Q-4 61	1267.5	229908	3.844	883713	953187	1836900	397370
Q-1 62 Q-2 62	1028.5	175540	4.351	763726	733366	1497092	76206
Q-3 62 Q-4 62	967.0	162631	4.20C	682995	739003	1421998	128842
Q-1 63 Q-2 63	487.5	83393	5.624	469035	488292	957331	149916
Q-3 63 Q-4 63	515.5	86500	4.975	430371	502154	932525	18233
Q-1 64 Q-2 64	376.5	64366	5.158	331992	383792	715784	32953
9-3 64 9-4 64	333.0	58614	5.421	317744	367219	684963	33019
Q-1 65 Q-2 65	100.5	17389	5.729	99624	110231	209855	6057
Q-3 65 Q-4 65	31.5	5323	6.954	37018	41097	78115	2422

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM

	MONTHS	LABOR HOUR S	L A BOR R AT E	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + BURDEN \$	ÉNGR Matl
Q-1 66	10.5	1890	1.753	3314	3268	6582	175
TOTAL	10095.0	1737605		7389894	7350823	14740717	1173454

•

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM	1	
5-SUB SYSTEM	06	
FL IGHT CO	NTROL	SUBSYSTEM

		SUBC	TOTAL MATERIAL	MPC	OTHER COST	SUB TOTAL	GδA	TOTAL Cost
0-1					3443	67871		67871
Q-2								
Q-3			196	11	4476	286093		286093
Q-4								
Q-1			1138	96	5137	324308		324308
Q-2								
Q-3		162500	178926	5831	14883	1094733		1094733
Q-4								
Q-1		162500	184376	12516	23083	1616467	30798	1647265
Q-2								
Q-3		619560	837307	65392	25159	2351266	44800	2396066
Q-4	60							
0-1	-	1602525	1673403	51902	19807	3765916	69982	3835898
Q-2								
Q-3	61	1061735	1459105	63995	26111	3386111	62924	3449035
Q-4	61							
Q-1	62	1153889	1230095	42677	14453	2784317	46734	2831051
Q-2	62							
Q-3	62	1153889	1282731	46805	20831	2772365	46534	2818899
Q-4	62							
Q-1		951000	1100916	55148	24414	2137809	39088	2176897
Q-2	63					-		
Q-3	63	127402	145635	5888	23928	1107976	18528	1126504
Q-4	63							
Q-1	64	430036	462989	62571	17117	1258461	26 777	1285238
Q-2	64							
Q-3	64		33019	12012	14034	744028	15832	759860
Q-4	64							
0-1	65		6057	1812	14761	232435	6202	238687
Q-2	65					•		
Q-3	65		2422	432	5905	86 874	2317	89191
Q-4	65							

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 06 FLIGHT CONTROL SUBSYSTEM

TOTAL COST	G & A	SUB Total	OTHER COST	MPC	TOTAL MATERIAL	SURC	
7432	217	7215	42.2	36	175		Q-1 66
24435028	410733	24024295	257964	427124	8598490	7425036	TOTAL

TABLE OF CONTENTS

٠

,

~

SUBSYSTEM: PERSONNEL ACCOMMODATION AND ESCAPE	WBS CODE: 1.7
TITLE	PAGE
WORK BREAKDOWN STRUCTURE	IV-250
TECHNICAL DESCRIPTIONS AND CHARACTERISTICS	IV-255
 WBS 1.7 Personnel Accommodation and Escape WBS 1.7.1 Personnel Equipment WBS 1.7.2 Liquid Oxygen Subsystem WBS 1.7.3 Crew Station Accommodations WBS 1.7.4 Escape WBS 1.7.5 Aft Escape Hatch WBS 1.7.6 Development Tests 	IV-255 IV-263 IV-265 IV-268 IV-273 IV-278 IV-280
TECHNICAL INNOVATIONS	IV-286
DEVELOPMENT DATA SUMMARY	IV-287
State-of-the-Art Percent Developed	IV-288 IV-289
DEVELOPMENT MILESTONES	IV-294
DESIGN/PROGRAMMATIC IMPACTS	IV-296
COST SUMMARY	IV-299
Cost Definition Subcontractor Matrix Detail Cost Data	IV-299 IV-302 IV-304

SUBSYSTEM: PERSONNEL ACCOMMODATION & ESCAPE WBS CODE: 1.7

WBS LEVELS	
1.7 PERSONNEL ACC	COMODATION AND ESCAPE SUBSYSTEM
1.7.1 Person	nel Equipment
1.7.1.1	Aircrew Helmet (GFE)
	ophones lsets
1.7.1.2	Oxygen Mask (GFE)
1.7.1.3	Flight Suit (GFE)
1.7.1.4	Pressure Suit (GFE)
1.7.1.5	Relief System (GFE)
1.7.1.6	Data Case
1.7.1.7	Thermal Underwear (GFE)
1.7.1.8	Mae West (GFE)
1.7.1.9	Flash Light
1.7.2 LO2 Su	bsystem
1.7.2.1	Converters (GFE)
1.7.2.2	Check Valves (GFE)
1.7.2.3	Heat Exchanger
1.7.2.4	Flex Hoses
1.7.2.5	Quick Disconnects (GFE)
1.7.2.6	Quantity Probes
1.7.2.7	Pressure Suit Regulator
1.7.2.8	Capsule O ₂ Cylinder (GFE)
1.7.2.9	0 ₂ Pressure Regulator (GFE)
1 5 6 10	

1.7.2.10 Portable 02 Cylinder

SUBSYSTEM: PERSONNEL ACCOMMODATION & ESCAPE WBS CODE: 1.7

WBS LEVELS 4 5 6 7 8

1.7.2.11 O₂ Filter Assy

1.7.2.12 02 Control Panel

Quantity Indicator (GFE) Mode Switch (GFE) Function Indicator Test Circuitry

1.7.3 Crew Station Accommodations

- 1.7.3.1 Controls and Displays
- 1.7.3.2 Fire Extinguishing Cylinder (GFE)
- 1.7.3.3 Relief Container (GFE)
- 1.7.3.4 Emergency Ax
- 1.7.3.5 Escape Reels
- 1.7.3.6 Safety Pins
- 1.7.3.7 Streamers
- 1.7.3.8 ILS Chart Holder
- 1.7.3.9 Map Case
- 1.7.3.10 Data Holder
- 1.7.3.11 Sun Visors
- 1.7.3.12 Seat Adjusters

Vertical Motor Longitudinal Motor Actuators Switches Sensors

1.7.4 Escape Subsystem

SUBSYSTEM: PERSONNEL ACCOMMODATION & ESCAPE WBS CODE: 1.7

WBS LEVELS Т 8 5 6 7 1.7.4.1 Encapsulated Seat Upper Door Lower Door Shell Assembly Rotary Thrusters Foot Positioners Seal Assembly Initiators Door Hinges A/V Descent Control 1.7.4.2 Seat Ejection Restraint Harness Inertial Reels Reel Power Take-up Assembly Seal Retract Actuator Parachute Container Parachute Container Lid Parachute Container Lid Actuator Aneroid Control Unit Parachute Manual Chute Control Chute Cutter Retraction Thruster Gas Flow Check Valves Rocket Catapult Propellants Pressure Controller Relief Vent Altimeter Chute Release Mechanism Impact Attenuators Attenuator/Door Interlock Stabilization Booms Boom Thrusters Stabilizer Chutes Door Closure Thrusters **Gas** Generators Door Close Sensor Sequence Valving Hatch Initiators Hatch Boosters Hatch Removers Catapult Rails

SUBSYSTEM: PERSONNEL ACCOMMODATION & ESCAPE WBS CODE: 1.7

WBS LEVELS 4 5 6 7 8

1.7.4.3 Control Column Stowage

Thruster Initiator Gas Generator

1.7.4.4 Ejection Control and Display

Hand Grips Triggers Encapsulation d**ispla**y Ejection Display

1.7.4.5 Survival Equipment (GFE)

Stowed Kits Radio Beacon Chaff Dispenser

1.7.5 Aft Escape Hatch

1.7.5.1 Ejection System

"Tee" Handle Controls Cabling Initiators Booster Hatch Remover External Initiation

1.7.5.2 Manual Removal

Release Handle Cabling Locking Mechanism

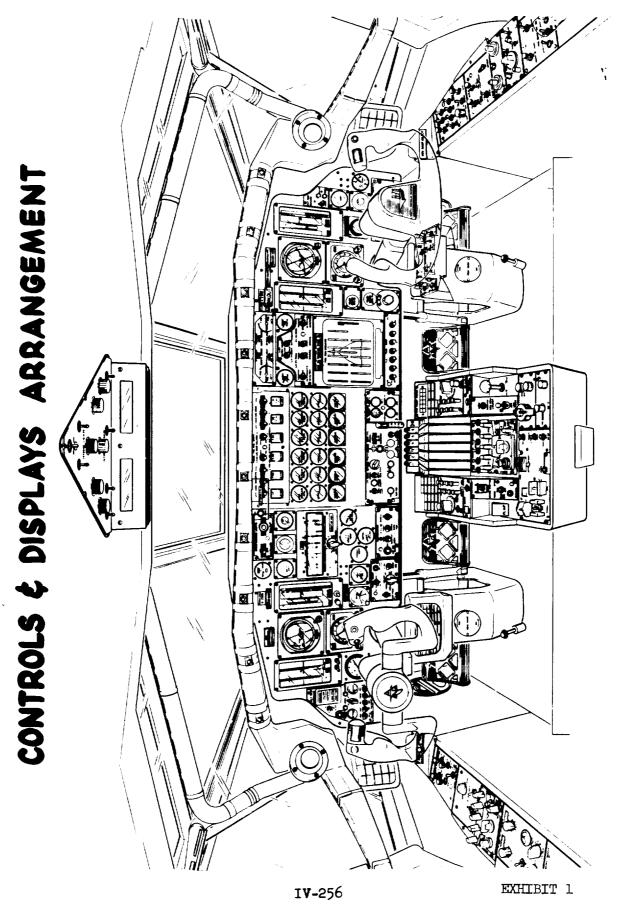
- 1.7.6 Development Tests
 - 1.7.6.1 Wind Tunnel
 - 1.7.6.2 Rate of Descent
 - 1.7.6.3 Chute Integrity

SUBSYSTEM: PERSONNEL ACCOMMODATION & ESCAPE WBS CODE: 1.7

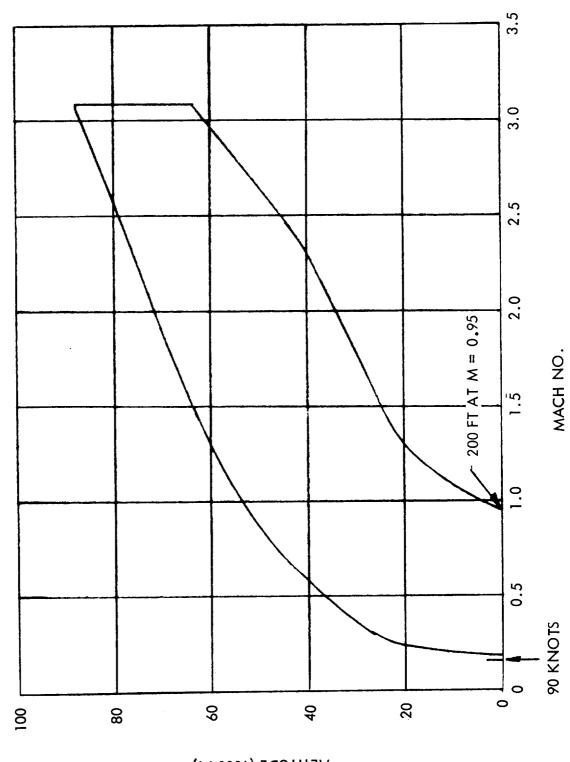
WBS LEVELS 4 5 6 7 8	
1.7.6.4	Low Altitude Drops
1.7.6.5	Catapult Static Fire
1.7.6.6	Shell Altitude Ejection
1.7.6.7	Static Sled Ejection
1.7.6.8	Impact Tests
1.7.6.9	Hi-speed Sled Ejection
1.7.6.10	Floatation Tests
1.7.6.11	Cartridge Tests
1.7.6.12	Sled Deceleration Tests
1.7.6.13	Centrifuge Tests
1.7.6.14	B-58 Rocket Ejection
1.7.6.15	Simian Ejections
1.7.6.16	Human Ejections
1.7.6.17	Flight Simulator
1.7.6.18	Mockups

TECHNICAL DESCRIPTION

SUBSYSTEM: PERSONNEL ACCOMMODATIONS AND ESCAPE

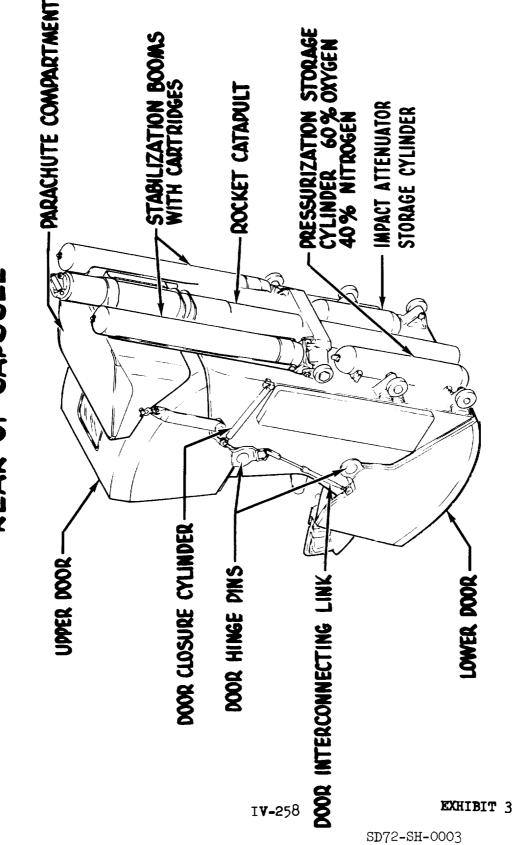

WBS CODE: 1.7

The Personnel Accommodations and Escape Subsystem consisted essentially of equipment, furnishings, the efficient arrangement of controls and displays for normal and emergency operation of the air vehicle, and an escape system for the survival of each crewman in the event the air vehicle had to be abandoned. The XB-70A side-by-side, pilot-copilot configuration essentially conformed to the standard cockpit of Specification MIL-STD-203. Complete duality of flight controls and flight instruments permitted control of the air vehicle from either station which also had backup flight instruments, such as altimeters and airspeed indicators. Exhibit 1, page IV-256, presents a view looking forward of the No. 1 XB-70 cockpit showing the arrangement of the controls and displays which are identified in Crew Accommodations: WBS 1.7.3.

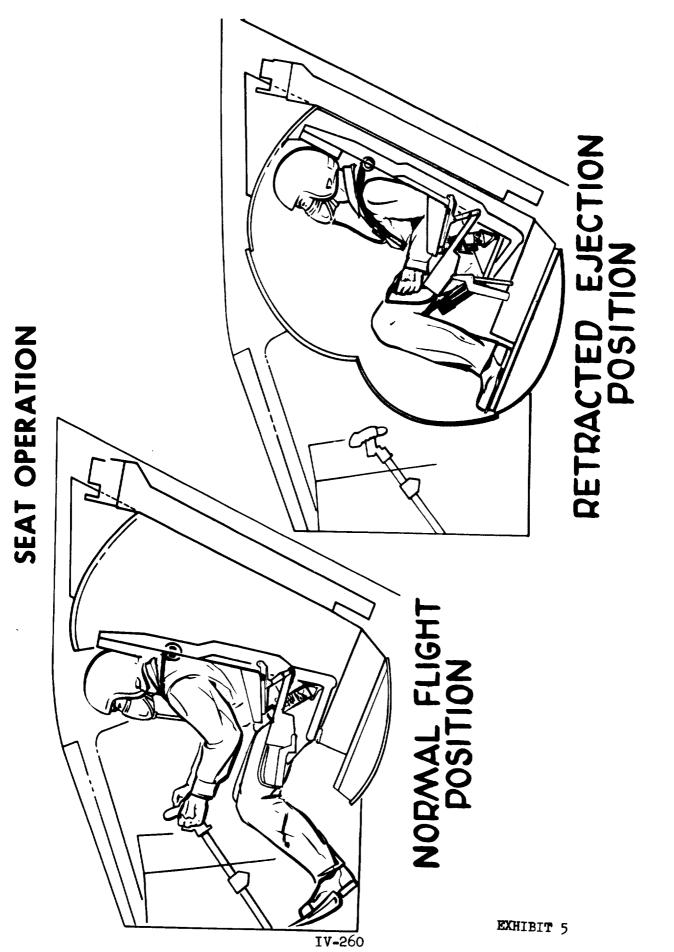

The "shirt-sleeve" environment requirement for the B-70 necessitated a number of advances in the state-of-the-art for the emergency and escape operational functions. The "shirt-sleeve" environment concept freed the crew of inhibiting clothing, such as, pressure suits, ventilation garments, exposure suits, life vests, etc., and enhanced their efficiency through better communications, vision, comfort and mobility. However, these improvements for crew efficiency impacted the survival systems due to the unimpaired survival requirements for the crew without protective clothing for an undelayed escape regardless of altitude and Mach number. The encapsulated seat approach was selected in order to accomplish the objectives of "shirt-sleeve" operations and yet furnish both a pressurized retreat within the cabin and an exit device for abandonment of the air vehicle.

The escape system consisted primarily of an escape capsule for each crew member, escape hatches, rocket catapults, and the necessary controls and actuating devices for safe ejection within the escape envelope shown by Exhibit 2, page IV-257. The escape capsule is shown by Exhibits 3, 4, 5, on pages IV-258, IV-259, and IV-260, respectively. During ejection, the resultant acceleration, applied to the center of gravity of the ejected mass, was limited to 30g's and the acceleration forces in the direction seat-to-head and parallel to the backrest was limited to 24g's. The escape capsule catapult was designed to provide a 300-foot runway clearance at a 90 knot airspeed.

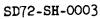
In addition to the items discussed above, the Personnel Accommodations and Escape Subsystem included a breathing oxygen system for normal flight and emergency descent, rescue and survival equipment, suit pressurization and ventilation (for flight test), and miscellaneous furnishings.



Escape Envelope



ALTITUDE (1000 FT)



TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

SUBSYSTEM WBS IDENTIFICATION: PERSONNEL ACCOMMODATIONS AND ESCAPE

MAJOR FUNCTIONAL EQUITMENT SPECIFY Accommodant one life support CEEM STATIONS NUMBER Accommodant one life support 2 2 CEEM STATIONS NUMBER LIFF SUPPORT 2 2 2 PFLOT NUMBER I 1 1 1 ROME/MAY. OPERATOR NUMBER 1 1 1 1 DIF. OPERATOR NUMBER 1 NONE 1 1 1 SYSTEM INDICATORS NUMBER 1 NONE 1 1 1 SYSTEM INDICATORS NUMBER 1 NONE 1 1 1 SYSTEM INDICATORS NUMBER 1 NONE 1 2 2 SYSTEM INDICATORS NUMBER 1 NONE 1 1 1 SYSTEM INDICATORS NUMBER 1 NONE 2 2 2 SYSTEM INDICATORS NUMBER 3 9 4 2 2 SYSTEM ONTORIS NUMBER 11	CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
RSCAPE MUMBER L 2 2 2 NUMBER L L L L L L NUMBER L L L L L L NUMBER NUMBER L L L L L NUMBER NUMBER L L L L L L NUMBER NUMBER L NUMBER L L L L L L NUMBER NUMBER L NUMBER L L L L L L S NUMBER 30 9 L L Z L IS NUMBER L L L Z Z Z Z L </td <td>MAJOR FUNCTIONAL BQUIPMENT</td> <td>SPECIFY</td> <td>ACCOMMODATIC LIFE SUPPOR</td> <td>SN(</td> <td></td> <td></td> <td></td>	MAJOR FUNCTIONAL BQUIPMENT	SPECIFY	ACCOMMODATIC LIFE SUPPOR	SN(
NUMBER 1 1 1 1 1 1 1 1 NUMBER 1 1 1 1 1 1 1 1 NUMBER 1 NUMBER 1 NUMBER 1 1 1 1 NUMBER 57 71 71 71 74 NUMBER 30 9 14 21 NUMBER 11 14 18 21 NUMBER 119 94 107 125 NUMBER 215 27 32 32 NUMBER 119 94 167 125 NUMBER 119 94 167 125 NUMBER 119 93 94 85 NUMBER 101 125 32 32 NUMBER 119 93 94 85	CREW STATIONS	NUMBER	្រុ		2		N
NUMBER 1 1 1 1 1 NUMBER 1 NONE 1 NONE 1 1 NUMBER 1 NONE 1 NONE 1 1 1 NUMBER 57 71 71 74 74 NUMBER 30 9 14 21 21 NUMBER 11 14 18 21 21 NUMBER 119 94 107 125 32 32 NUMBER 215 27 32 32 32 32 NUMBER 119 93 94 85 32 32 NUMBER 119 93 94 85 32 32 NUMBER 100 93 94 85 32 32	PILOT	NUMBER	Ч	г	Ч	Ч	н
ATOR NUMBER 1 NONE NUMBER 1 NONE 1 NONE NUMBER 57 71 71 74 NUMBER 30 9 14 21 NUMBER 11 14 21 21 NUMBER 119 94 107 125 NUMBER 215 27 32 32 NUMBER 119 94 107 125 NUMBER 119 93 94 85 NUMBER 100 93 94 85	COPILOT	NUMBER	1	н	Ъ	-1	ч
NUMBER 1 NONE 1 NONE NUMBER 57 71 71 74 NUMBER 30 9 14 21 NUMBER 11 14 21 21 NUMBER 119 94 107 125 NUMBER 215 27 32 32 NUMBER 215 27 32 32 NUMBER 119 94 107 125 NUMBER 119 93 94 85 NUMBER 119 93 94 85	BOMB/NAV. OPERATOR	NUMBER	ч	NONE			4
NUMBER 57 71 77 74 NUMBER 30 9 14 21 NUMBER 11 14 18 21 NUMBER 119 94 107 125 NUMBER 215 27 32 32 NUMBER 119 93 94 167 125 NUMBER 119 93 94 85 NUMBER 119 93 94 85	DEF. OPERATOR	NUMBER	1	NONE			1
NUMBER 30 9 14 21 NUMBER 11 14 18 21 NUMBER 119 94 107 125 NUMBER 215 27 32 32 NUMBER 119 94 107 125 NUMBER 215 27 32 32 NUMBER 119 93 94 85 NUMBER 119 93 94 85	SY STEM INDI CATORS	NUMBER	57	11	Ħ	44	12
NUMBER 11 14 18 21 NUMBER 119 94 107 125 NUMBER 215 27 32 32 NUMBER 119 93 94 85 NUMBER 119 93 94 85	EVENT DISPLAYS	NUMBER	30	6	14	21	51
NUMBER 119 94 107 125 NUMBER 215 27 32 32 NUMBER 119 93 94 85 NUMBER (NONE IN CREW COMPARTMENT) 94 85	SIOTINCO METRICS	NUMBER	11	14	18	21	54
ICHES NUMBER 215 27 32 32 ICHES NUMBER 119 93 94 85 KERS NUMBER (NONE IN CREW COMPARTMENT)	TOGGLE SWITCHES	NUMBER	611	46	TOT	125	140
S NUMBER 119 93 94 85 NUMBER (NONE IN CREW COMPARTMENT) 85	SNOTTUR HSUT	NUMBER	215	27	8	<u>ଝ</u>	31
NUMBER (NONE IN CREW	SELECTOR SWITCHES	NUMBER	611	93	ま	85	88
	CIRCULT BREAKERS	NUMBER			цит) ———		•

Space Division North American Rockwell

1.7

- WBS CODE: -

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

WBS IDENTIFICATION:

PERSONNEL ACCOMMODATTONS AND ESCAPE SUBSYSTEM

-WBS CODE: 1.7

CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
CAUTION AND WARNING LIGHTS	NUMBER	TO2	8	76	83	83
MINIMUM EJECTION ALTITUDE	FEET	ZERO	ZERO	ZERO	ZERO	ZERO
	KIAS	8	8	8	8	8
MAXIMUM EJECTION ALTITUDE	FEFT	100,000	100,000	100,000	100,000	100,000
	MACH NO.	3.1	3.1	3.1	3.1	3.1
TEMPERATURE DESIGN RANGE ESCAPE SYSTEM CREW AMBLENT	, DEGREES F	-65 TO 630 50 TO 120	-65 TO 630 50 TO 120	-65 TO 630 50 TO 120	-65 TO 630 -50 TO 120	-65 TO 630 50 TO 120
TOTAL COMPARTMENTATION VOLUME	ғ <u>т</u> ыт3 *	1000	1000	1000	1000	1000
_ *	*INCLUDES CABIN,		EQUIP. BAY, AND UNDERFLOOR AREA	OOR AREA		

Space Division North American Rockwell

TECHNICAL DESCRIPTION

SUBSYSTEM:	PERSONNEL ACCOMMODATION & E	ESCAPE	WBS CODE: 1.7

MAJOR ASSEMBLY: PERSONNEL EQUIPMENT

WBS CODE: 1.7.1

Personnel equipment was primarily Government Furnished Equipment. See WBS listing on Page IV-250 for details.

.

ERSONNEL EQUIPMENT
PERSONNEL, 1

WBS IDENTIFICATION:

•

1.7.1 - WBS CODE: -

L	CHARACTERISTIC	UNIT OF MEASURF	MARCH 1959	DECEMBER	FEBRUARY 1961	A/V NO. 1 MAR 1064	A/V NO. 2 MAV 1066
							0061 1 1 1
	NUMBER OF CREW MEMBERS	NUMBER	4	Q	Q	S	Ŋ
	CREW HEIMET	TYPE	LIGHT WEIGHT SPECIAL	PRESS SUIT	PRESS SUIT	PRESS	PRESS
	CREW OXYGEN MASK	ЭЛХЪ	LIGHT WEIGHT WITH RATE SUSPENSION	PRESS SULT HELMET	PRESS SUIT HELMET	PRESS SUIT HELMET	PRESS SULT HEIMET
IV-264	FLLGHT SUTT	TYPE	SPECTAL SUMMER TYPE	PRESS SULT	PRESS SULT	PRESS SULT	PRESS SULT
	PRESSURE SULT	HAL	NONE	A/P 225-2	A/P 225-2	A/P 225-2	A/P 225-2
SD72-SH							

Space Division North American Rockwell

1.7.2

TECHNICAL DESCRIPTION

SUBSYSTEM:	PERSONNEL ACCOMMODATION & ESCAPE	WBS CODE: 1.	•7

MAJOR ASSEMBLY: LIQUID OXYGEN SUBSYSTEM WBS CODE:

A liquid oxygen subsystem was provided to supply breathing oxygen for the crewmen during normal flight. Two 10-liter liquid oxygen converters were positioned within a closed compartment just inboard and aft of the main entrance door of the air vehicle. An oxygen quantity indicator was located on the main instrument panel with a quantity indicator test button located immediately below the indicator. Oxygen flow to the crewman was regulated by regulators in the personal equipment worn by the crewman. Connection to the oxygen subsystem from the personal equipment (oxygen mask and regulator or the pressure suit) was provided by a quick-disconnect fitting on a hose attached to the forward edge of each seat. The liquid oxygen converters were capable of being quickly disconnected from the air vehicle for ground servicing. 1.7.2

WBS CODE:

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

WBS IDENTIFICATION: LIQUID OXYGEN SYSTEM

-								
	CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966	the second s
	LOX QUANTITY	SCINIDE	50.8	50. 8	50. 8	50.8	50.8	_
	LOX CONVERTER	TYPE	QUTCK REMOVABLE	GCU-1 8/A MII-C- 27423B	GCU-18/A MIL-C- 27423B	GCU-18/A MII-C- 27423B	GCU-18/A MIL-C- 27423B	
<u></u>	HEAT SINK	SPECIFY	AMBIENT AIR IN CABIN	AMBLENT AIR IN CABIN	AMBLENT AIR IN CABIN	AMBLENT AIR IN CABIN	AMBLENT AIR IN CABIN	
IV	HEAT EXCHANGER	HAT	ALUMINUM TUBING	ALUMINUM TUBING	ALUMINUM	ALUMINUM TUBING	ALUMINUM TUBING	-
-266	LOX SUPPLY REGULATORS	TYPE	MASK MOUNTED BREATHING	PART OF PRESS SULT	PART OF PRESS SULT	PART OF PRESS SULT	PART OF PRESS SUIT	
	LOX SUPPLY PRESSURE	ISI	70	70	70	02	02	
ia-	LOX SUPPLY TEMPERATURE	DEGREES F	δο°	éoo	60°	60 ⁰	60 0	
	FORTABLE O ₂ QUANTITY	POUNDS	1.6	0.8	0.8	0.8	0.8	
	PORTABLE O2 PRESSURE	ISI	1800	1800	1800	1800	1800	
ç	PORTABLE O ₂ PRESS REGULATOR	TYPE	1800 TO 70 FSI REDUCER	1800 TO 70 FSI REDUCER	1800 TO 70 FSI REDUCER	1800 TO 70 PSI REDUCER	1800 TO 70 PSI REDUCER	
5D72-S	PRESSURE SUIT REGULATION	ISI	70	02	 0L	70	70	

Space Division North American Rockwell

1 1]
	A/V NO. 2 MAY 1966	200			
DE: 1.7.2	A/V NO. 1 MAR 1964	200			
WBS CODE:	FEBRUARY 1961	20			
	DECEMBER 1959	20 20			
	MARCH 1959	200			
THEM	UNIT OF MEASURE	NO. OF HR.			
WBS IDENTIFICATION: TIQUID OXYGEN SYSTEM	CHARACTERISTIC	MITBE			
WE	L	J	 I V-267	 	 SD72-SI

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

TECHNICAL DESCRIPTION

SUBSYSTEM:	PERSONNEL ACCOMMODATIONS AND	WBS CODE:	1.7
	ESCAPE		

MAJOR ASSEMBLY: CREW STATION ACCOMMODATIONS WE

WBS CODE: 1.7.3

The XB-70 pilot-copilot side-by-side crew station configuration provided the capability of air vehicle control from either station. Exhibit 1, page IV-256, presents the cockpit layout showing the arrangements of the instrument panels and associated controls and displays. The engine controls consisted of engine brake, fire warning and shutdown, tachometer, exhaust gas temperature, nozzle opening, primary throttle, and alternate throttle which were essentially in the center and available to both crewmen. Also located between the pilots was the standby trim, primary roll trim (primary pitch trim was on each control wheel), UHF No. 1, TACAN, ILS, intercom, flaps, drag chute, landing gear, wingtip fold, nose steering, brakes, and caution lights.

The overhead panel had switches for interior and exterior lights and the electrical generators. The copilot had the fuel system controls comprised of: total quantity, tank selection quantity, fuel sequencing, fuel transfer, and refueling valves. The copilot also had the air induction system controls and controls for environment, personnel equipment, IFF, SIF, fire detector test, and utility light. The pilot's side console had the following controls: augmentation power, personnel equipment, UHF No. 2, gyro platform, standby secondary nozzle, and utility light.

In addition to the crew station provisions noted above, other various equipment items were provided for the comfort and safety of the crew. These miscellaneous items included a fire extinguisher, relief container, portable oxygen unit, escape ropes, maintenance and flight status safety pins and streamers, combination map case and flight data card holder, sun visors, frequency card holders, and an emergency axe holder. The relief container had a one-pint capacity and along with the portable oxygen unit was located in a holder on the cockpit floor immediately aft of the center aisle control pedestal. The escape ropes were provided in canvas containers mounted on the bulkhead above and forward of the main entrance door. The ropes, with their descent devices, permitted the crew to leave the air vehicle in the event ladders or stands were not available.

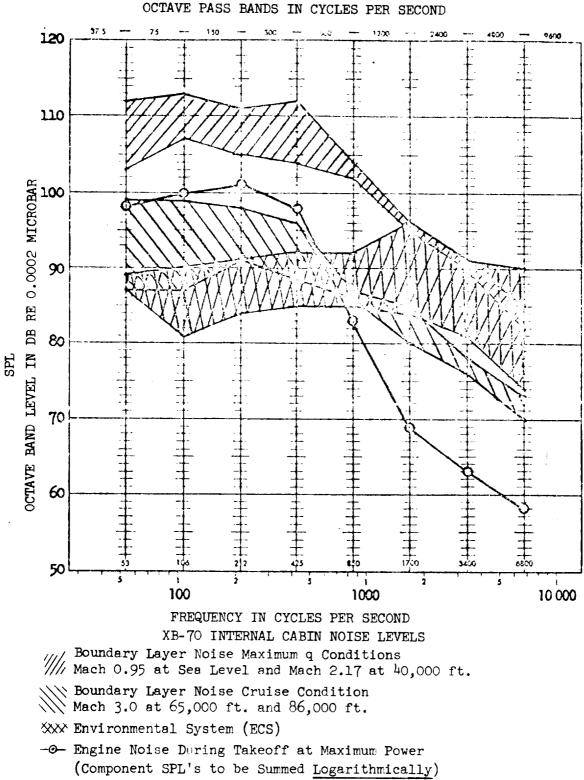
The flight status safety pins and the "Remove Before Flight" streamers were stowed on a roller in the headrests of the seats. The safety pin was inserted in the right-hand grip of the seat following flight to inactivate the seat ejection system. The maintenance safety pins were used to deactivate the various initiators during maintenance activities.

The flight test instrumentation controls and displays are identified and discussed under Test Instrumentation Subsystem, WBS 1.11.

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

CREW STA, ACCOMMODATIONS

1.7.3 WBS CODE:


				North American Rockwell
TWO "SKY GENTES" DESCENT	$\frac{7}{1}$, AND $\frac{8}{1V-27}$	5.0		
TWO "SKY GENTES" DEVICES	2 <u>70, I</u> V- <u>2</u>	5.0		
ONE ROPE	SEE EXHIBI ON PAGES]	2.0		
ONE ROPE	NOT AVALLABLE	5.0		
ONE ROPE	NOT AVALLABLE	5.0		
SPECIFY	DB	INCHES		
GROUND ESCAPE	NOISE LEVEL	SEAT ADJUSTMENT - VERTICAL		SD72-S
	SPECIFY ONE ROPE ONE ROPE ONE ROPE TWO	FE SPECIFY ONE ROPE ONE ROPE ONE ROPE TWO TWO "SKY GENTIDE'" SKY GENTIDE'" SKY GENTIDE'" SKY GENTIDE'S "SKY GENTIDE'S "DEVICES DEVI DEVICES DEVI	PE SPECIFY ONE ROFE ONE ROFE ONE ROFE TWO "SKY GENTES" "SKY GENTES" "S	FE SPECIFY ONE ROFE ONE ROFE ONE ROFE ONE ROFE TWO TSKY GENTER TSKY GENTER TSKY GENTER DESCENT

TECHNICAL CHARACTERISTICS

WBS CODE: 1.7.3

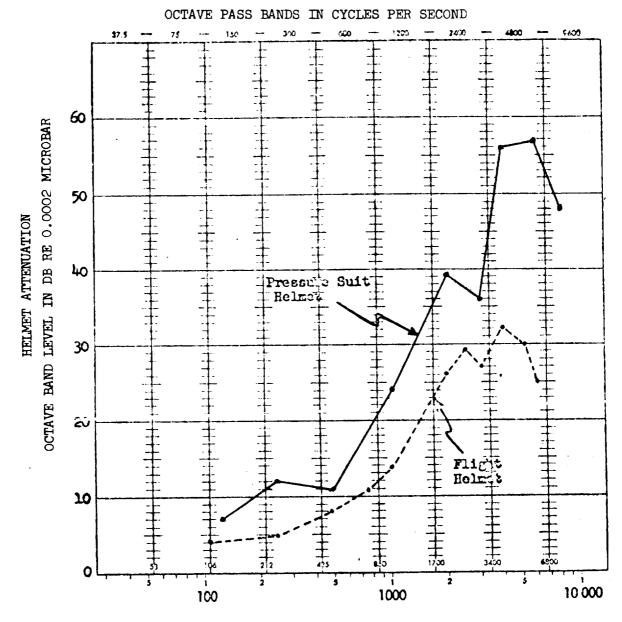
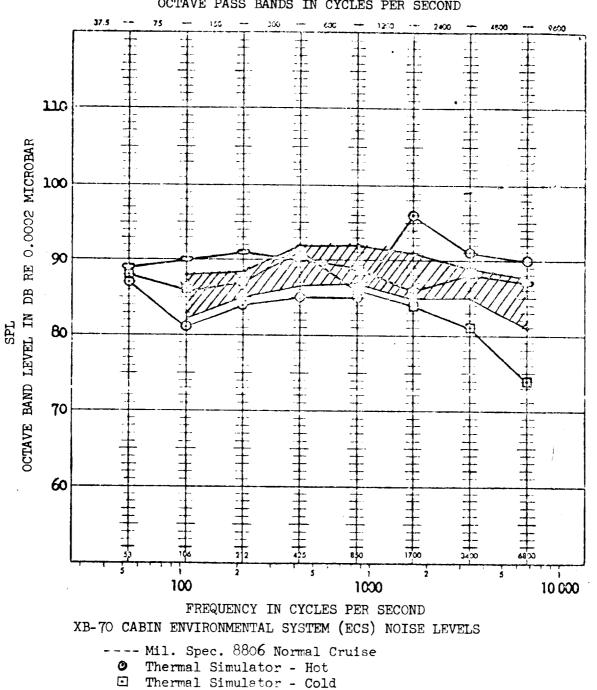

IV-270

EXHIBIT 6

TECHNICAL CHARACTERISTICS

WBS CODE: 1.7.3


FREQUENCY IN CYCLES PER SECOND

HELMET ATTENUATION - XB-70 CREW MEMBERS

TECHNICAL CHARACTERISTICS

WBS CODE: 1.7.3

OCTAVE PASS BANDS IN CYCLES PER SECOND

IV-272

III B-47 Airconditioning Equipment Noise (Ref. WADC TR 53-522)

F-108 ECS Estimates by Hamilton Standard

9

EXHIBIT 8

TECHNICAL DESCRIPTION

SUBSYSTEM:	PERSONNEL ACCOMMODATION & ESCAPE	WBS CODE:	1.7
------------	----------------------------------	-----------	-----

MAJOR ASSEMBLY: ESCAPE

WBS CODE: 1.7.4

Each pilot's seat was enclosed in a capsule shell of bonded aluminum honeycomb construction. The encapsulated seat furnished the crew member with a secondary pressure environment in the event of cabin decompression, and adequate protection from adverse effects of windblast, accelerations, and low atmospheric pressure during ejection from a disabled air vehicle. The capsule internal pressure increased to 5 psi within 12 seconds after the capsule doors were closed. The pressure level was designed to remain between 5 and 9.5 psia during ejection and descent. The pressurization medium was 60 percent oxygen and 40 percent nitrogen. The encapsulation subsystem consisted of a seat retraction thruster, door closure thrusters, initiators, foot positioning sensing pedals, actuation controls, the capsule doors and the seat mechanism. The encapsulation subsystem provided for emergency encapsulation of the crew members. During the encapsulation sequences, the system unlocked the seat, translated it aft into the capsule shell and locked into position. The capsule doors then moved to the closed position. The encapsulation sequence could be initiated by raising either hand grip which would initiate seat retraction and arm the door closure ballistics. Actuation of foot pedals in the capsule was designed to actuate the door closure thrusters. Seat retraction and door closure could also be accomplished manually.

The capsule seat system consisted of the capsule seat assembly, the seat vertical adjustment actuator, the restraint harness and inertia reel. The seat assembly included armrests, the headrest and controls for seat adjustment, inertia reel locking and unlocking, encapsulation and ejection.

Propellant actuated devices were used in the capsule escape system. These included initiators, the seat retraction thruster, rocket catapult, door closure thrusters, stabilization booms, inertia reel power-takeup, and control column stowage thruster.

There were a total of 59 initiators employed for the emergency escape system.

Each capsule contained 23 initiators (explosive devices) and 13 were used for hatch jettison and capsule rocket catapult actuation and sequencing.

WBS CODE: 1.7.4

A seat retraction thruster was located aft of and attached to the undersurface of the two seats. The thruster was actuated when the seat handgrips were raised to initiate the encapsulation sequence. After operation of the thruster, the propellant gases, which are retained in the mechanism, by-pass the thruster piston making it possible to extend the seat for resumption of manual operation of the air vehicle. The seat and thruster design is such that the seat may be manually retracted or extended without affecting subsequent functioning of the thruster by propellant actuation.

The capsule doors were closed by gas operated thrusters as a final step in the encapsulating system. The thrusters were powered by gas from an initiator. The design would permit manual operation of the doors without affecting gas operation of the thruster.

Provisions were incorporated in the capsule which permitted limited control of the descent of the air vehicle. Electrical switches and circuits were provided by which the crewman could reduce engine thrust, and orient the vehicle by altering the pitch and roll trim control surfaces.

A rocket catapult (see Exhibit 3, Page IV-258) was used to eject the capsules from the air vehicle. The catapult was a two-stage telescoping ejector. The catapult charge was designed to propel the capsule up the ejection rails until tube separation occurs. Just before tube separation, rocket motor ignition was programmed to occur and thrust the capsule through a trajectory sufficient for parachute deployment.

Two telescoping stabilization booms were located on the back of each capsule. (Refer to Exhibit 3, Page IV-258) A self-contained propellant charge was provided in each boom. As the capsule moved up the rails during ejection, initiators mounted on the back of the capsule were designed to fire thereby actuating the charge in the booms. The booms then became unlocked and rotated away from the back of the capsule, and extended to 116 inches. Deploy stabilization parachutes stowed in the boom end-compartments then were released to stabilize the capsule in pitch and yaw after ejection.

Incorporated in the capsule was an inertia reel which was a lightly springpowered takeup device for retracting the crew restraint harness. The reel was designed to lock mechanically when the pilot's body moved forward with an acceleration of 2g to 3g. The reel contained a power-takeup unit which was a cartridge-actuated device initiated by gas pressure. During the encapsulation sequence, the initiator gas flow which activated the seat retraction thruster also was designed to initiate the cartridge in the power-takeup unit resulting in retracting the restraint harness (and the crew members). Another event which occurred in the encapsulating sequence was the stowage of the control column so as to prevent interference with the closing capsule doors (see Exhibit 5, Page IV-260). The control column thruster was designed to be activated by gas pressure from an integral cartridge. Actuation resulted in disconnection of the control column and forward movement so it was stowed against the instrument panel.

WBS CODE: 1.7.4

The capsule was provided with breathing oxygen, a pressurization system, a recovery system and an impact attenuation system.

The emergency supply of oxygen for descent after ejection of the capsule was supplied by 1800 psi oxygen contained in a 205 cubic inch bottle installed beneath the seat. The emergency oxygen supply was designed to be automatically activated as the capsule ascended the ejection rails by a tripping mechanism. The crewman could also manually activate the system by pulling an oxygen control handle located under the seat.

The capsule interior was also pressurized automatically when the capsule doors closed. The pressurization source was a gas mixture of 60 percent oxygen and 40 percent nitrogen (by volume) contained in four cylinders with a total capacity of 376 cubic inches. The capsule internal pressure was maintained at a minimum pressure of 5 psia. A relief valve was also provided to protect the capsule against over pressurization. The valve also permitted the entrance of outside air when outside pressure exceeded interior pressure by 0.5 psia.

The recovery parachute subsystem was designed as a fully automatic high altitude system for controlled descent of the encapsulated aircrew member after ejection. The main parachute was designed to provide a sea level rate of descent of 29 feet per second maximum and limit oscillations to ± 15 degrees. The system was capable of deployment at 410 knots at an altitude of 15,000 feet. The subsystem was composed of the main recovery parachute, the pilot chute, and the deployment sequencing systems, all packed in a container in the top of the escape capsule (see Exhibit 3, Page IV-258). During descent, the sequencing system was also designed to actuate the impact attenuator system. This system was installed in the bottom of the capsule shell to reduce impact forces when the capsule struck the ground. The attenuator consisted of a neoprene impregnated nylon cloth bladder which was inflated by gas stored in a cylinder mounted on the lower aft surface of the capsule. The impact attenuation was accomplished by controlled deflation of the bladder through four blowout orifices which activated upon impact.

Extensive survival equipment was provided either within or attached to the capsule. In addition to personal survival gear, a chaff dispenser was incorporated which actuated automatically during descent to assist in providing a radar fix for subsequent rescue. An emergency radio beacon assembly was also provided to transmit distress signals during descent. This radio beacon was actuated as part of the automatic ejection sequence.

ESCAPE SYSTEM WBS IDENTIFICATION:

-WBS CODE:

CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966	
CAPSULES	NUMBER	4 70 375	2	ъ	Q	N	
WI DIH HEI GHT		10.12 10.12					<u> </u>
ENCAPSULATION CONTROLS	TYPE	MANUAL				•	
ENCAPSULATION TIME (BALLASTIC)	SECONDS	MAX = 0.5				† †	
ENCAPSULATION INITIATORS MINIMUM EJECTION SPEED MINIMUM EJECTION ALTITUDE MAXIMUM EJECTION SPEED	TYPE KTAS FEET MACH NO.	MECHANICAL 90 ZERO 3.1	MECHANICALLY ACTUATED 90 90 ZERO ZERO 3.1 3.1	(ORDWANCE ENGR. ASSOC. 90 20 90 20 2ER0 2ER0 3.1	FR. ASSOC.) 90 ZERO 3.1	90 ZERO 3.1	
MAXIMUM EJECTION ALTITUDE LIFT OR CARRY WEIGHT ROCKET CATAPULI	FEET FOUNDS TYPE	100,000 NOT AVAIL	100,000 NOT AVAIL	100,000 664 (ROCE	00 100,000 64 (ROCKET POWER: 1	100,000 664 720-12)	
CATAPULT THRUST LEVEL ROCKET PROPELLANT ACCELERATION: CATAPULT	POUNDS TYPE FT/SEC ²	SOLITD 20	SOLI D 20 20	30LID 20 20	12,000 AT 70 ⁰ F D SOLID 0 20	SOLID 20	· · • ·
BOOM THRUSTERS	TYPE/NO.	ł	I	GAS GER CONTALT CAPSUL	GAS GENERATOR TYPE (SELF CONTALMED PROPELLANT) 2 PER CAPSULE (PACIFIC DIVHOUSTON:	(SELF T) 2 PER VHOUSTON:	INORTHA
MAIN PARACHUTES MAIN CHUTE DEPLOY ALTITUDE MAIN CHUTE RELEASE	TYPE/NO FFET TYPE	34.5 FT. 34.5 FT. 15,000 1 MECH. INIT	34.5 FT SOLID - 000 15,000 MECH. INITIATOR -	59252-001 15,000 15,000		15,000	merican Hoo
							:KW

IV-276

1.7.4

1.7.4

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

WBS IDENTIFICATION: ESCAPE SYSTEM

-	
ODE: -	
.WBS C	
	μu.

CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
HATCH INITIATORS	TYPE	EJECTIC	N INTTIATORS OR WHICH BOO	EJECTICIN INTITATORS CONNECTED TO INTITATOR WHICH BOOSTED SYSTEM P	EJECTICIN INITIATORS CONNECTED TO PRESSURE ACTUATED INITIATOR WHICH BOOSTED SYSTEM PRESSURE TO HAICH	TUATED ATCH
HAICH BOOSTERS	ЭНЛ	REMOVER. PRESS. A	ACTUATED CAR	REMOVER. PRESS. ACTUATED CARTRIDGE (MODEL NO. 960100	001096 .0N 1	
HATCH BOOSTER THRUST	FOUNDS	I	ł	13,100 1	MAX	† †
HATCH REMOVERS	TYPE	CARTRID	CARTRIJGE ACTUATED	(NODEL NO. 960100)	(00109	-
SEQUENCE VALVING	SELLI	MECHANICAL BALLISTICAL CONTROLLED.	MECHANICAL SENSING BALLISTICALLY ACTIV CONTROLLED.	(SINGLE & DOUBLE CHECK) ATED, TIME DELAYS, AND	4	TRI PPERS, MEROLD
IMPACT ATTENUATORS	TYPE	INFLATABLE	BLE BLADDER	(BF GOODRICH	(£921-A4	
	FEET/SEC	,	ŧ	28 15	28 15	28 15
RESTRAINT HARNESS	ТҮРЕ	TORSO - LAP BEI CO. (L1	0 - HIP RESTRAL REIT & SHOULDER (1101152-0)	NT HARNESS A HARNESS FRO	TORSO - HIP RESTRAINT HARNESS ATTACHED AT TWO FITTINGS, LAP BEIL & SHOULDER HARNESS FROM PACIFIC SCIENTIFIC CO. (1101152-0)	O FITTINGS,
CONTROL COLUMN THRUSTER THRUST	FOUNDS	PRESSUF	PRESSURE ACTUATED CARTRIDGE	ARTRIDGE (US	FLARE D-5308 250	250
STOWED SURVIVAL KITS STOWED SURVIVAL RADIO STOWED RADAR ALD STOWED LIFE	NUMBER TYPE TYPE DAYS	3 EMERGEN GFP CHAFF	3 CY RADIO BUNDLE: -	3 BEACON SYSTEM (NR) RR-94/AL 5895-620-57364 1068 1068	3 RR) 20 - 57364 1068	3 1068
72-5						

Nor

Space Division North American Rockwell

TECHNICAL DESCRIPTION

SUBSYSTEM: PERSONNEL ACCOMMODATION & ESCAPE WBS CODE: 1.7

MAJOR ASSEMBLY: AFT ESCAPE HATCH

WBS CODE: 1.7.5

There were four escape hatches provided in the air vehicle. Two forward hatches were located above the pilot's and copilot's escape capsules. These hatches were jettisoned as part of the ejection sequence. Aft of these hatches there were two additional hatches. The left-hand hatch was subsequently fastened closed. The right-hand aft escape hatch was intended to be used for emergency ground escape in the event the main entrance door was inoperable. The hatch was jettisoned from inside the air vehicle by means of either of two "Tee" handles. One handle was located on the pilot's left console, the other was located on a bulkhead below the escape hatch. Pulling these handles would fire an initiator resulting in ejection of the hatch. The hatch was also designed to be removed manually by unlocking the hatch locks and then lifting and removing the hatch.

	A/V NO. 2 MAY 1966	۳	UL O AN		
DE: 1.7.5	A/V NO. 1 MAR 1964	3 (014) 3	(0) 9,300 (N 0) 0,300 (N 0 00NNECTED 1		
WBS CODE:	FEBRUARY 1961	3 KODEL NO. 960	- 13,100 (MAX); 9,300 (MLN) CTUATED (MODEL NO. 960100) ON INSTRUMENT PANEL IN AISLE RODF ON RH SIDE DF AISLE ALSO CONNECTED TO AN ANDLE NEAR DOOR		
	DECEMBER 1959	14 14 14 14 14 3 3 - MECHANICAL INFTLATORS (2037-01A) PRESSURE ACTUATED (MODEL NO. 960100)	< =		
	MARCH 1959	lt 3 - MEC PRESSUR	CARTRIDGE TEE HANDLE TEE " TEE " EXTERIOR		
	UNIT OF MEASURE	NUMBER TYPE/NO. TYPE	FOUNDS TYPE SPECIFY		
WBS IDENTIFICATION: AFT ESCAPE HATCH	CHARACTERISTIC	ESCAPE HATCHES HATCH INITIATORS HATCH BOOSTER	BOOSTER THRUST HATCH REMOVER EJECTION CONTROLS		
3	L			1 V- 279	SD72-S

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

TECHNICAL DESCRIPTION

SUBSYSTEM:		ONNEL ACCOMMO YSTEM	DATION &	ESCAPE	WBS	CODE:	1.7
MAJOR ASSEMB	LY:	DEVELOPMENT	TESTS		WBS	CODE:	1.7.6

Wind tunnel evaluation of the capsule included testing of a 0.08 scale model both when isolated and when in proximity of the air vehicle.

From April through November 1959, recovery parachute evaluation at the Joint Parachute Test Facility, El Centro, California, consisted of a total of fiftytwo rate of descent and structural integrity tests. By May, 1960, five capsule aerial drops had been performed at 130 knots using a C-130 and twelve ejections at 200 to 380 knots at an altitude of 40,000 feet using a B-47. Ejection tests were also performed at speeds of Mach 0.8 at 21,000 feet altitude and mach 1.6 at 38,000 feet. Sled tests were accomplished at both HurricameMesa, Utah and at Edwards Air Force Base.

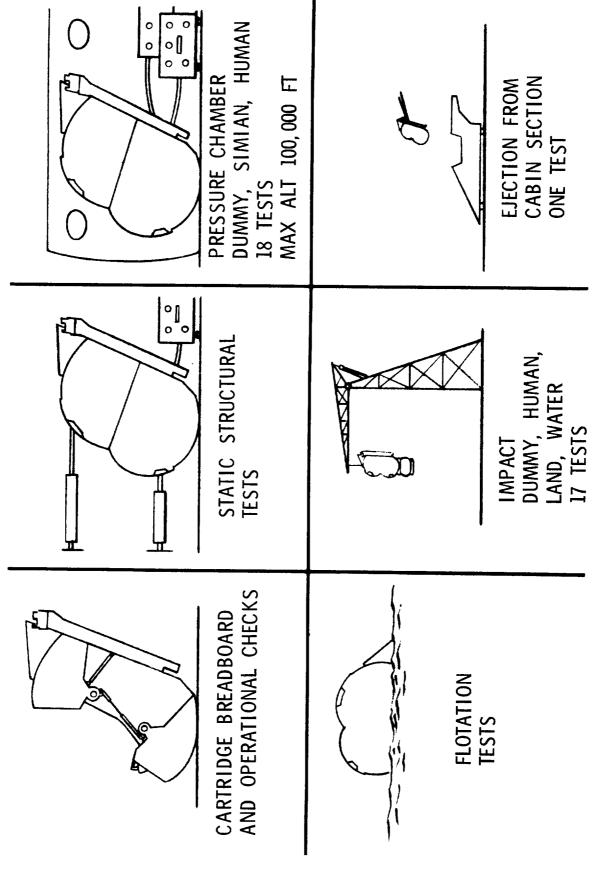
In addition, there were development tests demonstrating operational integrity, structural capability, flotation characteristics and impact resistance. The overall test program is depicted in Exhibits 9, Page IV-282, through 12, Page IV-285 respectively.

SUMMARY
TEST
SYSTEM
ESCAPE

TEST UNITS FABRICATED:

Research Models and Mockups DEI Operational Mockup Fwd. Fuselage/Capsule Mockups "A" Weighted Shells: For aerials, floatation and impact tests "B" Weighted Shells: For sled tests "Y" Test Capsules: For static loading structural tests "T" Test Capsules: For static loading structural tests Recovery Chutes: For aerial tests Escape Hatches: For static firings	TOTAL	8 UNITS 2 " " " " " " " " " " " " " " " " " " "
TS PERFORMED:		
Wind Tunnel Operational Evaluations C-130 Test Bed: 5 aerial ejections	3 UKITS 3 " 2 "	473 HOURS 400 " 9 "

TEST


473 HOURS	# 00 1	= -	= S0	= †	330 "	= = 9 (340 ::	= 0	= 000			720 "	2883 HOURS
3 UNITS	=	= ກຸດປ	5 "	= , -4	= 0	= : 1	<u>۔</u>		+ (= =		: : M	- M	42 UNITS
litua munol	Alno luuret Arnoti Pmlustions	UPETBULUNAL EVALUATIONS A 120 Mart Badi 5 aarial ajertinns	V-LJV ICBV DC4. / ACIIAA CUCCATAGA D hr Maat Dad. 10 seriel eiertinns	D=41 ICBV DCU. IC GUILGL CUCCULOUS T_CR Test Red. 2 merial elections	Sled Tests: 11 ejections at max. KEAS	Zero Airspeed - Capsule: 2 ground level ejections	Capsule Landings: 17 impacts with dummy and humans	(concrete and water)	Zero Airspeed - Hatches: 4 ground level ejections	Recovery Parachute: 52 aerial tests	Altitude Chamber: 18 tests with dummy, simian, and humans	ctminting Thete. 36 static loadings	TOTAL ALL TOTAL TOTAL TOTAL TOTAL

WBS CODE: 1.7

Space Division North American Rockwell

GROUND AND LABORATORY TESTS

I**V-**282

EXHIBIT 9

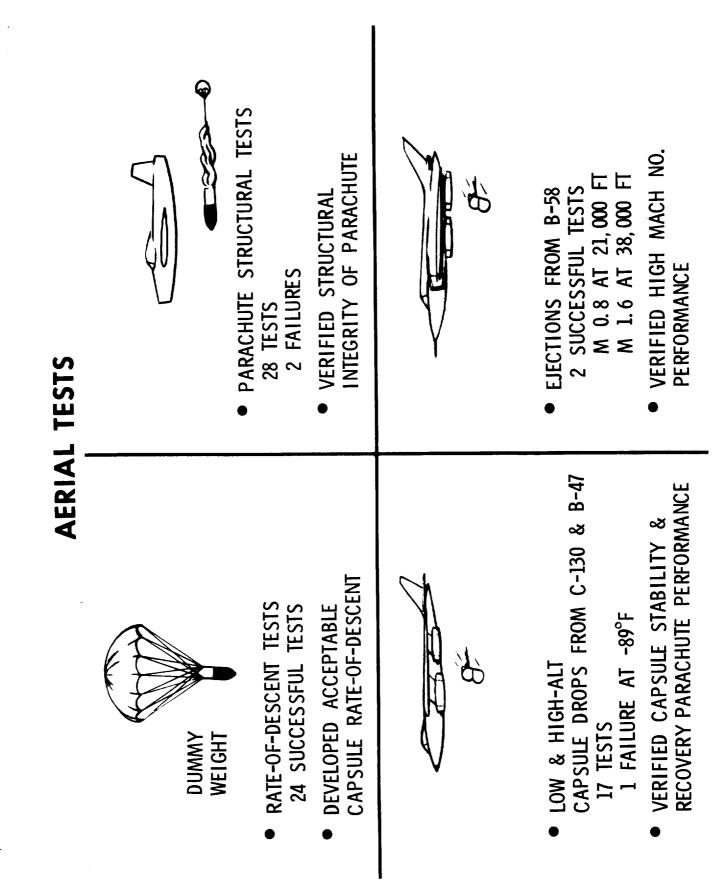
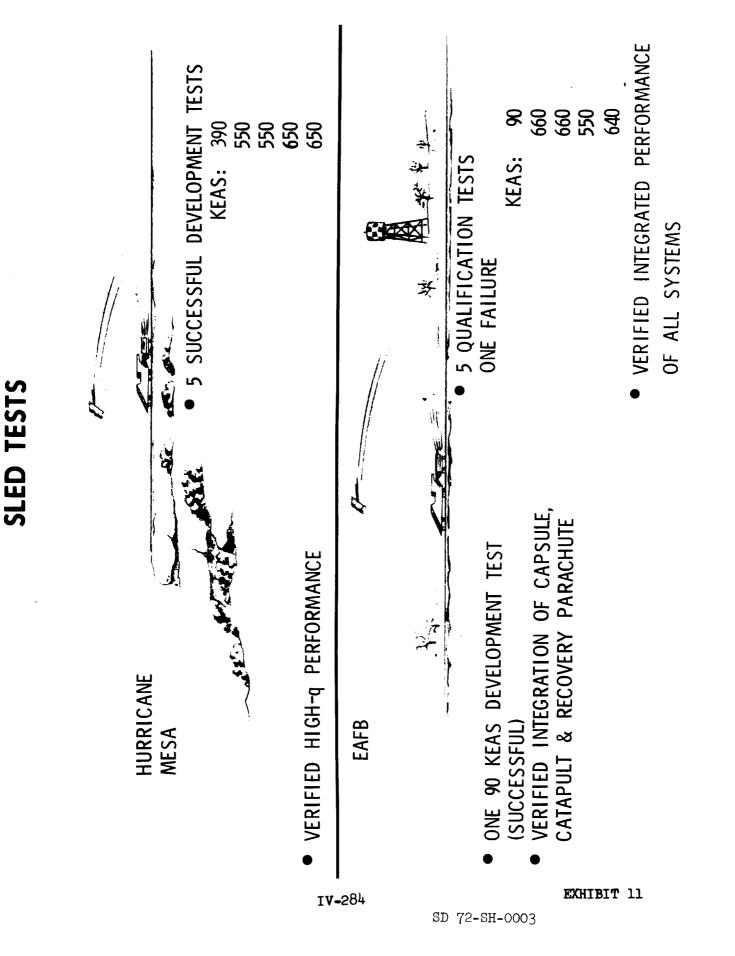



EXHIBIT 10

ADDITIONAL TESTS

MIND TUNNEL	473 HOURS
STABILIZATION BOOM FIRINGS	134 TESTS
HARNESS REEL CARTRIDGE FIRINGS	16
SEAT RETRACTION THRUSTER FIRINGS	44
INITIATOR FIRINGS	1064
IMPACT ATTENUATOR IMPACT TESTS	55
CARTRIDGE DEVICE BREADBOARD TESTS	149

TECHNICAL INNOVATIONS

TITLE: PERSONNEL ACCOMMODATION/ESCAPE SUBSYSTEM WBS CODE: 1.7

During the development of the B-70, the state-of-the-art was advanced significantly in the area of personnel escape and protection. The major advancements achieved are summarized in the following paragraphs.

Note: Since the items discussed did not impact subsystem or air vehicle schedules, the term Technical Innovation is used in place of Technical Drivers.

1. Capsule Concept:

The crew escape requirements for the B-70 air vehicle necessitated a number of state-of-the-art advances since unimpaired survival of the crew was required under conditions of (1) complete freedom from inhibiting clothing, (2) undelayed escape regardless of altitude. To attain these objectives, it was necessary to employ a protective cocoon or capsule which could be ejected from the air vehicle and serve as a vehicle during the crewman's descent to earth.

2. Stabilization Booms:

To assure that the capsule would descend in a predictable manner, two booms were attached to the capsule framework. These booms were of telescoping design and upon actuation extended to 116 inches and rotated outwarded. From the upper end of each boom, parachutes are released which stabilize the capsule from tumbling and excessive oscillation.

3. Descent Control:

In the event of cabin damage or loss of the oxygen breathing system, the capsule was designed to serve as a temporary protective area for the pilot and copilot. Controls were provided in the capsule by which the engine thrust could be reduced and the air vehicle could be put in a descent orientation by adjusting the trim surfaces. Upon reaching a safe altitude, the crew would leave the capsules and resume normal air vehicle control.

DEVELOPMENT DATA SUMMARY

WBS TITLE: PERSONNEL ACCOMM. & ESCAPE SUBSYSTEM WBS CODE: 1.7							
STATE OF THE ART RATING: 4 (See remarks)							
PERCENT DEVELOPED MATRIX:	PRIOR TO FLIGHT FLIGHT TEST						
	CONFIGURATION	- GROUND TEST					
PROGRAM LEVEL	68%	85% 37%		20%			
EFFORT TO GO	54%						
GROUND TESTS	TEST	NUMBER	OF UNITS	TEST HOURS			
CONFIGURATION RESEARCH	(1) (2)	1	.2	1322			
DESIGN FEASIBILITY	(1) (2)	נ	.1	240			
DESIGN VERIFICATION	(1) (2)	د	.1	1233			
AIRWORTHINESS	(1) (2)	2	24	2031			
QUALIFICATION			-	-			
OTHER	(2)		3	400			
TOTAL .			61	5226			

REMARKS:

(1) Includes following Personnel Accommodations Testing

Item	Units	Test Hours
Flight Displays Crew Training Lighted Panels (Blue/White edge light) Shock Mounting: Instrument Panels Ground Escape Devices Pressure Suit Cooling (Liquid Air)	2 2 3 6 4 2 19	500 382 300 321 40 <u>800</u> 2343

(2) Includes Escape System Tests as presented on page IV-281.

State-of-the-Art

The Personnel Accommodations and Escape Subsystem was assigned an overall state-of-the-art rating of 4 based on definitions established using AFSCM 173-1 (11-28-67) as a guide. This rating was determined by comparing the RS-70 requirements with the existing capabilities at the RS-70 time period using state-of-the-art criteria discussed in subsequent paragraphs. The RS-70 configuration was selected for the comparison since it was the production configuration defined. This selection is considered valid since the development status at "out-the-door" and at program "end" is also based on the scheduled production configuration.

The definitions used in determining the state-of-the-art ratings are described below. For ratings 3, 4, and 5, the following B-70 design criteria was used as an aid for rating selection:

- A. High temperature application
- B. High pressure/load/acoustics/etc., application
- C. Light-weight/special materials/unique processes

Rating

Description

- 1 The item was off-the-shelf commercial item or a standard military issue which was installed "as-is".
- 2 The item was off-the-shelf commercial item or a standard military issue which required only a physical modification for installation.
- 3 The item was considered within the state-of-the-art but had no commercial or military counterpart. As an aid, the item was existing, but required modification to be compatible with one of the design criteria. Also, any new design or process has a rating of at least 3.
- 4 The item was slightly beyond the state-of-the-art, and some development was required. As an aid, the item was based on an existing concept but required modification to be compatible with two of the design criteria. Also, any new design or process required to be compatible with <u>one</u> of the design criteria will be rated 4.
- 5 The item was substantially beyond the existing state-of-theart and required major development work. As an aid, any new design or process required to be compatible with <u>two</u> of the design criteria will be rated 5.

State-of-the-Art:

To arrive at the state-of-the-art rating of 4 for the overall RS-70 Personnel Accommodations and Escape Subsystem, an assessment was made in each of two areas: (1) the escape system design, and (2) all other design requirements for the subsystem. The escape system was considered a major advancement in the state-of-the-art for manned aircraft and was assigned a rating of 5. This rating was based on the extreme requirements to provide unimpaired survival for a "shirt-sleeved" crewman over land or water, for low to high "Q's", low to high temperatures, and zero to high altitude. The encapsulation concept developed not only provided a controlled environment for the crewman within the cabin for emergencies, it was also the device utilized for abandoning the aircraft. This concept, which allowed "shirt-sleeve" operation (no pressure suits, no mae wests, no parachutes, etc.), provided the crewman with maximum mobility and increased vision for the performance of his tasks. All other design requirements for the overall subsystem was assigned a state-of-the-art rating of 3 since these requirements were complex only in the provisioning designs for the four crewman. Combining the two ratings, the overall Personnel Accommodations and Escape Subsystem was assigned a state-of-the-art rating of 4.

Percent Developed:

The Personnel Accommodations and Escape Subsystem development status percent comparisons of the XB-70 configuration to that scheduled for the RS-70 were made at two development stages; one at prior to flight or at the time period of "out-the-door" of the No. 1 air vehicle and the other for the flight test programs. The same methodology developed and verified for the Airframe Structures Subsystem (WBS 1.1) percent comparisons was applied in the analysis of this subsystem. The analysis was performed to establish a status level for the overall subsystem; however, to achieve this goal, the two major areas were assessed (as with the state-of-the-art analysis) as presented in the following paragraphs.

The escape system configuration was assessed as 95 percent representative of its RS-70 counterpart being downgraded mainly due to the two crew stations instead of four. The additional two crew stations impacted the escape system due mainly to the sequencing circuitry for ejection required with the aft stations. This impact would be for air vehicle wiring and would not impact the individual capsule operation after the programmed ejection was initiated. The remaining configuration of the Personnel Accommodation and Escape Subsystem was assessed as being 40 percent representative of the RS-70 configuration. This downgrading was also due to the lack of the aft two stations, plus a ten percent downgrading for the pilot and copilot stations which were below the standard planned for the RS-70. To establish what effort would have been required to allow a No. 1 air vehicle production level status for the two major design areas, the same curve used for the structures analyses was utilized for the Personnel Accommodations and Escape Subsystem, Exhibit 13, page IV-293. Entering this exhibit on the left-hand scale at 95 percent and at 40 percent, the bottom scale shows that 20 percent and 82 percent more effort would have been required for a No. 1 RS-70 escape system and the remaining configuration,

C-4 SD72-SH-0003

respectively. Combining the 95 percent and 40 percent for a composite percentage resulted in the XB-70 Personnel Accommodations and Escape Subsystem being assessed as 68 percent representative of the RS-70 configuration at the time period of "out-the-door" for the No. 1 air vehicle. Entering Exhibit 13, page IV-293, on the left-hand scale at 68 percent, the bottom scale shows that 58 percent more effort would be required to attain a No. 1 air vehicle production level status for the overall subsystem. Comparing this percentage with the average of effort remaining of the two major areas (20% + 82% + 2 = 51%) shows a 7 percent spread in effort remaining. This is due to the complexity curve showing a larger impact for the crew station provisioning than for the escape system. To provide a single percentage remaining, the difference between the two was taken or 54 percent. In summary, for the "out-the-door" time period, the Personnel Accommodations and Escape Subsystem of the XB-70 was 68 percent representative of the RS-70 configuration and 54 percent more effort would be required to attain a production level status, excluding ground testing.

To determine the ground testing status, a comparison was made of the ground test hours expended on the XB-70 to that scheduled for the RS-70 at the time of "out-the-door" for each of the two major areas. It should be noted that for the escape system there was no prime air vehicle flight testing, only test beds and these flight test hours are included as part of the total prior-to-flight testing effort. For the escape system status prior to flight, the RS-70 had 3600 test hours scheduled compared to the 2883 test hours expended on the XB-70 program. This shows that the XB-70 prior to flight testing effort was 80 percent of that planned for the RS-70 or that 20 percent more testing effort would be required to attain a production level status for the escape system. This testing effort remaining would be essentially for sled testing of sequencing and for water endurance tests with the capsule under sea conditions. Entering Exhibit 13, page IV-293, , on the bottom scale at 80 percent, it shows that the escape system was at a program confidence level of 95 percent, the same as for configuration. For the remaining configuration of the overall subsystem, the RS-70 had 4700 ground test hours scheduled compared to the 2343 test hours expended on the XB-70 program. This shows that the XB-70 prior to flight testing effort was 50 percent of that planned for the RS-70 or that 50 percent more testing effort would be required to attain a production level status for the crew station provisioning. Entering Exhibit 13, page IV-293, on the bottom scale at 50 percent, it shows that the crew station provisioning was at a program confidence level of 75 percent (off the left-hand scale) prior to flight.

To establish a composite percentage for the Personnel Accommodations and Escape "out-the-door" testing level status, the above 75 percent and the escape system 95 percent are averaged for an overall subsystem program confidence level of 85 percent. Entering Exhibit 13, page IV-293, at 85 percent on the left-hand scale, the bottom scale shows that 37 percent

more testing effort would be required to attain a production level status at the prior-to-flight time period. The averaging of test effort remaining for the two major areas $(20\% + 70\% \div 2)$ shows 35 percent or a spread in the two methods of analysis of 2 percent. For the overall subsystem, the difference was split and the ground test effort remaining assessed at 36 percent.

The XB-70 flight test program for the Personnel Accommodations and Escape Subsystem was established at 61 percent of a production level status as presented by Exhibit 13, page II-23, under Air Vehicle: WBS 1.0. However, this percentage was based on the direct comparison of equivalent flight test hours with no adjustment for envelope flown or for the escape system test bed programs which were part of the total effort at the "outthe-door" time period. Since no prime air vehicle flight testing was scheduled on the RS-70 or expended on the XB-70 for the escape system, the flight test program comparison was for personnel accommodations or crew station provisioning only. Based on this ground rule, the flight test program comparisons must be made between the 15 hours of the XB-70 program and the 155 hours scheduled for the RS-70. This shows that, based on equivalent flight test hours only, the XB-70 program was 10 percent of that planned for the RS-70.

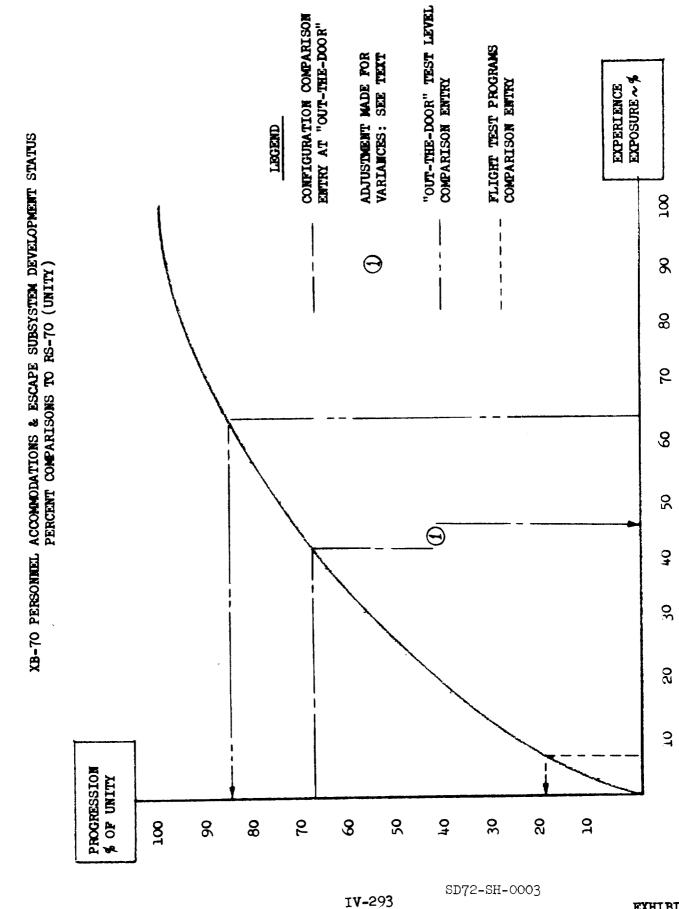
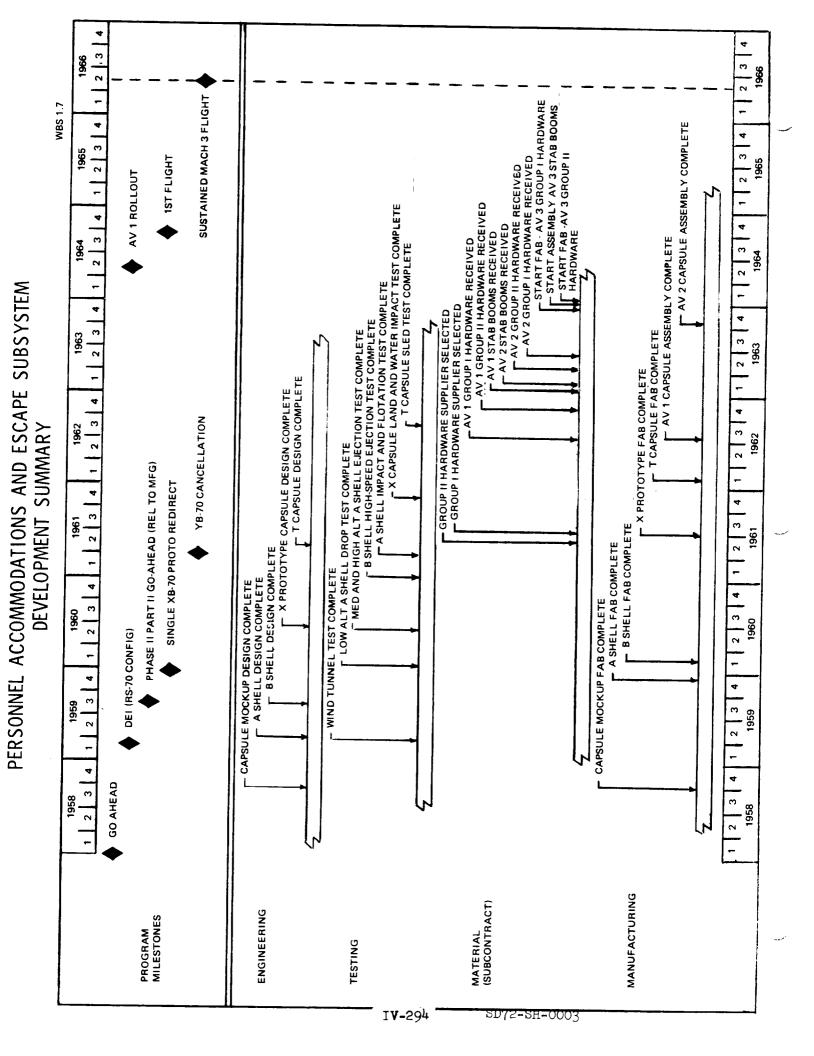

As previously stated, an adjustment must be made for the envelope flown; however, no adjustment was required for the configuration flown since the comparisons are for basic air vehicle only and the configuration downgrading was due mainly to the military subsystem stations. The XB-70 flight envelope explored was 80 percent of the RS-70 envelope as shown by Exhibit 14, page II-24, under Air Vehicle: WBS 1.0. As previously established for the Airframe Structures Subsystem (WBS: 1.1), the first 80 percent of the flight envelope requires only 60 percent of the total effort compared to the last 20 percent of the envelope which requires 40 percent of the total effort. For the Personnel Accommodations and Escape Subsystem, this 2 to 3 ratio was directly applicable since all of the test hours were obtained in the first 80 percent of the flight envelope. Using this ratio as a weight factor so that direct comparisons can be made based on the RS-70 flight envelope, the XB-70 flight test effort expended was adjusted by the equation 2:3::X:10%. Using this equation, the total flight test effort remaining to attain a production level status would be 40 percent + 60 percent - $(2 \times 10 \div 3)$ or 93 percent (where the 40 percent is that effort required for the last 20 percent of the flight envelope). Entering Exhibit 13, page IV-293, at seven percent on the bottom scale. the left-hand scale shows that the XB-70 flight test program attained a production program confidence level of 20 percent.

Exhibit 13, page IV-293, presents a graph showing the Personnel Accommodations and Escape Subsystem comparisons. It should be noted, all comparisons are based on tooling, test articles, GSE, etc., being at the RS-70 or production level in both number and fidelity.


NOTE: THE USE OF THE "EFFORT TO GO" PERCENTAGES FOR COST DETERMINATION SHOULD NOT BE APPLIED WITHOUT CONSULT-ING SECTION IV-8, VOLUME I, PAGE **310 FOR APPLICATION** CONSIDERATIONS.

IV-292

0.6

. .

DEVELOPMENT SUMMARY TABULATION OF DATES

.

Subsystem: Personnel Accommodation and Escape Subsystem	WBS 1.7
Engineering Capsule Mockup Design Completed "A" Shell Design Complete "B" Shell Design Complete "X" Prototype Design Complete "T" Capsule Design Complete	9-15-58 4-7-59 8-8-59 6-4-60 5-12-61
Testing Wind Tunnel Test Complete Low Altitude "A" Shell Drop Test Complete Medium and High Altitude "A" Shell Ejection Test Complete High Speed "B" Shell Sled Ejection Test Complete "A" Shell Flotation and Impact Test Complete "X" Capsule Land and Water Impact Test Complete "T" Capsule Maximum Sled Test Complete	4-1-59 1-15-60 6-1-60 2-1-61 4-1-61 11-1-61 8-15-62
Material (Subcontract) Group II Hardware Supplier Selected Group I Hardware Supplier Selected Air Vehicle No. 1 Group I Hardware Received Air Vehicle No. 1 Group II Hardware Received Air Vehicle No. 1 Stabiliation Booms Received Air Vehicle No. 2 Stabiliation Booms Received Air Vehicle No. 2 Group II Hardware Received Air Vehicle No. 2 Group I Hardware Received Start Fabrication Air Vehicle No. 3 Group I Hardware Start Assembly Air Vehicle No. 3 Group II Hardware	$\begin{array}{c} 6-1-61 \\ 7-7-61 \\ 8-26-62 \\ 11-9-62 \\ 2-7-63 \\ 3-7-63 \\ 4-22-63 \\ 6-4-63 \\ 12-20-63 \\ 1-3-64 \\ 1-31-64 \end{array}$
Manufacturing Capsule Mockup Fabrication Complete "A" Shell Fabrication Complete "B" Shell Fabrication Complete "X" Prototype Fabrication Complete "T" Capsule Fabrication Complete Air Vehicle No. 1 Capsule Assembly Complete Air Vehicle No. 2 Capsule Assembly Complete	11-1-58 12-15-59 2-15-60 7-1-61 2-23-62 9-21-62 12-7-63

PERSONNEL ACCOMMODATION AND ESCAPE SUBSYSTEM DESIGN/PROGRAMMATIC IMPACTS WBS 1.7	X-1 CAPSULE DOOR FAILURE T-CAPSULE DESIGN/TOOLING CHANGES T-CAPSULE DESIGN/TOOLING CHANGES Max a SLED TEST DELAY AST BILIZATION BOOMS DESTROYED T-1 CAPSULE TEST DELAY T-1 CAPSULE SHILIZATION BOOM A/W TEST PROGRAM STABILIZATION BOOM A/W TEST PROGRAM STABILIZATION BOOM A/W TEST PROGRAM RE-EVALUATION AV 1 CAPSULE SHIPMENT DELAY TAV 2 202 EQUIP ASSEMBLY DELAY TAV 2 202 EQUIP ASSEMBLY DELAY TAV 2 202 EQUIP ASSEMBLY DELAY TAV 2 2 CAPSULE ASSEMBLY DELAY TAV 2 2 CAPSULE ASSEMBLY DELAY TAV 2 2 CAPSULE ASSEMBLY DELAY	
--	---	--

DESIGN/PROGRAMMATIC IMPACTS

Subsystem: Personnel Accommodation and Escape Subsystem WBS 1.7

11-3-61

Completion of structural static test of X-1 capsule was delayed due to lower door failure and cracks during 100% ultimate internal pressure.

2-7-62

Assembly of "T" capsules was extended due to a combination of engineering and tooling changes and late receival of equipment.

4-6-62

Maximum "Q" sled tests were delayed due to modification of instrumentation and mechanical elements.

6-7-62

An explosion and fire occurred at the Pacific Division of Houston-Fearless Corporation. Four escape capsule stabilization booms and one spare trunnion were destroyed.

7-6-62

The completion of two T-l aerial ejection tests were delayed due to nonavailability of a functional B-58 test bed airplane.

8-7-62

Due to excessive voids in the rocket propellant found by X-ray inspection, Air Vehicle No. 1 rocket catapult was returned to the supplier.

10-8-62

Stabilization booms A/W test failed during test stand vibration test.

11-7-62

Some of the rocket motors were rejected for out-of-tolerance conditions necessitating remachining of the rocket nozzles.

12-7-62

Upon final check prior to shipment of two capsules to Palmdale the seal regulator would not allow the seal to deflate on one capsule. The regulator was returned to the supplier for repair.

1-7-63

Completion of control column thruster A/W testing was delayed due to marginal cartridge ignition. Investigations indicated changes to the prime-igniter and cartride closure disc retention were required.

7-31-63

Air Vehicle No. 2 oxygen equipment assembly comprising the heat exchanger was delayed due to material shortages.

9-27-63

WBS CODE 1.7

The start of Air Vehicle No. 2 capsule assembly was delayed due to window fitting scrappage resulting in remachining and approximately four weeks rework.

2-7-64

Stabilization booms for Air Vehicle No. 3 experienced a cartridge test failure during hot fire testing at the supplier.

COST DEFINITION

SUBSYSTEM: PERSONNEL ACCOMMODATION AND ESCAPE SYSTEM WBS

WBS CODE: 1.7

Total costs presented in this WBS item include all identifiable expenditures to design, develop, ground test, fabricate and assembly all components, assemblies and developmental test hardware within the Personnel Accommodation and Escape Subsystem as defined by the WBS except for those items supplied to North American as Government Furnished Equipment (GFE). The GFE items are:

- a) LO₂ System Converters (WBS 1.7.2) Check Valves Quick Disconnects Capsule O₂ Cylinder O₂ Pressure Regulator Quantity Indicator Mode Switch
- b) Fire Extinguisher Cylinder (WBS 1.7.3.2)
- c) Relief Container (WBS 1.7.3.3)
- d) Survival Equipment (WBS 1.7.4.5)

Total costs of \$12,557,555 include the following items:

- a) developing subsystem specification requirements
- b) subsystem installation and integration design
- c) vendor coordination
- d) in-house ground testing including design and fabrication of models, mockups and simulators
- e) subcontracted hardware including the supplier's costs for engineering, manufacturing, tooling and testing.

Excluded from the cost displayed for this subsystem are the in-house costs associated with the:

- f) fabrication of subsystem provisions (brackets, racks, wire harnesses, shelves, supports, etc.)
- g) miscellaneous purchased parts and installation materials
- h) installation of the subsystem into the vehicles
- i) subsystem, vehicle and preflight checkouts
- j) GFE items

WBS 1.7

Costs for items (f) through (i) are contained in WBS 1.12 (Volume IV, page 647). Internal accounting procedures and the resultant cost reports do not provide a basis for establishing expenditures for these items by individual subsystems. Therefore, all costs are collected and reported in one WBS item. Refer to WBS 1.12 for additional information.

Detail of the recorded costs associated with this subsystem is provided by Element of Cost (EOC) and Subdivision of Work (SDW). Section III of Volume I provides a detail definition of these items. Further segregation of the cost data is provided by the WBS. All cost data is displayed at WBS level 5 (Personnel Accommodation and Escape Subsystem, WBS 1.7) with the exception of in-house ground testing (WBS 1.7.6). Cost data can be located on the following pages:

		Cost Br	eakdown	Time-Phased Detail
WBS 1.7	\$7,330, 611	page	IV-3014	page IV-305
WBS 1.7.6 Ground Tests	5,226,944	page	IV-304	p age IV-328
Total WBS 1.7	\$12,557,555	page	IV-304	page IV-336

A summary of the subcontractor recorded cost data is provided on page IV-302 Contractual arrangements, delivery dates, costs by supplier, quantity of hardware delivered and other pertinent data is provided. Cost data includes the supplier expenditures for engineering, production, tooling and testing (where identifiable) performed at the supplier's facility. Refer to the Subcontracting Element of Cost definition (Volume I, page 1-26) for additional explanation.

As an aid in the definition and evaluation of the in-house engineering costs associated with this subsystem, a matrix of engineering hours has been developed. This matrix, displayed below, is a summary of all the in-house engineering groups that provided support to the design and development of the Personnel Accommodation and Escape Subsystem.

Group No.	Title	Hours Expended
3	Electrical and Avionics Installation	2,602
11 12	Weight Control	1,925
34	Checking Structural Projects	8,084
40	Wing and Empennage Structures	2,132 9,676
47	Human Factors and Cockpit Displays	416,139
57	Engineering Specifications	11,611
64	Design Support	1,579
67	Structural Test Laboratory	4,118
74	Flight Test Instrumentation	4,881

WBS 1.7

Group No.	Title	Hours Expended
94	Flight Simulation	3,810
95	Electrical Systems Design	3,895
97	Laboratory Services	6,334
110	Electrical Power Laboratory	14,310
114	Flight Test Instrumentation Developme	
125	Electrical System Equipment	4,200
146	Thermodynamics Laboratory	5,657
150	Life Sciences	13,406
-	Miscellaneous	9,775
	Total Engineering Hours	526,124

WBS 1.7	489,801	hours	(page	IV-304)
WBS 1.7.6	36,323	hours	(page	IV-304)
	526,124	hours		

Ground testing activities associates with the development of the Personnel Accommodation and Escape Subsystem have been identified and the costs assigned to WBS 1.7.6 (Page IV-328). These costs reflect the in-house expenditures only. Testing activities performed by the subcontractor where identified are included under WBS 1.7 Test/QC Subdivision of Work and the Subcontracting Element of Cost. The following is a summary of the major in-house test activities identified to this subsystem.

DESCRIPTION

RECORDED COSTS

Escape Capsule Tests	\$1,746,638
Escape System Test Sled	898,863
Modification and Repair of Test Capsules	417,480
Weighted Shells - Escape Capsules	302,773
Modification and Repair of Weighted Shells after Test	85,108
Encapsulated Seat-Operational Tests	73,635
Encapsulated Seat-Sled Test	67,644
Encapsulated Seat-Pressurization Tests	60,700
Encapsulated Seat-Zero Speed Ejection	53,800
Structural Tests - Escape Capsule	47,659
Encapsulated Seat "T" Ejections from B-58 Pad	41,246
Air Force Test Sled Adapter	24,712
Various	1,224,020
Costs (less MPC & G&A)	\$5,044,278
Material Procurement Cost	99,770
General and Administration	82,896
Total Cost WBS 1.7.6	\$5,226,944

SUBCONTRACTOR MATRIX

Subsystem: Personnel Accommodations and Escape

WBS Code: 1.7

SUBCONTRACTOR	ENGINEERING	PROD	TOOLING	TEST	TOTAL
Houston-Fearless Rocket Power	177,899 8,873	709,810 1 <i>3</i> 9,137	58 , 354	59 , 258	887,709 265,622
TOTAL	186,772	848,947	58,354	59,258	1,153,331

HOUSTON FEARLESS was awarded Letter Contract LOF1-VJ-600209 for the Ballistic Stabilization Booms on May 28, 1963.

The Statement of Work required the subcontractor to provide design, development, engineering test, manufacturing and other effort necessary to produce the Ballistic Stabilization Booms per NR specification NA5-4309-1G for Air Vehicles 1, 2, and 3.

The program required fabrication of 22 sled test boom assemblies, 10 development units, 12 prototypes, 6 qualification test specimens to support the Airworthiness Test Program, 8 complete Air Vehicle Boom Assemblies, and qualification test specimens to support the Acceptance Test Program.

The Ballistic Stabilization Booms are extremely critical to the safe recovery of the B-70 airmen ejected in the Escape Capsule-Man combination. The primary purpose of the Boom is to dampen erratic Pitch, Roll, and Yaw effects of the Escape Capsule during the time period between capsule ejection and until the recovery parachute takes effect.

NR conducted test sled firings at Hurricane Mesa test site to determine the reliability of the boom assemblies. These tests resulted in design changes which ultimately produced a satisfactory product.

The cost of the test effort was not segregated by the subcontractor and is therefore included in the Engineering cost for Houston-Fearless.

Residual inventory was shipped to NR on June 6, 1963, and special tooling was received in Government Stores on July 22, 1963. The proceeds were credited to the purchase order.

<u>ROCKET POWER</u> was selected to produce the Ballistic Rocket Catapult. Purchase Order LOFI-XZ-60023 was issued June 25, 1959 for this effort. The qualification test report was scheduled for June 28, 1960 and the contract was completed in November 1962.

The Statement of Work called for the subcontractor to provide design, development, test and fabrication of the Ballistic Rocket Catapult for the B-70 program.

Rocket Power was awarded the fixed price purchase order L961-X-316 to develop a ballistic rocket catapult for the F-108 and the B-70. Cancellation of the F-108 program in September 1959 revealed that the fixed price contract then in effect was not a satisfactory framework to develop the item. Design and test problems were of such complexity that a cost-plus-fixed-fee contract was determined to be the most practical basis for completing the program.

Tooling was retained for follow-on replacement units. Residual inventory was disposed of and proceeds applied to the base contract.

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

		0 HCURS	6-M ASSY 06 HOURS DCLLARS	HOURS
DESIGNZENGINEERING LABOR AT \$ 4.904		489801	36323	526124
LABCR AT \$ 4.904		2434838	145426	2580264
ENGR BURDEN AT \$	4.515	2213214	162077	2375291
SHOP SUPPORT		1521	508528	510049
LABCR AT \$ 3.158		4249	1606697	1610946
TEST/QC		397	20869	21266
LABOR AT \$ 3.103		1598	64385	65283
MFG BURDEN AT \$	3.638	945 2	1923417	1932869
ENGR MATERIAL		14492	951601	966093
SUBCONTRACT		1153331		1153331
MPC		46637	9 977 0	146407
OTHER COST		47395	22531	69926
SUB-TCTAL		5925206	4975904	10901110
GEN & ADMIN		117845	82896	200741
IDWA		1287550		
TOTAL COST		7330611	5226944	12557555

SUBDIVISION OF WORK			
COST DETAIL - SEE PAGE	IV-305	IV-328	IV-336

NORTH AMERICAN RCCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEMC76-MAJASSY0

			HOURS	HOURS	TOOLING AND STE HOURS DOLLARS	/QC HOURS
DESIGN/ENGINEF	RING		489801			
LABOR AT \$	-		2434838			
ENGR BURDEN	AT \$	4.519	2213214			
SHOP SUPPORT			1521			
LABOR AT \$	2.794		4249			
TEST/QC			397			
LABOR AT \$	4.025		1598			
MFG BURDEN	AT \$	4.928	9452			
ENGR MATERIAL			14492			
SUBCONTRACT			186772	848947	58354	59258
MPC			10606	31403	2445	2183
CTHER COST			47 395			
SUB-TOTAL			4922616	880350	60799	61441
GEN & AÚMIN IÚWA			75803	39806 1287560	1139	1097
TOTAL COST			4998419	2207716	61938	62538
	TI	ME-PHASED (ost			

DETAIL - SEE PAGE IV-307 IV-315 IV-316 IV-317

.

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM076-MAJ ASSY0

	TOTAL Hours Dollars
DFSIGN/ENGINEERING	489801
LABOR AT \$ 4.971	2434838
ENGR BURDEN AT \$	4.519 2213214
SHOP SUPPORT	1521
LABER AT \$ 2.794	
TEST/QC	397
LABOR AT \$ 4.025	1598
MEG BURDEN AT \$	4.928 9452
ENGR MATERIAL	14492
SUBCONTRACT	1153331
MPC	4653 7
OTHER COST	47395
SUB-TCTAL	5925206
GEN & ADMIN	117845
IDWA	1287560
TOTAL COST	7330511

TIME-PHAS	ED COST	IV-318
DETAIL -	SEE PAGE	11-319

I**V-30**6

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM15-SUBSYSTEM076-MAJASSY0SUBDOF WORKDESIGN/ENGINEERING

ON-SITE LABOR

	MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DOLLAR S		LABOR + Burden \$
Q-1 58 Q-2 58	9.0	1613	4.725	7621	7339	14960
Q-3 58 Q-4 58	117.0	19585	4.318	84562	76719	161281
Q = 4 58 Q = 1 59 Q = 2 59	169.5	28988	4.316	125098	99850	224948
Q-3 59 Q-4 59	237.5	50578	4.056	205163	180594	385757
Q-1 60 Q-2 60	390.0	67676	4.519	305805	243813	554618
Q = 3 60 Q = 4 60	319.0	53563	4.893	262106	193555	460661
Q-1 61 Q-2 61	444.0	75713	4.764	360714	380311	741025
Q-3 61 Q-4 61	312.0	56573	5.069	286787	284461	571248
Q-1 62 Q-2 62	226.5	38608	5.305	204812	178159	382971
Q-3 62 Q-4 62	187.5	31501	5.208	164049	162873	326922
Q-1 63 Q-2 63	138.0	23602	6.088	143682	128067	271749
Q-3 63 Q-4 63	97.0	16246	6.332	102871	94891	197762
Q-1 64 Q-2 64	86.5	14726	6.990	102932	9 79 30	200 862
Q-3 64 Q-4 64	43.5	7620	6.995	53304	53463	106767
Q-1 65	12.0	2149	7.894	16964	14180	31144

.

NORTH AMERICAN RECKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

ON-SITE LABOR

	MAN- MON TH S	LABOR Hours	LABOR RATE	LABOP DCLLARS	BURDEN Dellars	LABOR + Burden \$
Q-2 65 Q-3 65 Q-4 65	6.0	992	7.889	732E	65á)	14386
Q-1 66		5 8	7.971	542	449	991
TOTAL	23+5.0	489801		2434835	2213214	4648052

~

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT

4-SYSTEM15-SUBSYSTEM076-MAJ ASSY0SUBD OF WORKDESIGN/ENGINEERING

UN-SITE LABOR

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BUR DEN DULL ARS	LABOR + Burden \$
Q-1 59 Q-2 58		8	2.875	23	28	51
Q-3 58 Q-4 59		30	4.467	134	139	273
Q-1 59 Q-2 59						
Q-3 59 Q-4 59	21.0	3819	2.804	10707	15158	25865
Q-1 60 Q-2 60	-15.0	-2542	2.829	-7191	-6863	-14054
Q-3 60 Q-4 60		62	2.516	156	175	331
9-1 61		92	2.701	254	380	634
Q-2 61 Q-3 61		1	1.000	1	2	3
Q-4 61 Q-1 62 Q-2 62	1.5	221	3.751	829	1016	1845
Q-2 62 Q-3 62	-1.5	-214	3.757	-804	-985	-1789
Q-4 62 Q-1 63		31	3.226	100	124	224
Q-2 63 Q-3 63		13	3.077	4 C	278	318
TOTAL	6.0	1521		4249	9452	13701

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

TEST/QC

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

GN-SITE LABOR

	MAN- MONTHS	LABGR HOURS	LABOR KATE	LABUR DOLLARS	BUR CEN DOLL ARS	LABOR + BURDEN \$
Q-3 53 Q-4 53		9	2.000	18		18
0-1 59 0-2 59		- 1				
Q-3 59 Q-4 59		91	2.857	25C		260
Q-1 60 Q-2 60	1.5	211	4.545	959		959
Q-3 60 Q-4 60		24	4.625	111		111
Q-1 61 Q-2 61		ló	5.375	5 (86
Q-3 61 Q-4 61 Q-1 62 Q-2 62						
Q-3 62 Q-4 62 Q-1 63		1	1.000	1		ł
Q-2 63 Q-3 63 Q-4 63		47	3.468	163		163
Q-1 64		- 1				
TOTAL	1.5	397		1598		1598

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM1
PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM5-SUBSYSTEM076-MAJASSY0SUBD OF WORKDESIGN/ENGINEERING

	MAN- MON THS	LABUR HOURS	LABOR RATE	LABUR Dollars	BUR DEN DOLL ARS	LABOR + BURDEN \$	ENGR MATL
Q-1 58	9.0	1621	4.716	7644	7367	15011	2 2
Q-2 58 Q-3 58	117.0	19624	4.317	84714	7 6 8 58	161572	75
Q-4 58 Q-1 59	169.5	28987	4.316	125098	99850	224948	12
Q-2 59 Q-3 59	308.5	54488	3.967	216130	195752	411882	1031
Q−4 59 Q−1 60	376.5	65345	4.584	299573	241 95 0	541523	308
Q-2 60 Q-3 60	319.0	53649	4.891	262373	198730	461103	499
Q-4 60 Q-1 61	444.C	75821	4.762	361054	380691	741745	191
Q-2 61 Q-3 61	312.0	56574	5.069	286788	284463	571251	- 9
Q-4 61 Q-1 62	228.C	38829	5.296	205641	179175	384816	
Q-2 62 Q-3 62	186.0	31238	5.218	163246	161888	325134	10172
Q-4 62 Q-1 63	138.C	23633	6.084	143782 -	128191	271973	58
Q-2 63 Q-3 63	97.0	16306	6.321	103074	95169	198243	1434
Q-4 63 N-1 64	86.5	14725	6.990	102932	979 30	200862	-90
Q-2 64 Q-3 64	43.5	7620	6.995	53304	53463	106767	789
Ş−4 54 Q−1 65	12.0	2145	7.894	16964	14130	31144	
Q-2 65 Q-3 65	6.0	992	7.889	7826	6560	14386	

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/FNGINEERING

	MAN- MON TH S	LABOR Hours	LABOR RATE	LABOR DCLLARS	BURDEN DCLL ARS	LABOR + Burden s	ENGR Matl
Q-4 65							
Q-1 35		68	7.971	542	449	991	
TOTAL	2852.5	491719		2440685	22 <u>2260</u> 6	4663351	14492

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM07PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM6-MAJ ASSYCSUBD EF WORKDESIGN/ENGINEERING

	SUBC	TOTAL MATERIAL	MPC	OTHER COST	SUB Total	G & A	TOTAL Cost
Q-1 58		22	1	308	15342		15342
Q-2 58							
Q-3 58		75	4		161651		161651
Q-4 58							
0-1 59		12	1		224961		224961
Q-2 59		1021					
Q-3 59 Q-4 59		1031	87		413000		413000
Q = 1 60	92679	92987	5520	11202	(51050	12/10	(12710
Q = 2 60	72017	96701	5538	11302	651350	12410	663750
Q - 3 60	20110	20609	1258	7528	490498	9345	499843
Q-4 60	LOXIC	20007	1270	1 22 13	470470	70 7 7	CFORCF
Q-1 61	14499	14690	431	18571	775437	14410	789847
0-2 61						11110	1100
Q-3 61	8473	8469	241	572	580533	10788	591321
Q-4 61							
Q-1 62	10352	10352	32.9	1294	396 7 91	6660	403451
Q-2 62							
Q-3 62	17358	27530	1352	4578	358594	6019	364613
Q-4 62							
0-1 63	18645	187 03	797	118	· 291591	4875	296466
Q-2 63							
Q-3 65	4651	6085	290	836	205454	3435	208889
Q-4 63		- 0.0	10	1000	2017(2	(20 2	201055
Q-1 64 Q-2 64		-90	-10	1000	201762	4293	206055
Q-3 64		789	287	1000	108843	2316	111159
Q-4 64		10,	201	1000	100045	2010	111132
Q-1 65				202	31346	836	32182
Q-2 65				272	22210		J. 1
Q-3 65				81	14467	386	14353

~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM076-MAJASSY0SUBDOF WORKDESIGN/ENGINEERING

TOTAL Cost	G & A	SUB TOTAL	OTHER CCST	MPC	TOTAL MATERIAL	SUBC	
							Q-4 65
1026	30	9 96	5				Q-1 65
4998419	75803	4922616	47395	10606	201264	186772	TOTAL

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM076-MAJ ASSY0SUBD OF WORKPRODUCTION

	SUBC	мрс	SUB Total	G & A	I DWA	TOTAL Cost
0-1 60	70600	4188	74788	1425		76213
Q-2 60 Q-3 60	107618	6385	114003	2552	19966	136521
Q-4 6C Q-1 61	344469	986 9	354338	17696	597916	969950
Q-2 61 Q-3 61	19383	412	19795	1281 2	669678	702285
Q-4 61 Q-1 62 Q-2 62	1 C2 96 8	3272	106240	1783		108023
Q-3 62 Q-4 62	110969	3523	114492	1922		116414
$Q = 4 \ 62$ $Q = 1 \ 63$ $Q = 2 \ 63$	74391	3158	77549	1296		78845
Q-3 63	18549	596	19145	320		19465
TOTAL	848947	31403	880350	39806	1287560	2207716

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK TOOLING AND STE

	SURC	MPC	SUB TOTAL	GEA	TOTAL Cost
Q-3 60 Q-4 60	25052	1486	26538	506	27044
Q-1 61 Q-2 61	27160	778	27 93 8	519	28457
Q-3 61 Q-4 61	4107	117	4224	78	4302
Q-1 62 Q-2 62	1019	32	1051	18	1 669
Q-3 62	1016	32	1048	18	1066
TOTAL	58354	2445	60799	1139	61938

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM076-MAJASSY0SUBD0FWORKTEST/QC

	S UBC	MPC	SUB TOTAL	G & A	TOTAL CCST
Q-3 60 Q-4 60	10500	622	11122	212	11334
$Q-1 \ 51$ $Q-2 \ 61$	3535	101	3636	3.6	3764
Q-3 61 Q-4 61	18156	520	18676	347	19023
Q-1 62 Q-2 52	16035	590	16625	279	16904
Q-3 62	11032	350	11382	191	11573
TOTAL	59258	2183	61441	1097	62538

APRIL 1972

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

	DESIG	N/ENGINEERING
4-SYSTEM	1	
5-SUB SYSTEM	07	PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM
6-MAJ ASSY	0	

ON-SITE LABOR

	MAN- MONTHS	LABUR HOUR S	LABOR Rate	LABOR DOLLARS	BURDEN DOLL ARS	LABOR + BURDEN \$
Q-1 58 Q-2 59	9.0	1613	4.725	7621	7 339	14960
Q-3 58 Q-4 58	117.0	19585	4.318	84562	76719	161281
0-1 59 0-2 59	169.5	28988	4.316	125098	99850	224948
Q-3 59 Q-4 59	287.5	50578	4.056	205163	180594	385757
Q-1 60 Q-2 60	390.0	67676	4.519	305805	248813	554618
Q-3 60 Q-4 60	319.0	53563	4.893	262106	198555	460661
Q-1 61 Q-2 61	444.0	75713	4.764	360714	380311	741025
Q-3 61 Q-4 61	312.0	56573	5.069	286787	284461	571248
Q-1 62 Q-2 62	226.5	38608	5.305	204812	178159	382971
0-3 62 Q-4 62	187.5	31501	5.208	164049	162873	326922
Q-1 63 Q-2 63	138.0	23602	6.088	143682	128067	271749
Q-3 63 Q-4 63	97.0	16246	6.332	102871	94 891	197762
Q-1 64 Q-2 64	86.5	14726	6.990	102932	97930	200862
Q-3 64 Q-4 64	43.5	7620	6.995	53304	53463	106767
Q-1 65 Q-2 65	12.0	2149	7.894	16964	14180	31144

~

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM15-SUBSYSTEM076-MAJASSY0

ON-SITE LABOR

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DCLLARS	BUR DEN Doll Ars	LABOR + BURDEN \$
Q-3 65	6.0	992	7.889	7826	6560	14386
Q-4 65 Q-1 66		68	7.971	542	449	991
TOTAL	2845.C	489801		2434838	2213214	4648052

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

	SHOP	SUPPORT
4-SYSTEM	1	
5-SUBSYSTEM	07	PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM
6-MAJ ASSY	0	= MOULT ILD DON'T DODDIDIEM

ON-SITE LABOR

	MAN- MON TH S	LABOR HOUR S	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-1 58 Q-2 58		8	2.875	23	28	51
Q-3 58 Q-4 58		30	4.467	134	139	273
Q-1 59 Q-2 59						
Q-3 59 Q-4 59	21.0	3819	2.804	10707	15158	25865
Q-1 60 Q-2 60	-15.0	-2542	2.829	-7191	-6863	-14054
Q-3 60 Q-4 60		62	2.516	156	175	331
Q-1'61 Q-2 61		92	2.761	254	380	634
Q-3 61 Q-4 61		1	1.000	1	2	3
Q-1 62 Q-2 62	1.5	221	3.751	829	1016	1845
Q-3 62 Q-4 62	-1.5	-214	3.757	-804	-985	-1789
Q-1 63 Q-2 63		31	3.226	100	124	224
Q-3 63		13	3.077	4 C	278	318
TOTAL	6.0	1521		4245	9452	13701

.

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

	TEST/QC					
4-SYS TEM	1					
5-SUB SYSTEM	07	PERSONNEL	ACCOMM	AND	ESCAPE	SUBSYSTEM
6-MAJ ASSY	0					

	MAN- MUN THS	LABOR HOUR S	LABOR RATE	LABOR DOLLAR S	BURDEN DOLLARS	LABOR + BURDEN \$
0-3 58		9	2.000	18		18
Q-4 58						
Q-1 59		-1				
Q-2 59						
Q-3 59		91	2.857	26C		260
Q-4 59			(F (F	05.0		05.0
Q-1 60	1.5	211	4.545	959		959
Q-2 60 Q-3 60		24	4.625	111		111
Q=3 80 Q=4 60		27	4.02.5			
Q - 1 = 61		16	5.375	86		86
Q-2 61		• •				
Q-3 61						
Q-4 61						
0-1 62						
Q-2 62						_
Q-3 62		1	1.000	1		1
Q-4 62	•					
Q-1 63				-		
Q-2 63		(7	2 // 5			14.2
Q-3 63		47	3.468	163		163
Q-4 63		,				
Q-1 64		-1				
TOTAL	1.5	397		1598		1 5 9 8

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

	4-SYS1 5-SUBS 6-MAJ	SYSTEM	1 07 0	PERSONNEL	ACCOMM	AND ESCAPE	SUBSYSTEM		
		MAN- MON TH		LABOR HOURS	LAPOR Rate	LABOR DCLLARS		LABUR + Burden \$	ENGP MATL
0-1 Q-2		9.0	С	1621	4.716	7644	7367	15011	22
Q-3 Q-4	5 8	117.0	0	19624	4.317	84714	76353	161572	75
Q-1 Q-2		169.	5	28987	4.316	125098	99850	224948	12
0-3 Q-4	59	308.9	5	54488	3.967	215130	195752	411882	1031
Q-1 Q-2	60	376.9	5	65345	4.584	299573	241950	541523	308
0-3 0-4	60	319.()	53649	4.891	262373	198730	461103	499
Q-1 Q-2	61	444.()	75821	4.762	361054	380691	741745	191
ଜ−3 ଜ−4	61	312+(56574	5.369	286788	234463	571251	- 9
Q-1 Q-2	62	228.0		38829	5.296	205641	179175	384816	
Q-3 Q-4	62	186.0		31288	5.218	163246	161888	325134	10172
Q-1 Q-2	63	138.0		23633	6.084	143782	. 123191	271973	58
Q-3 Q-4	63	97.0		16306	6.321	103074	95169	198243	1434
Q-1 Q-2	64	86.5		14725	6.990	102932	9 7 930	200862	-90
Q-3 Q-4	64	43.5		7620	6.995	53304	53463	106767	789
Q-1 Q-2	65	12.0		2149	7•894	16964	14130	31144	
ସ−3 ସ−4		6.0		992	7.889	7826	6560	14386	

I**V-322**

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

2 00001011	1 07	PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM
6-MAJ ASSY	0	- LOOMALL ACCOMM AND ESCAPE SUBSYSTEM

	MAN- MON TH S	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BURDEN DOLLARS	LABOR + Burden \$	ENGR MATL
Q-1 66		68	7.971	542	449	991	
TOTAL	2852.5	491719		2440685	2222666	4663351	14492

*

•

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

		SUBC	TOTAL MATERIAL	MPC	OTHER Cost	SUB TOTAL	GEA	IDWA
Q-1 Q-2			22	1	308	15342		
Q-3 Q-4	58		75	4		161651		
Q-1 Q-2	59		12	1		224961		
Q-3 Q-4	59		1031	87		413000		
Q-1 Q-2	60	163279	163587	9726	11302	726138	13835	
Ω−3 Q−4	60	163280	163779	9751	7528	642161	12615	19966
Q-1 Q-2	61	389663	389854	11179	18571	1161349	32693	597916
Q-3 Q-4	61	50124	50115	1290	572	623228	24025	669678
Q-1 Q-2	62	130374	130374	4223	1294	520707	8740	
0-3 0-4	62	140375	150547	5257	4578	485516	8150	
0-1 0-2	63	93036	93094	3955	118	. 369140	6171	
Q-3 Q-4	63	23200	24634	886	836	224599	3755	
Q-1 Q-2	64		-90	-10	1000	201762	4293	
Q-3 Q-4	64		789	287	1000	108843	2316	
Q-1 Q-2	65				202	31 346	836	
Q-3 Q-4	65				81	14467	386	

-

APRIL 1972

117845 1287560

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

	4-SYSTEM 5-SUBSYSTI 6-MAJ ASS'		· /	l accomm ani) ESCAPE	SUBSYSTEM				
		SUBC	TOTAL MATERIAL	MPC	OTHE P COST	+	G	ξ. A	A ID	W۵
Q-1	66				ç	5 996		30)	

TCTAL 1153331 1167823 46637 47395 5925206

•

•

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

	STEM BSYSTEM JASSY	1 07 0	PERSONNEL	ACCOMM	AND	ESCAPE	SUBSYSTEM
	TOTAL						
Q-1 58 Q-2 58	1534;	2					
Q-3 58 Q-4 58	16165						
Q-1 59 Q-2 59 Q-3 59	22496: 41300(_					
Q-4 59 Q-1 60	739973						
Q-2 60 Q-3 60	674742	2					
Q-4 60 Q-1 61 Q-2 61	1791958	3					
Q-3 61 Q-4 61	1316931						
Q-1 62 Q-2 62 Q-3 62	529447 493666						
Q-4 62 Q-1 63	375311						
Q-2 63 Q-3 63	228354						
Q-4 63 Q-1 64 Q-2 64	206055						
Q-3 64 Q-4 64	111159						
Q-1 65 Q-2 65	32182						
Q-3 65 Q-4 65	14853						

IV-326

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNCER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 5-SUBSYSTEM 6-MAJ ASSY	1 07 0	PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM
---------------------------------------	--------------	---------------------------------------

TOTAL COST

Q=1 66 1026

TOTAL 7330611

.

COST BPEAKDGWNS B-70 AIRCRAFT STUDY

4-SYSTEM	1				
5-SUB SYSTEM	07				
6-MAJ ASSY	36				
PERSONNEL	MMUDDA	AND	ESCAPE	GRCUND	TESTS

		HOUPS	TOTAL Hours Dollaps
DESIGN/ENGINEERING		36323	36323
LABER AT \$ 4.004			145428
ERGR BURDEN AT \$	4.462		162077
SHUP SUPPORT		508528	508523
LABOR AT \$ 3.160		1605597	
TEST/CC		20859	
LABER AT \$ 3.035		64385	
IFG BURDEN AT \$	3.633	1923417	1923417
ENGE MATERIAL		951601	551601
1PC			99770
UTHER COST		22531	
SUB-TOTAL		4975304	4975004
GEN & ADMIN		828 <i>3</i> 6	32350
IOWA		168144	100144
TUTAL COST		5226944	5226944

TIME-PHASED COST		
DETAIL - SEE PAGE	I V- 329	IV-329

1**V-3**28

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE GROUND TESTS 6-MAJ ASSY 06 SUBD OF WORK TEST/QC

ON-SITE LABOR

	MAN- Months	LABOR HOUR S	LABOR Rate	LABOR DOLLARS	BURDEN DOLLARS	LABOR + BURDEN \$
Q-1 60		52	3.769	196	196	392
Q-2 60 Q-3 60	24.0	4017	3.688	14814	14650	29464
Q-4 60 Q-1 61	9.0	1516	5.093	7721	4064	11785
Q-2 61 Q-3 61	73.5	13338	3.735	49812	51 807	101619
Q-4 61 Q-1 62	48.0	8109	4.585	37179	43038	80217
Q-2 62 Q-3 62	43.5	7244	3.912	28335	38707	67042
Q-4 62 Q-1 63	6.0	1056	3.765	3976	5483	9459
Q-2 63 Q-3 63	3.0	527	3.330	1755	-1188	567
Q-4 63 Q-1 64	1.5	243	3.506	852	4448	5300
Q-2 64 Q-3 64		29	4.207	122	206	328
Q-4 64 Q-1 65	1.5	135	3.281	443	445	888
Q-2 65 Q-3 65		54	3.296	178	178	356
Q-4 65 Q-1 66		3	14.333	43	43	86
TOTAL	210.0	36323		145426	162077	307503

1

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE GROUND TESTS 6-MAJ ASSY 06 SUBD CF WORK TEST/QC

	MAN- MONTHS	LABOR HOURS	LABOR Rate	LABOR DOLLAR S	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-3 58 Q-4 58	76.5	12858	2.720	34975	46 853	81842
Q-1 59 Q-2 59	289.5	49514	2.922	144663	179854	324517
Q-3 59 Q-4 59	94.5	16759	2+808	47053	72074	119127
Q-1 60 Q-2 60	303.0	52483	2.933	153945	165457	319402
Q-3 60 Q-4 60	166.5	2 79 5 7	2.918	81579	96 097	177676
Q-1 61 Q-2 61	1012.5	172823	2.983	515586	559565	1075151
Q-3 61 Q-4 61	409.5	74272	3.105	230622	305626	536248
Q-1 62 Q-2 62	433.5	73882	4.234	312800	358728	671528
0-3 62 Q-4 62	156.0	26172	2.985	78113	108603	186716
Q-1 63 Q-2 63	10.5	1685	4.160	7005	6863	13872
Q-3 63 Q-4 63		44	2.977	131	23285	23416
Q-1 64 Q-2 64	1.5	194	1.933	375	668	1043
Q-3 64 Q-4 64		44	1.817	-8 C	-91	-171
Q-1 65 Q-2 65		-112	• 491	-55	-124	-179
Q-3 65		-44	• 47 7	-21	-49	-70

.

÷.,

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

.

....

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE GROUND TESTS 6-MAJ ASSY 06 SUBD OF WORK TEST/QC

	MAN- MON THS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$
Q-4 65 Q-1 66		-3	• 66 7	-2	-2	-4
TOTAL	2953.5	508528		1606697	1923417	3530114

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

	TEST/QC
4-SYSTEM	1
5-SUB SYSTEM	07 PERSONNEL ACCOMM AND ESCAPE GROUND TESTS
6-MAJ ASSY	06
SUBD CF WORK	TEST/QC

ON-SITE LABOR

	MAN- MON TH S	LABOR HOUR S	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-3 58 Q-4 58	1.5	225	4.289	965		965
Q-1 59 Q-2 59	4.5	744	3.094	2 30 2		2302
Q-3 59 Q-4 59	3.0	441	3.522	1553		1553
Q-1 60 Q-2 60	13.5	2333	3.012	7028		7028
Q-3 60 Q-4 60	15.0	2468	3.615	8922		8922
Q-1 61 Q-2 61	37.5	6498	2.777	18044		18044
Q-3 61 Q-4 61	19.5	3562	3.077	10962		10962
Q-1 62 Q-2 62	18.0	3106	3.217	99 92		99 92
Q-3 62 Q-4 62	9.0	1403	3.087	4331		4331
Q-1 63 Q-2 63		58	3.052	177		177
Q-3 63 Q-4 63		24	3.750	90		90
Q = 1 64 Q = 2 64	1.5	162	.105	17		17
Q-3 64 Q-4 64	1.5	157				
Q-1 65 Q-2 65	-1.5	-218	• 8	2		2
Q-3 65		-87				

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 PERSONNEL ACCOMM AND ESCAPE GROUND TESTS 5-SUBSYSTEM 07 6-MAJ ASSY 06 SUBD DF WORK TEST/QC

ON-SITE LABOR

	MAN- Months	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-4 65 Q-1 66		-7				
TOTAL	123.0	20869		64385		64385

.

NORTH AMERICAN ROCKWELL CORP. Space Division Data Prepared Under NASA CONTRACT NAS9-12100

APRIL 1972

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 07 6-MAJ ASSY 06 PERSONNEL ACCOMM AND ESCAPE GROUND TESTS

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR Dollars		LABOR + Burden s	ENGR Matl
Q-3 58 Q-4 58	78.0	13083	2.747	35944	46863	82807	11585
Q-1 59 Q-2 59	294.C	50258	2.924	146965	179854	326819	34002
Q-3 59 Q-4 59	97.5	17200	2.826	48606	72074	120680	13952
Q-1 60 Q-2 60	316.5	54868	2.937	161169	165653	326822	108958
Q-3 60 Q-4 60	205.5	34442	3.058	105315	110747	216062	251811
Q-1 61 Q-2 61	1059.0	180837	2.994	541351	563629	1104980	174683
Q-3 61 Q-4 61	502.5	91172	3.196	291396	357433	648829	147295
Q-1 62 Q-2 62	499.5	85097	4.230	359971	401766	761737	120874
Q-3 62 Q-4 62	208.5	34819	3.182	110779	147310	258089	66028
Q-1 63 Q-2 63	16.5	. 2799	3. 588	11162	12346	23508	2759
Q-3 63 Q-4 63	3.0	595.	3.321	1976	22097	24073	-590
Q-1 64 Q-2 64	4.5	599	2.077	1244	5116	6360	7222
Q-3 64 Q-4 64	1.5	230	•183	42	115	157	12787
Q-1 65 Q-2 65		-195	1.999	390	321	711	165
Q-3 65 Q-4 65		-77	2.038	157	129	286	66
Q-1 66		-7	5.856	41	41	82	4
TOTAL	3286.5	565720		1816508	2085494	3902002	951601

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1
5-SUBSYSTEM 07
6-MAJ ASSY 06
PERSONNEL ACCOMM AND ESCAPE GROUND TESTS

	MPC	OTHER Cost	SUB Total	GEA	IDWA	TOTAL Cost
Q-3 58	634		95 02 6			95026
Q-4 58						
Q-1 59 Q-2 59	2880		363701			363701
Q-3 59	1182		135814	•		125014
Q-4 59	1102		100014			135814
Q-1 60	14328		450108	8576		458684
Q-2 60				0,2,1,0		+ 2000 +
Q-3 60	33113		500986	9 597	2717	513300
Q-4 60						
Q-1 61	14761	240	1294664	26333	122391	1443388
Q-2 61						
Q-3 61	12446	5494	814064	15927	43035	873027
Q-4 61	0505					
Q-1 62 Q-2 62	9525	5989	898125	15075		913200
Q-2 62 Q-3 62	5203	3102	222/22	5500		
Q-4 62	5205	5102	332422	5580		338002
Q-1 63	27,2	-2367	24172	404		24576
Q-2 63	£ 1,£	2501	64116	404		24010
Q-3 63	- 58	-2822	20603	344		20947
Q-4 63			20005	511		20341
Q-1 64	770	2	14354	305		14659
Q-2 64						
Q-3 64	4652	2	17598	374		17972
Q-4 64						
Q-1 65	49	9024	9949	265		10214
Q-2 65						
Q-3 65	12	3609	3973	106		4079
Q-4 65	•	25.0	215			
Q-1 66	1	258	345	10		355
TOTAL	997 70	22531	4975904	82896	168144	5226944

.

- -

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

			DESIGN ZENGR HOURS DOLLARS	PRCD HOURS DOLLARS	TOOLING AND STE HOURS DCLLARS	TEST ZQC HOURS DOLLARS
DESIGN/ENGINEE	RING		489801			36323
LABCR AT \$	4.904		2434838			145426
ENGR BURDEN	AT \$	4.515	2213214			162077
SHOP SUPPORT LABER AT \$ TEST/OC	3.158		1521 4249			508528 1606697
LABER AT \$	3.103		397			20869
MEG BURDEN	AT \$	3.638	1598 9452			64385 1923417
ENGR MATERIAL SUBCONTRACT MPC OTHER COST			14492 186772 10606 47395	848947 31403	58354 2445	951601 59258 101953 22531
SUB-TOTAL			4922 515	880350	66799	5037345
GEN & ADMIN IDWA			75803	39806 1287560	1139	83993 168144
TOTAL COST			4993419	2207716	61938	5289482
		-PHASED COST [L - SEE PAGE	IV-338	IV- 346	IV-347	IV-348

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM	1			
5-SUB SYSTEM	07			
PERSONNEL	ACCOMM	AND	ESCAPE	SUBSYSTEM

	TOTAL Hours Dollars
DESIGN/ENGINEERING	526124
LABOR AT \$ 4.904 ENGR BURDEN AT \$	2580264 4•515 2375291
SHOP SUPPORT	510049
LABCR AT \$ 3.158 TEST/QC	1610946 21266
LABOR AT \$ 3.103	65983
MEG BURDEN AT \$	3.638 1932869
ENGR MATERIAL	966093
SUBCONTRACT	1153331
MPC	146407
OTHER COST	69926
SUB-TOTAL	10901110
GEN & ADMIN	200741
AWDI	1455704
TOTAL COST	12557555

TIME-PHASED	COST	
DETAIL - SER	PAGE	IV-356

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM SUBD OF WORK DESIGN/ENGINEERING

	MAN- MON THS	LABOR HOURS	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-1 58	9.0	1613	4.725	7621	7 3 3 9	14960
Q-2 58 Q-3 58	117.0	19585	4.318	84562	76719	161281
Q-4 58 Q-1 59	169.5	28988	4.316	125098	99850	224948
0-2 59 Q-3 59	287.5	50578	4.056	205163	180594	385757
Q-4 59 Q-1 60	390.0	67676	4.519	305805	248813	554618
Q-2 60 Q-3 60	319.0	53563	4.893	262106	198555	460661
Q-4 60 Q-1 61	444.0	75713	4.764	360714	380311	741025
Q-2 61 Q-3 61	312.0	56573	5.069		284461	571248
Q-4 61 Q-1 62	226.5	38608	5.305	204812	178159	382971
Q-2 62						
Q-3 52 Q-4 62	187.5	31501	5.208	164049	162873	326922
Q-1 63 Q-2 63	138.0	23602	6.088	143682	128067	271749
Q-3 63 Q-4 63	97.0	16246	6.332	102871	94891	197762
Q-1 64 Q-2 64	86.5	14726	6.9 90	102932	97930	200862
Q-3 64 Q-4 64	43.5	7620	6.995	53304	53463	106767
Q-1 65 Q-2 65	12.0	2149	7.894	16964	14180	31144

•

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM 1 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 5-SUBSYSTEM 07 SUBD OF WORK DESIGN/ENGINEERING

	MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BURDEN DOLL ARS	LABOR + BURDEN \$
Q-3 65	6.0	992	7.889	7826	6 560	14386
Q-4 65 Q-1 66		68	7.971	542	449	991
TOTAL	2845.0	489801		2434838	2213214	4648052

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM SUBD CF WORK DESIGN/ENGINEERING

ON-SITE LABOR

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BUR DEN DCLL ARS	LABUR + Burden s
Q-1 58 Q-2 58		8	2.875	23	28	51
Q-3 58 Q-4 58 Q-1 59		30	4.467	134	139	273
9-2 59						
Q-3 59 Q-4 59	21.0	3819	2.804	10707	15158	258 65
Q-1 60 Q-2 60	-15.0	-2542	2.829	-7191	-6863	-14054
Q-3 60 Q-4 67		62	2.516	15é	175	331
Q-1 61 Q-2 61		92	2.761	254	380	634
Q-3 61 Q-4 61		1	1.000	1	2	3
Q-1 62 Q-2 62	1.5	221	3.751	32.9	1016	1845
Q-3 62 Q-4 62	-1.5	-214	3.757	-804	-985	-1789
Q-1 63 Q-2 63		31	3.226	10C	124	224
Q-3 63		13	3.077	40	278	318
TOTAL	6.0	1521		4249	9452	13701

.

.

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 5-SUBSYSTEM 07 SUBD OF WORK DESIGN/ENGINEERING

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BURDEN DOLLARS	LABOR + BURDEN \$
Q-3 58		9	2.000	18		18
Q-4 58 Q-1 59		-1				
Q-2 59		.		260		260
Q-3 59 Q-4 59		91	2.857	200		
Q-1 60	1.5	211	4.545	959		959
Q-2 60 Q-3 60		24	4.625	111		111
Q-4 60 Q-1 61		16	5.375	86		86
Q-2 61						
Q-3 61 Q-4 61						
Q-1 62						
Q-2 62 Q-3 62		1	1.000	1		1
Q-4 62	•					
Q-1 63 Q-2 63						
Q-3 63 Q-4 63		47	3.468	163		163
Q-1 64		-1				
TOTAL	1.5	397		1598		1598

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 5-SUBSYSTEM 07 SUBD OF WORK DESIGN/ENGINEERING

		MAN- MONTHS	LABOR HOURS	LABOR Rate	LABOR DCLLARS	BURDEN DOLLARS	LABOR + BURDEN \$	ENGR Matl
Q-1		9.0	1621	4.716	7644	7 367	15011	22
Q-2 Q-3 Q-4	58	117.0	19624	4.317	84714	76858	161572	75
Q-1 Q-2	59	169.5	28987	4.316	125098	99850	224948	12
Q-3 Q-4		308-5	54488	3.967	216130	195752	411882	1031
Q-1 Q-2	60	376.5	653 45	4.584	299573	241950	541523	308
Q-3 Q-4		319.0	53649	4.891	262373	198730	461103	499
Q-1 Q-2	61	444.0	75821	4.762	361054	380691	741745	191
Q-3 Q-4	61	312.0	56574	5.069	286788	284463	571251	- 9
Q-1 Q-2	62	228.0	38829	5.296	205641	179175	38481 6	
Q-3 Q-4	62	186.0	31238	5+218	163246	161888	325134	10172
Q-1 Q-2	63	138.0	23633	6.084	143782	128191	271973	58
Q-3 Q-4	63	97.C	16306	6.321	103074	95169	198243	1434
Q-1 Q-2	64	86.5	14725	6.990	102932	9 7 93 0	200862	-90
Q-3 Q-4	64	43.5	7620	6.995	53304	53463	106767	789
Q-1 Q-2	65	12.0	2149	7.894	16964	14180	31144	
Q-3 Q-4	65	6.0	992	7.889	7826	6560	14386	

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

1

.

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

4-SYSTEM 1 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 5-SUB SYSTEM 07 SUBD OF WORK DESIGN/ENGINEERING

	MAN- Mon ths	LABOR HOURS	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$	ENGR Matl
Q-1 66		68	7.971	542	449	991	
TOTAL	2852.5	491719		2440685	2222666	4663351	14492

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1

PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 5-SUBSYSTEM 07 SUBD OF WORK DESIGN/ENGINEERING

		SUBC	TOTAL MATERIAL	MPC	OTHER COST	SUB Total	G&A	TOTAL Cost
Q-1 Q-2			22	1	308	15342		15342
Q-3 Q-4	58		75	4		161651		161651
Q-1	59		12	1		224961		224961
Q-2 Q-3	59		1031	87		413000		413000
Q-4 Q-1	6 0	92679	92937	5538	11302	651350	12410	6 6 3760
Q-2 Q-3	6 0	20110	20609	1258	7528	490498	9345	499843
Q-4 Q-1	61	14499	14690	431	13571	775437	14410	789847
Q-2 Q-3	61	8478	8469	241	572	580533	10788	591321
Q-4 Q-1	62	10352	10352	329	1294	396791	6660	403451
Q-2 Q-3	62	17358	27530	1352	4578	358594	6019	364613
Q-4 (Q-1 (63	18645	18703	797	118	291591	4875	296466
Q-2 (Q-3 (4651	6085	290	836	205454	3435	
Q-4 (Q-1 (-90	-10	1000	201762	4293	208889
Q-2 (Q-3 (789	287	1000	108 843		206055
Q-4 (Q-1 (64		107	201			2316	111159
Q-2 0 Q-3 0	65				202	31346	836	32182
Q-4 6					81	14467	386	14853

NORTH AMERICAN ROCKWELL CORP. Space Division Data Prepared Under NASA Contract NAS9-12100

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 5-SUBSYSTEM 07 SUBD OF NORK DESIGN/ENGINEERING

	SUBC	TOTAL MATERIAL	MPC	OTHER COST	SUB Total	G & A	TOTAL COST
Q-1 66				5	996	30	1026
TOTAL	186772	201264	10606	47395	4922616	7580 3	4998 419

ł

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4–SYSTEM 5–SUBSYSTEM	1 07	PERSONNEL	ACCOMM	and	ESCAPE	SUBSYSTEM
SUBD OF WORK	PRODUCT	ION				

	SUBC	мрс	SUB TOTAL	GεΔ	IDWA	TOTAL COST
Q-1 60 Q-2 60	7 0600	4188	7 4788	1425		76213
Q-3 60 Q-4 60	107618	6385	114003	2552	19966	136521
Q-1 61 Q-2 61	344459	9869	354 33 8	17696	597916	969950
Q-3 61 Q-4 61	19383	412	19795	12812	669678	702285
0-1 62 0-2 62	102968	3272	106240	1783		108023
Q-3 62 Q-4 62	110969	3523	114492	1522		116414
Q-1 63 Q-2 63	74391	3158	77549	1296		78845
9-3 63	18549	596	19145	320		19465
TUTAL	848947	31403	88035C	39806	1287560	2207716

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM1PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM5-SUBSYSTEM07SUBD OF WORK TOULING AND STE

	SUBC	MPC	SUB Total	G&A	TOTAL COST
Q-3 60 25052 Q-4 60 Q-1 61 27160	25052	1486	26538	506	27044
	778	27938	519	28457	
Q-2 61 Q-3 61	Q-3 61 4107	117	4224	78	4302
Q-4 61 Q-1 62		32	1051	18	1069
Q-2 62 Q-3 62	1016	32	1048	18	1066
TOTAL	58354	2445	60799	1139	61938

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM SUBD OF WORK TEST/CC

ON-SITE LABOR

	MAN- MONTHS	LABUR HUUR S	LABOR RATE	LABOR DOLLAR S	BURDEN DULL ARS	LABOR + BURDEN \$
Q-1 60 Q-2 60		52	3.769	196	196	392
Q-3 60 Q-4 60	24.0	4017	3.688	14814	14650	29464
Q-1 61 Q-2 61	9 .0	1516	5.093	7721	4064	11785
Q-3 61 Q-4 51	73.5	13338	3.735	49812	51807	101619
0-1 62 0-2 62	48 .C	8109	4.585	37179	43038	80217
Q-3 62 Q-4 62	43.5	7244	3.912	23335	38707	67042
Q-1 63 Q-2 63	6.C	1056	3.765	3976	5483	9459
Q-3 63 Q-4 63	3.0	52 7	3.330	1755	-1188	567
Q-1 64 Q-2 64	1.5	243	3.506	852	4448	5300
Q-3 64 Q-4 64		29	4.207	122	206	328
Q-1 65 Q-2 65	1.5	135	3.281	443	445	888
0-3 65 0-4 65		54	3•29 <i>6</i>	178	178	356
Q-1 66		3	14.333	43	43	86
TOTAL	210.0	36323		145426	162077	307503

APRIL 1972

.

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM SUBD OF WORK TEST/QC

	MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BURDEN Doll Ars	LABOR + Burden \$
Q-3 58	76.5	12858	2.720	34979	46863	81842
Q-4 58 Q-1 59	289.5	49514	2 • 92 2	144663	179854	324517
Q-2 59 Q-3 59	94.5	16759	2.808	47053	72074	119127
Q-4 59 Q-1 60	303.0	52483	2.933	153945	165457	319402
Q-2 60 Q-3 60	166.5	27957	2.918	81579	96097	177676
Q-4 60 Q-1 61	1012.5	172823	2.983	515586	559565	1075151
Q-2 61 Q-3 61	409.5	74272	3.105	230622	305626	536248
Q-4 61 Q-1 62	433.5	73882	4.234	3128 00	358728	671528
Q-2 62 Q-3 62	156.0	26172	2.985	78113	108603	186716
Q-4 62 Q-1 63	10.5	1685	4.160	7009	6863	13872
Q-2 63 Q-3 63		44	2.977	131	23285	23416
Q-4 63 Q-1 64	1.5	194	1.933	375	668	1043
Q-2 64 Q-3 64		44	1.817	-8 C	-91	-171
Q-4 64 Q-1 65		-112	• 491	-55	-124	-179
Q-2 65 Q-3 65		-44	. 477	-21	-49	-70
Q-4 65						

CORP.

APRIL 1972

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 07 SUBD OF WORK TEST/QC

LABOR + BURDEN \$	BUR DEN DOLL ARS	L ABOR DOLLAR S	LABOR RATE	LABOR HOURS	MAN- Months	
-4	-2	-2	• 66 7	- 3		Q-1 66
3530114	1923417	1606697		508528	2953.5	TOTAL

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 5-SUBSYSTEM 07 SUBD CF WORK TEST/QC

	MAN- MON THS	LABOR HOUR S	LABOR Rate	LABOR Dollar S	BURDEN DOLLARS	LABOR + BURDEN \$
Q-3 58	1.5	225	4.289	965		965
Q-4 58 Q-1 59	4.5	744	3.094	2302		2302
Q-2 59 Q-3 59	3.0	441	3.522	1553		1553
Q-4 59 Q-1 60	13.5	2333	3.012	7028		7028
Q-2 60 Q-3 60	15.0	2458	3.615	3922		8922
Q-4 60 Q-1 61	37.5	6498	2.777	18044		18044
Q-2 61 Q-3 61	19.5	3562	3.077	10962		10962
Q-4 61 Q-1 62	18.0	3106	3.217	9 9 92		9992
Q-2 62 Q-3 62	9.0	1403	3.087	4331		4331
0-4 62 9-1 63		58	3.052	177		177
Q-2 63 Q-3 63		24	3.750	90		90
Q-4 63 Q-1 64	1.5	162	.105	17		17
Q-2 64 Q-3 64	1.5	157				
Q-4 64 Q-1 65	-1.5	-218	• 8	2		2
Q-2 65 Q-3 65 Q-4 65		-87				

-

t

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNCER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM SUBD OF WORK TEST/QC

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BURDEN DOLLARS	LABOR + BURDEN \$
0-1 66		-7				
TOTAL	123.0	20869		64385		64385

1

.

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

4-SYSTEM 1 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 5-SUBSYSTEM 07 SUBD DF WORK TEST/QC

	HAN- MONTHS	LABOR HOURS	LABOR Rate	LABOR DOLLARS	BURDEN DOLL ARS	LABOR + BURDEN \$	ENGR Matl
Q-3 58	78.0	13083	2.747	35944	46 863	82807	11585
Q-4 58						~ ~ / ~ * ~	2/000
Q-1 59	294.0	50258	2.924	146965	179854	326819	34002
Q-2 59					70.07/	1 20 (0.0	12052
Q-3 59	97.5	17200	2.826	48606	72074	120680	13952
Q-4 59	-		2 02 7	1/11/0	165653	326822	108958
Q-1 60	316.5	54868	2.937	161169	165653	520022	100750
Q-2 60	2 05 5	24447	3.058	105315	110747	216062	251811
Q-3 60	205.5	34442	3.030	102212	110141	210002	221011
Q-4 60	1059.0	180837	2.994	541 351	563629	1104980	174683
Q-1 61 Q-2 61	1059-0	100001	2	241321	,0		
Q - 3 61	502.5	91172	3.196	291396	357433	648829	147295
Q = 4 61	502.05	/11/2	30170				
Q = 1.62	499.5	85097	4.230	359971	401766	761737	120874
Q = 2.62	20102	02071	11290				
Q-3 62	208.5	34819	3.182	110775	147310	258089	66028
Q-4 62	20005	51017					
Q = 1 63	16.5	2799	3.988	11162	12346	23508	2759
Q-2 63							
Q-3 63	3.0	595	3.321	1976	22097	24073	-590
0-4 63							
0-1 64	4.5	599	2.077	1244	5116	6360	7222
0-2 64							
0-3 64	1.5	230	.183	42	115	157	12787
0-4 64							
0-1 65		-195	1.999	390	321	711	165
Q-2 65							
Q-3 65	н. - С.	-77	2.038	157	129	286	66
Q-4 65							
Q-1 66		-7	5.856	41	41	82	4
TOTAL	3286.5	565720		1816508	2085494	3902002	951601

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 5-SUBSYSTEM 07 SUBD OF WORK TEST/QC

.

	SUBC	TOTAL MATERIAL	MPC	OTHER COST	SUB Total	GδA	IDWA
Q-3 58 Q-4 58		11585	634		95026		
Q-1 59 Q-2 59		34002	2880		363701		
Q-2 59 Q-3 59 Q-4 59		13952	1182		135814		
Q-1 60 Q-2 60		108958	14328		450108	8576	
Q-3 60 Q-4 60	10500	262311	33735		512108	9809	2717
Q-1 61 Q-2 61	3535	178218	14862	240	1298300	26401	122391
Q-3 61 Q-4 61	18155	165451	12966	5494	332740	16274	43036
Q-1 62 Q-2 62	16035	136909	10115	5989	914750	15354	
Q-3 62 Q-4 62	11032	77060	5553	3102	343804	5771	
Q-1 63 Q-2 63		2759	272	-2367	24172	404	
Q-3 63 Q-4 63		-590	-58	-2822	20603	344	
Q-1 64 Q-2 64		7222	770	2	14354	305	
Q-3 64 Q-4 64		12787	4652	2	17598	374	
Q-1 65 Q-2 65		165	49	9024	9949	265	
Q-3 65 Q-4 65		ó6	12	3609	3973	106	
Q-1 66		4	1	258	345	10	
TOTAL	59258	1010859	101953	22531	5037345	83993	168144

NORTH AMERICAN ROCKWELL CORP. Space Division Data Prepared Under NASA Contract NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM 5-SUBSYSTEM 07 SUBD OF WORK TEST/QC

		TOTAL Cost
Q-3	58	9 5026
0-4	58	
0-1		363701
Q-2		
Q-3	59	135814
Q-4	59	
Q-1	60	458684
Q-2	60	
Q-3	60	524634
Q-4		
Q-1		1447092
Q-2	61	
Q-3	61	892050
Q-4		
Q-1		930104
Q-2		349575
Q-3		349212
Q-4 Q-1		24576
Q-2		24310
Q-3	63	20947
0-4	63	20011
Q-1		14659
Q-2		
Q-3	64	17972
Q-4	64	
Q-1	65	10214
0 - 2	65	
Q-3	65	4079
Q-4	65	
Q-1	66	355
TO	TAL .	5289482

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

ON-SITE LABOR

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DCLLARS	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-1 58 Q-2 58	9.0	1613	4.725	7621	7339	14960
Q-3 58 Q-4 58	117.0	19585	4.318	84562	76719	161281
Q-1 59 Q-2 59	169.5	28988	4.316	125098	99850	224948
Q-3 59 Q-4 59	287.5	50578	4.056	205163	180594	385757
Q-1 60 Q-2 60	391.0	67728	4.518	305001	249009	555010
Q-3 60 Q-4 60	343.0	57580	4.809	2 7 6920	213205	490125
Q-1 61 Q-2 61	453.0	77225	4.771	368435	384375	752810
Q-3 61 Q-4 61	385.5	69911	4.815	336599	336268	672867
Q-1 62 Q-2 62	274.0	46717	5.180	241991	221197	463188
Q-3 62 Q-4 62	231.0	38745	4.965	192384	201580	393964
Q-1 63 Q-2 63	144.0	24658	5.988	147658	133550	281208
Q-3 63 Q-4 63	100.0	16773	6.238	104626	93703	198329
Q-1 64 Q-2 64	98. 0	14969	6.933	103784	102378	206162
Q-3 64 Q-4 64	43.5	7649	6.985	53426	53669	107095
0-1 65 0-2 65	13.5	2284	7.621	17407	14625	32032

APRIL 1972

 \sim

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

ON-SITE LABOR

	MAN- MON THS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BUR CEN DULL ARS	LABOR + BURDEN \$
Q-3 65 Q-4 65	6.0	1046	7.652	8004	6738	14742
Q-1 66		71	8.239	585	492	1077
TOTAL	3055.5	526124		2580264	2375291	49 55 55 5

.

NORTH AMERICAN RCCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

	SHOP S	UPPOF	2 T	
4-SYSTEM	1			
5-SUBSYSTEM	07			
PERSONNEL	ACCOMM	AND	ESCAPE	SUBSYSTEM

ON-SITE LABOR

	MAN- MONTHS	LABOR HOUR S	LABCR RATE	LABOR DCLLARS	BURDEN DGLLARS	LABOR + BURDEN \$
Q-1 58		8	2.875	23	28	51
Q-2 58					20	71
Q-3 58 Q-4 58	76.5	12888	2.724	35113	47002	82115
Q-1 59 Q-2 59	289.5	49514	2.922	144663	179854	324517
Q-3 59 Q-4 59	117.0	20578	2.807	5776C	87232	144992
Q = 1 60 Q = 2 60	283.0	49941	2.939	146754	158594	305348
Q-3 60 Q-4 60	166.5	28019	2.917	81735	96272	178007
Q = 1 61 Q = 2 61	1012.5	172915	2.983	51584 C	559945	1075785
Q-3 61 Q-4 61	409.5	74273	3.105	230623	305628	536251
Q-1 62 Q-2 62	434.5	74103	4.232	313629	359744	673373
Q-3 62 Q-4 62	154.5	25958	2.578	77305	107618	184927
Q-1 63 Q-2 63	10.5	1716	4.143	7109	6 587	14096
Q-3 63 Q-4 63		57	3.000	171	23563	23734
Q = 1 64 Q = 2 64	1.5	194	1.933	375	668	1043
Q-3 64 Q-4 64		44	1.817	-80	-91	-171
Q-1 65 Q-2 65		-112	• 491	-55	-124	-179

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

ON-SITE LABOR

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLAR S	BUR DEN Doll Ars	LABOR + Burden \$
Q-3 65		-44	.477	-21	-49	-70
Q-4 65 Q-1 66		- 3	.667	-2	-2	-4
TOTAL	2960.5	510049		1610946	1932869	3543815

\$

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

ON-SITE LABOR

	MAN- MONTHS	LABOR HOURS	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL AR S	LABOR + BURDEN \$
Q-3 58 Q-4 58	1.5	234	4.201	983		983
Q-1 59 Q-2 59	4.5	743	3.098	2302		2 30 2
Q-3 59 Q-4 59	3.0	532	3.408	1813		1813
Q-1 60 Q-2 60	15.0	2544	3.140	7987		7987
Q-3 60 Q-4 60	15.0	2492	3.625	9033		9033
0-1 61 0-2 61	37.5	6514	2.783	13130		18130
Q-3 61 Q-4 61	19.5	3562	3.077	10962		10962
Q-1 62 Q-2 62	18.0	3106	.3.217	9992		9992
Q-3 62 Q-4 62	9.0	1404	3.085	4332		4332
Q-1 63 Q-2 63	·	58	3.052	177		177
Q-3 63 Q-4 63		71	3.563	253		253
Q-1 64 Q-2 64	1.5	161	• 106	17		17
Q-3 64 Q-4 64	1.5	157		•		17
Q-1 65 Q-2 65	-1.5	-218	• 8	2		2
Q-2 65 Q-3 65 Q-4 65		-87				2

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUCY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

ON-SITE LABOR

.

	MAN- MON THS	LABOR HOUR S	LABOR RATE	LABOR DCLLARS	BUR DEN Doll Ars	LABOR + BURDEN \$
Q-1 66		-7				
TOTAL	124.5	21266		65983		65 98 3

4

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

		MAN- MON THS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BURDEN DOLLARS	LABOR + Burden \$	EN GR MATL
Q-1		9.0	1621	4.716	7644	7367	15011	22
Q-2 Q-3 Q-4	58	195.0	32707	3.689	120658	123721	244379	11660
Q-1 Q-2	59	463.5	7 9245	3.433	272063	279704	551767	34014
Q-3 Q-4	59	407.5	71688	3.693	264736	267826	532562	14983
0-1 0-2		694.0	120213	3.833	460742	407603	868345	109266
Q-3 Q-4		524.5	88091	4.174	367688	309477	677165	252310
Q-1 Q-2		1503.0	256658	3.516	902405	944 320	1846725	174874
Q-3 Q-4	61	814.5	147746	3.913	578184	641 896	1220080	147286
Q-1 Q-2	62	726.5	123926	4.564	565612	580941	1146553	120874
Q-3 Q-4		394.5	66107	4.145	274025	309198	583223	76200
Q-1 Q-2	63	154.5	26432	5.862	154944	140537	295481	2817
Q-3 Q-4		100.0	16901	6.216	105050	117266	222316	844
Q-1 Q-2		91.0	15324	6.798	104176	103046	207222	7132
Q-3 Q-4		45.0	7850	6.796	53346	53578	106924	13576
Q-1 Q-2		12.0	1954	8.881	17354	14501	31855	165
Q-3 Q-4		6.0	915	8.725	7983	6689	14672	66

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

•

.

	MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL AR S	LABOR + BURDEN \$	ENGR MATL
Q-1 66		61	9.557	583	490	1073	4
TOTAL	6140.5	1057439		4257193	4308160	8565353	966093

.

NORTH AMERICAN RECKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

APRIL 1972

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

.

	SUBC	TOTAL Material	MPC	OTHER COST	SUB Total	G & A	IOWA
0-1 58 Q-2 58		22	1	308	15342		
0-3 58 0-4 58		11660	638		256677		
Q-1 59 Q-2 59		34014	2881		588662		
Q-3 59 Q-4 59		14983	1269		548814		
Q-1 60 Q-2 50	163279	272545	24054	11302	1176246	22411	
Q-3 50 Q-4 60	163280	415590	42 864	7528	1143147	22212	22683
Q - 1 = 61 Q - 2 = 61	389663	564537	2594C	18811	2456013	59026	720307
Q = 3 - 61 Q = 4 - 61	50124	197410	13736	6066	1437292	39952	712714
Q = 1 62 Q = 2 62	130374	251248	13748	7283	1418832	23815	
Q-3 62 Q-4 62	140375	216575	10460	768C	817938	13730	
Q-1 63 Q-2 63	93036	95853	4227	-2249	393312	6575	
Q-3 63	23200	24044	828	-1986	245202	4099	
Q-4 63 Q-1 64		7132	76 C	1002	216116	4598	
Q-2 64 Q-3 64		13576	4939	1002	126441	2690	
Q-4 64 Q-1 65		165	49	9226	41295	1101	
Q-2 65 Q-3 65		56	12	3690	18440	492	
Q-4 65						• • •	

~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

 $\sim -$

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

	SUBC	TOTAL MATERIAL	MPC	OTHER Cost	SUB TOTAL	G & A	IDWA
Q-1 66		4	1	263	1341	40	
, TOTAL	1153331	2119424	146407	69926	10901110	200741	1455704

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

	TOTAL
	COST
	0031
Q-1 53	15262
Q-2 58	15342
Q-3 58	256677
Q-4 58	200011
Q-1 59	500(()
Q-2 59	588662
Q-3 59	F (D D h (
Q-4 59	548814
Q-1 60	1198657
Q-2 60	
Q-3 60	1188042
Q-4 60	
0-1 61	3235346
Q-2 61	
Q-3 61	2189558
Q-4 61	
0-1 62	1442647
Q-2 62	
9-3 62	831668
Q-4 62	•
Q-1 63	399887
Q-2 63	
Q-3 63	249301
Q-4 63	
Q-1 64	220714
Q-2 64	
0-3 64	129131
Q-4 64	
Q-1 65	42396
Q-2 65	
Q-3 65	18932
9-4 65	

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 07 PERSONNEL ACCOMM AND ESCAPE SUBSYSTEM

> TOTAL COST

Q-1 66 1381

، ب

i

;

à

TOTAL 12557555

APRIL 1972

TABLE OF CONTENTS

SUBSYSTEM: ALIGHTING AND ARRESTING	WBS CODE: 1.	8,
TITLE	PAGE	
WORK BREAKDOWN STRUCTURE	IV-370	
TECHNICAL DESCRIPTIONS AND CHARACTERISTICS	IV-373	
WBS 1.8 Alighting and Arresting WBS 1.8.1 Main Landing Gear WBS 1.8.2 Nose Landing Gear WBS 1.8.3 Drag Chute System WBS 1.8.4 Controls and Displays	IV-373 IV-377 IV-390 IV-397 IV-404	
TECHNICAL DRIVERS	IV-408	
Landing Gear Sequence Switches Main Landing Gear Tires Automatic Brake Control	IV-408 IV-409 IV-410	
DEVELOPMENT DATA SUMMARY	IV-412	
State-of-the-Art Percent Developed	IV-413 IV-414	
DEVELOPMENT MILESTONES	IV-417	
DESIGN/PROGRAMMATIC IMPACTS	IV-419	
COST SUMMARY	IV - 426	
Cost Definition Subcontractor Matrix Detail Cost Data	IV-426 IV-428 IV-429	

WORK BREAKDOWN STRUCTURE

SUBSYSTEM: ALIGHTING AND ARRESTING

WBS CODE 1.8

WBS LEVEL

4 5 6 7 8

1.8 ALIGHTING AND ARRESTING SUBSYSTEM

1.8.1 Main Landing Gear

1.8.1.1 Shock Strut

Pressure Relief Valve Seals Scissors

1.8.1.2 Bogie Rotate Actuator

Down Lock Pin Up Lock Latch Rotate Flow Control Valve Rotate Actuator Transfer Valve Rotate Lock Transfer Valve Beam

1.8.1.3 Brake System

Disc Cartridge Actuator Control Valve Torque Sensor Wheel Load Sensor Wheel Speed Sensor

1.8.1.4 Reference Wheel Assembly

Wheel Speed Sensor Wheel Shock Strut Wheel Tire

1.8.1.5 Bogie Fold and Pitch Control Assembly

Control Valves Control Manifold

1.8.1.6 Main Gear Door Actuator Mechanism

Door Locks Door Position Sensor

WORK BREAKDOWN STRUCTURE

SUBSYSTEM: ALIGHTING AND ARRESTING	WBS CODE 1.8
WBS LEVEL	
4 5 6 7 8	
1.8.1.7 Brake Control Unit	
1.8.1.8 Brake Pedal Position Valving	
1.8.1.9 Main Gear Wheel	
1.8.1.10 Main Gear Tires	
1.8.1.11 Tire Temperature Sensor	
1.8.1.12 Gear Uplock Assembly	
1.8.1.13 Electrical Emergency Ext. Control	
1.8.2 Nose Gear	
1.8.2.1 Shock Strut	
Pressure Relief Valve	
Seals Scissors	
SCIBSOI S	
1.8.2.2 Nose Gear Steering	
Actuator	
Valve Manifold Assembly	
Control Valve Position Output Transducer	
Position Input Transducer	
1.8.2.3 Nose Gear Wheel	
1.8.2.4 Nose Gear Tire	
1.8.2.5 Nose Gear Door Actuator Mechanism	
Door Locks Door Position Sensor	
1.8.2.6 Gear Up Lock Assy	
1.8.2.7 Electronic Emergency Ext. Control	

WORK BREAKDOWN STRUCTURE

SUBSYSTEM: ALIGHTING AND ARRESTING

WBS CODE 1.8

	7	VBS L	EVEL	
4	5	6	7	8

1.8.3 Drag Chute Subsystem

1.8.3.1 Compartment Door Actuation

Actuators Locking Mechanism

1.8.3.2 Chute Release Mechanism

Hook Lock Actuator Control Cabling Servo Valve

1.8.3.3 Drag Chute

1.8.3.4 Over Temperature Detector

1.8.4 Controls and Displays

1.8.4.1 Gear Indicator Panel

1.8.4.2 Gear Control Handle

1.8.4.3 Drag Chute Control "Tee"

1.8.5 Ground Tests

- 1.8.5.1 Mockups
- 1.8.5.2 Simulators
- 1.8.5.3 Mission Hydrostatic Tests
- 1.8.5.4 Wind Tunnel

TECHNICAL DESCRIPTION

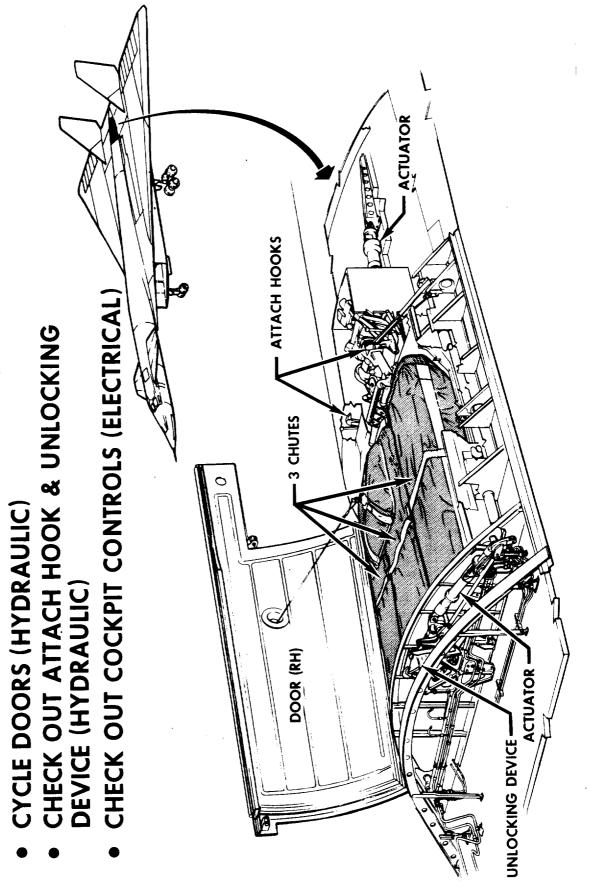
SUBSYSTEM:

ALIGHTING AND ARRESTING

WBS CODE: 1.8

The Alighting and Arresting Subsystem of the B-70 consisted of a conventional tricycle landing gear arrangement and a drag chute system to reduce the landing roll. The landing gear system was composed of two main landing gears and a nose gear which retracted aft into the fuselage and were enclosed by contoured doors. Each main gear assembly consisted of a shock strut, bracing, actuators, and bogie beam on which were mounted four wheels and tires, two brakes with steel heat sinks, plus a small fifth wheel to sense braking action. The nose gear assembly was composed of a shock strut, bracing, actuators, two wheels with tires, and a steering unit. Exhibit 1, page IV-374, presents a series of pictures of the landing gear and checkout criteria.

The drag chute system was installed in the upper aft fuselage and consisted of three 28-foot diameter ring slot drag chutes. Each drag chute was installed in individual deployment bags in the drag chute compartment with individual canopy risers attached to a trunnion assembly which was hooked to the air vehicle structure. Exhibit 2, page IV-375, presents an overview showing the drag chute system installation.


The landing gear shock struts and bogie beams of the B-70 pioneered the use of high heat treat, high temperature H-ll tool steel for aircraft use. (See Technical Driver: Use of H-ll Tool Steel under Airframe Structures Subsystem, WBS 1.1) The gear assembly was in the heat treat range of 280 to 300,000 psi and would withstand stowage for extended periods of temperatures as high as 650° F without becoming annealed. The tires of the gear assembly were also an advancement in the state-of-the-art. The tires had higher load ratings than ever before achieved within the envelope of 40×17.5 and operated at greater speeds than ever before used on heavy aircraft.

The brake control system of the B-70 was a new concept of fully automatic regulation of braking the air vehicle upon a given input command by the pilot. The braking torque on each of the four brakes was individually and automatically controlled to provide maximum retarding force, regardless of runway conditions, without skidding the tires. The braking system was not of the conventional anti-skid ("On"-"Off") type but a much more refined type of control which utilized a "fifth wheel" to provide a true ground speed reference.

The Alighting and Arresting Subsystem is described in detail along with the functional interfaces in subsequent paragraphs as identified by the WBS.

 HYDRAULIC OPERATING SYSTEMS (INCLUDING 27 ACTUATORS) CHECK OUT STEERING, BRAKING, & ANTI-SKID CYCLING CYCLING RETRACT 18 SECONDS RETRACT 18 SECONDS EXTEND 20 SECONDS EXTEND 20 SECONDS ELECTRICAL & ELECTRONIC CHECK OUT STEERING & BRAKE CONTROLS COCKPIT TIRE & BRAKE HEAT SENSING SUBSYSTEM ANTI-SKID SUBSYSTEM 	NOSE GEAR
--	-----------

EXHIBIT 1

DRAG CHUTE

IV-375

WBS IDENTIFICATION: ALIGHTING AND ARRESTING SUBSYSTEM

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

- WBS CODE: 1.8

	······			
A/V NO. 2 MAY 1966		19, 472 20, 173 TRICYCLE 562, 609 562, 609 562, 609 519, 878 542, 029 537, 000 537, 000 174, 000, 000 174, 000, 000 174, 000, 000 174, 000, 000 3 - 28 FT DIA 220 220 220 100 100 100 100	0.99924	2304
A/V NO. 1 MAR 1964	STEMCHUTES)SYSTEM	19,472 TRICYCLE 562,609 519,878 537,000 537,000 174,000,000 174,000,000 174,000,000 174,000,000 176,000 166,000	0.99924	2304
FEBRUARY 1961	NG GEAR SYSTEM	AILABLE TRICYCLE 562,609 AILABLE DISCS: HYDR 174,000,000 174,000,000 176,000	42666.0	2304
DECEMBER 1959	MAIN LANDING GEAR SYS NOSE GEAR SYSTEM DRAG CHUTE SYSTEM (3 CONTROLS AND DISPLAY	008 NOT AAILABLE 19, 472 20, 173 fCLE TRLCYCLE TRLCYCLE TRLCYCLE TRUCYCLE fCLE TRLCYCLE TRUCYCLE TRUCYCLE TRUCYCLE 509 562,609 562,609 562,609 562,609 500 562,609 562,609 542,029 500 NOT AVAILABLE 519,878 542,029 500 NULTIPLE FRICTION DISCS: HYDRAULLICALLY 00 MULTIPLE FRICTION DISCS: HYDRAULICALLY 00 174,000,000 174,000,000 174,000,000 174,000,000 174,000,000 174,000,000 FT <dia< td=""> 2 2 8 7 000 0 2 2 2 2 2 2 FT<dia< td=""> - 2 2 2 2 2 2 0 - 100 100 1 100 100 100 </dia<></dia<>	I	1
MARCH 1959	1111 0111	17,008 TRUCYCLE 561,609 537,000 3 - 28 FT DLA	t	ł
UNIT OF MEASURE	NO./TYPE	POUNDS TYPE POUNDS POUNDS POUNDS NO •/TYPE FEET/POUNDS NO •/SIZE KLAS KTAS FILAS FILAS FOUNDS	NONE	HOURS
CHARACTERISTIC	MAJOR ASSEMBLIES	WETGHT ALLGHTING GEAR MAXIMUM STATIC LOAD MAXIMUM TAKE-OFF LOAD MAXIMUM LANDING WEIGHT BRAKES BRAKE ENERGY (MAXIMUM) DRAG CHUTES CHUTE DEFLOY (MAXIMUM SPEED) " DRAG (MAXIMUM SPEED) " DRAG (MAXIMUM SPEED)	RELLABLILTY FACTOR	HEIM

Space Division North American Rockwell

TECHNICAL DESCRIPTION

SUBSYSTEM: ALIGHTING AND ARRESTING

MAJOR ASSEMBLY: MAIN LANDING GEAR

WBS CODE: 1.8.1

Exhibit 3, page IV-379, presents a picture looking forward under the air vehicle showing the conventional tricycle landing gear installation. As shown, each main landing gear assembly had a shock strut assembly with an attached bogie beam on which were mounted four wheels, four tires, two tandem brake assemblies, and a fifth wheel for ground speed reference. The shock strut assembly was a modified metering pin air-oil shock absorbing type with provisions incorporated for attachment of the bogie beam, actuators, doors and braces. All basic structural members were fabricated of H-11 tool steel with a heat treat of 280,000 to 300,000 psi. Exhibit 4, page IV-380 presents the total main gear assembly while Exhibit 5, page IV-381, shows the upper end of the strut assembly with its braces, main actuator, and air vehicle attachment configuration.

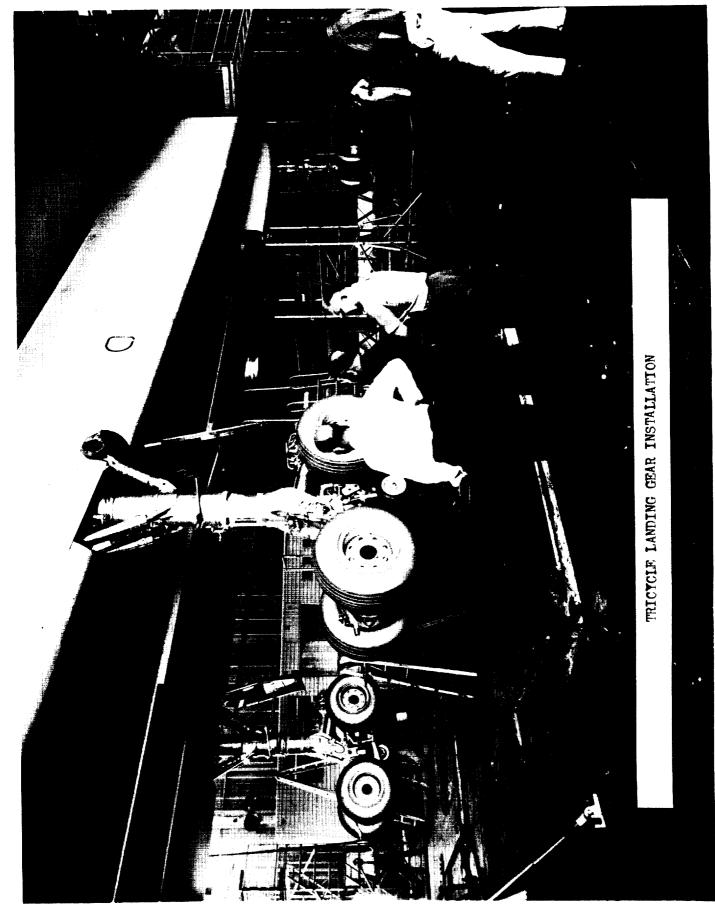
As shown by previous exhibits, the bogie beam was attached to the bottom of the main gear shock strut and provided axles on which the four wheels were mounted in a dual tandem configuration. The bogie beam also incorporated provisions for the brake control sensing "fifth wheel." Exhibit 6, page IV-382, presents a bogie beam in the build-up stage while Exhibit 7 page IV-383, and Exhibit 8, page IV-384, show the bogie beam with the wheel assemblies installed. The design of the bogie beam was such that sufficient motion was provided to permit flat tires or wheels on either axle to maintain contact with the runway. Each end of the bogie beam incorporated provisions for jacking up that gear with the air vehicle at maximum taxi weight. Provisions for towing and restraining were also incorporated and each bogie beam assembly had skid plates attached to the forward and aft underside to protect the beam from damage such as would occur due to blown tires.

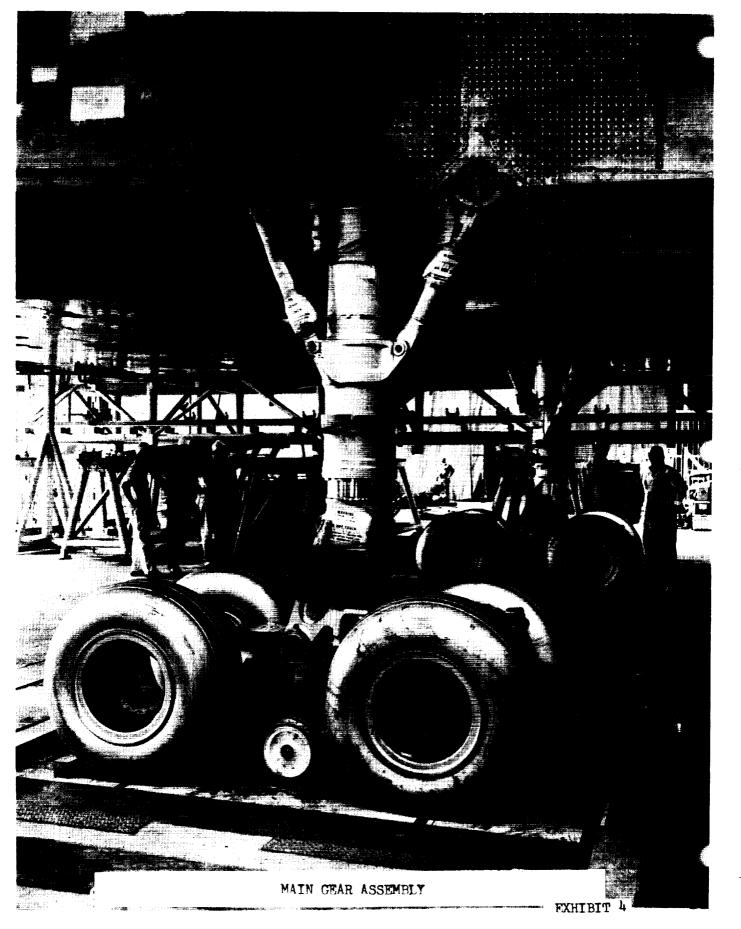
Each main gear strut incorporated a hook to receive and lock the bogie beam roller at the completion of the bogie fold and rotate cycle. Exhibit 9, page IV-385, presents a picture of the main gear being retracted showing the gear doors extended and the bogie folded and rotated. The hook was held in the locked position by a compression bungee to prevent unfolding of the beam during retraction. During extension of the gear, rotation of the bogie beam automatically disengaged the roller from the hook so that the bogie could be unfolded. The folding and unfolding of the bogie beam was accomplished by an actuator which also dampened landing roll pitch oscillations and provided partial compensations for moments due to braking torque.

The wheels, which were fabricated of steel, mounted silver painted 40 x 17.50-18 ply tires. Each pair of wheels were co-rotating and each wheel assembly contained provisions for tire inflation and deflation. A pressure gage, filler valve, and thermal release unit was attached to each wheel

WBS CODE: 1.8.1

ł


1


t

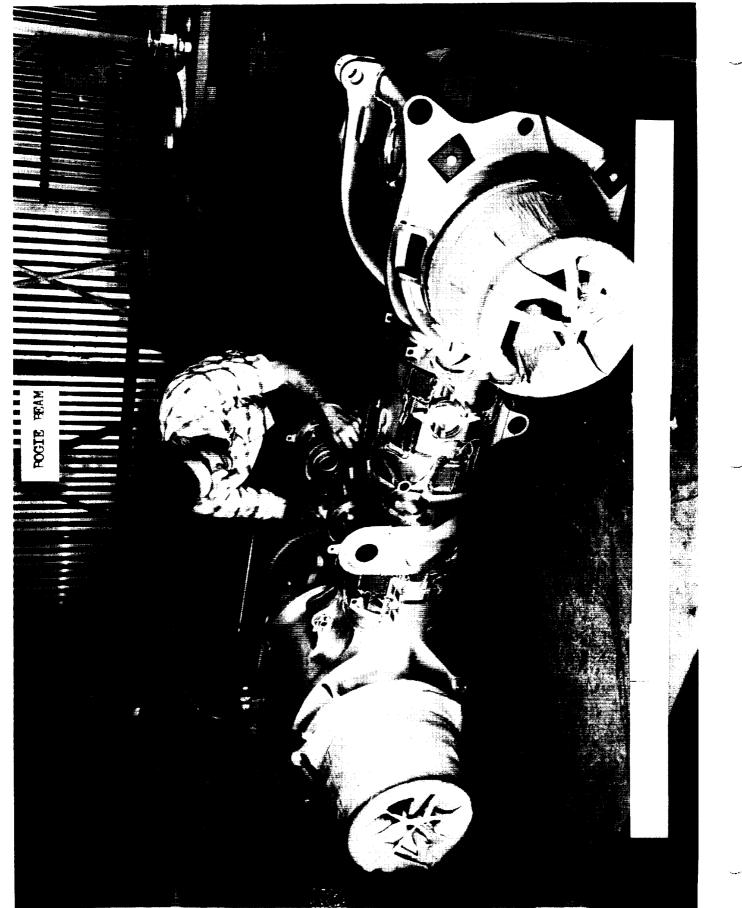
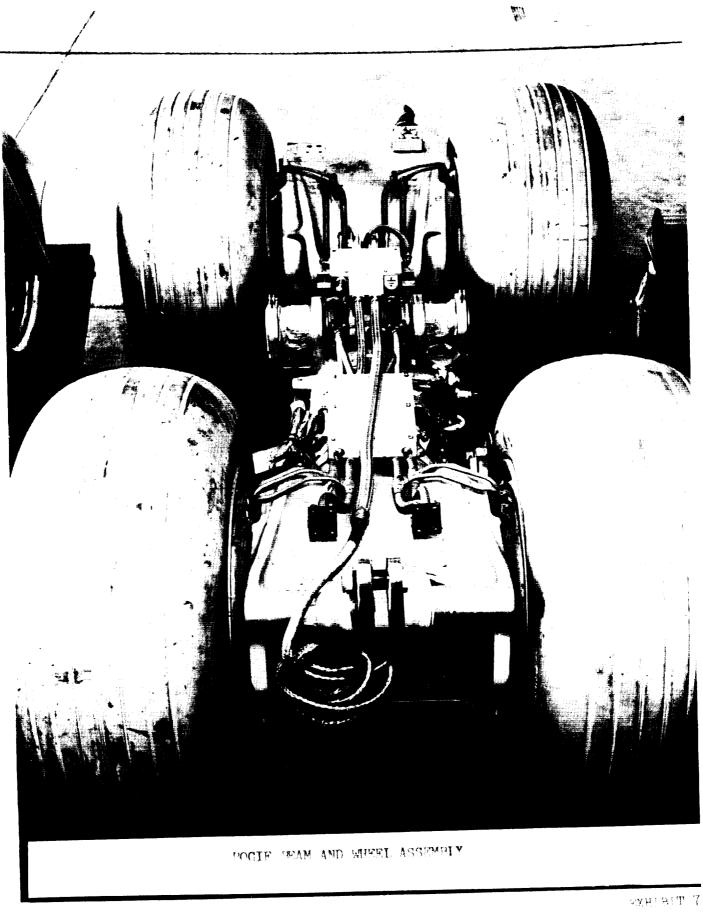
with a counterbalance weight containing a pressure relief value attached to the opposite side of the wheel rim. The pressure gage had a dial range of 600 psi with markings for the allowable pressure range of 350 to 525 psi. The pressure relief devices incorporated in each wheel automatically bled off tire pressures that excluded a safety margin well below tire burst pressure. The $40 \times 17.50-18$ ply tires were extra-high pressure, Type III tubeless tires, inflated with gaseous nitrogen, and designed to withstand an environment of 360° F. The same tire was used for the main gear and nose gear installations.

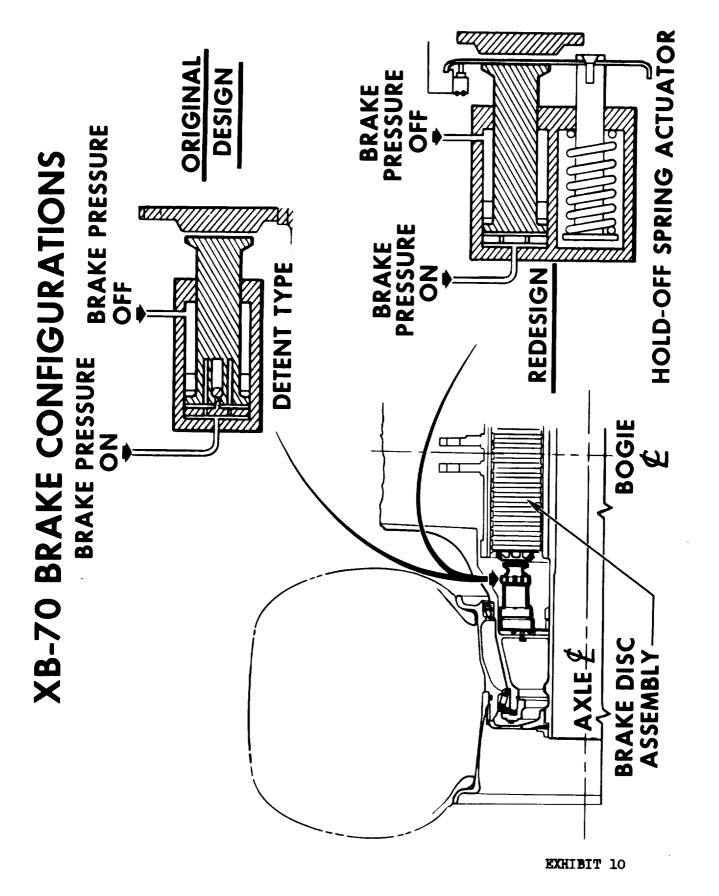
The braking system consisted of the main power brakes, the braking control unit (computer), and the crew brake pedal assembly along with the fifth wheel, plumbing, sensors, valving and associated electrical controls. Each main landing gear assembly had full power brakes with steel heat sink type discs as shown by Exhibit 10, page IV-386. As indicated by the exhibit, one brake assembly was provided for each pair of co-rotating wheels. The full power braking system of the B-70 was a dual system including the pilot input device, electronic control unit, pressure control unit and sensing units.

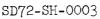
The concept of skid control governed the control function of the automatic brake system. The reference wheel, located between the two outboard main wheels on the landing gear bogie, provided a ground speed signal that was compared with brake wheel speed by the electronic control unit. The pilot's application of braking power on the foot pedals was sensed by brake torque sensors which was also provided as an input to the electronic control box. The control modulated the pilot input and brake torque output to prevent exceeding a value consistent with usable ground coefficients of braking. As a backup to the automatic system, a manual brake control was provided and was engaged by crew selection. In the manual mode, the pilot's application of braking power on the foot pedal provided an electrical input directly to the brake servo valves which resulted in braking torque being applied. In the manual mode, all automatic brake control features were bypassed requiring pilot technique to prevent tire skidding.

· v-381

EXHIBIT 5


EXHIBIT 6



17-302

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY		
TEĆ		

	A/V NO. 2 MAY 1966	14 , 649 238 , 689	155		♦ ♦ Q	21 ition 174 x 10 ⁶	TORQUE 40	4 4
DE:	A/V NO. 1 MAR 1964	14,209 238,689 ILESS/8	320		50	21 1 Iron Composition 174 x 10 ⁶ 174 2	R AUTOMATIC UND SPEED, WHEEL SPEED, 40 LY ACTUATED/12 40 20 20 AC, FREQUENCY MODULATED-	FREQUENCY MODULATED
	FEBRUARY 1961	NOT AVAILABLE TYPE III, EHP TUBE	9 @ 300 0 F FOR 3.3 HRS		50	21 Sinte red 174 x 10 ⁶	L FULL FOWER AUTOMATIC - GROUND SPEED, WHEEL - HYDRAULICALLY ACTUATED/12 - 20 - AC, FREQUENCY M	AC, FREQUEND
	DECEMBER 1959	TYPE -	320	18 1/8	M20 20	21 174 ž 10 ⁶	HUAL FULL FOWER AUTOMATTIC - GROUND SPEED, 140 HYDRAULICALLY ACTUATED - AC, FREQUEN	
	MARCH 1959	13,049 238,689 -	320 9 @ 360 ^{0F} FOR 4.5 HRS	40 x 17.5 x 18 FORGED STEEL/8 40 x 17.5	TWIN TANDEM STEEL HEAT			111
	UNIT OF MEASURE	POUNDS POUNDS TYPE/NO.	FSI QUANTITY	INCHES TYPE/NO.	SPECIFY TYPE/NO. QUANTITY	" SPECLEY FEET/POUNDS	SPECIFY " HERTZ TYPE/NO. HERTZ TYPE	TYPE TYPE HERTZ
WBS IDENTIFICATION:	CHARACTERISTIC	WEIGHT STATIC LOAD (MAXIMUM TAXI) TIRES	TIRE PRESSURE (MAXIMUM THERMAL CYCLES (TIRES)	TTRE SIZE WHEEL WHEEL SIZE	WHEEL ARRANGEMENT BRAKES BRAKE DISCS	BRAKE STATORS BRAKE LINING BRAKE CAPACITY (MAXIMUM)	BRAKE CONTROL CONTROL PARAMETTERS BRAKE CONTROL PARAMETTERS BRAKE BRAKE BRAKE CONTROL FREQ, RESPONSE FREQ, RESPONSE FREQ, RESPONSE FREQ, RESPONSE	BRAKE WHEEL SPEED SENSORS " REF. WHEEL SPEED SENSOR WHEEL SPEED SENSOR FREQ. RESPONSE

I**V-3**87

C-5.

Space Division North American Rockwell

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

1.8.1

- WBS CODE:

WBS IDENTIFICATION: MAIN LANDING GEAR

CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
TORQUE SENSOR FREQ., RESPONSE TORQUE SENSOR HYSTERESIS REFERENCE WHEEL SIZE	HERTZ Å FS ZTHERTZ	+ + F	111	10 14 x 4.5	9 - 1	9 - 1
REFERENCE WHEEL TIRE SIZE TEMPERATURE (DESIGN RANGE) BOGIE BEAM STRUCTURE	LINCHES DEGREES F TYPE	- ¹ 7-	- 450 H-ll Steel	14 x 4.5 450 FORGING:	14 x 4.5 x 8 (TUBELESS 450 450 RGING: MECHANICAL	, ⁴ 50
BOGIE ROTATE ACTUATOR " " SEALS " " " PRESSURE	TYPE/NO. FSI	+ - 000	HYDRAULIC 4,000	CYLLNDER/2 F METAL 4,000	PER GEAR METAL 4,000	METAL 4,000
BOGIE FOLD AND PITCH ACTUATOR BOGIE ROTATE TRAVEL BOGIE FOLD TRAVEL	TYPE DEGREES DEGREES	HYDRAU	HYDRAULIC CYLINDER 79.67 98	79.67 98	79.67 98	79.67 98
MAIN GEAR SHOCK STRUT SHOCK STRUT TRAVEL SHOCK STRUT PRESSURE (MAX)	TYPE FSI FSI	AIR OIL -	13.75 1800	13.75 1800	13.75 1800	13.75 1800
SHOCK STRUT SEALS SHOCK STRUT ACTUATOR SHOCK STRUT ACTUATOR SEALS	TYPE/NO. TYPE/NO.	(1) HYDRAU	"U" CAP: LLC CYLLNDER METAL	(1) STATIC, FOR RETRACT METAL	- "U" CAP: (1) STATIC, (1) DYNAMIC (1) HYDRAULLIC CYLINDER FOR RETRACTION & EXTENSION - METAL METAL METAL	ON METAL
MAIN GEAR DOOR ACTUATORS " " DOOR LOCKS " " LOCKS	TYPE/NO. TYPE/NO.	HYDRAULIC, HYDRAULIC, HYDRAULIC,	ULIC, 2 PER ULIC, 1 PER ULIC, 1 PER	GEAR GEAR YEAR		111

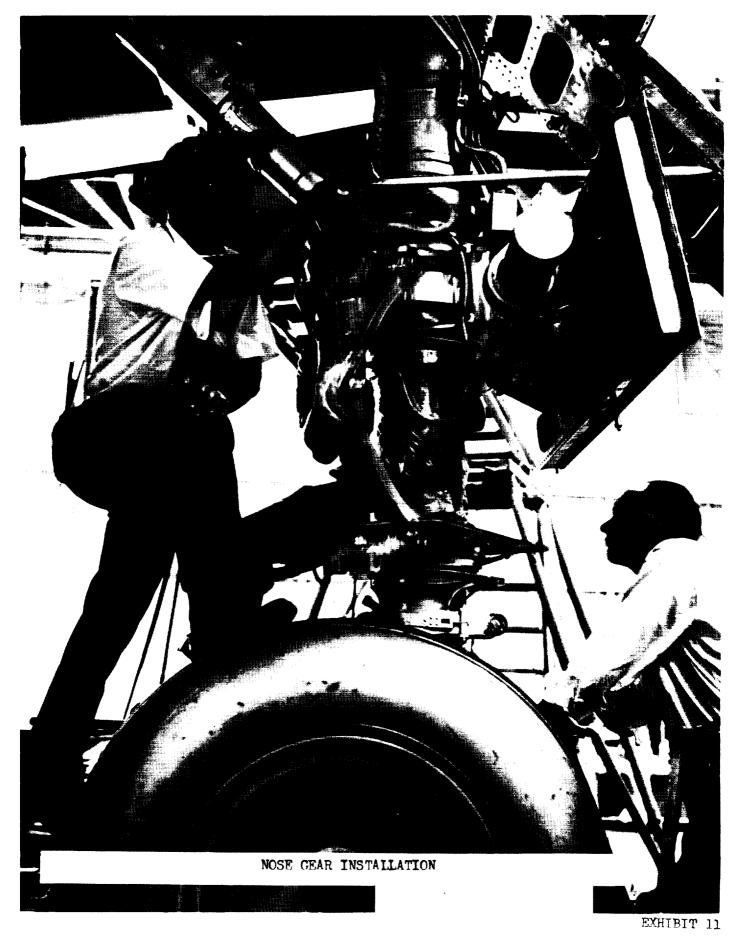
Space Division North American Rockwell

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

MAIN LANDING GEAR

North American Rockwell A/V NO. 2 MAY 1966 0.99989 16,129 -WBS CODE: 1.8.1 0.99989 16**,12**9 A/V NO. 1 MAR 1964 ELECTRO-HYDRAULIC, MECHANICAL -FEBRUARY 1961 0,99989 16,129 DECEMBER 1959 10 **MARCH 1959** 1 1 ŧ UNIT OF MEASURE TYPE NONE HOURS CHARACTERISTIC MALN GEAR SEQUENCING RELLABILITY FACTOR MTBF WBS IDENTIFICATION: -

TECHNICAL DESCRIPTION


SUBSYSTEM:	ALIGHTING AND ARRESTING	WBS CODE:	1.8
MAJOR ASSEMBLY:	NOSE LANDING GEAR	WBS CODE:	1.8.2

The nose landing gear assembly consisted of a shock strut, wheels, tires, and a steering unit mounted on the shock strut along with braces, actuators, doors, plumbing, valving and electrical control devices. Exhibit 11, page IV-391, presents a view of the nose gear installation showing the nose gear actuator at upper right, the steering unit centered behind the small door, strut scissors in the foreground, and the two co-rotating wheels. The wheels, tires, pressure gage, and counterbalance installations of the nose gear were identical to the main landing gear installations.

The shock strut was a conventional air-oil shock absorbing type with the main structural elements fabricated of H-ll tool steel. Exhibit 12, page IV-392, presents the nose gear strut in the build-up phase, while Exhibit 13, page IV-393, shows just the nose gear strut installed in the air vehicle. As indicated by the exhibits, the lower strut segment incorporated a member for mounting an axle for two co-rotating wheels. The strut was so designed that it automatically centered the wheels when the wheels were not in contact with the ground. The strut incorporated provisions for jacking up the nose gear at maximum air vehicle taxi weight. Provisions were also provided for towing the air vehicle and for mooring.

The nose wheel steering unit was hydraulically powered and was controlled electrically by the pilot's directional control foot pedals (rudder pedals). The B-70 nose wheel steering control system was engaged and disengaged by the selector switch on the landing gear control panel and was also automatically disengaged when the gear lifted off of the runway. The steering actuator had the authority to rotate the nose wheels 58 degrees each side of center.

A new concept in nose wheel steering control, consisting of complete failsafety provisions, was incorporated in the B-70 steering control system. Previous systems were capable of detecting hard-over failures only after the failure occurred and were often "fooled" by a pilot's large abrupt inputs resulting in disengagement when control was critical. In contrast, the B-70 system was designed to detect the failure before a hard-over condition materialized. In addition, the electrical circuit was such that large abrupt pilot demands were not sensed as a failure. In aircraft the size and configuration of the B-70, where hard-over failures or lack of steering could result in severe damage or loss of the aircraft, the failsafety protection offered by the nose wheel steering design was essential.



EXHIBIT 12

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

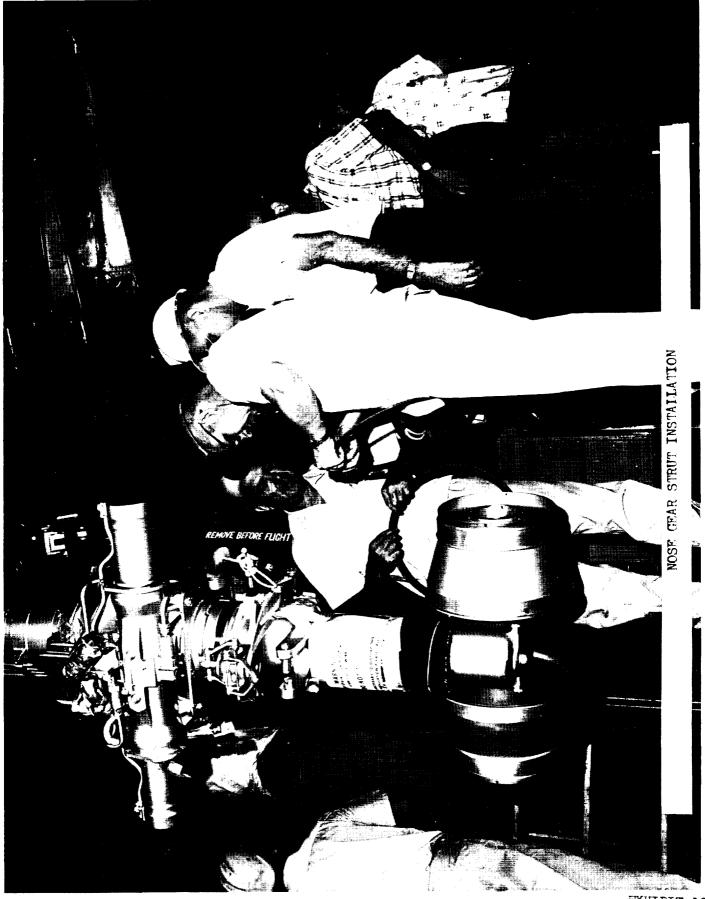


EXHIBIT 13

WBS IDENTIFICATION: NOSE GEAR

- WBS CODE: -

CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
WEIGHT	LBS	1794	TON	NOT AVAILABLE	1978	1988
STATTC LOAD (MAX)	LBS.	96,062 (@ MAX LANDING WT)				1
TTRES	TYPE/NO.	TYPE VIII E.H.P. TUBE- LESS/2				ţ
TIRE PRESSURE (MAX WT)	FSI	320	320	320	425	425
THERMAL CYCLES	•ON	9- @ 360 F FOR $l_{\frac{1}{2}}$ HRS EACH	•		9- @ 300F FOR 3.3 HRS EACH	ţ
TIRE SIZE	INCHES	40 x 17.5 x 18(38 PLY RATING)TUBE- LESS				ŧ
WHEEL	HAT	FORGED STEEL				t
WHEEL SIZE	LINCHES	40 x 17.5~18 RIM DIAMETER				t
SHOCK STRUT	TYPE	AIR/OIL				t
SHOCK STRUT TRAVEL (MAX)	LINCHES	14.25				•

Space Division North American Rockwell

IV-394

_

SD72-SH-0003

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

WBS IDENTIFICATION: NOSE GEAR

WBS CODE: 1.8.2

SHOCK STRUT PRESSURE @ MAX WT. PSI SHOCK STRUT SEALS	UNIT OF MARCH 1959 MEASURE	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
	1900				1
	1 - STATTC 1 - DYNAMIC (BOTH U CAP TYPE)				1
STRUT ACTUATORS	HYDRAULIC CYLINDER				ţ
STRUT ACTUATOR SEALS	METAL				f
NOSE GEAR STEERING.	HYDRAULIC				f
NOSE GEAR STEERING ACTUATOR	HYDRAULIC CYLLINDER WITH RACK AND FINION				1
STEERING POSITION INPUT TRANSDUCER TYPE	VARTABLE ELECTRICAL RESISTANCE				•
STEERING POSITION OUTPUT TRANSDUCER TYPE	VARTABLE ELECTRICAL RESISTANCE				
STEERING SYSTEM FREQUENCY RESPONSE HERIZ	50				1

Space Division North American Rockwell

1**V-3**95

.

Σl	WBS IDENTIFICATION:NOSE GEAR				WBS CODE:	DDE: <u>1.8.2</u>	
	CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
	STEERING SYSTEM HYSTERESIS	PERCENT OF F.S.	1				A
	STEERING SYSTEM TRAVEL	DEGREES	+				ł
	TEMPERATURE (DESIGN RANGE)	DEGREES F	550 - STRUCTURAL				
			450 - HYDRAULIC				
	NOSE GEAR STRUCTURE	HAPE	SEML-				
			LEVERED				•
	RELLABILITY	DNA	- 8799978				1
	MTBF	HOURS	80,000				1
				.	44.1.400 <u>4</u>		
					·		
0070							
_!				_			

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

.

SD72-SH-0003

ساليه ما يربوون ا

TECHNICAL DESCRIPTION

SUBSYSTEM:	ALIGHTING AND ARRESTING	WBS CODE:	1.8
MAJOR ASSEMBLY:	DRAG CHUTE SYSTEM	WBS CODE:	1.8.3

As previously stated, the drag chute system was installed in the upper aft fuselage and consisted of three 28 foot diameter ring slot chutes and associated risers with each chute packed in individual deployment bags. Attached to each main chute was a pilot chute and an extraction chute to provide the extraction force. The individual main risers of each main chute assembly were individually attached to a trunnion assembly which also functioned as the drag chute release mechanism. Exhibit 14, page IV-398, presents the drag chute compartment (looking forward) with the compartment doors open and the trunnion assembly installed. Exhibit 15, page IV-399, presents the trunnion assembly which was attached to the air vehicle structure and functioned as both the main chute restraint and chute release mechanism.

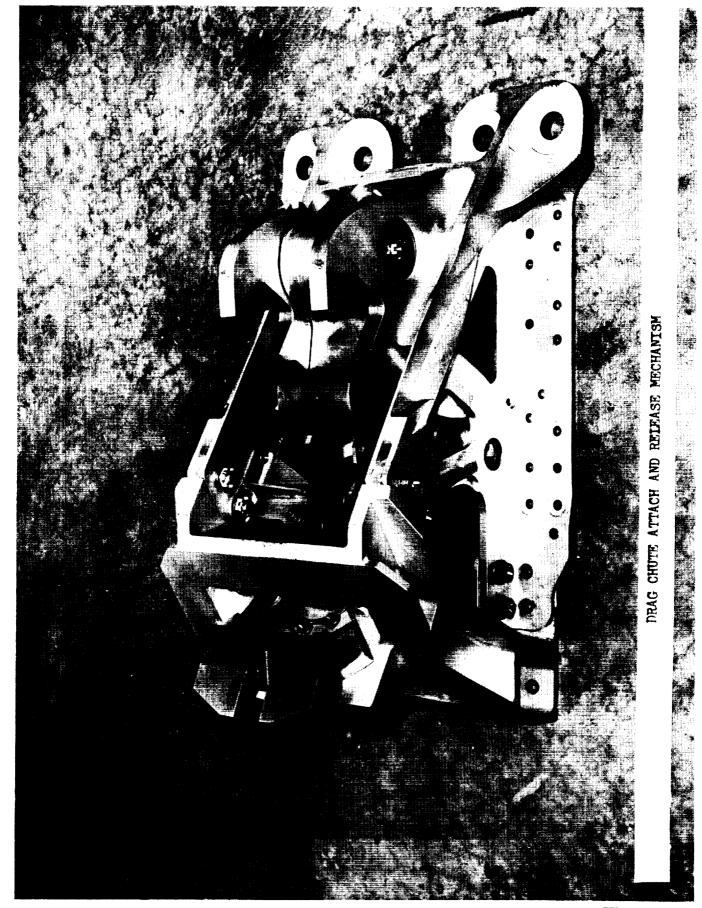
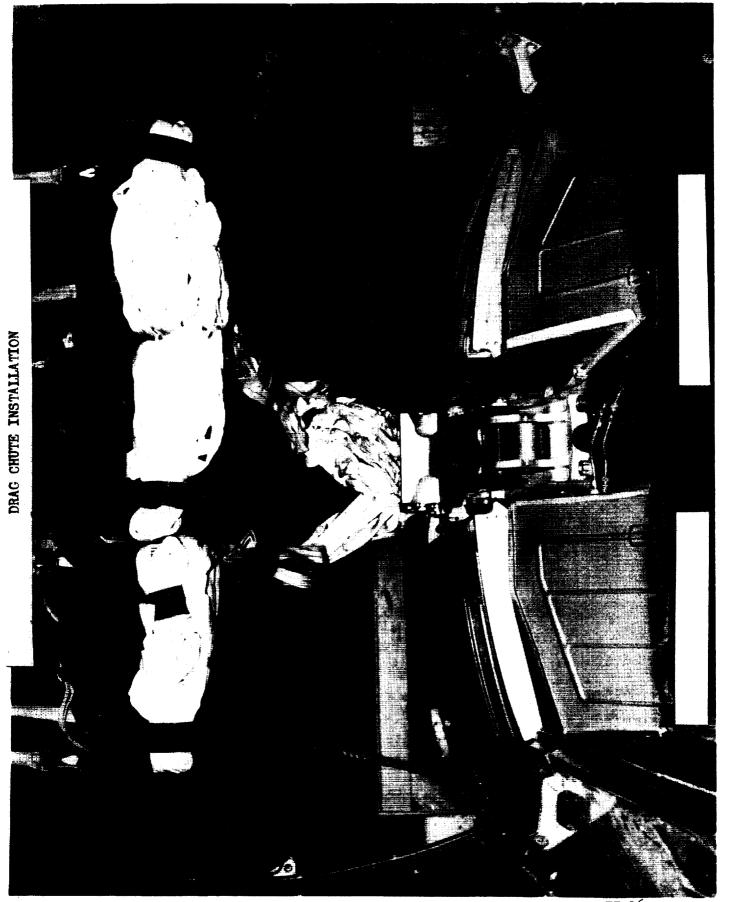
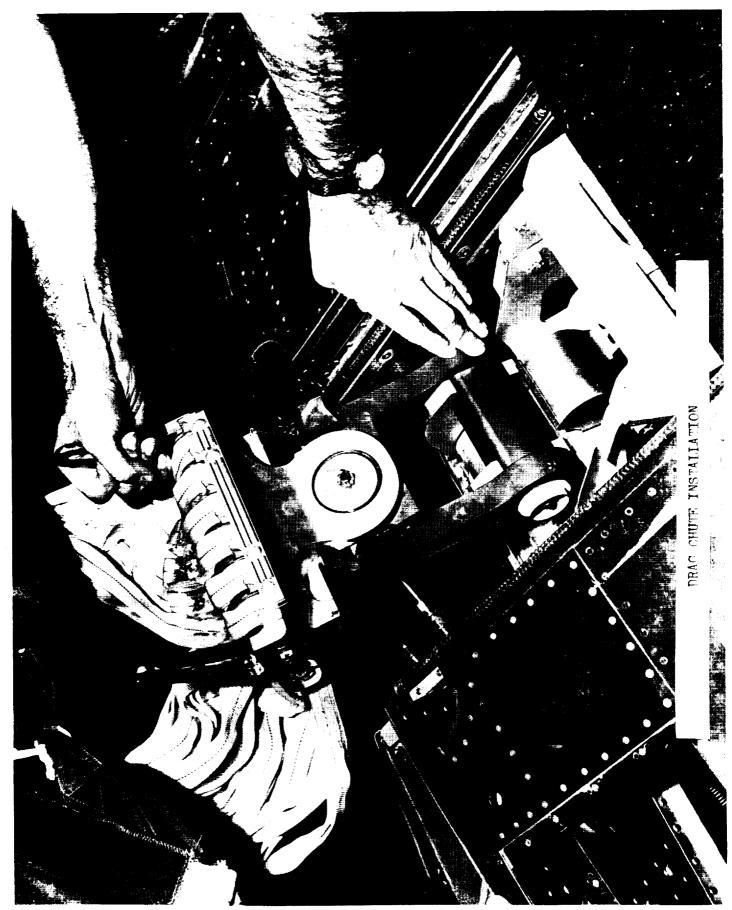
Exhibit 16, page IV-400, shows the drag chute assembly at its initial installation phase with the chute supported over the compartment and the chute attach hook initially engaged in the trunnion. In Exhibit 17, page IV-401, the chute attach hook is being rotated forward to its stowed position. For drag chute deployment the hooks of the trunnion, shown engaged to the chute hook assembly, rotate aft to provide solid attachment. Exhibit 18, page IV-402, shows the chutes installed with the pilot chute lanyard attached to the compartment right hand door. As indicated by the exhibit, if the doors were inadvertently opened in flight, the chute hook assembly would slip out of the trunnion hooks and the chutes would be automatically jettisoned.

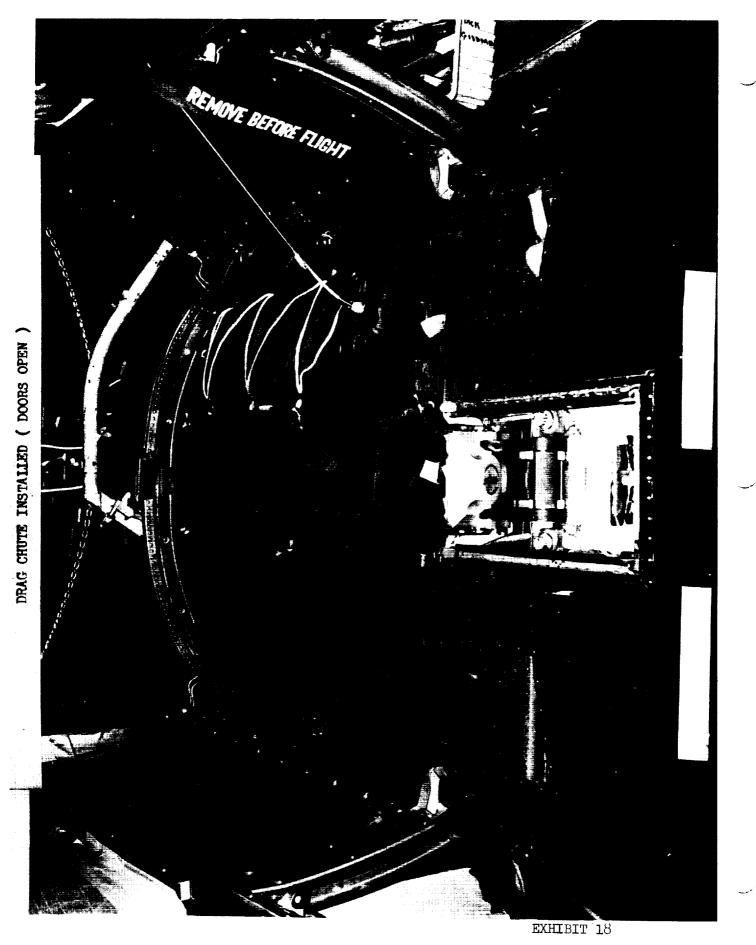
EXHIBIT 14

IV-398

SD72-SH-0003

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH


EXHIBIT 15

SD72-SH-0003

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

3	WBS IDENTIFICATION: DRAG CHUTE SUBSYSTEM	EM			WBS CODE:	DE: 1.8.3	
L	CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
4	WEI GHT	LBS.	094	A TON	NOT AVALLABLE	516	512
	DRAG CHUTTES	ITYPE/NO	28 FT DIA RING SLOT 3				
	DRAG CHUTE DEPLOY (MAX SPEED)	KTAS	- 520				•
	DRAG CHUTE DEPLOY (MIN SPEED)	KTAS	- 100 1				t
-	DRAG LOAD (MAX DESIGN)	LBS.	166,000 -				
I V-4 03	COMPARIMENT DOOR (ACTUATION)	ПУРЕ	HYDRAULIC -				1
		<u></u>					
SD72-S							

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

I**V-**403

Space Division North American Rockwell

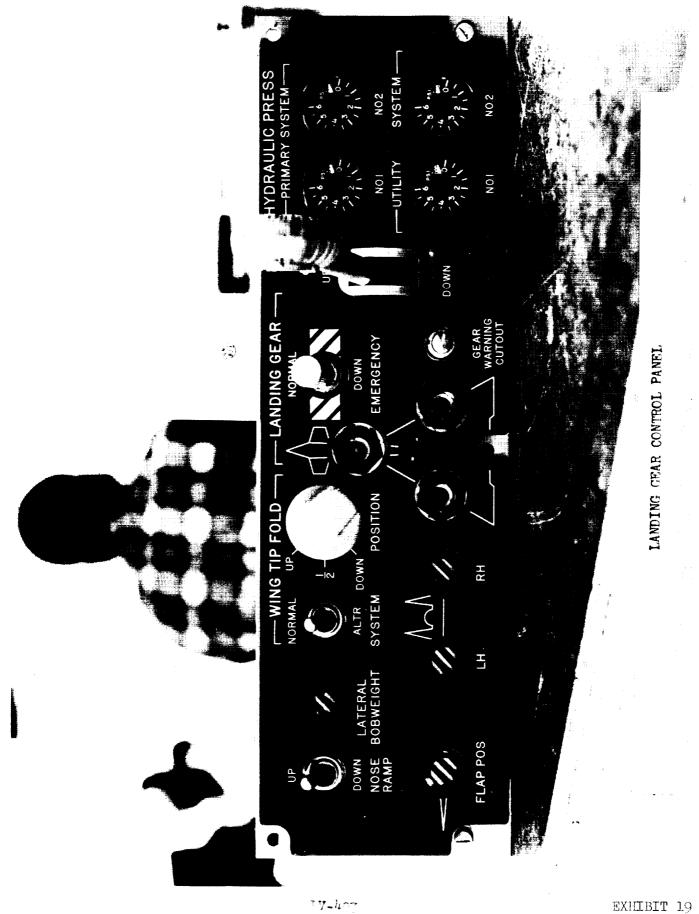
TECHNICAL DESCRIPTION

SUBSYSTEM:	ALIGHTING AND ARRESTING	WBS CODE:	1.8
MAJOR ASSEMBLY:	CONTROLS AND DISPLAYS	WBS CODE:	1.8.4

The Alighting and Arresting Subsystem Controls and Displays were essentially grouped into four areas: (1) the extension and retraction of the landing gear, (2) the control of the braking system, (3) nose wheel steering control, and (4) drag chute operation. Exhibit 19, page IV-407, depicts the landing gear control panel which was located on the main instrument panel in the lower center section and convenient to both the pilot and copilot. This panel included the landing gear control handle, emergency switch, position indicators and the audible warning cutout switch. As shown, the control handle was a plastic knob in the shape of a tire and was moved up for retraction and down for extension of the landing gear. The emergency gear extension switch was provided to override the normal electrically controlled hydraulic system sequencing and provide gear extension using the hydromechanical sequencing which always worked in parallel with the electrical system. The landing indicating system consisted of one green light for each retractable landing gear assembly and one red light in the plastic knob of the landing gear control handle. The red light illuminated when any gear was not in the position indicated by the position of the control handle, i.e., handle up but any gear not up and locked. The red light also remained illuminated if any gear door was not up-and-locked with the gear control handle either up or down. The audible warning signal assembly was installed at the pilot's station and the signal was audible in both headsets. The signal was initiated when the landing gear was in any position other than down-and-locked and (1) the air vehicle was below a predetermined altitude and airspeed and (2) the engine throttles were not in the afterburner position. The pilot-operated cutout switch on the panel permitted the pilot to discontinue the audible signal.

An emergency manual control handle was provided on the overhead panel in the cockpit and in the electronics bay. Either handle could be used to extend the landing gear by either hydraulic utility system No. 1 or No. 2 without changing electrical sequencing. This provided (combinations of manual handle and emergency switch) four methods of extending the landing gear. In addition, since the nose gear had to be down and locked for any abnormal gear configured landing, an emergency nose gear manual control handle was provided on the cockpit overhead panel. This handle could be used to extend the nose gear through a system separately supplied by the hydraulic replenishing reservoir system without electrical sequencing. Manual switches were also provided in the electronics equipment bay to override the normal main and nose gear "door open" function limit switches and the utility No. 1 bogie power valve. This system was for the condition of doors not opening for gear extension, and it provided another backup to get the doors opened with subsequent hydromechanical sequencing.

A second landing gear control panel was located on the left side of the center aisle pedestal and provided the following functions.


- (1) Manual and automatic brake selector switch for pilot selection of braking control mode.
- (2) Nose gear steering control selector switch with positions for takeoff and landing, taxi, and off (In the take-off and landing position, the steering was armed but not engaged).
- (3) A brake system test switch to test for dual hydraulic pressure and computer "on-line".
- (4) A brake hold pushbutton switch for extended non-taxi conditions. The hold function was disengaged by depressing the brake pedals.
- (5) A nose gear steering engage switch for engaging the steering control when selector was other than off (item 2).
- (6) A second brake selector switch which permitted the selection of either the front or rear brakes only.
- (7) A brake control caution light which indicated a malfunction of the brake computer.

A "Tire Overheat" caution light was provided on the left upper surface of the center aisle pedestal caution light panel. The heart of this system was the heat sensors which were installed in all wheel wells and which made contact with the tire when the landing gear was retracted. When the tire temperature approached the high temperature limit, but below the actuation of the thermal pressure relief devices installed on the wheels, the caution light illuminated. This alerted the pilot to initiate corrective action to prevent the actuation of the thermal pressure relief devices which would result in subsequent landing with low pressure or flat tires.

A drag chute control panel was located on the right aft section of the center aisle pedestal. The knob of the control handle was shaped like a chute canopy and was a two-position switch that was level locked in both positions. An aft movement of the handle electrically activated the hydraulic system to open the chute compartment doors and engage the hook mechanism with the drag chute trunnion assembly. A forward movement of the drag chute control handle electrically activated the hydraulic system to disengage the hook mechanism from the drag chute trunnion assembly. This allowed the drag chute assembly to disengage from the air vehicle. Jettisoning of the drag chutes had to be accomplished at a speed no slower than 60KIAS to ensure that the trunnion assembly would clear the aft fuselage.

A "Drag Chute Overheat" caution light was provided on the left upper surface of the center aisle pedestal caution light panel. A sensor was installed in the drag chute compartment to indicate the compartment temperature and had a setting of 255° F $\pm 5^{\circ}$ F. If the caution light illuminated, it alerted the pilot that the landing might be without drag chutes.

BD79-SH-003

TECHNICAL DRIVER

SUBSYSTEM: ALIGHTING AND ARRESTING

WBS CODE: 1.8

DRIVER: LANDING GEAR SEQUENCE SWITCHES

The landing gear system required high temperature switches in the sequencing and indicating portions of both the main and nose gear assemblies. The airworthiness testing of the new developed switches was scheduled for completion by mid 1962. However, development problems were encountered which involved the bellows type seal that was designed to isolate the contact portion from the actuating elements of the switch. To minimize the impact of the schedule slippage, low temperature substitute switches were installed for initial system checkout.

An analysis of data obtained during development tests showed that the original bellows design was too stiff which resulted in unsatisfactory actuating loads and caused seal leakage. The bellows were redesigned by the subcontractor, new tests parts fabricated, and the testing of the switches continued. However, torque valves were still high, and case seal leakage was still experienced.

By the second quarter of 1963, it appeared that all major development problems had been solved; however, leakage from the static case seal was still being experienced in attempted airworthiness tests. In addition, the high torque values that were accepted required that all switch installations be evaluated to determine if adequate return spring forces were available. This review showed that the main gear door opened, door locked, and door closed switch springs forces were marginal and required redesign to ensure satisfactory operation with the higher torque switches.

By mid 1963, the development effort by Controls Company of America had not produced a satisfactory hermetically sealed case. At this time, NR sent a special team to the subcontractor to initiate a development program of hermetically sealing the cases by welding which the subcontractor had attempted unsuccessfully. Due to these problems and schedule impacts, the 350° switches were authorized for the initial flights which would not exceed the limit temperature. In addition, a second substitute switch which had limited high temperature capability was purchased in sufficient quantities to support the higher mach flights and for spares. This switch had a 600° F rating but was limited to 25 flight hours which impacted landing gear maintenance during the first half of the flight test program.

TECHNICAL DRIVER

SUBSYSTEM:	ALIGHTING AND ARRESTING	WBS CODE:	1.8
MAJOR ASSEMBLY:	MAIN LANDING GEAR: TIRES	WBS CODE:	1.8.1

The basic requirements of the B-70 mission and air vehicle configuration dictated that tires be capable of supporting 62,500 lbs/tire while operating at ground speeds of 288 mph, exert surface loads and stresses compatible with existing SAC hangar floors and runways, and be capable of withstanding $\frac{1}{2}$ hours of high mach-high temperature environment. An industry study conducted showed that the B-52 tires were the most advanced product at that time; however, these tires fell way short of the B-70 requirements. As a result of this study, a tire development program was initiated with the final product representing a very significant advancement in the state-of-the-art of tires.

The space allotted for stowing the tire dictated that the tire be no larger than 40 inches in diameter and 17.5 inches wide. In addition, as a weight control measure, the cooling requirements of the tire, in its stowed position, had to be minimized. In this regard, a weight-cooling requirement trade-off study showed that a tire compartment environment such that the tire could be at 360° F for approximately $4\frac{1}{2}$ hours would be compatible with the other environment loadings of the B-70. This temperature goal for the tires was very demanding, since this temperature was very close to the reversion and deterioration temperatures of the rubber and nylon materials, respectively, used in tires. The tire life for the B-70 was established as eight thermal cycles with a compatible tread life. (The wheel life for the B-70 was established as 1000 miles but was reduced to 800 miles for the XB-70 and was accepted with bearing life waivers after 500 miles was demonstrated.)

The initial problems encountered in the tire development was with Aeronautical Systems Division (ASD) facilities where the oven wheel rotation equipment subjected tires to temperatures up to 500° F. A complete redesign of the rotation equipment from a tire tread friction wheel to a wheel drive still exposed the test tires up to 400° F. However, these damaged tires were not completely lost, since a study of the sidewall and tread blisters was performed followed by a burst test after which a cord depth of strength loss analysis was conducted. Subsequent modification of the oven facilities provided temperatures that were satisfactory during tire testing.

The XB-70 tires essentially met all of the B-70 requirements, and when compared to the B-52 tire, they were 28% smaller in diameter and rotated 63% faster while carrying 83% more load per 1b. of tire. They weighed 55% less and were exposed to stowage temperatures approximately 250% higher. The tires were 18 ply with a special cord-tread configuration including a "special" covered sidewall or outer layer that was built into the tire to reflect or repel heat.

TECHNICAL DRIVER

SUBSYSTEM: ALIGHTING AND ARRESTING

WBS CODE: 1.8 WBS CODE: 1.8.1

MAJOR ASSEMBLY: MAIN LANDING GEAR AUTOMATIC BRAKE CONTROL

GENERAL

A major advancement in the state-of-the-art was achieved in automatic braking control during the development of the B-70. The dual full power brake control system, which was hydraulically powered and electrically controlled, provided full automatic control upon pilot demand for maximum braking. The braking torque on each of the four brakes was individually and automatically controlled to provide maximum retarding force regardless of runway conditions. The control was provided by means of a four channel electronics computer in combination with sensing devices located on the main wheels and brakes, plus an additional "fifth" wheel located on each main gear bogie which sensed relative ground velocity of the main wheels. In this highly adaptive method of brake control, actual tire slippage and ground retarding forces were continuously computed and compared to determine the "peak" braking forces which could be tolerated by tire to runway coefficient of friction and this information fed electrically to the electro-hydraulic servo valves which controlled hydraulic pressure to the brakes. This braking system differred from previous "anti-skid" systems, which operated in an "On-Off" manner in response to tire skid, in that brake torque was continuously regulated to maintain operation at an optimum level as demanded by the pilot.

The ability of the B-70 system to provide the intended functions was demonstrated on the 192 inch dynamometer at ASD (Aeronautical Systems Division) utilizing actual air vehicle hardware. The development tests were concluded by demonstrating 50 consecutive max design landings under full automatic control without a single malfunction or skid. The data obtained during each stop showed deceleration rates exceeded specification requirements by a substantial margin.

The development of the braking system, in addition to the pilot control and computer, involved the selection of material for the linings within the wheel brake assemblies which incorporated steel heat sink type discs. The lining had to be compatible with the overall system, in that it not only had long wear characteristics, but that it provided the required coefficient of friction without "rough," "grabby," or "chattering" characteristics.

DISCUSSION

During the initial stages of brake tests, several "rough" brake operations were experienced which analysis showed to be caused by the brake lining coefficient of friction being too high. Based on this study, the lining coefficient of friction was reduced from 2.0 to 1.5. After this basic coefficient change for linings, tests continued on many types of lining material with final choice being either an iron-base lining or a copperbase lining. During these tests, two other problems became evident. One was a ripple in the angular rotation signal, and the other was the physical arrangement of the brake test setup.

Although the angular rotation signal output ripple represented a very small percentage (one percent) of the difference between the angular velocity signal of the driver and the driven elements of the sensor, it was sufficient to prevent normal automatic brake control. Detailed analysis disclosed that the ripple in the sensor signal was due to slight eccentricity between the axis of rotation of the driver and the driven elements caused by deflection of the axle under load. To correct the problem, it was decided to add a floating element between the driver and driven portions of the sensor which employed essentially a slotted pin drive to assure precise angular alignment of the two elements.

The problem with the brake test setup was the manner in which the "fifth" wheel was mounted. In the original dynamometer installation of the brake control system, the speed reference wheel was mounted on the dynamometer base structure rather than the bogie beam with the braked wheel. This installation, since flexing and vibration of the bogie beam and axle occurred during braking, caused a discrepancy between the speed sensed by the reference wheel and the actual speed of the braked wheel. The problem was corrected by mounting the fifth wheel to the bogie per the air vehicle configuration.

Signal "noises" were also encountered during the automatic brake control development. One was the excessive "noise" from the braked wheel speed sensor mechanism which was sufficient under some conditions that the "slope logic" circuit operation was compromised. The final fix for this was to desensitize the "slope logic" circuit below the desired optimum level, which in effect placed the major dependence for brake control on the slip control circuit at high speeds. Another problem experienced was brake "noise" due to vibrations set up by the relief slots in the brake discs at low taxi speeds (below 25 knots). This noise caused some loss of performance at the low speed conditions and required a reduction of feedback gain. This low taxi speed chatter was never completely resolved and occurred during the flight test program. In most instances, the "chatter" condition could be minimized by the pilot (if taxi conditions allowed) with intermittent-light application of brakes.

DEVELOPMENT DATA SUMMARY

WBS TITLE: ALIGHTING AND ARRESTING SUBSYSTEM WBS CODE: 1.8

STATE OF THE ART RATING: ____5 (See Remarks)

PERCENT DEVELOPED MATRIX:	PRIOR TO	FLIGHT	FLIGHT TEST
	CONFIGURATION	GROUND TEST	
PROGRAM LEVEL	95%	90%	32%
EFFORT TO GO	18%	29%	87%

GROUND TESTS

TYPE OF TEST	NUMBER OF UNITS	TEST HOURS
CONFIGURATION RESEARCH		
DESIGN FEASIBILITY		
DESIGN VERIFICATION		
AIRWORTHINESS		
QUALIFICATION		
OTHER		
TOTAL		

REMARKS:

ł

(1) Essentially all alighting and arresting subsystem ground testing was performed by Cleveland Pneumatic Tool Company and their subtier subcontractors. The detail breakdown of the responsibilities are presented under major subcontractor data, page IV-428. The NR effort consisted mainly of installations, checkout, preflight and structural calibrations. The gear calibrations were included under structural ground testing (WBS: 1.1).

.

State-of-the Art

The Alighting and Arresting Subsystem was assigned an overall state-of-theart rating of 5 based on definitions established using AFSCM 173-1 (11-28-67) as a guide. This rating was determined by comparing the RS-70 requirements with the existing capabilities at the RS-70 time period using state-of-the-art criteria discussed in subsequent paragraphs. The RS-70 configuration was selected for the comparison since it was the production configuration defined. This selection is considered valid since the development status at "out-the-door" and at program "end" is also based on the scheduled production configuration.

The definitions used in determining the state-of-the-art ratings are described below. For ratings 3, $\frac{1}{4}$, and 5, the following B-70 design criteria was used as an aid for rating selection.

- A. High temperature application
- B. High pressure/load/acoustics/etc., application
- C. Light-weight/special materials/unique processes

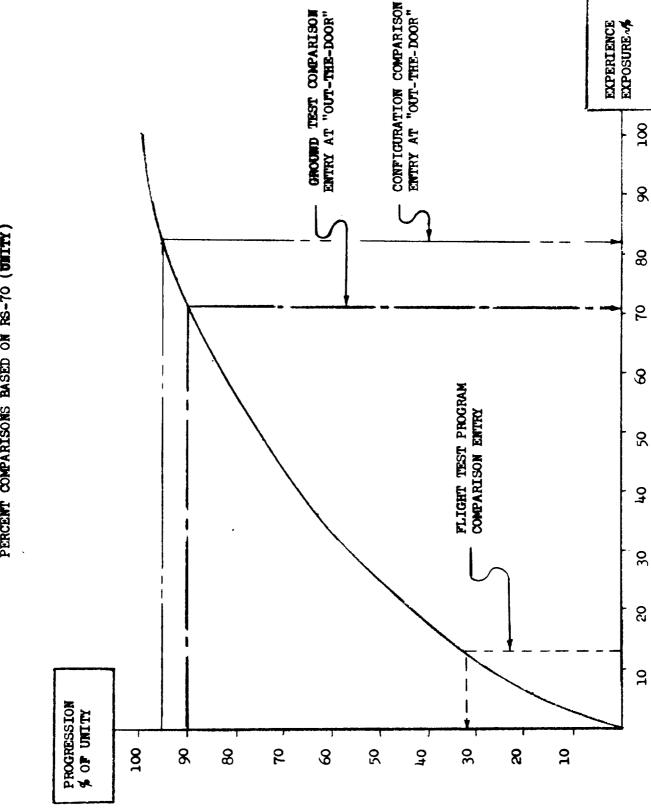
Rating

Description

- 1 The item was off-the-shelf commercial item or a standard military issue which was installed "as-is".
- 2 The item was off-the-shelf commercial item or a standard military issue which required only a physical modification for installation.
- 3 The item was considered within the state-of-the-art but had no commercial or military counterpart. As an aid, the item was existing but required modification to be compatible with one of the design criteria. Also, any new design or process has a rating of at least 3.
- 4 The item was slightly beyond the state-of-the-art, and some development was required. As an aid, the item was based on an existing concept but required modification to be compatible with two of the design criteria. Also, any new design or process required to be compatible with one of the design criteria will be rated 4.
- 5 The item was substantially beyond the existing state-of-theart and required major development work. As an aid, any new design or process required to be compatible with <u>two</u> of the design criteria will be rated 5.

The Alighting and Arresting Subsystem was comprised essentially of the landing gear system and the deceleration or drag chute system. In the analysis performed to establish a state-of-the-art rating, the drag chute system was not considered since it relatively represented only a fraction of the total effort required for the overall subsystem. The landing gear system development, described under Technical Descriptions with the special design areas defined under Technical Drivers, was considered a major advancement in the state-of-the-art for manned aircraft. Although the tricycle gear arrangement was an existing concept, the design of the gear system was required to meet all three of the B-70 design criteria: high temperature and acoustic environment, high pressures and structural loading, and light weight. To meet the B-70 design criteria, the gear, brakes and actuator mechanisms were fabricated of H-ll tool steel which imposed new manufacturing techniques and processes. The tires developed were also a major advancement in the state-of-the-art as related to temperature, loading versus size, and arrangement for low footprint loading. Based on the ground rules established, the subsystem was assigned a state-of-the-art rating of 5.

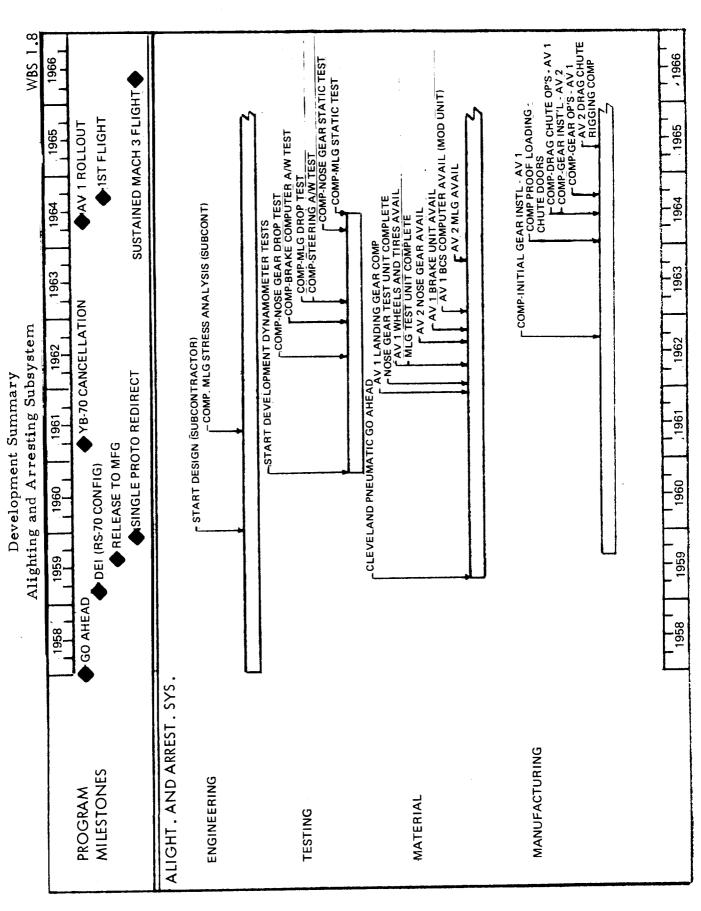
Percent Developed


The Alighting and Arresting Subsystem percent comparisons of the XB-70 configuration to that scheduled for the RS-70 were made at two stages of development; one at prior-to-flight or "out-the-door" of the No. 1 air vehicle, and the other for the flight test programs. For the "out-the-door" time period, a percentage was established for the configuration status and also for the level of ground testing achieved. The Alighting and Arresting Subsystem configuration of the XB-70 was assessed as 95% representative of its RS-70 counterpart while the ground testing status was assessed at a program confidence level of 90%. It was the opinion of the Design Group that additional testing was required in specific areas to reduce the maintenance requirements. In addition, the co-rotating wheels/bogie main gear arrangement required more design effort due to the undesirable single axle failure mode. To establish what effort would be required to attain a No. 1 air vehicle production level prior-to-flight status, the same curve used for the structures analysis was utilized for the Alighting and Arresting Subsystem; Exhibit 20, page IV-416. Entering this exhibit on the lefthand scale at 95% and 90%, it shows on the bottom scale that 18% and 29% more effort was required for the configuration and the ground testing, respectively.

The flight test program comparisons, presented by Exhibit 13, page II-23, under Air Vehicle (WBS: 1.0), shows that during the XB-70 flight test program, the Alighting and Arresting Subsystem had an equivalent test hour total equal to 19 percent of that scheduled for the RS-70. However, this was an across-the-board comparison of equivalent test hours and did not reflect the testing envelopes of the two flight test programs. Although design loads for the Alighting and Arresting Subsystem were attained during the XB-70 flight test program, maximum performance landings and aborted

take-offs were not scheduled and did not occur. In addition, the effect on directional control and braking of wet and icy runways was not determined, as well as the impact of hydroplaning with excessive water. Based on program comparisons, the Alighting and Arresting Subsystem XB-70 Flight test program was assessed as being approximately 80 percent of the test envelope scheduled for the RS-70. Since all of the XB-70 effort occurred within this less demanding envelope, an adjustment had to be made to the test hours obtained before the two flight test programs could be compared. The same weight factor established for the Structures Subsystem (WBS: 1.1) was applied in the analysis of the Alighting and Arresting Subsystem flight test effort; that is, the first 80 percent of the test envelope requires only 60 percent of the total effort while the last 20 percent of the envelope requires 40 percent. Using this weight factor, the equation 2:3::X:19% was generated for the XB-70 test effort adjustment. With this equation, the flight test effort remaining to attain a production level status would be stated as 40% + 60% - (2 X 19 : 3) or 87 percent, where the 40 percent is that effort required for the last 20 percent of the envelope. It should be noted that all of the comparisons conducted on the Alighting and Arresting Subsystem are based on test articles, tooling, GSE, etc., being at the RS-70 level in both numbers and fidelity. Exhibit 20, page IV-416, presents a graph of the comparisons made for the Alighting and Arresting Subsystem.

NOTE: THE USE OF THE "EFFORT TO GO" PERCENTAGES FOR COST DETERMINATION SHOULD NOT BE APPLIED WITHOUT CONSULTING SECTION IV-8, VOLUME I, PAGE 310 FOR APPLICATION CONSIDERATIONS.



ALIGHTING AND ARRESTING SUBSYSTEM DEVELOPMENT STATUS PERCENT COMPARISONS BASED ON RS-70 (UNITY)

EXHIBIT 20

1**V-**416

SD72-SH-0003

I**V-**417

DEVELOPMENT SUMMARY TABULATION OF DATES

SUBSYSTEM: ALIGHTING & ARRESTING	WB	S CODE: 1.8
ENGINEERING:		
Start Design - Subcontractor Comp MLG Stress Analysis - Subcontractor		1, 1960 19, 1961
Testing		
<pre>Start Dev. Dynamometer Tests Compl. Brake Computer A/W Test Compl. MLG Drop Test Compl. Fail Safe Steering A/W Test A/V #1 Compl. N.L.G. Phase I Proof Load Static Tests A/V #1 Compl. L.H. Main Gear Door Static Proof Load Testing</pre>		21, 1960 21, 1962 1, 1963 8, 1963 1964 1964
Material		
Cleveland Pneumatic Go-Ahead Nose L.G. Complete on Dock A/V #1 MIG Complete on Dock A/V #1 Complete Assembly, Nose Gear (Drop Test) Rec. Wheels & Tires A/V #1 Compl. Assembly MIG L.H. (Drop Test) Compl. Refurbish Drop Test Nose Gear & Receive for A/V #2 Brake Unit on Dock A/V #1 Modified BCS Computer A/V #1 MIG Complete on Dock A/V #2	Nov Dec Jan Apr	10, 1959 27, 1961 1961 1962 1962 10, 1962 1962 1962 1963 1963
Manufacturing		
Complete - Initial Gear Installation (A/V #1) Complete - Chute Doors Proof Loading Complete - Drag Chute Operations (A/V #1) Complete - Gear Installation (A/V #2) Complete - Gear Operations (A/V #1) Complete - Drag Chute Rigging (A/V #2)	Jan Jun Jun Sep	15, 1962 1964 8, 1964 1964 18, 1964 14, 1965

SD72-SH-0003

1967 œ CTR BEAM FAILURE (AV 1) MAIN GEAR MALFUNCTION (AV 1) WBS 1 r UPLOCK LINK FAILURE (AV 1) **T FLIGHT MALFUNCTIONS** , N SKID PLATE DESIGN - ACTUATOR FITTING FAILURE (AV 1) – TIRË FAILURES - GEAR DAMAGE (AV 2) MODIFIED BOGIE PITCH DAMPERS ADDED STRUT ACTUATOR BOLTS REPLACED (AV 1) 4 BRAKE LINING DESIGN CHANGE e DRAG LINK REPAIR (AV 2) 1966 PROOF LOAD MODIFICATIONS (AV 1) LH MLG SEAL LEAKAGE (AV 1) 2 **1ST FLIGHT GEAR MALFUNCTION (AV 1)** BOGIE FOLD ACTUATOR REWORK - ACTUATOR SEALS LEAKAGE (AV 1) **J. DRAG CHUTE DOOR ACTUATOR CHANGE** 4 ACTUATOR SUPPORT FITTING REWORK BOGIE FOLD LOCK REPAIR (AV 1) **F** BYPASS VALVE REWORK (AV 1) ო Alighting and Arresting Subsystem 1965 Design/Programmatic Impacts 2 LH MLG DAMAGED IN TRANSIT **J FOLD ACTUATOR VALVE REPLACEMENT** TRUNNION FITTING REPLACED 4 **D BOGIE FOLD ACTUATOR REDESIGN** m MLG UPLOCK BOX REWORK 1964 **] SHOCK STRUT REDESIGN/REWORK** D NOSE LANDING GEAR PIN FAILURE C **T FAIL SAFE STEERING MOD/TEST** BRAKE CONTROL COMPUTER MOD/TEST 2 BRAKE ASSEMBLY REDESIGN 4 MLG BOGIE BEAM REWORK c 1963 WHEEL DESIGN /FAB/TEST BRAKE STATOR HOUSING FAILURE 2 4 ო . 1962 2 4

DESIGN/PROGRAMMATIC IMPACTS

SUBSYSTEM: ALIGHTING & AL	RRESTING	WBS CODE: 1.8
22 Jan - 14 Aug 1962	- Wheels and locknuts were being fabricated and air worthiness t	
March 1962	- Brake delivery delayed due to o brake stator housing. Immediat weld lugs to stator. Concurren a backup program was implemente contractor to procure closed di H 11 Stator housing forgings.	e action was to tly with rework d by the sub-
22 Apr - 26 Oct 62	- Brake assembly was redesigned a	nd fabricated.
19 May 62 - 8 Mar 1963	- Fail safe steering was redesign and air worthiness tested.	ed, fabricated
15 June 62 - Nov 1962	- Brake control computer was rede cated and airworthiness tested.	
15 Sept - Oct 1962	- During the main landing gear for tests, being conducted under hy the bogie H ll casting on the I cracked at the uplatch roller a point. Repair of the MIG bagie of both hands of the lock arm w completed.	draulic pressure, H gear was rm attachment beam and rework
20 Jan - 8 March 1963	- Redesigned and reworked the sho ring groove and piston ring.	ck strut to add
15 Feb - 1 March 1963	- Reworked nose landing gear due experienced during airworthines actuating cylinder attachment p	s test, of the
1 April - 10 June 1963	- Due to relief valve malfunction fold actuator for A/V #2 failed tests. Consequently CPI was re new valves in A/V #1 actuators.	during acceptance quired to install
l April - July 1963	- A failure occurred during ruptu bogie fold actuator which requi fabrication of the retainment r RH and LH bogie fold actuators, incorporate design changes, wer installed in A/V #1.	red redesign and ut and cap end. reworked to

- 28 June 5 July 1963
 Rework of the main landing gear uplock box required due to negative stress margin (81%) due to a combination of gear retraction snubbing loads and wing bending loads.
- 30 Aug 9 Sept 1963
 Replaced one nose landing gear trunnion fitting on A/V #1 due to cracks and distortions that occurred after weld rework. Engineering simplified design to reduce machining.
- 18 Oct 15 Nov 1963
 The L H landing gear was damaged during railroad transit to NAA. Rail car bumping apparently caused wire tie downs to break allowing gear to shift. Tires were badly chaffed and declared unusable. Other components were also damaged. No structural damage to the main strut and bogie beam assembly.
- 13 March 8 June 1964
 Operational test on A/V #1 showed drag chute door operational speed so excessive that it could cause structural damage. Actuator change to decelerate action was accomplished on the Drag Chute and operations completed 8 June.
- 3 April 10 April 1964
 During cycling of A/V #1 RH main landing gear down lock H ll support fitting failed due to cracks induced by weld beef up. The first reworked part was delivered to Engineering Structure Lab for destruction testing. During test one of the supporting components failed. Previously (6 April) B-70 Management decided to make one set of substitute parts of 4340 steel as a backup. On 9 April the fitting completed the 500 cycles of limit load followed by one ultimate load application without failure.
- 18 June 2 July 1964 Due to erratic operations of the landing gear on A/V #1, the emergency landing gear 4 position valves required rework to reduce surge effort. Engineering was released on 18 June for valve rework. In addition new lines, restrictors and check valves were added to the hydraulic installation. Additional rework was required due to thread strippage of the arm attach bolt on the bogie beam. The thread stripping was due to extreme force action during operations. The bolt was redesigned and the method of rotate sequencing was revised. On July 1, the RH bogie fold lock arm failed on A/V #1 during operations. The A/V #2 part was installed on A/V #1 to continue operations. Cleveland Pneumatic (CPI),

the gear supplier was on strike at this time. A beefed-up part made from 4340 steel was designed at NAA, approved by CPI, to be made locally to support A/V #1, #2 and spare.

10 July - 24 July 1964 - Engineering released landing gear valve and structure rework drawings for emergency bypass valve. Structure rework was required to facilitate the installation of reworked valve on A/V #1.

- 10 Aug 11 Sept 1964
 Completed installation of new 10 port valves and brake computer modification/installation on A/V #1. During taxi tests the LH brakes were smoking due to brake actuator leakage. Viton seals were installed on all brake actuators.
- 21 Sept 25 Sept 1964
 During the first flight of A/V #1 the landing gear remained down locked position. During landing non rotation of the LH gear wheels resulted in a fire at the wheel area. The MLG in flight malfunction was traced to one of the switches on the rotate pin. The switch was replaced. Bogie replacement due to damage from the wheel fire was completed.
- 28 Sept 23 Oct 1964
 The bogie fold actuator was reworked and the LH and RH MLG support tee repaired. During flight the gear was extended on emergency Manual #1. The RH was slower than the LH side. The RH side also started to rotate and unfold prior to strut full down. Replacement of the LH bogie pitch dampers resolved the problem. Redesign of the bogie fold and pitch compensator, main landing gear valves, MLG bogie beam skid, MLG brake seals and revised MLG door lock switch mechanism. Rework was accomplished during proof load phase.

Removed and replaced thirty-two H 18 switches with modified H 18 switches. Removed and replaced nose gear strut relief valve. Removed and returned to Parker, for rework, seven main landing gear control valves. (A/V #1). Wheel bearing rework on A/V #1 and #2. Damaged wheel bearings were found on A/V #1. Analysis indicated deficient wheel bearings received from the supplier.

Per EWA 259-241, Engineering was issued to modify brake control system to improve control and brake chatter tendancy. (A/V #1 and #2).

Reworked main and nose gear door and strut control selector valves (EWA 259-233) on A/V #1. Structural rework was required.

31 Oct 64 - 9 Feb 1965 - Modified bogie pitch dampers were installed on A/V #1 and gear operations completed.

> A/V #1 Bogie fold and pitch compensation assembly valve packs were reworked in house to improve reliability. (EWA 59-223).

- 5 March 9 April 1965 - The head of the bolt connecting the RH main gear strut actuator to the structure was broken off during flight 9 of A/V #1, a recurrence of the problem encountered on Flight #7. Redesigned strut actuator attach bolts were installed complete 9 April.
- 16 April 23 July 1965 - Three phase program for development and airworthiness testing of a new brake lining to eliminate chatter.
- 20 April 26 April 1965 A/V #1 Two cycles were required to retract gear. The LH main strut required rework due to a leaking seal. The strut control value on the RH gear was also replaced.
- 19 July 30 July 1965 - After landing from first flight (A/V # 2) and while taxiing, the nose wheel went hard right. Inspection revealed drag link trunnion fitting failure. Repair completed 30 July.
- 24 Sept 27 Sept 1965 - The sixth A/V #2 flight was aborted due to power roll back. While taxiing back to the pad tires #7 and #8 blew out. Inspection revealed that the remaining eight tires required replacement. The blowout resulted in damage to the brake junction box, on top of the bogie, and wiring on the LH gear.
- 24 Nov 29 Nov 1965 - Main gear actuator fitting failure on A/V #1 resulted from cracked fitting. The fitting was replaced and gear operations completed 29 April.

14 March - 18 April 1966 - A/V #1 Flight #37, 14 March 1966. - When the landing gear was lowered the nose and LH main gear extended normally and showed down and locked. The RH gear extended very abruptly when the strut actuator attach fitting failed and showed unsafe in the cockpit. The fitting failure caused damage to the lines in the wheel well, resulting in the loss of Ul and U2 hydraulic systems. The loss of hydraulic power caused both bogies to drift to the upright position. The airplane was landed and after touch down the RH bogie unfolded to the normal position but the RH remained vertical. The roll out was made on four RH wheels and the front two wheels of the LH bogie. The airplane was jacked on the lakebed, the LH bogie unfolded and the RH gear locked down and was towed to the hangar. Repairs were completed 16 March. On 11 April the A/V #1 flight was aborted due to tire failure during takeoff. the flight was rescheduled to 13 April and accomplished. Post flight inspection, however, revealed damage to the LH main gear bogie. The hot damper lugs had snapped off and a crack propogated approximately 8 inches into the bogie beam. The beam was replaced with a spare which was available in LSS inventory.

19 April - 26 July 1966 - (A/V #1) Nose Gear failed to retract after takeoff on 19 April. The nose gear sink rate arm, in the unlatched position, had prevented gear retraction. At post flight the sink rate arm (NASA instrumentation) was removed and the gear successfully operated.

> (A/V #2) When the nose gear retracted, the door jammed and cut the LH tire, resulting in nose gear hanging up partially retracted. Numerous attempts to lower the gear failed until the Co-Pilot, following ground instructions, shorted across two circuits in the EE bay. The gear lowered when electrical emergency down was selected. When the airplane landed the brakes were locked and caused six main gear tires to blow out and damaged both bogies. Cause was a crimped wire in a junction box on the RH forward bogie which shorted and blew the circuit breaker. Structure damage was completed and A/V #2 readied for the next flight on 19 May. Bogie beam repair was completed on 26 Jul 1966.

- 5 May 9 May 1966
 A/V #1
 Red light on first retraction. Gear was re-cycled and on this second retraction attempt, the nose gear gear retracted but the main gear folded and rotated without retraction. Malfunction was due to broken main gear uplock linkage. Up-lock linkage repaired for subsequent flight on 9 June. On the June 9 flight the gear retracted normally. Upon re-cycling the nose gear extended but the main gear did not. The electrical emergency system was used to extend the gear. Malfunction was caused by a failed ground safety relay.
- 4 June 2 Aug 1966
 While the rear wheels were being jacked, as a part of the proof load test, (4 June) the center beam failed fore and aft of the strut attach point permitting the strut to penetrate into the run pad. The Manufacturing repair effort was completed 19 July. Structures Lab. completed proof loading 25 July. Magnaflux and pen-stripe inspection was successfully completed and Air Force permission was received for reinstallation on A/V #1, 2 August 1966.
- 15 Aug 1966
 Directorate of Research Vehicle (XB-70) requested that the bogie skid plates be redesigned. Original plates contained 307 cubic inches of metal, below the fastening point. DRV requested a minimum of 400 cubic inches. Designed, fabricated and delivered as of 15 Aug. 1966.

COST DEFINITIONS

SUBSYSTEM: ALIGHTING AND ARRESTING

WBS CODE: 1.8

Total costs presented in this WBS item include all identifiable expenditures to design, develop, ground test, fabricate and assemble all components, assemblies and developmental test hardware within the Alighting and Arresting Subsystem as defined by the WBS. Total costs of \$17,259,216 include the following items:

- a) developing subsystem specification requirements
- b) subsystem installation and integration design
- c) vendor coordination
- d) in-house ground testing including design and fabrication of models, mockups and simulators
- e) subcontracted hardware including the supplier's costs for engineering, manufacturing, tooling and testing.

Excluded from the cost displayed for this subsystem are the in-house costs associated with the:

- f) fabrication of subsystem provisions (brackets, racks, wire harnesses, shelves, supports, etc.).
- g) miscellaneous purchased parts and installation materials
- h) installation of the subsystem into the vehicles
- i) subsystem, vehicle and preflight checkouts

Costs for items (f) through (i) are contained in WBS 1.12 (Volume IV, page IV-647). Internal accounting procedures and the resultant cost reports do not provide a basis for establishing expenditures for these items by individual subsystems. Therefore all costs are collected and reported in one WBS item. Refer to WBS 1.12 for additional information.

Detail of the recorded costs associated with this subsystem is provided by Element of Cost (EOC) and Subdivision of Work (SDW). Section III of Volume I provides a detail definition of these items. Further segregation of the cost data is provided by the WBS. All cost data is displayed at WBS level 5 (Alighting and Arresting Subsystem, WBS 1.8) with the exception of in-house ground testing (WBS 1.8.5). Cost data can be located on the following pages.

	<u>Cost Breakdown</u>	Time-Phased Detail
WBS 1.8 \$17,147,634	Page IV-429	Page IV-430
WBS 1.8.5 Ground Tests <u>111,582</u>	Page IV-429	Page IV-441
Total WBS 1.8 \$17,259,216	Page IV-429	Page 1V-447

İ

A summary of the subcontractor recorded cost data is provided on page IV-428. Contractual arrangements, delivery dates, costs by supplier, quantity of hardware delivered and other pertinent data is provided. Cost data includes the supplier expenditures for engineering, production, tooling and testing (where identifiable) performed at the supplier's facility. Refer to the Subcontracting Element of Cost (EOC) definition (Volume I, page I-26) for additional explanation.

Ground testing activities associated with the development of the Alighting and Arresting Subsystem have been identified and the costs assigned to WBS 1.8.5 (page IV-441). These costs reflect the in-house expenditures only. Testing activities performed by the subcontractors where identified are included under WBS 1.8, Test/QC Subdivision of Work and the Subcontracting Element of Cost. The following is a summary of the major in-house test activities identified to this subsystem.

Description	Recorded Costs
Airworthiness Retest of Nose Landing Gear Actuator	\$ 40,521
Airworthiness Retest of Main Landing Gear Cylinder	28,256
Airworthiness Retest of Main Landing Gear Door Actuato	r 19,122
Main Landing Gear Mockup	6,004
Nose Landing Gear Mockup	3,117
Various	12,133
Costs (less MPC and G&A)	\$ 109 , 153
Material Procurement Cost	574
General and Administrative	1,855
Total Costs WBS 1.8.5	\$111,582 *

* Calibration of the Landing Gear is included in the Structural Ground Test, WBS item 1.1.8.

SUBCONTRACTOR MATRIX

Subsystem: Alighting and Arresting

WBS Code: 1.8

SUBCONTRACTOR	ENGINEERING	PROD	TOOLING	TEST	TOTAL
Cleveland Pneumatic	1,933,284	10,567,577	1,851,888	-	14,352,749

<u>CLEVELAND PNEUMATIC</u> was selected to produce the Landing Gear Subsystem for the B-70 Air Vehicle.

Purchase Order L9J1-YZ-600122 was awarded to Cleveland Pneumatic July 10, 1959. The final pièce of hardware was completed and delivered to NR on September 13, 1965.

The Statement of Work called for the subcontractor to provide design, development, and test effort necessary to produce and deliver the Landing Gear Subsystem for the B-70 Air Vehicles 1, 2, and 3.

The subsystem consisted of the following assemblies:

- 1. Brake Control System
- 2. Brake System
- 3. Main Wheel Assembly
- 4. Nose Wheel Assembly
- 5. Nose Steering Assembly
- 6. Tires

A considerable portion of the Landing Gear effort was subcontracted to other firms by Cleveland Pneumatic Tool Company. The wheels, tires, and brakes were subcontracted to B. F. Goodrich Company. The Brake Control System was subcontracted to the Instrumentation and Control Division of CPT at Kalamazoo, Michigan, and the Nose Steering System was subcontracted to the National Water Lift Division of CPT at Grand Rapids, Michigan. All of the above effort was in accordance with NR specifications and controlling documentation.

All residual inventories were disposed of, and applicable credits were taken against Purchase Order 600122. The tooling used in the performance of this purchase order was sold on a salvage basis to Cleveland Pneumatic Tool Company.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM C8 ALIGHTING AND ARRESTING SUBSYSTEM

.

		0 HOURS	6-M ASSY C5 HOURS DOLLARS	
DESIGN/ENGINEERING		190672	8637	199309
LABCR AT \$ 5.010		958868		998488
ENGR BURDEN AT \$	4.387			874375
SHOP SUPPORT			2650	2650
LABCR AT \$ 3.502			9280	92.80
TEST/QC			301	301
LABER AT \$ 4.229			1273	1273
MFG BURDEN AT \$	3.932		11602	11602
ENGR MATERIAL			81 99	81 99
SUBCONTRACT		14352749		14352749
MPC		763702	574	704276
OTHER COST			61	61
SUB-TOTAL		15850576	109727	16960303
GEN & ADMIN.		297058	1855	298913
TOTAL COST		17147534	111582	17259216

SUBDIVISION OF WORK COST DETAIL - SEE PAGE IV-430 IV-441 IV-447

-

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 08 6-MAJ ASSY 0

.

ALIGHTING AND ARRESTING SUBSYSTEM

	DESIGN ZENGR HOURS DOLLARS	PROD Hours Dollars	TOOLING AND STE HOURS DOLLARS	TOTAL HOURS DOLLARS
DESIGN/ENGINEERING LABOR AT \$ 5.029 ENGR BURDEN AT \$ 4.381	190672 958868 835257			190672 958868 835257
SUBCONTRACT NPC	1933284 93943	10567577 508867	1851888 100892	14352749 703702
SUB-TOTAL	3821352	11076444	1952780	16850576
GEN & ADMIN	59194	202009	35855	297058
TOTAL COST	3880546	11278453	1988635	17147634

TIME-PHASED COST				
DETAIL - SEE PAGE	IV-431	I V- 435	IV-436	IV-437

٩

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 0.0 ADDRESS

5-SUBSYSTEM 08 ALIGHTING AND ARRESTING SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

	MAN- MONTHS	LABOR HOUR S	LABOR Rate	LABOR DOLLAR S	BURDEN DOLLARS	LABOR + Burden \$
Q-1 5 Q-2 5		95	4.674	444	432	876
Q-3 5 Q-4 5	i8 40 . 5	6708	4.628	31044	26269	57313
Q-1 5		14041	4.518	63437	48273	111710
Q-3 5 Q-4 5		12504	4.346	54342	44 877	99219
Q-1 6 Q-2 6		20444	4.445	90874	78219	169093
Q-3 6 Q-4 6		21535	4.655	100245	80196	180441
Q-1 6 Q-2 6		29806	4.827	143874	102562	246436
Q-3 6 Q-4 6		19568	4.843	94 76 8	89093	183861
Q-1 6 Q-2 6		16780	5.331	89454	77440	166894
Q-3 6		12503	5.415	67704	64315	132019
Q-1 6 Q-2 6	3	9649	6.725	6489C	60 37 3	125263
Q-3 6 Q-4 6	3	7755	5.120	39706	39372	79078
Q-1 6 Q-2 6	4	6299	5.922	37303	39633	76936
Q-3 6 Q-4 6		8359	5.895	49276	53673	102949
Q-1 6	5 16.5	2765	6.811	13832	18255	37087

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM15-SUBSYSTEM086-MAJASSY0SUBD OF WORKDESIGN/ENGINEERING

	MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-2 65 Q-3 65	10.5	1861	6.811	12675	12275	24950
TOTAL	1111.5	190672		953868	835257	1794125

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

•

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM08ALIGHTING AND ARRESTING SUBSYSTEM6-MAJ ASSY0SUBD CF WORKDESIGN/ENGINEERING

		MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BURDEN DOLL ARS	LABOR + Burden \$	SUBC
Q-1			9 5	4.674	444	432	876	
Q-2								
0-3		40.5	6708	4.628	31044	26269	57313	
Q-4								
Q-1		82.5	14041	4.518	63437	48273	111710	196371
Q-2 Q-3		7 C E	1250/					
Q-4		70.5	12504	4.346	54342	44 87 7	99219	171197
0-1		118.5	20444	4 445	0.0.0.7 (70010		
Q-2		110.0	20444	4.445	90874	78219	169093	45057 0
Q-3		127.5	21535	4.655	1.3.5.2.4.5	0010/	100///	
Q-4		12102	21777	4.000	100245	80196	180441	138598
Q-1		174.C	29806	4.827	143874	102562	2///2/	1140/
0-2				40021	T.4.501.4	102 302	246436	113355
Q-3	_	108.0	19568	4.843	94768	89093	183861	172642
0-4	61				21100	07075	100001	172042
Q-1	62	99.0	16780	5.331	89454	77440	166894	112215
Q-2	62						100071	
Q-3	62	75.0	12503	5.415	67704	64315	132019	212215
Q-4	62							
Q-1	63	57.0	964 9	6.725	64890	60373	125263	165624
Q-2								
Q-3		46.5	7755	5.120	39 7 06	39372	79078	48177
Q-4								
Q - 1		37.5	6299	5.922	37303	39633	7 693 6	162309
Q-2						•		
Q-3		48.0	8359	5.895	49276	53673	102949	
Q-4		14 5	a 7 76					
Q-1		16.5	2765	6.811	13832	18255	37087	
Q-2		10 5	10/1	<				
Q-3	00	10.5	1861	6.311	12675	12275	24950	
тот	AL	1111.5	190672		958868	835257	1794125	1933284

.

÷.,

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 08 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

	MPC	SUB Total	GεA	TOTAL COST
Q-1 58		876		876
Q-2 58				
Q-3 58		57313		57313
Q-4 58				
Q-1 59	4941	303022		303022
Q-2 59				
Q-3 59	4677	275093		275093
Q-4 59	2(700	((()))	12217	(
Q-1 60	26732	646395	12316	658711
Q-2 60 Q-3 60	0 7 7 7	227262	6 2 2 6	222407
Q-4 60	8223	327262	6235	333497
Q-1 61	3248	363050	6746	369796
Q-2 61	5240	101010	0110	507170
Q-3 61	4946	361449	6716	368165
Q-4 61	1710	201117	0.10	
0-1 62	3 5 6 6	282675	4744	287419
9-2 62				
0-3 62	6738	350972	5891	356863
Q-4 62				
Q-1 63	7033	297920	4981	302901
Q-2 63				
Q-3 63	1548	128803	2154	130957
Q-4 63				
Q-1 64	22291	261536	5565	267101
Q-2 64				•
Q-3 64		102949	2191	105140
0-4 64				
Q-1 65		37087	989	33076
Q-2 65		2/050		25414
Q-3 65		24950	666	25616
TOTAL	93 943	3821352	59194	3880546

·---

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK PRODUCTION

	SUBC	MPC	SUB Total	GEA	TOTAL CEST
Q-1 5° Q-2 5°		724	28041		28041
Q-3 59 Q-4 59		746	28064		28064
Q-1 60 Q-2 60	======	81640	1457676	27773	1485449
Q-3 60 Q-4 60	4201010	89239	1593287	3⊎ 357	1623644
Q-1 61 Q-2 61		39141	1405294	26116	1431410
Q-3 61 Q-4 61		48423	1738538	32307	1770845
Q-1 62 Q-2 62		43218	1403074	23550	1426624
Q-3 62 Q-4 62		36828	1196684	20086	1216770
Q-1 63 Q-2 63	~> C 1 0	38440	943658	15778	959436
Q-3 63 Q-4 63		8462	271770	4544	276314
Q-1 64	888352	122006	1010358	21498	1031856
TOTAL	10567577	50386 7	11076444	202009	11278453

APRIL 1972

•

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM086-MAJ ASSY0SUBD OF WORK TOOLING AND STE

			SUB		TOTAL
	SUBC	MPC	TOTAL	GEA	COST
Q-3 59	15174	414	15588		15588
Q-4 59 Q-1 60	775997	46039	822036	15662	837698
Q-2 60 Q-3 60	128677	7634	136311	2597	138908
Q-4 60	_				
Q-1 61 Q-2 61	104497	2993	107490	1997	109487
Q-3 61 Q-4 61	161306	4621	165927	3083	169010
Q-1 62	103392	3286	106678	1791	108409
Q-2 62 Q-3 62	203393	6458	209851	3522	213373
Q-4 62 Q-1 63	158739	6740	165479	2766	168245
0-2 63		1/00	17/5/	707	49453
Q-3 63 Q-4 63	46173	1483	47656	797	48453
Q-1 64	154540	21224	175764	3640	179404
TOTAL	1851888	100892	1952780	358 55	1988635

~

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEEPING 4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING SUBSYSTEM 6-MAJ ASSY 0

ON-SITE LABOR

	MAN- MUNTHS	LABOR HOUR S	LABUR RATE	LABOR DOLLAR S	BURDEN Dollars	LABOR + BURDEN \$
Q-1 53 Q-2 58		95	4.574	444	432	876
Q-3 58 Q-4 58	40.5	6708	4.628	31044	26269	57313
Q-1 59 Q-2 59	82.5	14041	4.518	63437	48273	111710
Q-3 59 Q-4 59	70.5	12504	4.346	54342	44 87 7	99219
Q-1 60 Q-2 60	118.5	20444	4.445	90874	78219	169093
Q-3 60 Q-4 60	127.5	21535	4.555	100245	90195	180441
Q-1 61 Q-2 61	174.0	29806	4.827	143874	102562	246436
Q-3 61 Q-4 61	108.0	19568	4.843	94768	89093	183861
Q-1 62 Q-2 62	99.0	16780	5.331	89454	77440	166894
Q-3 62 Q-4 62	75.0	12503	5.415	67704	64315	132019
Q-1 63 Q-2 63 Q-3 63	57.0	9649	6.725	5489C	60373	125263
Q = 3 - 63 Q = 4 - 63 Q = 1 - 64	46.5	7755	5.120	39706	39372	79078
Q = 2 64 Q = 3 64	37.5	6299	5.922	37303	39633	76936
Q-4 64 Q-1 65	48.0	8355	5.895	49276	53673	102949
Q = 2 65	16.5	2765	6.911	18832	18255	37087

•

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING SUBSYSTEM 6-MAJ ASSY 0

	MAN- MON TH S	LABUR HOURS	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$
Q-3 65	10.5	1861	6.811	12675	12275	24950
TOTAL	1111.5	190672		958868	835257	1794125

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUCY

4-SYSTEM 1 5-SUBSYSTEM 08

ALIGHTING AND ARRESTING SUBSYSTEM 6-MAJ ASSY 0

		MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$	SUBC
Q-1	-		95	4.674	444	432	876	
Q-2	58							
Q-3	58	40.5	6708	4.628	31044	26269	57313	
Q-4	58							
Q-1	59	82.5	14041	4.518	63437	48273	111710	213688
Q-2	59							
Q-3	59	70.5	12504	4.346	54342	44877	99219	213699
Q-4	59							
Q-1	60	118.5	20444	4.445	90874	78219	169093	2602603
Q-2	60							
Q-3	60	127.5	21535	4.655	100245	80196	180441	1771323
Q-4	60							
0-1		174.0	29806	4.827	143874	102562	246436	1584016
Q - 2	61						210130	190 1010
\dot{Q} - 3		108.0	19568	4.843	94768	89093	183861	2024063
Q-4	61						103001	LULIUUU
Q-1		99.0	16780	5.331	89454	77440	166894	1575463
$\hat{y} - 2$	-							1212105
0-3		75.0	12503	5.415	67704	64315	132019	1575464
Q-4						0.517	19601	1919101
0-1		57.0	9649	6.725	6489C	60373	125263	1229581
Q-2		2	, , , , ,	••••	01070	00010	16,203	
Q - 3		46.5	7755	5.120	39706	39372	79078	357658
0-4				20120	37100		17010	11010
Q-1		37.5	6299	5.922	37303	39633	76936	1205201
Q-2		51.5	02.))	20766	2020		10950	1200201
Q-3		48.0	8359	5.895	49276	53673	102949	
Q-4		40.0	0.577		47210		107.747	
$\tilde{Q} - 1$		16.5	2765	6.811	19832	18255	37087	
Q-1 Q-2		10•J	2107	OFOLL	10002	10270	21001	
Q-3		10.5	1861	6.811	12675	12275	24950	
u = 5	09	10.3	1001	0.011	12010	12213	24930	
тот	AL	1111.5	190672		953868	83525 7	1794125	14352749

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

4-SYSTEM15-SUBSYSTEM086-MAJASSY0

ALIGHTING AND ARRESTING SUBSYSTEM

		мрс	SUB Total	GξΑ	TOTAL COST
Q-1	58		876		876
Q-2	58				- • -
Q-3	58		57313		57313
Q-4	58				
Q-1	59	5665	331063		331063
	59				
	59	5837	318745		318745
Q-4					
	60	154411	2926107	55751	2981858
	60				
	60	105096	2056860	39189	2096049
	60				
	61	45382	1875834	34859	1910693
Q-2 (
0-3 (-	57990	2265914	42106	2308020
Q-4 (-				
	62	50070	1792427	30085	1822512
	52				
	62	50024	1757507	29499	1787006
0-4 (•			
	53	52213	1407057	23525	1430582
-	53				
	53	11493	448229	7495	455724
Q-4 6	-				
	54	165521	1447658	30703	1478361
Q-2 6					
Q-3 6			102949	2191	10514C
	54				
	55		37087	989	38076
Q-2 6					
Q-3 6	17		24950	666	25616
TOTA	NL _.	703702	16850576	297058	17147634

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 08 6-MAJ ASSY 05 ALIGHTING AND ARRESTING GROUND TESTS

		HOURS	TOTAL Hours Dollars
DESIGN/ENGINEERING		8637	8637
LABOR AT \$ 4.587		39620	39620
ENGR BURDEN AT \$	4.529	39118	39118
SHOP SUPPORT LABOR AT \$ 3.502 TEST/QC LABOR AT \$ 4.229 MFG BURDEN AT \$ ENGR MATERIAL MPC OTHER COST	3.932	2650 9280 301 1273 11602 8199 574 61	301 1273 11602
SUB-TOTAL		109727	109727
GEN & ADMIN		1855	1855
TOTAL COST		111582	111582

TIME-PHASED COST DETAIL - SEE PAGE IV-442

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING GROUND TESTS 6-MAJ ASSY 05 SUBD OF WORK TEST/QC

	MAN- MONTHS	LABOR HOURS	LABOR Rate	LABOR DOLLAR S	BURDEN DOLLARS	LABOR + Burden \$
Q-1 61 Q-2 61	4.5	865	8.713	7537		7537
Q-3 61 Q-4 61		118	7.814	922	407	1329
Q-1 62 Q-2 62	6.0	969	3.998	3874	4474	8 34 8
Q-3 62 Q-4 62	28.5	4727	4.052	19152	23150	42302
Q-1 63 Q-2 63	12.0	1952	4.134	807C	10739	18809
Q-3 63 Q-4 63		4	16.000	64	347	411
Q = 1 64 Q = 2 64		1			-1	-1
Q-3 64 Q-4 64		1				
Q-1 65				1	2	3
TOTAL	51.0	8637		3962 C	39118	78738

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING GROUND TESTS 6-MAJ ASSY 05 SUBD CF WORK TEST/QC

	MAN- MONTHS	LABOR Hours	LABUR RATE	LABOR DOLLARS	BUR DEN Doll Ars	LABOR + Burden \$
Q-1 59 Q-2 59 Q-3 59		1	3.000	3	4	7
Q-4 59 Q-1 60 Q-2 60 Q-3 60		29	2.724	79		79
Q-4 60 Q-1 61 Q-2 61		108	3.167	342	275	617
$Q=2 \ 61$ $Q=3 \ 61$ $Q=4 \ 61$		78	3.051	238	317	555
Q-1 62 Q-2 62		90	3.033	273	346	619
Q-3 62 Q-4 62	9.0	1615	3.797	6132	7129	13261
Q-1 63 Q-2 63	4.5	861	3.105	2673	3741	6414
Q-3 63 Q-4 63		-72	3.556	-256	-6	-262
Q-1 64 Q-2 64				1	-3	-2
Q-3 64 Q-4 64		-1	. 595	1	-3	-2
Q-1 65 Q-2 65		-41	3.537	-145	-139	-284
Q-3 65 Q-4 65		-17	3.353	-57	-56	-113
0-1 66		-1	4.000	-4	-3	-7
TOTAL	13.5	2650		9280	11602	20882

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

•

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING GROUND TESTS 6-MAJ ASSY 05 SUBD OF WORK TEST/QC

	MAN- MON TH S	LABOR HOUR S	LABOR Rate	LABOR DCLLARS	BUR DEN DOLL ARS	LABOR + Burden \$
Q-1 61 Q-2 61		10	4.700	47		47
Q-3 61 Q-4 61		10	3.100	31		31
Q-1 62 Q-2 62		3	2.667	8		8
Q-3 62 Q-4 62	1.5	200	4.420	834		884
Q-1 63 Q-2 63 Q-3 63		78	3.885	303		303
TOTAL	1.5	301		1273		1273

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 08 6-MAJ ASSY 05 ALIGHTING AND ARRESTING GROUND TESTS

		MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DCLLARS	BURDEN DOLLARS	LABUR + Burden \$	ENGR Matl
Q-1	59		1	3.000	3	4	-	
Q-2			-	40000	L	4	7	
Q-3								
Q-4								
Q-1			29	2.724	79		79	
Q-2							• 2	
Q-3 Q-4								-1588
Q-4 Q-1		<i>4</i> E	0.0.0					
0-2		4.5	983	8.063	7926	275	8201	20
Q-3			224	5 300				
Q-4			206	5.782	1191	724	1915	1025
Q-1		6.0	1062	3.912	()			
Q-2		0.0	1052	2.915	4155	4820	8975	6479
Q-3		39.0	6542	4.00C	26168	20.270	<i></i>	
Q-4	62			1.000	20100	30279	56447	2301
Q-1	63	16.5	2891	3.821	11046	14480	25577	
Q-2					11040	14400	25526	665
Q-3			-68	2.824	-192	341	149	703
Q-4						511	143	-702
Q-1			1	1.000	1	-4	-3	-110
Q-2							9	110
Q-3 Q-4					1	-3	-2	-111
Q-4 Q-1				_				
Q-2			-41	3.512	-144	-137	-281	154
Q-3			1.7	2 252				
Q-4			-17	3.353	-57	-56	-113	62
Q-1			-1	4.000	,	<i>.</i>		
			- L	4.090	-4	-3	-7	4
тот	AL	66.0	11588		50173	50720	100893	8199

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

• .

4-SYSTEM 1 5-SUBSYSTEM 08 6-MAJ ASSY 05 ALIGHTING AND ARRESTING GROUND TESTS

	MPC	OTHER , COST	SUB TOTAL	GεA	TOTAL COST
Q-1 59			7		7
9-2 59			•		•
0-3 59					
Q-4 59					
Q-1 60			79	2	81
Q-2 60					
Q-3 60	-209		-1797	-34	-1831
Q-4 60					
Q-1 61	2		8223	153	8376
0-2 61					
Q-3 61	87	18	3045	57	3102
Q-4 61 Q-1 62	510	2	150/7	24.0	1 (225
Q = 2 62	510	3	15967	268	16235
Q-3 62	181	7	58936	989	59925
Q-4 62	101		20420	707	24922
Q-1 63	66		26257	439	26696
Q-2 63			LULI	737	200/0
Q-3 63	-69	27	- 59 5	-10	-605
Q-4 63					•••
Q-1 64	-12	2	-123	-3	-126
Q-2 64					•
Q-3 64	-40	1	-152	-3	-155
Q-4 64					
Q-1 65	46	1	-80	-2	-82
Q-2 65					
Q-3 65	11	1	-39	-1	-40
Q-4 65					
Q-1 66	1	1	-1		-1
TOTAL	574	61	109727	1855	111582

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING SUBSYSTEM

			HOURS	HOURS	TOOLING AND STE HOURS DOLLARS	HUURS
DESIGN/ENGINEE	RING	1	90672			8637
LABER AT \$	5.010		958868			3962
ENGR EURDEN	AT \$	4.387	835257			39118
SHOP SUPPORT						2650
LABER AT \$	3.502					9230
TEST/QC						301
LABCR AT \$						1273
MEG BURDEN	AT \$	3.932				11502
ENGR MATERIAL						31 99
SUBCONTRACT			1933284	10567577		
MPC			93943	508467	100392	574
OTHER COST						51
SUB-TOTAL			3821352	11076444	1952780	109727
GEN & ADMIN			59194	202009	35855	1855
TOTAL COST			3880546	11278453	1988635	111582
		ME-PHASED COST IAIL - SEE PAGE	IV-449	IV-453	IV- 454	IV- 455

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> COST BREAKDOWNS B-70 AIRCRAFT STUDY

> > TOTAL

4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING SUBSYSTEM

HOURS DOLLARS DESIGN/ENGINEERING 199309 LABOR AT \$ 5.010 998488 ENGR BURDEN AT \$ 4.387 874375 SHOP SUPPORT 2650 LABOR AT \$ 3.502 92.80 301 TEST/QC LABOR AT \$ 4.229 1273 MFG BURDEN AT \$ 3.932 11602 ENGR MATERIAL 8199 SUBCONTRACT 14352749 MPC 704276 **OTHER COST** 61 ____ SUB-TOTAL 16960303 GEN & ADMIN 298913 _____ TOTAL COST 17259216

•

TIME-PHASED COST DETAIL - SEE PAGE IV-460

> TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 ALIGHTING AND ARRESTING SUBSYSTEM 5-SUBSYSTEM 08 SUBSYSTEM SUBD OF WORK DESIGN/ENGINEERING

		MAN- MON THS	LABOR HOUR S	LABOR Pate	LABOR DOLLARS	BUR CEN DOLL ARS	LABOR + BURDEN \$
Q-1 Q-2			95	4.674	444	432	876
Q-3 Q-4	58	40.5	6708	4.628	31044	26 2 69	57313
Q-1 Q-2	59	82.5	14041	4.518	63437	48273	111710
Q-3 Q-4		70.5	12504	4.346	54342	44 87 7	<u>99219</u>
Q-1 Q-2	60	118.5	20444	4.445	908 74	78213	169093
Q-3 Q-4	60	127.5	21535	4.655	100245	80196	180441
Q-1 Q-2		174.0	29806	4.827	143874	102562	246436
Q-3 Q-4	61	108.0	19568	4.843	94768	89093	183861
	62	99.0	16780	5.331	89 45 4	77440	166994
Q-3 Q-4		75. 0	12503	5.415	67704	64315	132019
Q-1 Q-2		57.0	9649	6.125	64890	60373	125263
Q-3 Q-4		46.5	7755	5.120	39706	39372	79078
Q-1 Q-2		37.5	6299	5.922	37303	39633	76936
Q-3 Q-4	64	48.0	8359	5.895	49276	53673	102949
Q-1 Q-2	65	16.5	2765	6.811	13832	18255	37087

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM 1 ALIGHTING AND ARRESTING SUBSYSTEM 5-SUBSYSTEM 08 SUBD OF WORK DESIGN/ENGINEERING

,	MAN- MON TH S	LABOR HOUR S	LABOR Rate	LABOR DCLLARS	BUR DEN Doll Ars	LABOR + BURDEN \$
Q-3 65	10.5	1861	6.811	12675	12275	24950
TOTAL	1111.5	190672		958868	835257	1794125

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

• • •

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM1ALIGHTING AND ARRESTING SUBSYSTEM5-SUBSYSTEM08SUBDCFWORXDESIGN/ENGINEERING

		MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$	SUBC.
Q-1			95	4.674	444	432	876	
Q-2								
Q-3		40.5	6708	4.628	31044	26 26 9	57313	
Q-4								
0-1		82.5	14041	4.518	63437	48273	111710	186371
Q-2								
Q-3		70.5	12504	4.346	54342	44877	99219	171197
Q-4	-							
Q-1		118.5	20444	4.445	90874	78219	169093	45 0570
Q-2	-							
0-3		127.5	21535	4.655	100245	80196	180441	138598
Q-4	6 0							130770
Q-1		174.0	29806	4.827	143874	102562	246436	113366
Q-2							210120	113300
Q-3		108.0	19568	4.843	94768	89093	183861	172542
Q-4	61						100001	112042
Q-1	62	9 9. 0	16780	5.331	89454	77440	166894	112215
Q-2	62				0	11110	100014	112215
Q-3	62	75.C	12503	5.415	67704	64315	132019	212215
Q-4	62				01101	07010	102019	212215
Q-1	63	57.0	9649	6.725	64890	60373	125263	145/01
Q-2	63				31020	00.515	127205	165624
Q-3	63	46.5	7755	5.120	39706	39372	79078	48177
Q-4	63				5,100	212	15010	40111
0-1		37.5	6299	5.922	37303	39633	76936	142200
Q-2	64			JU / L L	51505	2000	02601	162309
0-3		49.C	8359	5.395	49276	536 73	102040	
Q-4	64				47270	22012	102949	
Q-1		16.5	2765	6.811	18832	10755	27027	
0-2		2007	2102	COLL	10037	18255	37087	
Q-3		10.5	1861	6.811	12675	12275	24950	
тот	AL	1111.5	190672		953868	835257	1794125	1933234

NORTH AMERICAN ROCKWELL CORP. Space Division Data Prepared Under NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEN 5-SUBSYSTEN	1 ALIGHTING AND ARRESTING SUBSYSTEM
SUBD OF WORK	DESIGN/ENGINEERING

	MPC	SUB Total	GEA	TOTAL Cost
Q-1 58 Q-2 58		876		876
Q-2 58 Q-3 58 Q-4 58		57313		57313
Q-1 59 Q-2 59	4941	303022		303022
Q-3 59 Q-4 59	4677	275093		275093
Q-1 60 Q-2 60	26732	646395	12316	658711
Q-3 60 Q-4 60	8223	327262	6235	333497
Q-1 61 Q-2 61	3248	363050	6746	369796
Q-3 61 Q-4 61	4946	361449	6716	368165
Q-1 62 Q-2 62	3 566	282675	4744	287419
Q-3 62 Q-4 62	6738	350972	5891	356863
Q-1 63 Q-2 63	7033	297920	4981	302901
Q-3 63 Q-4 63	1548	128803	2154	130957
Q-1 64 Q-2 64	22291	261536	5565	267101
Q-3 64 Q-4 64		102949	2191	105140
Q-1 65 Q-2 65		37087	989	38076
Q-3 65		24950	666	25616
TOTAL	93943	3821352	59194	3880546

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM1ALIGHTING AND ARRESTING SUBSYSTEM5-SUBSYSTEM08SUBD OF WORK PRODUCTION

	SUBC	MPC	SUB Total	G & A	TOTAL CCST
Q-1 59 Q-2 59	27317	724	28041		28041
Q-3 59 Q-4 59	27318	746	28064		28064
Q-1 60 Q-2 60	1376036	81640	1457676	27773	1485449
0-3 60 0-4 50	1504048	89239	1593287	30357	1623 644
Q-1 61 Q-2 61	1366153	39141	1405294	25116	1431410
Q-3 61 Q-4 61	1690115	48423	1738538	3230 7	1770845
Q-1 62 Q-2 62	1359856	43218	1403074	23550	1426624
Q-3 62 Q-4 62	1159856	36828	1196684	20086	1216770
Q-1 63 Q-2 63	905218	38440	943658	15778	959436
Q-3 63 Q-4 63	263308	8462	271770	454 4	276314
0-1 64	868352	122006	1010358	21498	1031856
TOTAL	10567577	5C8867	11076444	202009	11278453

i

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM1ALIGHTING AND ARRESTING SUBSYSTEM5-SUBSYSTEM08SUBD OF WORK TOOLING AND STE

	SUBC	MPC	SUB Total	G & A	TOTAL Cost
Q-3 59	15174	414	15588		15588
Q-4 59 Q-1 60	775997	46039	822036	15662	837698
Q-2 60 Q-3 60	128677	7634	136311	2597	138908
Q-4 60 Q-1 61	104497	2993	107490	1997	109487
Q-2 61 Q-3 61	161306	4621	165927	3083	169010
Q-4 61 Q-1 62	103392	3286	106678	1791	108469
Q-2 62 Q-3 62	203393	6458	209851	3522	213373
Q-4 62 Q-1 63	158739	6740	165479		
Q-2 63				2766	168245
Q-3 63 Q-4 63	46173	1483	47656	797	48 453
Q-1 64	154540	21224	175764	3 64 C	179404
TOTAL	1851888	100892	1952780	35855	1988635

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

ţ

+

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 ALIGHTING AND ARRESTING SUBSYSTEM 5-SUBSYSTEM 08 SUBD OF WORK TEST/QC

	MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BURDEN DOLLARS	LABOR + BURDEN \$
Q-1 61 Q-2 61	4.5	865	8.713	7537		7537
Q-3 61 Q-4 61		118	7.814	922	407	1329
Q-1 62 Q-2 62	6.0	969	3.998	3874	4474	8348
Q-3 62 Q-4 62	28.5	4727	4.052	19152	23150	42302
Q-1 63 Q-2 63	12.0	1952	4.134	80 7 C	10739	18809
Q-3 63 Q-4 63		4	16.000	64	347	411
Q-1 64 Q-2 64		1			-1	-1
Q-3 64 Q-4 64		1			·	
Q-1 65				1	2	3
TOTAL	51.0	8637		39620	39118	78738

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 ALIGHTING AND ARRESTING SUBSYSTEM 5-SUBSYSTEM 08 SUBSYSTEM SUBD DF WORK TEST/QC

	MAN MONTHS	LABOR HOURS	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$
Q-1 59 Q-2 59 Q-3 59		1	3.000	3	4	7
Q-4 59 Q-1 60 Q-2 60 Q-3 60		29	2.724	79		79
Q-4 60 Q-1 61 Q-2 61		108	3.167	342	275	617
$Q = 2 \ 61$ $Q = 3 \ 61$ $Q = 4 \ 61$		78	3.051	238	317	555
Q-1 62 Q-2 62		90	3.033	273	346	619
Q-3 62 Q-4 62	9+0	1615	3.797	6132	7129	13261
Q-1 63 Q-2 63	4.5	861	3.105	2673	3741	6414
Q-3 63 Q-4 63		-72	3.556	-256	-6	-262
Q-1 64 Q-2 64				1	-3	-2
Q-3 64 Q-4 64		-1	• 99 9	1	-3	-2
Q-1 65 Q-2 65		-41	3.537	-145	-139	-284
Q-3 65 Q-4 65		-17	3.353	-57	-56	-113
Q-1 66		-1	4.000	-4	-3	-7
TOTAL	13.5	2650		9280	11602	20882

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

	TEST/QC				
4-SYSTEM	1	ALIC HTING		ADDROMENO	
5-SUB SYSTEM	08		AND	ARRESTING	SUBSISTEM
SUBD OF WORK	TEST/QC				

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BUR DEN Doll Ars	LABOR + BURDEN \$
Q-1 61 Q-2 61		10	4.700	47		47
Q = 3 - 61 Q = 4 - 61		10	3.100	31		31
Q-1 62 Q-2 62		3	2.667	8		8
Q-3 62 Q-4 62	1.5	200	4.420	884		884
Q-1 63 Q-2 63 Q-3 63		78	3.885	303		303
TOTAL	1.5	301		1273		1273

7

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

.

TINE PHASED EXPEND. 8-70 AIRCRAFT STUDY

4-SYSTEM 1 ALIGHTING AND ARRESTING SUBSYSTEM 5-SUBSYSTEM 08 SUBD OF WORK TEST/QC

	MAN- MONTHS	LABOR HOUR S	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$	ENGR Matl
Q-1 59		1	3.000	3	4	7	
Q-2 59		-		2	•	•	
Q-3 59							
Q-4 59							
Q-1 60		29	2.724	79		79	
Q-2 60						4.7	
Q-3 60							-1588
Q-4 60							-1960
Q-1 61	4.5	983	8.063	7926	275	8201	20
Q-2 61					2.13	ULUI	20
Q-3 61		206	5.782	1191	724	1915	1025
Q-4 61							1025
Q-1 62	6.0	1062	3.912	4155	4820	8975	6479
Q-2 62					1020	0717	0415
Q-3 62	39.0	6542	4.000	26168	30 279	56447	2301
Q-4 62					50215	20111	2301
Q-1 63	16.5	2891	3.821	11046	14480	25526	665
Q-2 63					1400	23320	665
Q-3 63		-68	2.824	-192	341	149	-702
Q-4 63		۹,			5	***	-102
Q-1 64		1	1.000	1	-4	-3	-110
Q-2 64		_		•	•		-110
Q-3 64				1	-3	-2	-111
Q-4 64				-		- E	-111
Q-1 65		-41	3.512	-144	-137	-281	154
Q-2 65					* 2 1	201	174
Q-3 65		-17	3.353	-57	-56	-113	62
Q-4 65				21		44.5	02
Q-1 66		-1	4.000	-4	-3	-7	4
TOTAL	66.0	11588		50173	50720	100893	8199

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM1ALIGHTING AND ARRESTING SUBSYSTEM5-SUBSYSTEM08SUBD OF WORK TEST/QC

	MPC	CTHER COST	SUB TOTAL	G & A	TUTAL CCST
Q-1 59			7		7
0-2 59			·		•
Q-3 59					
0-4 59					
Q-1 60			79	?	81
Q -2 60					
ହ–3 6୦	-269		-1797	-34	-1831
Q-4 50					
0-1 61	2		8223	153	8376
Q-2 61					
0-3 61	87	18	3045	5 7	3102
0-4 61					
0-1 62	510	3	15967	263	16235
0-2 62	• • •	-			
Q-3 62	181	7	5 8936	98 9	59 925
Q-4 62					
Q-1 63	56		26257	439	26696
Q-2 63 Q-3 63	10	27	for	•	
Q-3 63 Q-4 63	-69	27	-595	-10	-605
0-4 03 0-1 64	-12	2	- 122	2	10/
Q-2 64	-12	2	-123	-3	-126
Q-3 64	-40	1	-152	- 3	-155
0-4 64	10	•	- 172	- 5	-100
Q-1 65	46	1	-80	- 2	-82
0-2 65		-		۲.	υz
Q-3 65	11	1	-39	-1	-4 0
Q-4 65		-		-	,0
Q-1 66	. 1	1	-1		-1
TOTAL	574	61	109727	1855	111582

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING SUBSYSTEM

	MAN- MONTHS	LABOR HOURS	LABOR Rate	LABOR DOLLAR S	BUR DEN DOLLARS	LABOR + BURDEN \$
Q-1 58		95	4.674	444	432	876
Q-2 58						
Q-3 58 Q-4 58	40.5	6708	4.628	31044	26269	57313
Q-1 59	82.5	14041	4.518	63437	48273	111710
Q-2 59						
Q-3 59 Q-4 59	70.5	12504	4.346	54342	44 87 7	99219
Q-1 60	118.5	20444	4.445	90874	78219	169093
Q-2 60 Q-3 60	127.5	21535	4.655	100245	80196	180441
Q-4 60						100111
Q-1 61 Q-2 61	180.0	30671	4.937	151411	102562	253973
Q-3 61	108.0	19686	4.861	9569C	89500	185190
Q-4 61	100 5					
Q-1 62 Q-2 62	103.5	17749	5.258	93328	81914	175242
Q-3 62 Q-4 62	102.0	17230	5.041	86856	87465	174321
$Q = 4 \ 62$ $Q = 1 \ 63$	67.5	11601	6.289	72960	71112	144072
Q-2 63				12,00	, .	144012
Q-3 63	46.5	7759	5.126	39770	39719	79489
Q-4 63 Q-1 64	37.5	6300	5.921	37303	39632	76935
Q-2 64						
Q-3 64 Q-4 64	48.0	8360	5.894	49276	53673	102949
Q-1 65	16.5	2765	6.811	19833	18257	37090
Q-2 65						

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING SUBSYSTEM

ON-SITE LABOR

	MAN- MONTHS	LABOR HOURS	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$
Q-3 65	10.5	1861	6.811	12675	12275	24950
TOTAL	1159.5	199309		998438	874375	1872863

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING SUBSYSTEM

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BUR DEN DCLL ARS	LABOR + BURDEN \$
Q-1 59 Q-2 59 Q-3 59		1	3.000	3	4	7
Q-4 59 Q-1 60 Q-2 60 Q-3 60		25	2.724	79		79
Q-4 60 Q-1 61 Q-2 61		108	3.167	342	275	617
Q-3 61 Q-4 61		78	3.051	238	317	555
Q = 1 62 Q = 2 62		90	3.033	273	346	619
Q-3 62 Q-4 62	9.0	1615	3.797	6132	7129	13261
Q-1 63 Q-2 63	4.5	861	3.105	2673	3741	6414
Q-3 63 Q-4 63		-72	3.556	-256	-6	-262
Q-1 64 Q-2 64				1	-3	-2
Q-3 64 Q-4 64		-1	• 999	1	-3	- 2
Q-1 65 Q-2 65		-41	3.537	-145	-139	-284
Q-3 65 Q-4 65		-17	3.353	-57	-56	-113
Q-1 66		-1	4.000	-4	-3	-7
TOTAL	13.5	2650		928C	11602	20882

ŧ

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

٢

1

,

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING SUBSYSTEM

	MAN- MON TH S	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABUR + Burden \$
Q-1 61 Q-2 61		10	4.700	47		47
Q-3 61 Q-4 61		10	3.100	31		31
$Q = 4 \ 61$ $Q = 1 \ 62$ $Q = 2 \ 62$		3	2.667	8		8
Q-2 62 Q-3 62 Q-4 62	1.5	200	4.420	884		884
Q-1 63 Q-2 63 Q-3 63		78	3.885	303		303
TOTAL	1.5	301		1273		1273

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING SUBSYSTEM

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BURDEN DOLLARS	LABOR + BURDEN \$	ENGR MATL
Q-1 58		95	4.674	444	432	876	
Q-2 58 Q-3 58 Q-4 58	40.5	6708	4.628	31044	26269	57313	
Q-1 59 Q-2 59	82.5	14042	4.518	63440	48277	111717	
Q-3 59 Q-4 59	70.5	12504	4.346	54342	44877	99219	
9-1 60 9-2 60	118.5	20473	4.443	90953	78219	169172	
Q = 3 60 Q = 4 60	127.5	21535	4.655	100245	80 196	180441	-1588
Q-1 61 Q-2 61	180.0	30789	4.930	151800	102837	254637	20
Q-3 61 Q-4 61	108.0	19774	4.853	95959	89817	185776	1025
Q-1 62 Q-2 62	103.5	17842	5.247	93605	82260	175869	6479
Q-3 62 Q-4 62	112.5	19045	4.929	93872	94 594	188466	2301
Q-1 63 Q-2 63	72.0	12540	6.056	75936	74853	150789	665
Q-3 63 Q-4 63	46.5	7687	5.140	39514	39713	79227	-702
Q-1 64 Q-2 64	37.5	6300	5.921	37304	39629	76933	-110
Q-3 64 Q-4 64	48.0	8359	5.895	49277	53670	102947	-111
Q-1 65 Q-2 65	16.5	2724	6.860	18689	18118	36806	154
Q-3 65 Q-4 65	10.5	1844	6.843	12618	12219	24837	62

÷ . .

~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

APPIL 1972

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

4-SYSTEM	1		
5-SUB SYSTEM	08		
AL IGHTING	AND	ARRESTING	SUBSYSTEM

	MAN- MON THS	LABOR HOURS	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL AR S	LABOR + BURDEN \$	ENGP MATI
G-1 66		-1	4.000	-4	-3	-7	4
TOTAL	1174.5	202260		1009041	885 977	1895018	8199

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNCER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM	1		
5-SUB SYSTEM	08		
ALIGHTING	AND	ARRESTING	SUB SY STEM

		SUBC	TOTAL MATERIAL	MPC	OT HE R COS T	SUB Total	GεA	TOTAL Cost
Q-1	58					876		876
Q-2	58							
Q-3	58					57313		57313
Q-4	58							
Q-1	59	213688	213688	5665		331070		331070
Q-2								
Q-3		213689	213689	5 83 7		318745		318745
Q-4								
Q-1		2602603	2602603	154411		2926186	55753	2981939
Q-2								
0-3		1771323	1769735	104887		2055063	39155	2094218
Q-4								
0-1		1584016	1584036	45384		1884057	35012	1919069
Q-2					• •			
Q-3		2024063	2025088	58077	18	2268959	42163	2311122
Q-4		1575//7	15010/2	50500	2	1000 204	20252	10207/7
Q - 1		1575463	1581942	50580	3	1808394	30353	1838747
Q-2		1575444	15777/5	50205	- г	101///2	20400	1044021
Q-3		1575464	1577765	50205	7	1816443	30488	1846931
Q-4 Q-1		1229581	1220244	52270		1/2221/	22044	1457379
Q-2		1229201	1230246	52279		1433314	23964	1457278
0-3		357658	356956	11424	27	447634	7485	455119
Q-4	-	201606	376976	11424	21	441034	1907	477117
Q^{-1}		1205201	1205091	165509	2	1447535	30700	1478235
Q-2		1200201	1200071	103303	Ľ	1441222	20100	1470233
Q-3			-111	-4 C	1	102797	2188	104985
Q-4			***	, C.	•		2100	101705
0-1			154	46	1	37007	987	37994
Q-2			• • • •	40	•	51001	,,,,	21.221
0-3			62	11	1	24911	665	25576
0-4			52	••	•			
	U /							

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

ţ

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 08 ALIGHTING AND ARRESTING SUBSYSTEM

	SUBC	TOTAL MATERIAL	MPC	OTHER COST	SUB TOTAL	G & A	TUTAL CUST
Q-1 66		4	1	1	-1		- 1
TOTAL	14352749	14360948	704276	61	16960303	298913	17259216

TABLE OF CONTENTS							
SUBSYSTEM: MI	SSION AND TRAFFIC CONTROL	WBS CODE:	1.9				
<u> </u>	ITLE	PAGE					
WORK BREAKDOWN	STRUCTURE	IV-470					
TECHNICAL DESC	RIPTIONS	IV-472					
WBS 1.9	Mission & Traffic Control Subsystem	IV-472					
WBS 1.9.1	Communications Equipment	IV-473					
WBS 1.9.2	Navigation Aids Equipment	IV-476					
WBS 1.9.3	Identification Equipment	IV-477					
DEVELOPMENT MI	LESTONES	IV-478					
COST SUMMARY Cost Defin Subcontrac Detail Cos	tor Matrix	IV-480 IV-480 IV-483 IV-484					

SD72-SH-0003

WORK BREAKDOWN STRUCTURE

SUBSYSTEM: MISSION AND TRAFFIC CONTROL

WBS CODE: 1.9

WBS LEVELS

1.9 MISSION AND TRAFFIC CONTROL SUBSYSTEM

1.9.1 Communications Equipment

1.9.1.1 Command Radio Group

Receivers/Transmitters (GFE) Control Unit (GFE) Antenna Selector Unit (GFE) Antennas RF Transmission Lines RF Transmission Lines Switch (GFE)

1.9.1.2 Intercommunications Group

Intercom Set (GFE) Communications Control (GFE) Ground Intercom Control (GFE) Crew Extension Assembly

1.9.2 Navigation Aids Equipment

1.9.2.1 Instrument Approach Equipment

Glide Slope Receiver (GFE) Localizer Receiver (GFE) Control Assembly (GFE) Antennas Marker Beacon Receiver (GFE)

1.9.2.2 TACAN

Receiver/Transmitter (GFE) Control Indicator Assembly (GFE) Antenna Selector Unit (GFE) Antennas RF Transmission Lines RF Transmission Line Switch (GFE)

1.9.3 Identification Equipment

1.9.3.1 Receiver/Transmitter (GFE)

WORK BREAKDOWN STRUCTURE

SUBSYSTEM: MISSION AND TRAFFIC CONTROL WBS CODE: 1.9 WBS LEVELS 5 6 7 8 4 1.9.3.2 IFF Control Assembly (GFE) Receiver/Transmitter Control Coder/Decoder Control 1.9.3.3 Antennas Upper Lower 1.9.3.4 Antenna Lobing Switch (GFE) 1.9.3.5 RF Transmission Lines 1.9.3.6 RF Transmission Switch 1.9.4 Portable Tape Recoder 1.9.5 Ground Tests 1.9.5.1 Models

- 1.9.5.2 Mockups
- 1.9.5.3 Antenna Test

TECHNICAL DESCRIPTION

SUBSYSTEM: MISSION TRAFFIC CONTROL SUBSYSTEM (MTCS) WBS CODE: 1.9

This subsystem included the communication equipment, navigation aids equipment, and identification equipment.

The MTCS was essentially provided as GFE (Government Furnished Equipment) and therefore no technical drivers, percentage of accomplishment and state-of-the-art assessment will be provided. Although the MTCS was GFE, effort was involved in the installation and integration activities.

TECHNICAL DESCRIPTION

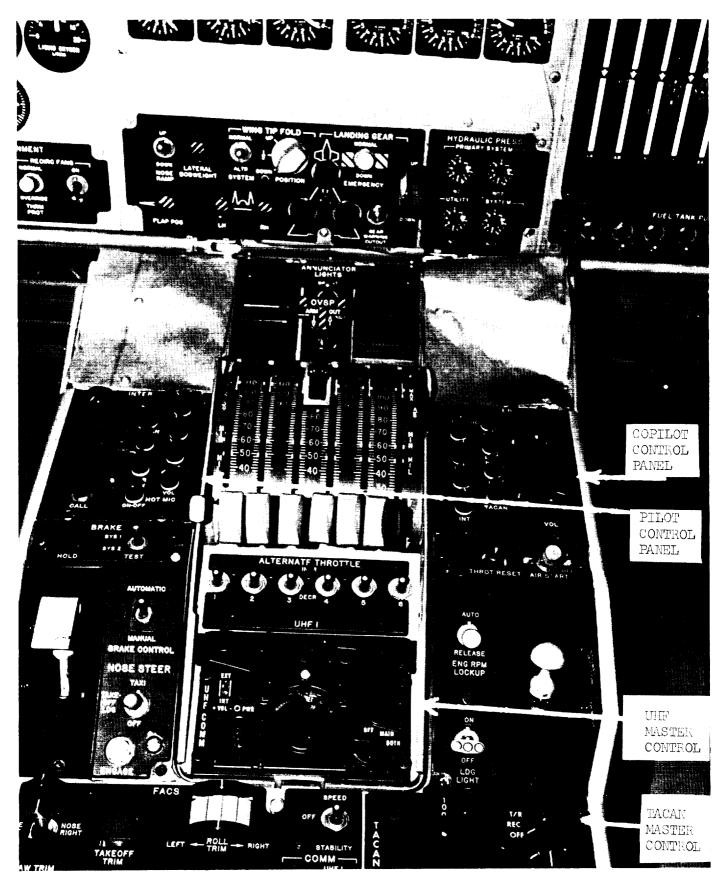
SUBSYSTEM:	MISSION	TRAFFIC	CONTROL	SUBSYSTEM	(MTCS)	WBS	CODE:	1.9	
MAJOR ASSEM	BLY: CON	MUNICAT	IONS EQU	IPMENT		WBS	CODE:	1.9.1	

The UHF Receiver - Transmitter Group was airborne radio communication equipment capable of being operated on 3500 discrete frequency channels in the frequency band of 225.0 to 399.95 megacycles. The equipment normally transmitted and received amplitude - modulated signals with a minimum transmitted carrier power output of 30 watts. Receiver sensitivity was 3 microvolts open circuit and had a signal-to-noise ratio of 10 decibels. A remote control panel provided control of all receiver-transmitter functions. Five rotary switches permitted manual selection of any of the 3500 frequency channels in 0.05 megacycle steps. Any 20 channels could be preset on a memory drum in the panel. A MANUAL-PRESET-GUARD control enabled the receivertransmitter to be tuned to a manually set channel, a preset channel on the preset guard channel. An ll-position switch (PWR) controlled the transmitter power attenuator in the transmitter, permitting power output reduction of up to 80 decibels in approximately 9 decibel increments.

An antenna selector assembly was provided which through electronic circuitry switched between the two air vehicle antenna at a rate of 70 cycles per minute. When either antenna received a sufficiently strong signal level the cycling ceased and the selector assembly would hold on that antenna. In the event signal reception was lost the cycling would resume. A selector switch was also provided for manual selection of either the upper or lower antenna if desired.

Each crew member was provided with equipment for monitoring, receiving and initiating internal and external communications with respect to the air vehicle. Located on the face of the control panel (See Exhibit 1) were seven push-pull type monitoring switches ganged to individual volume controls which provided the facility for monitoring and individual level adjustment of specific inputs. Five of the seven switches selected UHF-1, UHF-2, Intercom (INT), marker Beacon (MKR BCN), Instrument Landing System (ILS), and TACAN. The two other switches selected HOT MIC ON-OFF and HOT MIC VOL control. A six-position rotary selector switch enabled transmission over the interphone line or operation and modulation of the UHF radio transmitters. For emergency communication between crew stations, a momentary contact CALL pushbutton was provided. When a CALL signal was initiated existing monitored signals were overridden. The landing gear unsafe warning signal was also directed through this communication equipment. To provide in-flight intercommunication capability between the cockpit and the equipment bay an extension cord was stowed in the equipment bay area.

Intercommunication system, when integrated with TACAN equipment, instrument landing system equipment and the UHF communications equipment comprised a complete communication system which provided intercommunication within the aircraft, communication beyond the aircraft by means of radio equipment, and monitoring any combination of radio and navigation receivers. Transmission



WBS CODE: 1.9.1

was initiated through the use of the push-to-talk switch located on each control wheel and at the forward side of the equipment rack. The two modes of transmission were intercrew communications and radio transmission.

The ground intercom control consisted of a manually operated toggle switch located on the copilots side console plus a relay located in the electronic equipment bay. The switch positions were ground intercom (GND INTERCOM) -off-ground power intercom (GND POWER INTERCOM). In the off position the ground intercom isolation amplifiers are disabled and the electrical connections to the remote outlets are opened. In the GND INTERCOM position the amplifiers are activated and connections again completed to the remote outlets, enabling full use of the remote outlets, with ground equipment and with a single microphone. In the ground power intercom (GND POWER INTERCOM) position the air vehicle intercom system was able to utilize 28 vdc power provided by the ground maintenance intercom power supply. This mode is used immediately following engine shutdown and prior to attachment of the normal ground power units.

A "hand free" mode of intercommunication was automatically selected when any one of the following conditions occurred in flight: bailout warning relay actuated, encapsulate warning relay activated, or one or all escape capsules are closed. Contained within the escape capsules were personnel lead disconnects for microphone and headset connections plus an additional microphone button redundant to the normally used microphone button, and which was available for use during encapsulation to initiate radio transmission.

CABIN CENTER CONSOLE

EXHIBIT 1

SD72-SH-0003

TECHNICAL DESCRIPTION

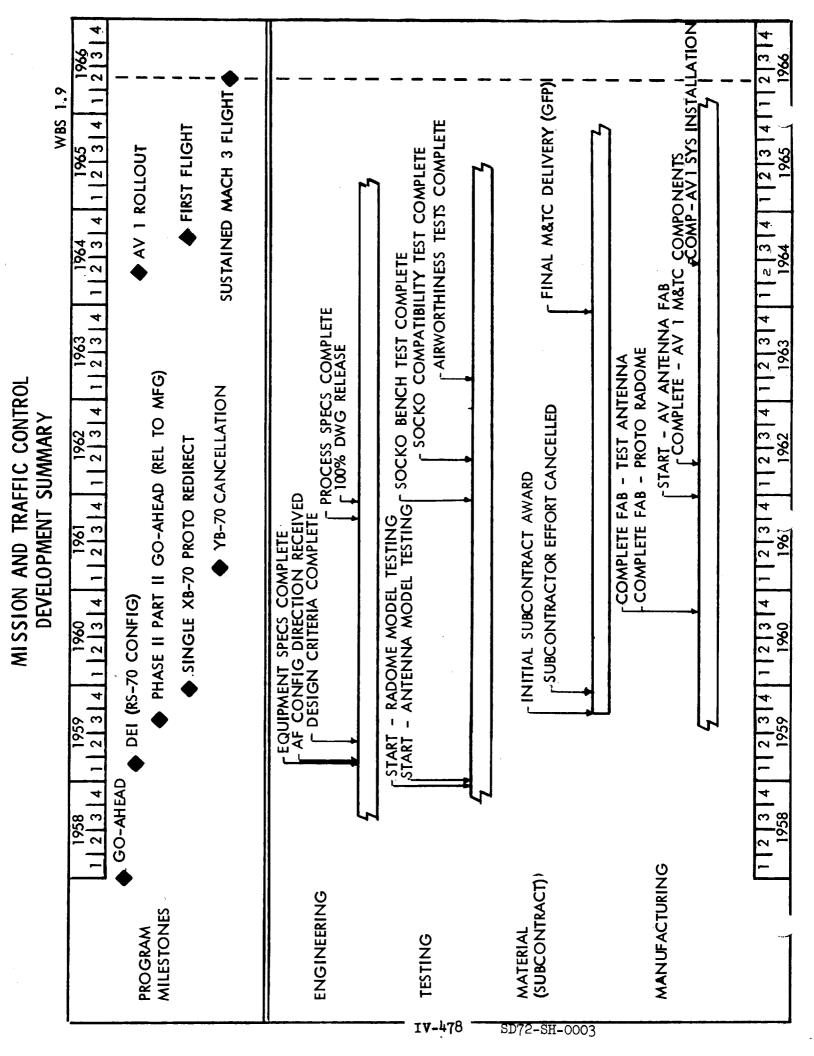
SUBSYSTEM:	MISSION	TRAFFIC	CONTROL	SUBSYSTEM	(MTCS)	WBS	CODE:	1.9
MAJOR ASSEM	BLY: NAV	JIGATION	AIDS EQ	UIPMENT		WBS	CODE:	1.9.2

The instrument landing system (ILS) equipment consisted of a 20 channel glide slope and localizer and a single-frequency marker beacon receiving set to provide the pilot and copilot with vertical and lateral guidance for landing when the system control was turned on and set for a desired localizer frequency, the correct glide slope frequency was automatically selected.

The TACAN receiver-transmitter contained the receiver, transmitter, azimuth and range circuits. In operation the receiver-transmitter continuously received from a selected surface beacon, random generated, paired pulse, amplitude modulated signals. Multiplexed with the filler signal were the precisely regulated paired pulse signals for reference bearing, variable bearing, station identification and distance reply. The distance signal was a reply to an interrogation signal initially generated and transmitted by the receiver-transmitter plus a 50-microsecond fixed delay at the beacon. The time lapse from interrogration to reply formed the basis for computation of the slant range distance from the aircraft to the surface beacon. The bearing information was determined by measuring the phase difference between the variable and reference bearing signals transmitted by the ground beacon. The reference signal phase remained constant for all points around the beacon. The variable signal phase varied as the aircraft bearing varied to the ground beacon. The control panel for the TACAN system was designed with a selector switch, channel knob and volume control. With the selector positioned at "OFF" all power was removed; at position "REC" only bearing information was provided; in the "T/R" position the transmitter became actuated and both bearing and range information received.

The air vehicle was provided with two anntenas which worked in conjunction with an automatic antenna selector which switched between the two antennas at a 70 cycle per minute rate. When either antenna received a sufficiently strong signal the selector would hold on that antenna. If the signal becomes weak the cycling would resume. This assured signal reception which might otherwise be obscured by the air vehicle configuration.

The TACAN system, when tuned to and operated in conjunction with a surface beacon, was designed to provide polar coordinate information with respect to a known geographical location which may be used for terminal or cross-country navigation.


IV-476

TECHNICAL DESCRIPTION

SUBSYSTEM:	MISSION	TRAFFIC CO	NTROL	SUBSYSTEM	(MTCS)	WBS	CODE:	1.9
MAJOR ASSEM	BLY: IDE	ENTIFICATIO	ON EQUI	IPMENT (IFI	?)	WBS	CODE:	1.9.3

The identification equipment consisted of a receiver-transmitter, antenna and antenna switching unit. The receiver-transmitter were designed to receive interrogation signals, process these signals through a coder-decoder circuitry and generate preselected reply signals in accordance with associated coderdecoder control settings. The transmit reply frequency was 1090 megacycle. The receiver frequency was 1030 megacycle. Front panel controls include adjustments for transmitter tuning, normal sensitivity, low sensitivity, and Mode 2 code selection. On the same panel an operation time totalizer and go-no-go self-test provision were also provided. The control panel also contained a rotary selector master switch with "OFF", "STANDBY", "LOW", "NORM", and "EMERGENCY" positions. In addition there was a Mode 2 toggle switch, Mode 3 toggle switch and an I/P (identification of position) toggle switch. There were also rotary selector switches designated Mode 1 and Mode 3 which, by their setting, established the frequency range between 960 to 1220 megacycles. Two of these antennas were incorporated in the air vehicle and operated in conjunction with an antenna lobing unit which provided signal reception and transmission which might otherwise be obscured by air vehicle attitude.

DEVELOPMENT SUMMARY TABULATION OF DATES	
Subsystem: Mission and Traffic Control	WBS 1.9
Engineering Equipment Specifications Complete Air Force Configuration Direction Received Design Criteria Complete Process Specifications Complete 100% Drawing Release	2-28-59 3-2-59 5-31-59 9-30-61 12-2-61
Testing Start - Radome Model Testing Start - Antenna Model Testing Complete - SOCKO Bench Testing Complete - SOCKO Compatibility Testing Complete - Airworthiness Testing	12-1-58 1-1-59 12-15-61 5-15-62 3-22-63
Material Initial Subcontract Awarded Subcontractor Effort Cancelled Final M&TC Delivery (GFE) Manufacturing	9-3-59 12-3-59 12 - 6-63
Complete - Prototype Radome Fabrication Complete - Test Antenna Fabrication Start - Air Vehicle Antenna Fabrication Complete - Air Vehicle No. 1 M&TC Components Complete - Air Vehicle No. 1 System Installation	9-30-60 9-30-60 12-29-61 4-27-62 6-10-64

.

×

SD72-SH-0003

COST DEFINITION

SUBSYSTEM: MISSION AND TRAFFIC CONTROL

WBS CODE: 1.9

Total costs presented in this WBS item include all identifiable expenditures to design, develop, ground test, fabricate and assemble all components, assemblies and developmental test hardware within the Mission and Traffic Control (M&TC) subsystem as defined by the WBS except for those items supplied to North American Rockwell as Government Furnished Equipment. The GFE items are:

- a) 1.9.1.1 Command Radio Group Receivers/Transmitters Control Unit Antenna Selector Unit RF Transmission Line Switches
- b) 1.9.1.2 Intercommunications Group Communications Control Ground Intercom Control Intercom Set
- c) 1.9.2.1 Instrument Approach Equipment Glide Slope Receiver Localizer Receiver Control Assembly Marker Beacon Receiver
- d) TACAN Receiver/Transmitter Control Indicator Assembly Antenna Selector Unit RF Transmission Line Switches
- e) 1.9.3.1 Receiver/Transmitter
- f) 1.9.3.2 IFF Control Assembly
- g) 1.9.3.4 Antenna Lobing Switch

Total cost of \$3,770,766 includes the following items:

- 1) developing subsystem specification requirements
- 2) subsystem installation and integration design
- 3) vendor coordination
- 4) in-house ground testing including design and development of models, mockups and simulators
- 5) subcontracted hardware including the supplier's cost for engineering, manufacturing, tooling and testing. (Suppliers terminated; equipment furnished as GFE.)

SD72-SH-0003

WBS 1.9

Excluded from the cost displayed for this subsystem are the in-house costs associated with the:

- h) fabrication of subsystem provisions (brackets, racks, wire harnesses, shelves, supports, etc.)
- i) miscellaneous purchased parts and installation materials
- j) installation of the subsystem into the vehicles
- k) subsystem, vehicle and preflight checkouts
- 1) GFE items

Costs for items (h) through (k) are contained in WBS 1.12 (Volume IV, page IV-647). Internal accounting procedures and the resultant cost reports do not provide a basis for establishing expenditures for these items by individual subsystems. Therefore, all costs are collected and reported in one WBS item. Refer to WBS 1.12 for additional information.

Detail of the recorded costs associated with this subsystem is provided by Element of Cost (EOC) and Subdivision of Work (SDW). Section III of Volume I provides a detail definition of these items. Further segregation of the cost data is provided by the WBS. All cost data is displayed at WBS level 5 (Mission and Traffic Control Subsystem, WBS 1.9) with the exception of inhouse ground testing (WBS 1.9.5). Cost data can be located on the following pages:

		<u>Cost Breakdown</u>	Time-Phased Detail
WBS 1.9	\$3,421,495	Page IV-484	Page IV-485
WBS 1.9.5 Ground Tests	\$ 349,271	Page IV-484	Page IV-504
Total WBS 1.9	\$3,770,766	Page IV-484	Page IV-511

A summary of the subcontractor recorded cost data is provided on page IV-483. Contractual arrangements, delivery dates, costs by supplier, quantity of hardware delivered and other pertinent data are provided. Cost data includes the supplier expenditures for engineering, production, tooling and testing (where identifiable) performed at the supplier's facility. Refer to the Subcontracting Element of Cost definition (Volume I, page I-26) for additional explanation.

As an aid in the definition and evaluation of the in-house engineering costs associated with this subsystem, a matrix of engineering hours has been developed. This matrix, displayed below, is a summary of all the in-house engineering groups that provided support to the design and development of the Mission and Traffic Control Subsystem.

WBS 1.9

Group No.	Title	Hours Expended
30	Numerical Design	3,907
48	Communication and Indicating System	75,340
49	Avionics Integration and Control	15,355
57	Engineering Specifications	17,726
75	Non-Metallics	3,068
8 6	Electronic Integration	24,025
95	Electrical System Design	11,315
97	Laboratory Services	5,078
110	Electrical Power Laboratory	38,493
125	Electrical System Equipment	1,507
	Miscellaneous	17.494
	Total	213,308 Hours

WBS 1.9	196,472	Hours	(page	IV-484)
WBS 1.9.5	_16,836	Hours	(page	TV-484)
	213,308	Hours	(page	IV-484)

Ground testing activities associated with the development of the Mission and Traffic Control Subsystem have been identified and the costs assigned to WBS 1.9.5 (page $_{\rm TV-504}$). These costs reflect the in-house expenditures only. Testing activities performed by the subcontractors where identified are included under WBS 1.9, Test/QC Subdivision of Work and the Subcontracting Element of Cost. The following is a summary of the major in-house test activities identified to this subsystem.

Description

Recorded Costs

Basic Recording Equipment - Air Vehicle No. 1	60,632
Impedance Model	53,744
Testing and Techniques Required to Reduce	
Radar Back Scatter	48,772
Radiation Pattern Tests - UHF Communications	·
and Telemetry Antennas	11,073
High Frequency Tail Cap Antenna High Voltage	· ·
Corona and Breakdown	10,473
Radiation Pattern Tests - Localize Glide Slope	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Antenna	9,197
Various	138,524
Costs (less MPC and G&A)	\$332,415
Material Procurement Cost	11,249
General & Administrative	5,607
Total Cost WBS 1.9.5	\$349,271

SUBCONTRACTOR MATRIX

Subsystem: Mission and Traffic Control

WBS Code: 1.9

SUBCONTRACTOR	ENGINEERING	PROD	TOOLING	TEST	TOTAL
Motorola Zenith Plastic	968,890 27,675	122,940 3,509		382,356 -	1,474,186 31,184
TOTAL	996,565	126,449		382,356	1,505,370

MOTOROLA was selected to produce the Mission and Traffic Control Subsystem Group and the Mission and Traffic Control Antenna Subsystem Group for the B-70.

Two contracts were awarded to Motorola for this effort:

L961-GX-600129	September 15, 1959 - December 3, 1959
	October 27, 1960 March 31, 1961

The Statement of Work required the subcontractor to provide design, development, test, production and related support necessary to produce the Mission and Traffic Control System for the B-70 Air Vehicle per NR specification.

The supplier was in the early design and development phase when Contract 600129 was terminated on December 3, 1959 for the convenience of the Government. The substantial portion of the work accomplished was in the managing and planning effort of the development and fabrication tasks, both within Motorola and at their subcontractors. The contract was 47.5% complete at the time of termination.

When the B-70 Program was reinstated in 1960, Motorola was awarded Letter Contract 600301 for the continuation of the Mission and Traffic Control Subsystem on October 27, 1960. The contract was 62.6% complete on March 31, 1961, the date the contract was terminated for the convenience of the Government. The substantial portion of the effort completed was in the engineering, management, and support areas.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM

DESIGN/ENGINEERIN LABOR AT \$ 4. ENGR BURDEN	•666		196472 928712	05 HDURS DOLLARS 16836 66538	HOURS DOLLARS 213308 995250
SHOP SUPPORT LABOR AT \$ 2. TEST/QC LABOR AT \$ 3. MFG BURDEN ENGR MATERIAL SUBCONTRACT MPC OTHER COST	394	3 . 699	4213 68 200 5676 245 1505370		47473 771 2617 62860 98457 1505370
SUB-TOTAL			3371652	343664	3715316
GEN & ADMIN			49843	5607	55450
TOTAL COST			3421495	349271	3770766

SUBDIVISION OF WORK COST DETAIL - SEE PAGE IV-485 IV-504 IV-511

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM095-MAJ ASSY0

		DESIGN ZENGR HOURS DGLLARS	PROD Hours Dollars	TEST ZQC HOURS DOLLARS	TUTAL HUURS DOLLARS
DESIGN/ENGINEERING		196472			196472
LABCR AT \$ 4.72		928712			
ENGP BURDEN AT	\$ 4.295	843906			928712 843906
SHOP SUPPORT		1427			1427
LABOR AT \$ 2.95	2	4213			4213
TEST/QC LABCR AT \$ 2.94		68			68
	-	200			200
MEG BURDEN AT	\$ 3.797	5676			5676
ENGR MATERIAL SUBCONTRACT MPC OTHER COST		245 996565 51860 9041	12644 9 62 3 5	382356 16194	245 1505370 74289 9041
SUB-TCTAL		2840418	132684	398550	3371652
GEN & ADMIN		39919	2431	7493	49843
TOTAL COST		2880337	135115	406043	3421495
	TIME-PHASED CO DETAIL - SEE PA	st Age IV-486	IV- 494	IV- 495	IV-496

C-6.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

	MAN- Mon ths	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BURDEN DOLLARS	LABOR + Burden \$
Q-1 58 Q-2 58	15.0	2605	4.382	11415	11852	23267
Q-3 58 Q-4 58	99.0	16556	4.261	70537	65031	135568
Q-1 59 Q-2 59	124.5	21353	4.132	88221	73551	161772
Q-3 59 Q-4 59	168.0	29494	4.CO8	119219	106203	224422
Q-1 60 Q-2 60	116.5	20143	4.606	92783	75259	168042
Q-3 60 Q-4 60	54.0	9055	4.945	44778	33 43 5	78213
Q-1 61 Q-2 61	120.0	20484	4.580	93819	68809	162628
Q-3 61 Q-4 61	76.0	13750	5.034	69216	68827	138043
Q-1 62 Q-2 62	85.5	14673	5.333	78248	67719	145967
Q-3 62 Q-4 62	94.5	15807	5.275	83387	80146	163533
Q-1 63 Q-2 63	61.5	10453	5.727	59867	56814	116681
Q-3 63 Q-4 63	52.0	8710	5.225	4551 C	50125	95635
Q-1 64 Q-2 64	39.5	6765	8.219	55599	42213	97812
Q-3 64 Q-4 64	31.5	5485	1.574	8635	36406	45041
Q-1 65	4.5	745	7.447	5 54 8	4919	10467

NORTH AMERICAN RCCKWELL CORP. SPACE DIVISION DATA PREPARED UNCER NASA CONTRACT NAS9-12100

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD CF WORK DESIGN/ENGINEERING

	MAN- MONTHS	LABOR HOUP S	LABOR RATE	LABOR DOLLAR S	PUR DEN DOLLARS	LABUR + BURDEN \$
Q-2 65 Q-3 65 Q-4 35	1.5	367	7.452	2735	2424	5159
Q-1 66		27	7.222	195	173	358
TOTAL	1143.5	196472		923712	843906	1772618

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

•

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

	MAN- Months	LABOR HOUR S	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-3 58 Q-4 58 Q-1 59 Q-2 59					123	123
Q-3 59 Q-4 59	1.5	138	3.645	503	482	985
Q-1 60 Q-2 60	7.5	1268	2,865	3633	5246	8879
Q-3 60 Q-4 60 Q-1 61 Q-2 61 Q-3 61 Q-4 61		21	3.667	77	- 175 ,	-98
Q-1 62 Q-2 62		3	3.000	9	14	23
Q-3 62		-3	3.000	-9	-14	-23
TOTAL	9 •0	1427		4213	5676	9889

NORTH AMERICAN RGCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM CS MISSION AND TRAFFIC CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD CF WORK DESIGN/ENGINEERING

	MAN- MONTHS	LABUR	LABUR RATE	LABOR DGLLARS	BURDEN DOLLARS	LABUR + Surden \$
Q-3 58 Q-4 58 Q-1 59		34	2.971	101		101
Q-2 59 Q-3 59 Q-4 59 Q-1 60		4	3.250	13		13
Q-1 60		30	2.967	36		86
TOTAL		68		200		2 00

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-5YSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD DF WORK DESIGN/ENGINEERING

		MAN- MON TH S	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$	ENGR Matl
Q-1		15.0	2605	4.382	11415	11852	23267	
Q-2		00.0	1.600					
Q-3 Q-4		99.0	16590	4.258	70638	65154	135792	
Q-1	-	124.5	21353	4.132	88221	73551	161772	
Q-2	59				oott t	13371	101112	
Q-3		169.5	29636	4.006	118735	106685	225420	240
Q-4								
0-1 0-2		124.0	21441	4.501	96502	80505	177007	-15
Q-3		54.0	9076	4.942	44855	33260	78115	20
Q-4	60				11055	55200	7011.2	20
Q-1		120.0	20484	4.580	93819	68809	162628	
Q-2				_				
Q-3 Q-4		76.0	13750	5.034	69216	68827	138043	
Q-1		85.5	14676	5.332	78257	67733	145990	
Q-2	62			2000L	10201	01135	142330	
Q-3		94.5	15804	5.276	83378	80132	163510	
Q-4		() - F	10/50					
Q-1 Q-2		61.5	10453	5.727	5986 7	56814	116681	
Q-3		52.0	8710	5.225	45510	50125	95635	
Q-4			0110	5.225	47710	20123	97035	
Q-1		39.5	6765	8.219	55599	42213	97812	
0-2								
Q-3		31.5	5485	1.574	8635	36406	45041	
Q-4 Q-1		4.5	745	7.447	5548	6010	10447	
Q-2			177	1 • • • 1	2040	4919	10467	
Q-3		1.5	367	7.452	2735	2424	5159	

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIPCRAFT STUDY

4-SYSTEM 5-SUBSYSTEM	1 MISSION AND	D TRAFFIC	CONTROL	SUBSYSTEM			
6-MAJ ASSY	0						
SUBD OF WORK	DESIGN/ENGINEE	RING					
MAN-	LABOR	LABER	L ABO	R BUR DI	N LABRIR	+	FAGR

	MONTHS	HOURS		DELLARS			MATL
Q-4 65							
Q-1 66		27	7.222	195	173	368	
TOTAL	1152.5	197967		933125	949532	1782707	245

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

		SUBC	TOTAL MATERIAL	MPC	OTHER COST	SUB TOTAL	G&A	TOTAL Cost
Q-1					264	23531		23531
Q-2								
Q-3					16	135808		135808
Q-4								
Q-1		22 3 0 8	22308	591		184671		184671
Q-2	59							101011
Q-3	59	22 30 8	22548	641		248609		248609
Q-4	59							240003
Q-1	60	558349	558334	33124	2938	771403	14698	786101
Q-2	60				2730	111105	14070	100101
Q-3	60	202935	202955	12042	1222	294334	5608	299942
Q-4	60					274334	2000	277742
Q-1	61	136972	136972	3924	2885	306409	5694	212101
Q-2		. –		5721	2005	500403	5034	312103
Q-3		53693	53693	1538	93 5	194209	2400	107017
Q-4			55675	100	7.7.7	174209	3608	197817
Q-1					58	146040		
0-2					20	146043	2451	148499
Q-3					240	1/0720		
Q-4					269	163779	2749	166528
Q-1					(22	117100		
Q-2					422	117103	1958	119061
Q-3								
Q-4					-1	95634	1599	97233
0-1								
Q-2					17	97829	167	97996
Q-3								
			•		16	45 05 7	959	46016
0-4								
Q-1						10467	279	10746
Q-2								
Q-3	65					5159	138	5297

.

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CUNTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM	1
5-SUBSYSTEM	09 MISSION AND TRAFFIC CONTROL SUBSYSTEM
6-MAJ ASSY Subd of Work	DESIGN/ENGINEERING

TOTAL COST	G & A	SUB Total	OTHE R COST	MPC	TOTAL MATERIAL	SUBC	
379	11	363					Q-4 65 Q-1 66
2880337	39919	2840418	9041	513 6 h	996810	996565	TUTAL

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

•

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK PRODUCTION

	SUBC	MPC	SUB Total	G & A	TOTAL COST
Q-1 59 Q-2 59	2046	54	2100		2 100
Q-3 59 Q-4 59	2046	55	2101		2 10 1
Q = 1 60 Q = 2 60	59728	354 3	63271	1206	64477
Q-3 60	257 50	1527	27277	52 0	27797
Q-4 60 Q-1 61	30069	861	30930	575	31 50 5
Q-2 61 Q-3 61	6810	195	7005	130	7135
TOTAL	126449	6235	132684	2431	135115

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

.

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM 6-MAJ ASSY 0 SUBD CF WORK TEST/QC

	SUBC	MPC	SUB Tutal	GEA	TOTAL CCST
Q-1 60 Q-2 60	92981	5516	9849 7	1877	100374
Q-3 60 Q-4 60	77863	4619	82482	1572	84054
Q-1 61 Q-2 61	190923	5470	196393	3650	200043
Q-3 61	20589	589	21178	394	21572
TOTAL	382356	16194	398550	7493	416043

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

	ESIGN/ENGINEERING	
4-SYSTEM		
5-SUBSYSTEM	9 MISSION AND TRAFFIC CONTROL S	SUBSYSTEM
6-MAJ ASSY		

ON-SITE LABOR

	MAN- MON THS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BURDEN DOLLARS	LABOR + BURDEN \$
Q-1 58 Q-2 58	15.0	2605	4.382	11415	11852	23267
Q-3 58 Q-4 58	99.0	16556	4.261	70537	65031	135568
Q-1 59 Q-2 59	124.5	21353	4.132	88221	73551	161772
Q-3 59 Q-4 59	168.0	29494	4.C08	118219	106203	224422
Q-1 60 Q-2 60	116.5	20143	4.606	92783	75259	168042
Q-3 60 Q-4 60	54.0	9055	4.945	44778	33 43 5	78213
Q-1 61 Q-2 61	120.0	20484	4.580	93819	68809	162628
Q-3 61 Q-4 61	76.0	13750	5.034	69216	68827	138043
Q-1 62 Q-2 62	85.5	14673	5.333	78248	67719	145967
Q-3 62 Q-4 62	94.5	15807	5.275	83387	80146	163533
Q-1 63 Q-2 63	61.5	10453	5.727	59867	56814	116681
Q-3 63 Q-4 63	52.0	8710	5.225	4551C	50125	95635
Q-1 64 Q-2 64	39.5	6765	8.219	55599	42213	97812
Q-3 64 Q-4 64	31.5	5485	1.574	8635	36406	45041
Q-1 65 Q-2 65	4.5	745	7.447	5548	4919	10467

.

NORTH AMERICAN POCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM 6-MAJ ASSY 0

	MAN- MON TH S	LABOR HOURS	LAPOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-3 65 Q-4 65	1.5	367	7.452	2735	2424	5159
Q-1 65		27	7.22?	195	173	368
TOTAL	1143.5	196472		923712	843506	1772618

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

.

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

	SHOP	SUPPORT
4-SYSTEM	1	
5-SUB SYSTEM	09	MISSION AND TRAFFIC CONTROL SUBSYSTEM
6-MAJ ASSY	0	

	MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL AR S	LABOR + BURDEN \$
Q-3 58 Q-4 58 Q-1 59 Q-2 59					123	123
Q-3 59 Q-4 59	1.5	138	3.645	503	482	985
Q-1 60 Q-2 60	7.5	1268	2 • 86 5	3633	5246	88 7 9
Q-3 60 Q-4 60 Q-1 61 Q-2 61 Q-3 61 Q-4 61		21	3.667	77	-175	-98
Q-1 62 Q-2 62		3	3.000	9	14	23
Q-3 62		-3	3.000	- 5	-14	-23
TOTAL	9.0	1427		4213	5676	9889

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDEP NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM 6-MAJ ASSY 0

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLAR S	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-3 58 Q-4 58 Q-1 59		34	2.971	101		101
Q-2 59 Q-3 59 Q-4 59		4	3.250	13		13
Q-1 60		30	2.867	86		86
TOTAL		68		20C		200

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM 6-MAJ ASSY 0

		MAN- MON TH S	L A BOR HOUR S	LABOR RATE	LABOR DOLLARS	BUR CEN DOLL AR S	LABOR + Burden \$	ENGR MATL
Q-1 Q-2		15.0	2605	4.382	11415	11852	23267	
Q-2 Q-3 Q-4	5 8	95.0	16590	4.258	70638	65154	135792	
Q-1 Q-2	59 59	124.5	21353	4.132	88221	73551	161772	
Q-3 Q-4		169.5	29636	4.006	118735	106635	225420	240
Q-1 Q-2	60	124.0	21441	4.501	96502	80505	177007	-15
Q-3 Q-4		54.0	9076	4.942	44855	33260	78115	20
Q-1 Q-2	61	120.0	20484	4.58C	93819	68809	162628	
Q-3 Q-4	61	76.0	13750	5.034	69216	68827	138043	
Q-1 Q-2	62	85.5	14676	5.332	78257	67733	145990	
Q-3 Q-4	62	94.5	15804	5.276	83378	80132	163510	
Q-1 Q-2	63	61.5	10453	5.727	59867	56814	116681	
Q-3 Q-4	63	52.0	8710	5.225	4551 C	50125	95635	
Q-1 Q-2	64	39.5	6765	8.219	55599	42213	97812	
Q-3 Q-4	64	31.5	5485	1.574	8635	36406	45041	
Q-1 Q-2	65	4.5	745	7.447	5548	4919	10467	
Q-3 Q-4	65	1.5	367	7.452	2735	2424	5159	

NORTH AMERICAN RCCKWELL CORP. SPACE DIVISION DATA PREPAREC UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

Ę		1 09 MISSI 0	ON AND TRAFF	IC CONTROL	SUBSYSTEM		
	MAN- MON TH S		LABOP Rate	LABOR DOLLARS	BURDEN DOLL ARS	LABUR + Burden \$	ENGR MATL
Q-1 6	6	27	7.222	195	173	368	
TOTA	L 1152.5	197967		933125	849582	1782707	245

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUCY

4-SYSTEM	1	
5-SUB SYSTEM	09	MISSION AND TRAFFIC CONTROL SUBSYSTEM
6-MAJ ASSY	0	

	SUBC	TOTAL MATERIAL	MPC	OTHER Cost	SUB Total	G & A	TOTAL Cost
Q-1 58				264	23531		23531
Q-2 58							-
Q-3 58 Q-4 58				16	135808		135808
Q-1 59	24354	2/25/					
Q-2 59	24004	24354	645		186771		186771
Q-3 59	24354	24594	696		250710		350710
Q-4 59			0,0		200110		250710
Q-1 60	711058	711043	42183	2938	933171	17781	950952
Q-2 60							
Q-3 60	306548	306568	18188	1222	404093	7700	411793
Q-4 60 Q-1 61	257044	252044					
Q = 2 61	357964	357964	10255	2885	533732	9919	543651
0-3 61	81092	81092	2322	02.5			
Q-4 61	01072	01072	636.6	935	222392	4132	226524
Q-1 62				58	146048	2451	148499
Q-2 62				20	140040	2491	140433
Q-3 62				265	163779	2749	166528
Q-4 62					_		
Q-1 63				422	117103	1958	119061
Q-2 63							
Q-3 63 Q-4 63				-1	95634	1599	97233
Q = 1 64							
Q = 2 - 64				17	97829	167	97996
Q-3 64				16	45 05 7	959	44014
Q-4 64		·		* 0	TUUT	7,17	46016
Q-1 65					10467	279	10746
Q-2 65						2.7	
Q-3 65					5159	138	5297
Q-4 65							

.

~

APRIL 1972

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM	1	
5-SUB SYSTEM	09	MISSION AND TRAFFIC CONTROL SUBSYSTEM
6-MAJ ASSY	n	

	SUBC	TOTAL MATERIAL	MPC	OTHER COST	SUB TOTAL	G&Δ	TOTAL Cust
Q=1 66.					368	11	379
TOTAL	1505370	1505615	74289	9041	3371652	49843	3421495

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 6-MAJ ASSY 05 MISSION AND TRAFFIC CONTROL GROUND TESTS

		TEST /QC HOURS DOLLARS	TOTAL Hours Dollars
DESIGN/ENGINEERING		16836	16836
LABOR AT \$ 3.952		66538	66538
ENGR BURDEN AT \$	3.842	646 88	64688
SHOP SUPPORT		14796	14796
LABOR AT \$ 2.924		432.60	43260
TEST/QC		703	703
LABOR AT \$ 3.438		2417	2417
MFG BURDEN AT \$	3.690	57184	57184
ENGR MATERIAL		98212	98212
MPC		11249	11249
OTHER COST		116	116
SUB-TOTAL		343664	343664
GEN & ADMIN		5607	5607
TOTAL COST		349271	349271

TIME-PHASED COST DETAIL - SEE PAGE IV-505

•

> TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL GROUND TESTS 6-MAJ ASSY 05

SUBD CF WORK TEST/QC

DN-SITE LABUR

	MAN- MON THS	LABOR HOURS	LABOR RATE	LABOP DCLLARS	BUR DEN DOLLARS	LABOR + BURDEN \$
Q-3 60 Q-4 60	40.5	6919	4.050	2 8020	25893	53913
Q-1 61 Q-2 61	36.0	6069	3.892	23623	20627	44250
Q-3 61 Q-4 61	15.0	2727	3.795	1)349	13236	23585
Q-1 62 Q-2 62	3.0	505	4.238	2140	2325	4465
Q-3 62 Q-4 62		66	4.833	319	438	7 5 7
Q-1 63 Q-2 63					3	3
Q-3 63 Q-4 63	1.5	351	3.954	1388	1470	2858
Q = 1 64 Q = 2 64		68	3.500	238	237	475
Q-3 64 Q-4 64		67	3.537	237	235	472
Q-1 65 Q-2 65		45	3.489	157	158	315
$Q = 2 \ 65$ $Q = 3 \ 65$ $Q = 4 \ 65$		18	3.444	62	62	124
Q-1 66		1	5.000	5	4	9
TOTAL	96.0	16836		66538	64688	131226

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 09 6-MAJ ASSY 05 SUBD OF WORK TEST/QC

ON-SITE LABOR

	MAN- MON THS	LABGR HOURS	, LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABUR + Burden \$
Q-3 58 Q-4 58	1.5	250	2.772	693	906	1599
Q-1 59 Q-2 59	12.0	2136	3.047	6509	7896	14405
Q-3 59 Q-4 59	18.0	3145	2.837	8922	12876	21798
Q-1 60 Q-2 60	-1.5	-227	• 60 8	-138	-1495	-1633
Q-3 60 Q-4 60	6.0	884	2.859	2527	4397	6924
Q-1 61 Q-2 61	30.0	5009	3.094	15498	17202	32.700
Q-3 61 Q-4 61	10.5	1996	2.770	5529	8869	14398
0-1 62 0-2 62	9.0	1439	2.459	3539	5558	9097
Q-3 62 Q-4 62	3.0	432	2.602	1124	1903	3027
Q-1 63 Q-2 63					5	5
Q-3 63 Q-4 63		2	3.000	6	6	12
Q-1 64 Q-2 64		8	2.625	21	34	55
Q-3 64 Q-4 64	.				1	1
Q-1 65 Q-2 65		-83	2.675	-222	-226	-448
Q-3 65		-78	3.487	-272	-272	-544

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM U9 MISSION AND TRAFFIC CONTROL GROUND TESTS 6-MAJ ASSY 05 SUBD OF WORK TEST/QC

	MAN- MON THS	LABOR HUUR S	LABOR RATE	LABOR DOLLARS	BURDEN Dollars	LABOR + Burden \$
Q-4 65 Q-1 66		-117	4.Có8	-476	-476	-952
TOTAL	88.5	14796		43260	57184	100444

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL GROUND TESTS 6-MAJ ASSY 05 SUBD OF WORK TEST/QC

	MAN- MONTHS	LABOR HOURS	LABOR Rate	LABUR DOLLAR S	BUR DEN DOLL ARS	LABOR + Burden \$
Q-1 59 Q-2 59		14	3.357	47		47
Q-3 59 Q-4 59		63	2.889	182		182
Q-1 60 Q-2 60		5	3:200	15		16
Q-3 60 Q-4 60	1.5	267	3.547	947		947
Q-1 61 Q-2 61	1.5	221	2.995	662		662
Q-3 61 Q-4 61	1.0	135	4.104	554		554
Q-1 62 Q-2 62 Q-3 62 Q-4 62 Q-1 63 Q-2 63		-1	8.999	9		9
Q-3 63 Q-4 63 Q-1 64 Q-2 64 Q-3 64 Q-4 64 Q-1 65		-1				
TOT AL	4.0	703		2417		2417

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 6-MAJ ASSY 05 MISSION AND TRAFFIC CONTROL GROUND TESTS

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLAR S	BUR DEN DOLL ARS	LABOR + Burden \$	ENGR MATL
Q-3 58	1.5	250	2.772	693	906	1599	93
Q-4 58 Q-1 59	12.0	2150					
Q-2 59	12.0	2150	3.049	6556	7 896	14452	1623
Q-3 59 Q-4 59	18.0	3208	2.838	9104	12876	21980	852
Q-1 60 Q-2 60	-1.5	-222	• 550	-122	-1495	-1617	208
Q-3 60 Q-4 60	48.0	8070	3.903	31494	30290	61784	3518
Q-1 61 Q-2 61	67.5	11299	3.521	39783	37329	77612	37272
Q-3 61 Q-4 61	26.5	4858	3.382	16432	22105	3853 7	8813
Q-1 62 Q-2 62	12.0	1943	2.927	5638	7883	13571	2234
Q-3 62 Q-4 62	3.0	498	2.898	1443	2 341	3784	243
Q-1 63 Q-2 63					8	8	26193
Q-3 63 Q-4 63	1.5	352	3.960	1394	1476	2870	3509
Q-1 64 Q-2 64		76	3.408	259	271	530	4565
Q-3 64 Q-4 64		67	3.537	237	236	473	6450
Q-1 65 Q-2 65		-38	1.711	-65	-68	-133	1848
Q-3 65 Q-4 65		-60	3.500	-210	-210	-420	739
Q-1 66		-116	4.060	-471	-472	-943	52
TOTAL	188.5	32335		112215	121872	234087	98212

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

4-SYSTEM 1 5-SUBSYSTEM 09 6-MAJ ASSY 05 MISSION AND TRAFFIC CONTROL GROUND TESTS

	MPC	OTHER COST	SUB TCTAL	GEA	TOTAL Cost
Q-3 58	5		1697		1697
Q-4 58 Q-1 59	137		16212		16212
Q-2 59 Q-3 59	72		22904		22904
Q-4 59 Q-1 60	27		-1382	-26	-1408
Q-2 60 Q-3 60	463		65765	1253	67018
Q-4 60 Q-1 61 Q-2 61	3149		118033	2193	120226
Q-2 61 Q-3 61 Q-4 61	745	72	48167	395	49062
Q = 4 81 Q = 1 62 Q = 2 62	176	1	15982	268	16250
Q-2 62 Q-3 62 Q-4 62	19		4046	6 8	4114
Q = 1 63 Q = 2 63	2580		28781	481	29262
Q-3 63 Q-4 63	346	37	6762	113	6875
Q = 1 64 Q = 2 64	487	2	5584	119	5703
Q = 3 64 Q = 4 64	2347	1	9271	197	9468
Q-1 65 Q-2 65	553	2	2270	61	2331
Q-3 65	132	1	452	12	464
Q-4 65 Q-1 66	11		- 880	-27	-907
TOTAL	11249	116	343664	5607	349271

IV-510

.

~

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM

			HOURS		HOURS	
DESIGN/ENGINEE	RING		196472		16836	212200
LABCR AT \$	4.666		928712			995250
ENGR BURDEN		4.260				999259 908594
SHOP SUPPORT			1427		14796	16223
LABCR AT \$	2.926		4213			47473
TEST/CC			63			771
LABCR AT \$			200			2617
MEG BURDEN	AT \$	3.699	5676			62860
ENGR MATERIAL			245		98212	98457
SUBCONTRACT			996565	126449	382356	1505370
MPC				62 35		
OTHER COST			9041		116	9157
SUB-TCTAL			2840413	132684	742214	3715316
GEN & ADMIN			39919	2431	13100	5545 0
TOTAL COST			2880337	135115	755314	3770766

TIME-PHASED COST DETAIL - SEE PAGE IV-512 IV-520 IV-521 IV-527

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM SUBD CF WORK DESIGN/ENGINEERING

	MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DCLLARS	BUR DEN DOLL ARS	LABUR + Burden \$
Q+1 58 Q-2 58	15.0	2605	4.382	11415	11852	23267
Q-3 58 Q-4 53	99.0	16556	4.261	70537	65031	135568
Q-1 59 Q-2 59	124.5	21353	4.132	88221	73551	161772
Q-3 59 Q-4 59	168.0	29494	4.008	118219	106203	224422
Q-1 60 Q-2 60	116.5	20143	4.606	92783	75259	168042
Q-3 60 Q-4 60	54.0	9055	4.945	44778	33435	78213
Q-1 61 Q-2 61	120.0	20484	4.580	93819	68809	162628
Q-3 61 Q-4 61	76.0	13750	5.034	69216	68827	138043
Q-1 62 Q-2 62	85.5	14673	5.333	78248	67719	145967
Q-3 62 Q-4 62	94.5	15807	5.275	83387	80146	163533
Q-1 63 Q-2 63	61.5	10453	5.727	57867	56814	116681
Q-3 63 Q-4 63	52.0	8710	5.225	4551C	50125	95635
Q-1 64 Q-2 64	39.5	6765	8.219	55599	42213	97812
Q-3 64 Q-4 64	31.5	5485	1.574	8635	36406	45041
Q-1 65 Q-2 65	4.5	745	7.447	5548	4919	10467

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM SUBD OF WORK DESIGN/ENGINEERING

ON-SITE LABOR

	MAN- MON THS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BURDEN Doll Ars	LABOR + BURDEN \$
Q-3 65 Q-4 65	1.5	367	7.452	2735	2424	5159
Q = 1 66		27	7.222	195	173	368
TOTAL	1143.5	196472		928712	843906	1772618

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM SUBD OF WORK DESIGN/ENGINEERING

	MAN- MON TH S	LABOR HOUR S	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$
Q-3 58					123	123
Q-4 58						
Q-1 59						
Q-2 59						
Q-3 59	1.5	138	3.645	503	482	985
Q-4 59				- • -	102	70 5
Q-1 60	7.5	1268	2.865	3633	5246	8879
Q-2 60						0017
Q-3 60		21	3.667	77	-175	-98
Q-4 60						
Q-1 61						
Q-2 61						
0-3 61						
Q-4 61						
0-1 62		3	3.000	9	14	23
Q-2 62				·		23
Q-3 62		-3	3.000	-9	-14	-23
TOTAL	. 9.0	1427		4213	5676	9 889

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC

4-SYSTEM 1 MISSION AND TRAFFIC CONTROL SUBSYSTEM 5-SUBSYSTEM 09 SUBD OF WORK DESIGN/ENGINEERING

UN-SITE LABOR

	MAN- MONTHS	LABOR HOURS	LABUR RATE	LABOR DOLLARS	BUR DEN Doll Ars	LABOR + BURDEN \$
Q-3 58 Q-4 53 Q-1 59 Q-2 59		34	2.971	101		101
Q-3 59 Q-4 59		4	3.250	13		13
0-1 60		30	2.867	86		86
TOTAL		68		200		200

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 MISSION AND TRAFFIC CONTROL SUBSYSTEM. 5-SUBSYSTEM 09 SUBD OF WORK DESIGN/ENGINEERING

		MAN- MON THS	LABOR HOURS	LABOR Rate	LABOR DCLLARS		LABOR + Burden \$	ENGR Matl
Q-1		15.0	2605	4.382	11415	11852	23267	
Q-2 Q-3		99.0	16590	4.258	70638	65154	135792	
Q-4			10370	10230	10090	02221	137172	
Q-1		124.5	21353	4.132	83221	73551	161772	
Q-2	59							
Q-3		169.5	29636	4.006	119735	106695	225420	240
0-4								
Q-1		124.0	21441	4.501	96502	80 50 5	177007	-15
Q-2		F () 0	0074		11055	2224	70115	
Q-3		54.0	9076	4.942	44855	33260	78115	20
Q-4 Q-1		120.0	20484	4.580	93815	68809	162628	
Q-2		120.0	20404	4.000	33013	00007	102020	
Q-3		76.0	13750	5.034	69216	68827	138043	
0-4			10100		0.010	0.0021	100010	
0-1		85.5	14676	5.332	78257	67733	145990	
0-2	62							
Q-3	62	94.5	15804	5.276	83378	80132	163510	
Q4								
Q-1		61.5	10453	5.727	5986 7	56814	116681	
Q2								
Q-3		52.0	8710	5.225	4551C	50125	95635	
0-4		20 E	(7/5	0 310	FFFOO	(7 7 1 7	07010	
Q-1 Q-2		39.5	6765	8.219	5559 9	42213	97812	
Q-3		31.5	5485	1.574	8635	36406	45041	
Q-4		ن. • 1 C	7407	10217		00+00	42041	
0-1		4.5	745	7.447	5548	4919	10 467	
Q-2							20.01	
Q-3		1.5	367	7.452	2735	2424	5159	
Q-4	65							

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 MISSION AND TRAFFIC CONTROL SUBSYSTEM 5-SUBSYSTEM 09 SUBD OF WORK DESIGN/ENGINEERING

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$	ENGR MATL
Q-1 66		27	7.222	195	173	368	
TOTAL	1152.5	197967		933125	849582	1782707	245

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM SUBD OF WORK DESIGN/ENGINEERING

	SUBC	TOTAL MATERIAL	MPC	OTHER COST	SUB TOTAL	GεA	TOTAL COST
Q-1 59 Q-2 58				264	23531		23531
Q-3 58				16	135808		135808
Q-4 58 Q-1 59	223 08	22308	591		184671		184671
Q-2 59 Q-3 59	223 08	22548	641				
Q-4 59					248609		248609
Q-1 60 Q-2 60	558349	558334	33124	2938	771403	14698	786101
Q-3 60 Q-4 60	202935	202955	12042	1222	294334	5608	299942
Q-1 61	136972	136972	3924	2835	306469	5694	312103
Q-2 61 Q-3 61	53693	53693	1538	935	194209	3608	197817
Q-4 61 Q-1 62				58	146048	2451	148499
Q-2 62 Q-3 62							•
Q-4 62				269	163779	2749	166528
Q-1 63 Q-2 63				422	117103	1958	119061
Q-3 63 Q-4 63				-1	95 534	1599	97233
Q-1 64				17	9 7 829	167	97996
Q-2 64 Q-3 64				16	45057	959	46016
Q-4 64 Q-1 65				10			
Q-2 65					10407	279	10746
Q-3 65 Q-4 65					5159	138	529 7

•

~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 SUBD OF WORK DESIGN/ENGINEERING

	SUBC	TOTAL MATERIAL	MPC	OTHER COST	SUB Total	G & A	TOTAL CUST
0-1 66					368	11	379
TOTAL	9 965 65	996810	51860	9041	2840418	39919	2880337

~____

~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-121CO

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

		1
4-SYSTEM	1 MTOOTA	
5-SUBSYSTEM	09 MISSIO	N AND TRAFFIC CONTROL SUBSYSTEM
SUBD CF WORK	PRODUCTIO	N

	SUBC	MPC	SUB TOTAL	G & A	TOTAL CCST
Q-1 59 Q-2 59	2046	54	2100		2100
Q-3 59 Q-4 59	2046	55	2101		2101
Q-1 50 Q-2 60	59728	3543	63271	1206	64477
Q-3 60 Q-4 60	257 50	1527	27277	520	27797
0-1 61 0-2 51	30069	861	3093C	575	31505
Q-3 61	6810	195	7005	130	7135
TOTAL	126449	623 5	132684	2431	135115

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

· ---- -

·

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM SUBD OF WORK TEST/QC

	MAN- MON THS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABUR + BURDEN \$
Q-3 60 Q-4 60	40.5	6919	4.050	28020	25893	53913
Q-1 61 Q-2 61	36.0	6069	3.892	23623	20627	44250
0-3 61 0-4 61	15.0	2727	3.795	10349	13236	23585
Q-1 62 Q-2 62	3.0	505	4.238	2140	2325	4465
0-3 62 0-4 62		66	4.833	319	438	757
Q = 1 63 Q = 2 63					3	3
9-3 63 9-4 63	1.5	351	3.954	1388	1470	2858
Q-1 64 Q-2 64		68	3.500	238	237	475
Q-3 64 Q-4 64		67	3.537	237	235	472
Q-1 65 Q-2 65		45	3.489	157	158	315
Q-3 65 Q-4 65		18	3.444	62	62	124
Q-1 66		1	5.000	5	4	9
TOTAL	96.0	16836		66538	64688	131226

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM SUBD OF WORK TEST/QC

	MAN- MONTHS	LABOR HOURS	LABOR Rate	LABOR DOLLAR S	BUR DEN DOLL ARS	LABOR + Burden \$
0-3 58		250	2.772	693	906	1599
Q-4 58						
Q-1 59		2136	3.047	6509	7896	14405
Q-3 59		2145	2 02 7			
		31.45	2.837	8922	12876	21798
Q-1 60		- 227	• 608	-138	-1495	-1633
Q-2 60					1175	1055
Q-3 60		884	2.859	2527	4307	5924
Q-4 60						
Q-1 61		5005	3.094	15498	17202	32700
Q-2 61		1004				
- u-3 61 - 0-4 61		1936	2.77C	5529	8869	14398
0-1 62		1439	2 (50	3 X 3 8		
Q-2 62		1439	2.459	3539	5558	9097
0-3 62		432	2.602	1124	1903	302 7
0-4 62						2021
Q-1 63					5	5
Q-2 63						,
Q-3 63		2	3.000	6	6	12
Q-4 63						
0-1 64		8	2.625	21	34	55
0-2 64						
Q-3 64					1	1
0-4 64						
Q-1 65		-93	2.675	-222	-226	-448
0-2 65		7.0	• • • • •			
Q-3 65 Q-4 65		-78	3.487	-272	-272	-544

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHCP SUPPORT

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM SUBD OF WORK TEST/QC

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLAR S	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-1 66		-117	4.068	-476	-476	-952
TOTAL	88.5	14796		43260	57184	100444

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM SUBD OF WORK TEST/QC

	MAN- Months	LABOR HOURS	LABOR RATE	LABOR DCLLARS	BUR DEN DOLL ARS	LABOR + BURDEN \$
9-1 59 9-2 59		14	3.357	47		47
Q-3 59 Q-4 59		63	2.889	192		182
0-1 60 9-2 60		5	3.200	16		16
Q-3 60 Q-4 60	1.5	257	3.547	947		947
0-1 61 0-2 61	1.5	221	2.995	652		662
0-3 61 0-4 61	1.0	135	4.104	55 4		554
Q-1 62 Q-2 62 Q-3 62		-1	8.999	ç		9
Q-3 62 Q-4 62 Q-1 63						
0-2 63 Q-2 63 Q-4 63		-1				
Q-1 64 Q-2 64						
Q-3 64 Q-4 64 Q-1 65						
TOTAL	4 • 0	703		2417		2417

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

.

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM SUBD OF WORK TEST/QC

	MAN- MONTHS	LABOR HOUR S	LABOR Rate	LABOR DOLLAR S	BURDEN DOLLARS	LABUR + Burden \$	ENGR MATL
Q-3 58 Q-4 58	,	250	2.772	693	906	1599	93
Q = 4 - 52 Q = 1 - 59 Q = 2 - 59	12.0	215C	3.049	6556	7896	14452	1623
Q-3 59 Q-4 59		3208	2.838	9104	12876	21980	852
Q-1 60 Q-2 60	-1.5	-222	• 55 0	-122	-1495	-1617	208
Q-3 60 Q-4 60	48. 0	8070	3.903	31494	30290	61784	3518
Q-1 61 Q-2 61	67.5	11299	3.521	39783	37829	77612	37272
Q-3 61 Q-4 61	26.5	4858	3.382	16432	22105	38537	8813
9-1 62 9-2 62	12.0	1943	2.927	5688	7883	13571	2234
0-3 62 0-4 62	3.0	498	2.898	1443	2 341	3784	243
0-1 63 0-2 63					8	8	26193
0-3 63	1.5	352	3.960	1394	1 476	2870	3509
Q-4 63 Q-1 64		76	3.408	259	271	530	4565
Q-2 64 Q-3 64		67	3.537	237	236	473	6450
Q-4 64 Q-1 65		-38	1.711	-65	-68	-133	1848
Q-2 65 Q-3 65		-6 C	3.500	-210	-210	-420	739
Q-4 65 Q-1 66		-116	4.060	-471	-472	-943	52
TOTAL	188.5	32335		112215	121872	234087	98212

~~~`

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM C9 MISSION AND TRAFFIC CONTROL SUBSYSTEM SUBD OF WORK TEST/QC

|                |            | SUBC   | TOTAL<br>MATERIAL | MPC    | OTHER<br>CCST | SUB<br>TOTAL | GδA   | TOTAL<br>COST |  |
|----------------|------------|--------|-------------------|--------|---------------|--------------|-------|---------------|--|
| 0-3            | <b>5</b> 8 |        | 93                | 5      |               | 1697         |       | 1697          |  |
| Q-4            |            |        |                   |        |               |              |       |               |  |
| Q-1            |            |        | 1623              | 137    |               | 16212        |       | 16212         |  |
| <u>∩−2</u>     |            |        |                   |        |               |              |       |               |  |
| Q-3            | -          |        | 852               | 72     |               | 22904        |       | 22904         |  |
| Q-4            |            | 00.001 |                   |        |               |              |       |               |  |
| Q−1<br>Q−2     | 60<br>40   | 92981  | 93189             | 5543   |               | 97115        | 1851  | 98966         |  |
| Q-3            |            | 77863  | 81381             | 6000   |               | 140217       |       | 151030        |  |
| Q-4            |            | 11005  | 01001             | 5082   |               | 148247       | 2825  | 151072        |  |
| 0-1            |            | 190923 | 228195            | 8619   |               | 314426       | 5843  | 320269        |  |
| Q-2            |            |        | 2201.9            | 0017   |               | 514420       | 2043  | 020209        |  |
| Q-3            |            | 20589  | 29402             | 1334   | 72            | 69345        | 1289  | 70634         |  |
| Q-4            | 51         |        |                   |        |               |              |       | 10001         |  |
| Q-1            | 62         |        | 2234              | 176    | 1             | 15982        | 269   | 16250         |  |
| 0-2            |            |        |                   |        |               |              |       |               |  |
| Q-3            |            |        | 243               | 19     |               | 4046         | 68    | 4114          |  |
| Q-4            |            |        |                   |        |               |              |       |               |  |
| Q-1            |            |        | 26193             | 2580   |               | 28781        | 481   | 29262         |  |
| Q-2 (          |            |        |                   |        |               |              |       |               |  |
| 0-3            |            |        | 3509              | 346    | 37            | 6762         | 113   | 6875          |  |
| 0-4            |            |        |                   | (      | -             |              |       |               |  |
| Q-1 (<br>Q-2 ( |            |        | 4565              | 487    | 2             | 5584         | 119   | <b>5703</b>   |  |
| Q-3 (          |            |        | 6450              | 2347   | 1             | 9271         | 107   | 0440          |  |
| 0-4            |            |        | 0400              | 2 34 1 | 1             | 9211         | 197   | 9468          |  |
| Q-1 (          |            |        | 1348              | 553    | 2             | 2270         | 61    | 2331          |  |
| Q-2            |            |        | 1010              |        | L             | 4. E. I V    | 01    | 2771          |  |
| Q-3 (          |            |        | 739               | 152    | 1             | 452          | 12    | 464           |  |
| Q-4 (          | 65         |        |                   |        | -             |              |       |               |  |
| Q-1 (          | 66         |        | 52                | 11     |               | -880         | -27   | -907          |  |
| тоти           | AL         | 382356 | 480568            | 27443  | 116           | 742214       | 13100 | 755314        |  |

IV-526

## TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM

## ON-SITE LABOR

|            |    | MAN-<br>MONTHS | LABOR<br>HOUR S    | LABOR<br>Rate | LABOR<br>DOLLAR S | BUR DEN<br>DELL ARS | LABOR +<br>Burden \$ |
|------------|----|----------------|--------------------|---------------|-------------------|---------------------|----------------------|
| 0-1        |    | 15.0           | 2605               | 4.382         | 11415             | 11852               | 23267                |
| 0-2        |    |                |                    |               |                   |                     |                      |
| Q-3<br>Q-4 |    | 99.0           | 16556              | 4.261         | 70537             | 65031               | 135568               |
| Q-1        |    | 124.5          | 21353              | 6 122         | 00001             | 72.001              |                      |
|            | 59 | 12 7 0 2       | 21333              | 4.132         | 88221             | 73551               | 161772               |
| Q-3        |    | 168.0          | 29494              | 4.008         | 119219            | 106203              | 224422               |
| Q-4        | -  |                |                    |               |                   |                     |                      |
| Q-1<br>Q-2 |    | 116.5          | 20143              | 4.606         | 92783             | 75259               | 168042               |
| Q-3        |    | 94.5           | 15974              | 4.557         | 72798             | 59328               | 132126               |
| Q-4        | 60 |                |                    |               |                   |                     | I JE IEU             |
| Q-1<br>Q-2 |    | 156.0          | 26553              | 4.423         | 117442            | 89436               | 206878               |
| Q-3        |    | 01.0           | 1//77              |               |                   |                     |                      |
| Q-4        |    | 91.0           | 16477              | 4.829         | 79565             | 82063               | 161628               |
| Q-1        |    | 88.5           | 15178              | 5.296         | 80388             | 70.044              |                      |
| Q-2        |    | 0.000          | 13110              | 2.270         | 00300             | 70044               | 150432               |
| Q-3        |    | 94.5           | 15873              | 5.273         | 83706             | 80 584              | 164290               |
| Q-4        | 62 |                |                    |               | 09100             | 00,004              | 104290               |
| Q-1        | 63 | 61.5           | 10453              | 5.727         | 59867             | 56817               | 116684               |
| Q-2        | 63 |                |                    |               |                   |                     | 110004               |
| Q-3        |    | 54.0           | 9061               | 5.176         | 46898             | 51595               | 98493                |
| Q-4        |    |                |                    |               |                   |                     |                      |
| ດ−1<br>Q−2 |    | 40.5           | 6833               | 8.172         | 55837             | 42450               | 98287                |
| Q-2<br>Q-3 |    | 31.5           | <i><b>FFFF</b></i> |               |                   | _                   |                      |
| Q-4        |    | 51.5           | 5552               | 1.598         | 8872              | 36641               | 45513                |
| Q-1        |    | 4.5            | 790                | 7.222         | 5705              | 5077                | 10700                |
| Q-2        |    |                | , , , , ,          | ! ● £ £ £     |                   | 5077                | 10782                |

\_\_\_\_\_

.

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 09 MISSIUN AND TRAFFIC CONTROL SUBSYSTEM

|                  | MAN-<br>MONTHS | LABOR<br>HOUP S | LABOR<br>KATE | LABOR<br>DCLLAR S | BUR DEN<br>Doll Ars | LABOR +<br>BURDEN \$ |
|------------------|----------------|-----------------|---------------|-------------------|---------------------|----------------------|
| Q-3 65<br>Q-4 65 | 3.0            | 385             | 7.265         | 2797              | 2486                | 5283                 |
| Q-1 66           |                | 28              | 7.143         | 200               | 177                 | 377                  |
| TOTAL            | 1242.5         | 213308          |               | 995250            | 908594              | 1903844              |

## TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

SHUP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM

#### ON-SITE LABOR

|                |    | MAN-<br>MON THS | LABUR<br>HOURS | LABOR<br>RATE | LABOR<br>DCLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>Burden \$ |
|----------------|----|-----------------|----------------|---------------|------------------|---------------------|----------------------|
| Q-3<br>Q-4     |    | 1.5             | 250            | 2.772         | 693              | 1029                | 1722                 |
| Q-1<br>Q-2     | 59 | 12.0            | 2136           | 3.047         | 6505             | 7896                | 14405                |
| Q-3<br>Q-4     | 59 | 18.0            | 3283           | 2.871         | 9425             | 13358               | 22783                |
| Q-1<br>Q-2     | 60 | ó.0             | 1041           | 3.357         | 3495             | 3751                | 7246                 |
| Q-3<br>Q-4     | 60 | 6.0             | 905            | 2.877         | 2604             | 4222                | 6826                 |
| Q-1<br>Q-2     | 61 | 30.0            | 5009           | 3.094         | 15498            | 17202               | 32700                |
| Q-3<br>Q-4     | 61 | 10.5            | 1996           | 2.770         | 5525             | 8869                | 14398                |
| 0-1<br>0-2     | 62 | 9.0             | 1442           | 2.460         | 3548             | 5572                | 9120                 |
| Q = 3<br>Q = 4 | 62 | 3.0             | 42.9           | 2.599         | 1115             | 1889                | 3004                 |
| Q-1<br>Q-2     | 63 |                 |                |               |                  | 5                   | 5                    |
| Q-3<br>Q-4     | 63 |                 | 2              | 3.000         | 6                | 6                   | 12                   |
| 0-1<br>0-2     | 64 |                 | 8              | 2.625         | 21               | 34                  | 55                   |
| Q-3<br>Q-4     | 64 |                 |                |               |                  | 1                   | 1                    |
| ິ∩−1<br>Q−2    | 65 |                 | -83            | 2.675         | -222             | -226                | -448                 |
| Q-3<br>Q-4     | 65 |                 | -78            | 3.487         | -272             | -272                | -544                 |

•

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

## TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM

|        | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>RATE | LABUR<br>DCLLARS | BURDEN<br>DOLLARS | LABOR +<br>Burden s |
|--------|----------------|-----------------|---------------|------------------|-------------------|---------------------|
| Q-1 66 |                | -117            | 4.068         | -476             | -476              | -952                |
| TOTAL  | 96.0           | 16223           |               | 47473            | 62860             | 110333              |

------

. \_\_\_\_ \_\_

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

## TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM

# ON-SITE LABOR

|                                                                    | MAN-<br>MONTHS | LABOR<br>HOUR S | LABUR<br>RATE | LABOR<br>DCLLARS | BUP DEN<br>DOLL AR S | LABOR +<br>Burden \$ |
|--------------------------------------------------------------------|----------------|-----------------|---------------|------------------|----------------------|----------------------|
| Q-3 58<br>Q-4 58                                                   |                | 34              | 2.971         | 101              |                      | 101                  |
| Q-1 59<br>Q-2 59                                                   |                | 14              | 3.357         | 47               |                      | 47                   |
| 0-3 59<br>0-4 59                                                   |                | 67              | 2.910         | 195              |                      | 195                  |
| Q-1 60<br>Q-2 60                                                   |                | 35              | 2.914         | 102              |                      | 102                  |
| 0-3 60<br>Q-4 60                                                   | 1.5            | 267             | 3.547         | 9 <b>47</b>      |                      | 947                  |
| Q = 1  61<br>Q = 2  61                                             | 1.5            | 221             | 2.995         | 662              |                      | 662                  |
| Q-3 61<br>Q-4 61                                                   | 1 <b>.</b> C   | 135             | 4.104         | 554              |                      | 554                  |
| Q-1 62<br>Q-2 62<br>Q-3 62<br>Q-4 62<br>Q-1 63<br>Q-2 63           |                | - 1             | 8.999         | ç                |                      | 9                    |
| Q-3 63<br>Q-4 63<br>Q-1 64<br>Q-2 64<br>Q-3 64<br>Q-4 64<br>Q-1 65 |                | - 1             |               |                  |                      |                      |
| TUTAL                                                              | 4.0            | 771             |               | 2617             |                      | 2617                 |

.

CID

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

#### TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM

|                            | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>PATE | LABCR<br>DOLLARS | BUP DEN<br>DGEL AR S | LABOR +<br>BURDEN \$ | ENGR<br>MATL |
|----------------------------|----------------|----------------|---------------|------------------|----------------------|----------------------|--------------|
| 0-1 58                     | 15.0           | 2605           | 4.382         | 11415            | 11852                | 23267                |              |
| Q-2 58<br>Q-3 58<br>Q-4 58 | 100.5          | 16840          | 4.236         | 71331            | 66060                | 137391               | ò3           |
| Q = 1 - 59<br>Q = 2 - 59   | 136.5          | 23503          | 4.033         | 94777            | 81447                | 176224               | 1623         |
| Q-3 59<br>Q-4 59           | 186.0          | 32844          | 3.892         | 127839           | 119561               | 247400               | 1092         |
| Q-1 60<br>Q-2 60           | 122.5          | 21219          | 4.542         | 96380            | 79010                | 175390               | 193          |
| Q-3 60<br>Q-4 60           | 102.0          | 17145          | 4.453         | 76349            | 63550                | 139899               | 3538         |
| Q-1 61<br>Q-2 61           | 187.5          | 31733          | 4.204         | 133602           | 106638               | 240240               | 37272        |
| Q-3 61<br>Q-4 61           | 102.5          | 18603          | 4.603         | 85648            | 90932                | 176580               | 8913         |
| 9-1 62<br>Q-2 62           | 97.5           | 16619          | 5.051         | 83945            | 75616                | 159561               | 2234         |
| Q-3 62<br>Q-4 62           | 97.5           | 16302          | 5+203         | 84821            | 82473                | 167294               | 243          |
| Q-1 63<br>Q-2 63           | 61.5           | 10453          | 5.727         | 59867            | 55822                | 116689               | 26193        |
| Q-3 63<br>Q-4 63           | 54.0           | 9062           | 5.176         | 46904            | 51601                | 98505                | 3509         |
| Q-1 64<br>Q-2 64           | 40.5           | 6841           | 8.165         | 55858            | 42 484               | 98342                | 4565         |
| 0-3 64<br>Q-4 64           | 31.5           | 5552           | 1.598         | 8872             | 36642                | 45514                | 645C         |
| Q-1 65<br>Q-2 65           | 4.5            | 707            | 7.755         | 5483             | 4851                 | 10334                | 1848         |
| Q-3 65<br>Q-4 65           | 3.0            | 307            | 8.225         | 2525             | 2214                 | 4739                 | 739          |

~~~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 MISSICN AND TRAFFIC CONTROL SUBSYSTEM

	MAN- MONTHS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + Burden \$	ENGR MATL
Q-1 66		-89	3.101	-276	-299	-575	52
TOTAL	1342.5	230302		1045340	971454	2016794	98457

NORTH AMERICAN RCCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM

	SUBC	TOTAL MATERIAL	MbC	OTHER CCST	SUB TO TAL	Б & А	TOTAL COST
Q-1 58				264	23531		23531
0-2 58							20002
Q-3 53 Q-4 58		93	5	16	137505		137535
Q-1 59 Q-2 59	24354	25977	782		202953		202983
Q-3 59 Q-4 57	24354	25446	76.8		273614		273614
Q-1 60 Q-2 60	711058	711251	4221 C	2938	931789	17755	949544
Q-3 60 Q-4 50	306548	310086	18651	1222	469858	8953	478811
Q = 1 61 Q = 2 61	357964	395236	13404	2885	651765	12112	663877
Q-3 61 Q-4 61	81092	80905	3067	1007	270559	502 7	275586
0-1 62 0-2 62		2234	176	55	162030	2719	164749
Q-3 62 Q-4 62		243	19	255	167825	2817	170642
Q-1 63 Q-2 63		26193	259C	422	145884	2439	148323
Q-3 63 Q-4 63		3509	346	36	102396	1712	104108
Q-1 64 Q-2 64		4565	487	19	103413	286	103699
Q = 3 64 Q = 4 64		6450	2347	17	54328	1156	55484
Q-1 65 Q-2 65		1848	553	2	12737	340	13077
Q-3 65 Q-4 65		739	132	1	5611	150	5761

-____

سرر ا

ł

ł

ł

.

APRIL 1972

. .

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 09 MISSION AND TRAFFIC CONTROL SUBSYSTEM

	SUBC	TOTAL MATERIAL	MPC	OTHER COST	SUB TOTAL	G & A	TOTAL Cost
Q-1 65		52	11		- 512	-16	-528
TOTAL	1505370	1603827	85538	9157	3715316	5545C	3770766

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS	
SUBSYSTEM: FLIGHT INDICATION	WBS CODE: 1.10
TITLE	PAGE
WORK BREAKDOWN STRUCTURE	IV-538
TECHNICAL DESCRIPTIONS AND CHARACTERISTICS	IV-5 ¹ +1
WBS 1.10 Flight Indication Subsystem	IV-541
WBS 1.10.1 Auxiliary Gyro Platform	IV- 545
WBS 1.10.2 Flight Instruments	IV-549
WBS 1.10.3 Central Air Data Subsystem	IV-558
WBS 1.10.4 Flight Director Computer	IV-564
DEVELOPMENT DATA SUMMARY	IV-567
State-of-the-Art	IV-568
Percent Developed	IV-569
DEVELOPMENT MILESTONES	IV-572
COST SUMMARY	IV-574
Cost Definition	IV-574
Subcontractor Matrix	IV-574
Detail Cost Data	IV-576

WORK BREAKDOWN STRUCTURE

SUBSYSTEM: FLIGHT INDICATION

WBS CODE: 1.10

WBS LEVELS

1.10 FLIGHT INDICATION SUBSYSTEM

8

1.10.1 Auxiliary Gyro Platform

1.10.1.1 Gyroscopic Reference Assembly

Gyro Assembly Gimbal Assembly Sensors Slaving Mechanism

- 1.10.1.2 Computer/Amplifier
- 1.10.1.3 Remote Deviation Compensator
- 1.10.1.4 Remote Magnetic Heading Detector
- 1.10.1.5 Control Panel

Mode Switch Navigation Input Selectors Navigation Input Display Units

1.10.2 Flight Instruments

1.10.2.1 Horizon Situation Indicator 1.10.2.2 Attitude Director Indicator 1.10.2.3 Turn Rate Gyro 1.10.2.4 Standby Gyro Roll Sensors Pitch Displacement Sensors Standby Flight Indicator 1.10.2.5 Display Control Panel Command Control Assembly Altitude Hold Unit Reference Assembly Mode Switch Module Mode Switch Unit

Erection Switch Unit

WORK BREAKDOWN STRUCTURE

SUBSYSTEM: FLIGHT INDICATION

WBS CODE: 1.10

WBS LEVELS

1.10.3 Central Air Data Subsystem (CADS)

1.10.3.1 Pitot Static Installation

Pitot Static Tube Nose Boom Installation Pneumatic Lines Electrical Heater

1.10.3.2 Total Temperature Sensor

1.10.3.3 Total Temperature Indicator

1.10.3.4 CADS Computer

Mach Rate Module Total Temperature Module Calibrated Airspeed Module True Airspeed Module Output Module Transducer Section Monitor Section

1.10.3.5 Normal Accelerometer Sensor

1.10.3.6 Airspeed/Mach/Safe Speed Indicator

Tapes Tape Driver Unit Angle-of-Attack Sensor Command Control Unit Amplifiers

1.10.3.7 Altitude/Vertical Speed Indicator

Tapes Tape Driver Unit Command Readout Indicator Slew Switch Assembly Amplifiers

1.10.3.8 DC Power Supply

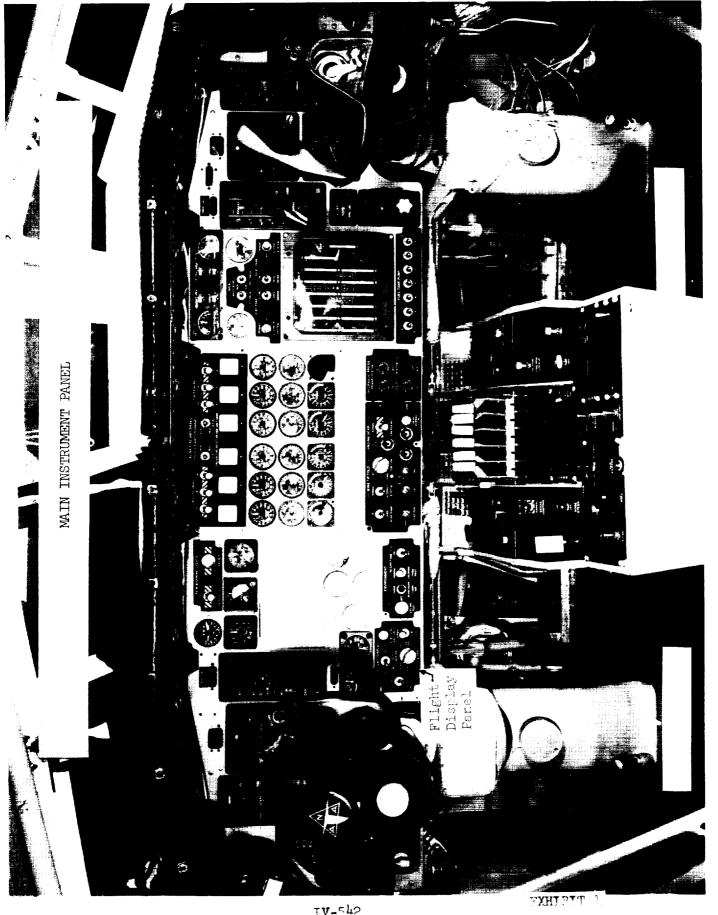
WORK BREAKDOWN STRUCTURE

SUBSYSTEM:	FLIGHT	INDICATION
------------	--------	------------

WBS CODE: 1.10

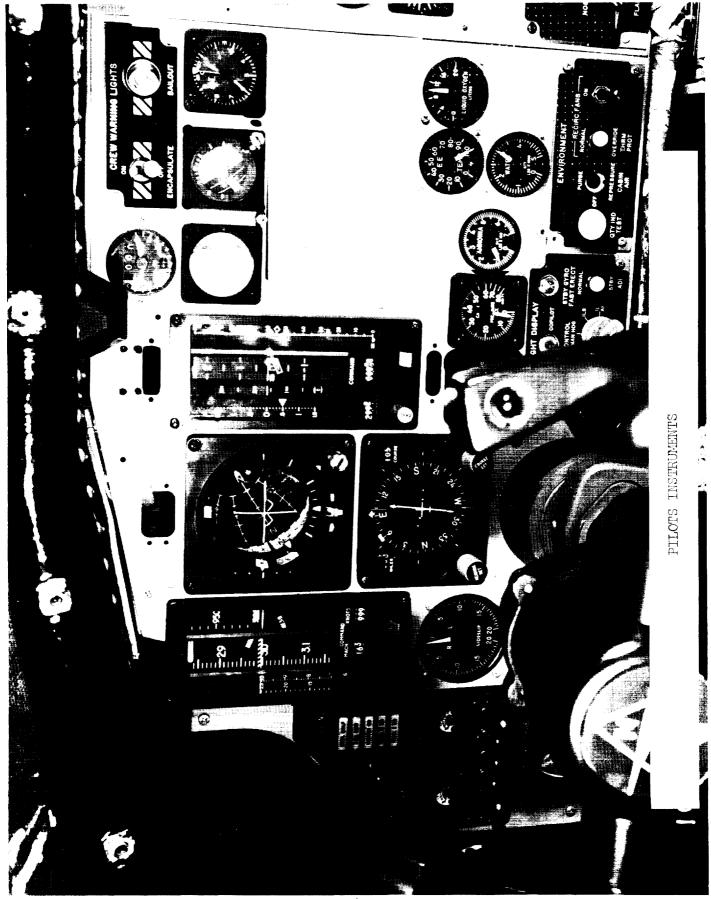
	WBS	LEVEI	S		
4	5	6	7	8	
			1.10	0.3.9	Standby Altitude Indicator
			1.10	0.3.10	Clock
			1.10	0.3.11	Engine Nozzle Standby Control
			1.10	0.3.12	Engine RPM Lock-up Release
		<u>1.10</u>	<u>4</u>	Flight	Director Computer
			1.10	0.4.1	Roll Channel Section
			1.10	0.4.2	Pitch Channel Section
		1.10.	<u>,5 (</u>	Found	Tests
			1.10	0.5.1	Mockups
			1.10	•5.2	Simulators

1.10.5.3 Wind Tunnel


TECHNICAL DESCRIPTION

SUBSYSTEM:

FLIGHT INDICATION


WBS CODE: 1.10

This system provided the pilot and copilot with continuous information necessary to maintain a desired flight status in terms of altitude, speed and direction. The flight situation indicators were grouped on the left and right sections of the main instrument panel immediately forward of the pilot's and copilot's seats. The complete instrument panel is shown in Exhibit 1, page IV-542, and a close-up of the pilot's instruments is shown in Exhibit 2, page IV-543. The flight indicators received their stimuli from the auxiliary gyro platform, the central air data computer, the flight director computer and other miscellaneous input sources. The integrated inlet duct indicator and controls were mounted on the righthand instrument panel section for copilot operation only.

IV-542

.

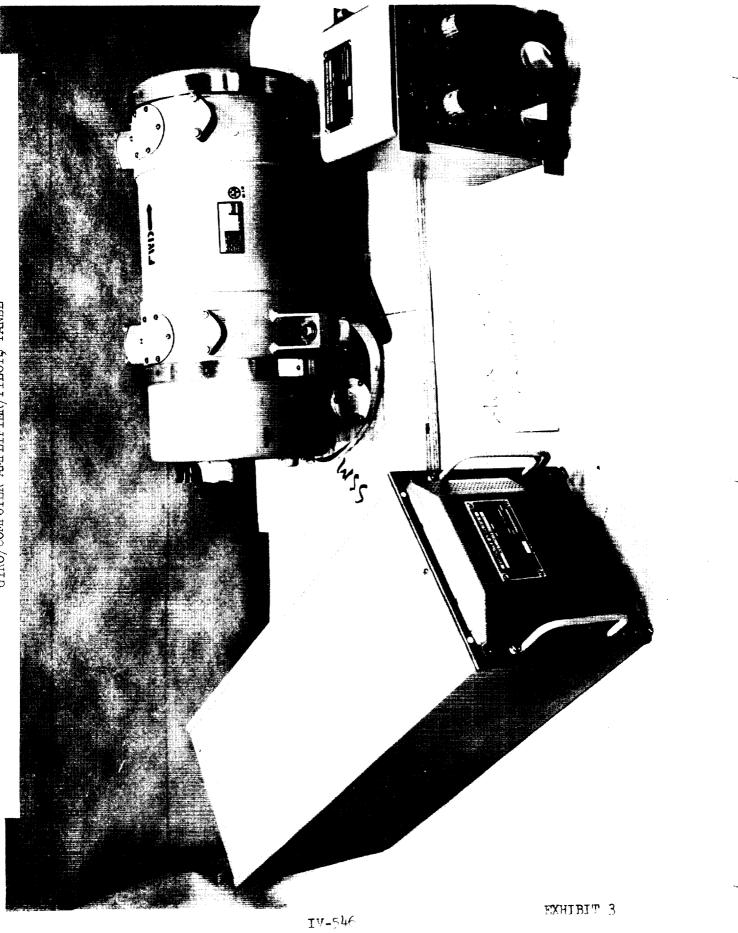
IV-543

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

5	WBS IDENTIFICATION: FLIGHT INDICATION SU	SUBSYSTEM			WBS CODE: -	DE:1.10	
L	CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
4	TOTAL SUBSYSTEM WEIGHT	FOUNDS	10,615	665	665	665	199
	AUX. GYRO PLATFORM - WEIGHT	POUNDS	(315)	(169)	(169)	(169)	(169)
	FLIGHT INSTRUMENTS WEIGHT	POUNDS	(168)	(341)	(341)	(341)	(337)
	CENTRAL AIX DATA SYSTEM WEIGHT	POUNDS	(243)	(155)	(155)	(155)	(155)
	OFFENSE ELECTRONICS WEIGHT	POUNDS	(2888)	ON	ON	NO	NO
	DEFENSE ELECTRONICS WEIGHT	POUNDS	(6216)	ON	ON	NO	NO
[V- 5]	WEAPON PLATFORM & RELEASE WEIGHT	POUNDS	(525)	ON	ON	NO	NO
44	RELIABILITY FACTOR	NONE	NOT AVAILABLE	LABLE	8966666.	8966666.	8966666.
	MTBF	HOURS	NOT AVAILABLE	LABLE	549,450	549,450	549,450
SD72-5							
5 H- 00	() Bracketed weights are inc	included in total	subsystem weight	ght		;	

Space Division North American Rockwell

TECHNICAL DESCRIPTION


SUBSYSTEM: FLIGHT INDICATION

WBS CODE: 1.10

MAJOR ASSEMBLY: AUXILIARY GYRO PLATFORM SUBSYSTEM (AGPS) WBS CODE: 1.10.1

The AGPS was designed to provide roll and pitch information in the form of three-phase synchro signals to the pilot's and copilot's attitude director indicators for attitude display and to the flight director computer (FDC) for asymptotic steering computations in the pitch and roll channels. In addition, heading information was supplied to the pilot's and copilot's horizontal situation indicators and attitude director indicators for azimuth display. The pilot could select either magnetic, derated magnetic, true north or great circle heading modes of operation.

The gyroscope reference unit computer amplifier and remote deviation compensator were located in the electronic racks aft of the copilot. The remote magnetic heading detector unit was installed in the upper fuselage surface in the aft portion of the crew compartment. The control panel for the AGPS was located on the pilot's left console. The pilot's control panel was provided with controls with which to manually insert values of latitude and magnetic variation to compensate for meridian convergence, earth's rate and bias drift. The gyro, computer amplifier and the pilot's control panel are displayed in Exhibit $_3$ page IV-546.

SD/~-SH-0003

- WBS CODE: --

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

VBS IDENTIFICATION: AUXILIARY GYRO PLATFORM

WEIGHT (TOPAL STTEM) POUNDS 315 169	L	CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
- -		VEIGHT (TOTAL SYTEM)	FOUNDS	315	169	169	169	169
DEGREES ± 60° ± 60° ± 60° ± 60° ± 60° ± 60° ± 60° ± 60° ± 60° ± 60° ± 90° ± 90° ± 90° ± 90° ± 90° ± 90° ± 90° ± 90° ± 90° ± 90° ± 90° ± 90° ± 90° ± 90° ± 90° ± 90° ± 10° <		VITITUDE RANGE	1	ſ	ł	ł	I	1
DECREES ± 90 ± 90 ± 90 ± 90 ± 90 ± 90 DECREES 360 360 360 360 360 360 360 DECREES 360 360 360 4 10 ± 10 ± 10 ± 10 DECKEES ± 100 ± 100 ± 100 ± 100 ± 100 ± 100 ± 100 DEC/SEC ± 100 ± 100 ± 100 ± 100 ± 100 ± 100 ± 100 DEC/SEC ± 20 ± 20 ± 20 ± 20 ± 20 ± 20 ± 20 DEC/SEC ± 200 ± 200 ± 200 ± 200 ± 200 ± 200 ± 200 DEC/SEC ± 200 ± 200 ± 200 ± 200 ± 200 ± 200 ± 200 DEC/SEC ± 200 ± 200 ± 200 ± 200 ± 200 ± 200 ± 200 ± 200		PITCH	DEGREES	+1	09 +1	09 +1	+1	09 +1
AZIMUTH DEGREE 360		ROLL	DEGREES	06 +1	96 +1	06 +1	96 +1	96 +1
MATION Libre/SEC ± 10 ±		AZIMUTH	DEGREE	360	360	360	360	360
DBC/SBC ± 10 ± 10 ± 10 ± 10 ± 10 DBC/SBC ± 100 ± 100 ± 100 ± 100 ± 100 DBC/SBC ± 10 ± 10 ± 10 ± 10 ± 10 DBC/SBC ± 10 ± 10 ± 10 ± 10 ± 10 DBC/SBC ± 20 ± 20 ± 20 ± 20 ± 20 DBC/SBC ± 20 ± 20 ± 20 ± 20 ± 20 DBC/SBC ± 20 ± 20 ± 20 ± 20 ± 20 DBC/SBC ± 20 ± 20 ± 20 ± 20 ± 20 ± 20	 T V	ATTITUDE RATES	1	ľ	1	ı	I	I
DBC/SEC \pm 100 \pm 100 \pm 100 \pm 100 \pm 100 \pm 100 DBC/SEC \pm 10 DBC/SEC \pm 20 2 20 2 2	-547	PITCH	DEC/SEC	14 1+	1+ 1+	+ 10	+ 10	1+
AZIMUTH DBC/SBC ± 10 ± 20	,	ROLL	DEG/SEC	00 + 1	1+ +	+ 100	+1	1+
ATTITUDE ACCELERATION -		AZIMUTH	DEC/SEC	1+ 1+	1+ +	1+	1 + 1 0	1+ +
PITCH DBG/SEC ² ± 20 ± 20 ± 20 ROLL DBC/SEC ² ± 200 ± 200 ± 200 AZIMUTH DEC/SEC ² ± 20 ± 20 ± 20		ATTITUDE ACCELERATION	8	1	١	I	1	ł
ROLL DEG/SEC ² ± 200 ± 200 ± 200 AZIMUTH DEG/SEC ² ± 20 ± 20 ± 20		PITCH	DEG/SEC ²	+ 50	50 + 1	+ 50	1+20	+ 50
AZIMUTH DEG/SEC ² ± 20 ± 20 ± 20 ± 20		ROLL	DEG/SEC ²	+ 500	+ 200	500 1+	+ 200	+ 1
SD72		AZIMUTH	DEG/SEC ²		50 + 1	+	50 +1	50 +1
	SD72							

Space Division North American Rockwell TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

AUXILIARY GYRO PLATFORM WBS IDENTIFICATION:

__WBS CODE: 1.10.1

CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
ATTITUDE ACCURACY	•	1	I	Q	ł	ı
PITCH	ARC MIN	-+ 	+ 21	+ 21	- 51	- 21
ROLL	ARC MIN	00 +	30 +	00 +1	+ 30	90 1+
AZIMUTH (G.C.)	DEG/HR	+ .35		<u>+</u> •35	<u>+</u> .35	+ .35
AZIMUTH (TRUE NORTH)	DEG/HR		• •	• • ••••••••••••••••••••••••••••••••••	• • • •	•
AZIMUTH (MAGNETIC)	DEG/HR	+ +-0	+ + -0	0.4 +	+ + -0	+ 4.0
PLATFORM DRIFT	DEG/HR	0.25	0.25	0.25	0.25	0.25
HEADING ALIGNMENT	DBC	+ 0.25	+ 0.25	+ 0.25	+ 0.25	+ 0.25
RADIO NOISE & INTERFERENCE	MIL-I-26600	1	ı	ı	ŧ	I
DESIGN OPER. TEMPERATURE	DEF F	+ 32 to +160	+ 32 to +160	+ 32 to +160	+ 32 to +160	+ 32 to +160
PLATFORM COMPENSATION	I	ELECTRICAL	ELECTRICAL	ELECTRI CAL	ELECTRICAL	ELECTRICAL
RELLABILITY FACTOR	NONE	NOT AVAILABLE	ABLE	766666.	766666.	766666.
MTBF	HOURS	NOT AVAILABLE	ABLE	588,235	588,235	588,235

Space Division North American Rockwell

TECHNICAL DESCRIPTION

SUBSYSTEM: FLIGHT INDICATION

WBS CODE: 1.10

WBS CODE: 1.10.2

MAJOR ASSEMBLY: FLIGHT INSTRUMENTS

Flight instruments were incorporated which provided to the pilots horizontal situation and attitude including heading, pitch and roll, rate of turn, and air vehicle slip. The Horizontal Situation Indicator (HSI) was designed to provide an integrated display of navigation information in the horizontal plane. The displays included:

- (a) Great circle, true north, or derated magnetic north as transmitted by the AGPS and selected by the pilot.
- (b) Command heading marker as manually selected by the HDG SET knob. Numerical indication of the selected course was also shown in the COURSE window.
- (c) Course deviation from selected TACAN radial or localizer course indicated by a course deviation bar displacement relative to course arrow.
- (d) Slant range distances to ground TACAN station indicated by the DIS-TANCE counter.
- (e) Relative bearing to a selected TACAN station indicated by a bearing pointer.

The Attitude Director Indication (ADI) was designed to provide an integrated display of navigation information in the vertical and horizontal planes. The display included:

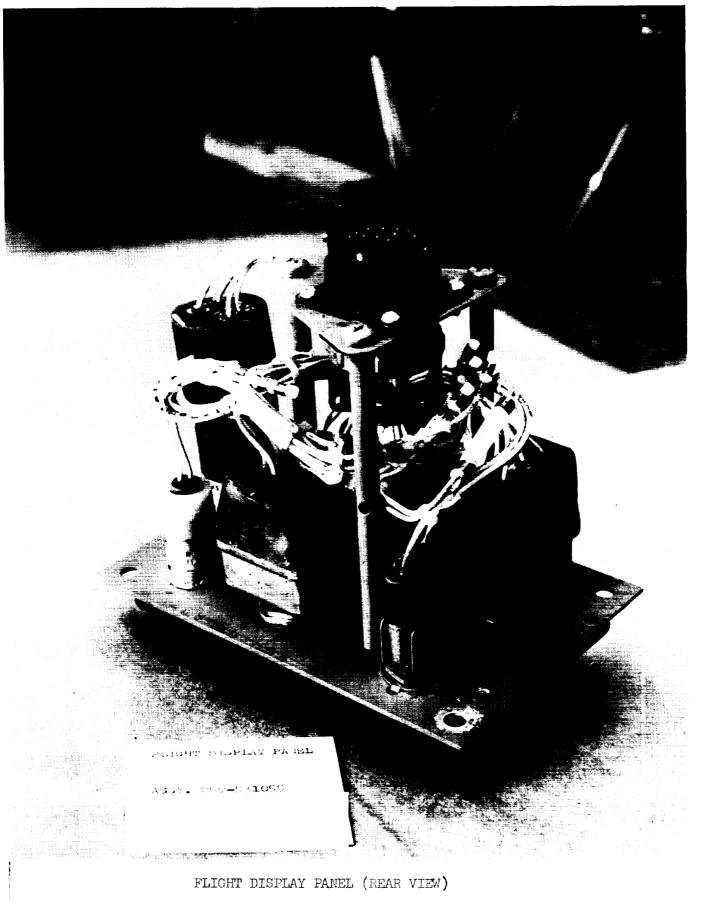
- (a) Pitch and roll information from the AGPS or Standby Gyro indicated on the sphere.
- (b) Great circle, true north, magnetic north or derated magnetic from the AGPS as selected by the pilot and indicated by azimuth markings on the azimuth axis of the sphere.
- (c) Turn rate information from turn rate gyro and indicated by the turn rate needle with slip information indicated by an inclinometer.
- (d) Glide slope deviation indicated by the glide slope displacement pointer.
- (e) Asymptotic steering to a selected manual heading, TACAN radial course or localizer course indicated by the vertical steering pointer.

IV-549

WBS CODE: 1.10.2

- (f) Asymptotic steering to a glide slope beam or a selected altitude indicated by a horizontal steering pointer.
- (g) Steering pointers were biased out of view when not required during specific modes of operation. Warning flags appeared when the computed signals were marginal or unreliable.

The turn rate gyro was designed to provide signals proportional to the rate of turn about the yaw axis. These signals were displayed by the turn rate needle of the attitude director indicator.


A standby roll and pitch displacement gyro and standby indicator was designed and installed to continuously provide pitch and roll information to an indicator on the pilot's flight panel. The gyro also was used to provide roll and pitch signals to the copilot's attitude director indicator in the event signals were not available from the auxiliary gyro platform subsystem.

A flight display control panel was installed on the lower portion of the pilot's flight panel of the main instrument panel. A front and back view of the panel assembly are shown in Exhibits 4, page IV-551, and 5, page IV-552, respectively. Its installation location is shown in Exhibit 1, page IV-542. The various controls provided were as follows:

- (a) Command control was a simple toggle switch which permits selection of which pilot would have command responsibility for controlling the manual set of command heading course for the horizontal situation indicators and steering information on the attitude director indicators and selection of command altitude, command mach numbers and command airspeed.
- (b) A toggle switch was provided for selection of the altitude hold submode operation which maintained the air vehicle in its preset attitude.
- (c) An attitude director indicator switch was designed to permit selection of either the AGPS or the standby gyro as the source of roll and pitch inputs for the various indicators.
- (d) A rotary mode selector switch allowed selection of one of five operating modes.
- (e) A pushbutton switch was incorporated which upon actuation would fast slave the standby gyro to vertical following a flight maneuver.

IV-551

IV-552

EXHIBIT 5

UNIT OF MEASUREMARCH 1959UNIT OF MEASUREARCH 1959SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.33SECONDS.67DEGREES.67DEGREES.67NO2NO2NO2POUNDS.360DEGREES.360DEGREES.360	÷	MARCH 1959 .33 .33 .33 .33 .33 .33 .33 .33 .33 .3	MARCH 1959 DECEMBER MARCH 1959 1959 • 33 • 33 • 33 • 33 • 33 • 33 • 33 • 33 • 33 • 33 • 33 • 33 • 33 • 33 • 33 • 33 • 115 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 10.0 10.0 28 28 28 2 2 2 9 9 360 360
	DECEMBER 1959 .33 .33 .33 .33 .33 10.0 .67 3.0 10.0 28 32 to 160 28 32 to 160 9 360	CEMBER 1959 • 33 • 33 • 33 • 33 • 33 • 33 • 19 • 10.0 • 28 • 28 • 28 • 28 • 28 • 28 • 28 • 28 • 32 • 32 • 33 • 33 • 33 • 33 • 33 • 33 • 33 • 33 • 15 • 115 • 115 • 115 • 10.0 • 32 • 32 • 33 • 33 • 67 • 68 • 28 • 28	CEMBER FEBRUARY A 1959 1961 M .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 .67 .67 .67 3.0 3.0 3.0 10.0 10.0 10.0 28 28 28 2 2 2 9 9 9 360 360 360

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

FLIGHT INSTRUMENTS

- WBS CODE: -

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

WBS IDENTIFICATION: FLIGHT INSTRUMENTS

TOTAL WEIGHTTOUNDS168341337METITUDE DIR. INDICATORNo.222WEIGHT (EACH)Ro.222WEIGHT (EACH)POUNDS888DIMENSIONSINCHES8×5×58×5×58×5×5ATTITUDE RANCEINCHES8×5×58×5×58×5×5ATTITUDE RANCEDEGREES± 360± 360± 360PITCHDEGREES± 360± 360± 360ROLLDEGREES± 360± 360± 360ROLLNGURES± 360± 360± 360ROLLDEGREES± 360± 360± 360ROLLNGURES± 360± 360± 360ROLLNGURES± 360± 360± 360ROLLNGURES1.401.40ROLLNGURES± 50± 50ROLLNGURES± 50± 50ROLLNGURES± 50± 50ROLLNGURES± 50± 50ROLLNGURES± 50± 50ROLLNGURES± 50	CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	RY	RY A/V NO. 1 MAR 1964
NO. NO. 2 POUNDS Bx5x5 Bx5x5 INCHES Bx5x55 Bx INCHES Bx5x55 Bx DEGREES 1 360 1 1 1 1 DEGREES 1 360 1 1 1 1 DEGREES 1 360 1 1 1 DEGREES 1 1 40 1 1 5 DEGREES 1 1 5 1 1 5 DEGREES 1 1 5 1 5 DEGREES 1 2 5 1 5 DEGREES 4 5 5	TOTAL WEIGHT	POUNDS	168	341		337	337 341
POUNDS B 8 8 8 8 8 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 <td>ATTITUDE DIR. INDICATOR</td> <th>NO.</th> <td>N</td> <td>Q</td> <td></td> <td>ຸດ</td> <td>N N</td>	ATTITUDE DIR. INDICATOR	NO.	N	Q		ຸດ	N N
INCHES 8x5x5 8x5x5 8x5x5 8x5x5 8x5x5 DEGREES <u>+</u> 360 <u>+</u> 360 DEGREES <u>+</u> 360 <u>+</u> 360 <u>+</u> 360 DEGREES <u>+</u> 360 <u>+</u> 360 <u>+</u> 360 DEGREES <u>1.40</u> <u>1.40</u> <u>1.40</u> <u>1.40</u> <u>1.53</u> <u>1.55</u> <u>1.55} <u>1.55</u> <u>1.55</u> <u>1.55} <u>1.555</u> <u>1.555} <u>1.555555555555555555555555555555555555</u></u></u></u></u></u></u></u></u></u></u></u></u>	WEIGHT (EACH)	POUNDS	8	ω		8	8
DBGFREES + 360 + 360 DBGFREES 1.40 1.40 1.40 1.40 DBGFREES 1.53 1.53 1.53 1.53 DBGFREES .95 1.53 1.53 1.53 DBGFREES 4.5 4.5 4.5 4.5 DBGFREES 4.5 4.5 4.5 4.5	DIMENSIONS	INCHES	8 x 5x5	8 x5x5	8 x 5	x5	x5 8x5x5
DBGCREES + 360 + 360 DBGCREES 1.40 1.40 DBGCREES 1.53 1.53 DBGCREES .95 .95 DBGCREES 4.5 4.5 DBGCREES 4.5 4.5	ATTITUDE RANGE						
DECREES ± 360 ± 360 ± 360 DECREES 1.40 1.40 1.40 DECREES 1.53 1.53 1.53 DECREES 4.5 1.53 1.53 DECREES 4.5 1.53 1.53 DECREES 4.5 4.5 4.5	PITCH	DECREES	+ 360		+1	360	360 <u>+</u> 360
Image: Reserve to the second state of the second state	ROLL	DEGREES	+ 360	+ 360		60	
DEGREES 1.40 1.40 DEGREES 1.53 1.53 DEGREES 1.53 1.53 DEGREES .95 .95 DEGREES .95 .95 DEGREES .95 .95 DEGREES 4.5 4.5 DEGREES 4.5 4.5	HEADING	SHARES	+ 360	-+ 360	რ +I	60	60 + 360
DEGREES1.401.40IG (GYRO & IND.)DEGREES1.531.53AT CIRCLE MODEDEGREES.95.95AT CIRCLE MODEDEGREES.954.5IB NORTH MODEDEGREES4.54.5INETIC NORTHDEGREES4.54.5	ACCURACY (GYRO & IND.)					<u> </u>	
ING (GYRO & IND.)DEGREES1.531.53IMG (GYRO & IND.)DEGREES.95.95LEAT CIRCLE MODEDEGREES.95.95UE NORTH MODEDEGREES4.54.5GNETIC NORTHDEGREES4.54.5	PITCH	DEGREES	1.40	1.40	Ч	.40	.40 1.40
DEGREES .95 DEGREES .95 DEGREES 4.5 DEGREES 4.5	ROLL	DEGREES	1.53	1.53	Ч	.53	.53 1.53
DE DEGREES .95 .95 .95 4. DEGREES 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	HEADING (GYRO & IND.)			······			
DECREES 4.5 4.5 DECREES 4.5 4.5	GREAT CIRCLE MODE	DEGREES	•95	• 95		- 95	.95
DEGREES 4.5 4.5	TRUE NORTH MODE	DEGREES	4.5	4.5	т. т	2	5 4.5
	MAGNETTI C NORTH	DEGREES	4.5	4.5	4	ιČ	·5 4.5

SD72-SH-0003

Space Division North American Rockwell

-10 to +25 -4 to +10 A/V NO. 2 MAY 1966 0 to 1000 .4 to 3.1 .170 •95 8. 1.0 ب ۲. ¥.5 11.5 11.5 2 +1 +1 +1 +1 -10 to +25 A/V NO. 1 MAR 1964 .170 -4 to +10 0 to 1000 .4 to 3.1 .85 .95 1.0 4.5 4.5 11.5 11.5 2 +1 +1 +1+1 WBS CODE: -10 to +25 .170 FEBRUARY 0 to 1000 -4 to +10 .4 to 3.1 .085 .95 1.0 4.5 4.5 11.5 11.5 1961 2 +1 +1 +1 +l -10 to +25 .170 -4 to +10 DECEMBER 0 to 1000 .4 to 3.1 8. Ŕ + 1.0 4.5 4.5 11.5 11.5 N 1959 5 +1 +1 +l **MARCH 1959** -10 to +25 0 to 1000 -4 to +10 .4 to 3.1 .170 + .025 1.0 6 4.5 4.5 11.5 11.5 N 2 +1 +1 +1 UNIT OF MEASURE MACH NO. MACH NO. DEGREES DEGREES DEGREES DECREES DEGREES DEGREES POUNDS POUNDS STOUR KINOTS ູສ 20. AIRSPEED - MACH INDICATOR GREAT CIRCLE MODE CHARACTERISTIC ANGLE OF ATTACK ANGLE OF ATTACH IRUE NORTH MODE MAGNETIC NORTH INDICATOR WEIGHT AMPLIFIER WEIGHT ACCURACY (TOTAL) ACCELERATION DISPLAY RANGE AIRSPEED AIRSPEED MACH NO. MACH NO. WBS IDENTIFICATION:

SD72-SH-0003

ACCELERATION

I**V-**555

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

FLIGHT INSTRUMENTS

Space Division North American Rockwell

WBS CODE:

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

1.10.2

WBS IDENTIFICATION: FLIGHT INSTRUMENTS

CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
POWER CONSUMPTION	VOLT-AMPERE	150	150	150	150	150
DESIGN OPER. TEMPERATURE	DEGREES F (+)	32 to 160	32 to 160	32 to 160	32 to 160	32 to 160
ALTITUDE - VERT, VEL. INDICATOR	. 0 .	ଦ	Q	Q	N	N
WEIGHT (INDICATOR)	POUNDS	11.5	11.5	11.5	11.5	11.5
WEIGHT (AMPLIFIER)	POUNDS	11.5	11.5	11.5	11.5	11.5
DISPLAY RANGE	ı	9	1	١	ı	ı
ALTTTUDE	FEET	-1000 to 100,000	-1000 to 80,000	-1000 to 80,000	-1000 to 80,000	-1000 to 80,000
ALTITUDE RATE	FEET/MI N	0 to 40,000	0 to 40,000	0 to 40,000 0 to 40,000 0 to 40,000	0 to 40,000	0 to 40,000
ACCURACY						
ALTITUDE (TOTAL)						
AT 20,000 FEET	FEFT	+1	09 +1	99 +1	09 +1	-+ 60
AT 40,000 FEET	FEET	+ 210	+ 210	+ 210	+ 210	+ 210
ALTITUDE RATE (TOTAL)						

Space Division North American Rockwell

IV-556

20 r

FLIGHT INSTRUMENTS

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

WBS IDENTIFICATION: __

N 1
-
읽
~ 1
Ξ.
ō
00
8
Ų
S
а
2
_

CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
AT 2500 FPM	N IW/MIN	000 +1	900 +1		300 +	300 +1
AT 40,000 FPM	FEET/MIN	+ 6000	+ 6000	0000 +1	0000 +1	+ 6000
POWER CONSUMPTION	VOLT-AMPERES	150	150	150	150	150
DESIGN OPER. TEMPERATURE	DEGREES F.(+)	32 to 160	32 to 160	32 to 160	32 to 160	32 to 160
RELIABILITY FACTOR	NONE	TON	AVAILABLE	8966666.	8966666.	8966666.
MTBF	HOURS	NOT	NOT AVAILABLE	549,450	549,450	549,450
1-557						

Space Division North American Rockwell

TECHNICAL DESCRIPTION

SUBSYSTEM:	FLIGHT INDICATION	WBS	CODE:	1.10
MAJOR ASSEMBLY:	CENTRAL AIR DATA SUBSYSTEM	WBS	CODE:	1.10.3

In the B-70 many of the subsystems, such as flight controls, pilot's instruments and radio navigation aids required inputs of air data in the form of airspeed, mach number and altitude. For each of the subsystems to sense, convert and use its own parameters would have unduly complicated and penalized the B-70 from a weight standpoint. Therefore, a Central Air Data Subsystem (CADS) was developed which sensed the air pressure for the conditions of flight and converted this stimuli into electrical signals to supply the needs of all the air vehicle subsystems. Due to the advanced performance of the B-70 and the accuracy to which the pilot was required to know his flight condition, it was necessary to develop computing equipment with a sensing and computing range of about twice that previously required. It was also necessary to overcome the problem of pressure sensing inaccuracies due to the proximity of the air vehicle. This problem is defined as position error. The laboratories at Wright-Patterson Air Force Base developed a probe with an aerodynamic shape which compensated for the presence of the air vehicle and thus minimized the inaccuracies due to position error. The pitot static boom assembly (partially disassembled) is shown in Exhibit 6, page IV-560.

The CADS sensed flight pneumatic and temperature conditions and converted them to analog electrical signals which represented output functions of mach number, airspeed, and altitude which were compatible with the using system requirements.

The air data computer consisted of five basic modules and three transducers which performed the computing and monitoring functions. The five basic modules were:

The output signals from the computer were:

Mach number Altitude rate Altitude change Calibrated airspeed

WBS CODE: 1.10.3

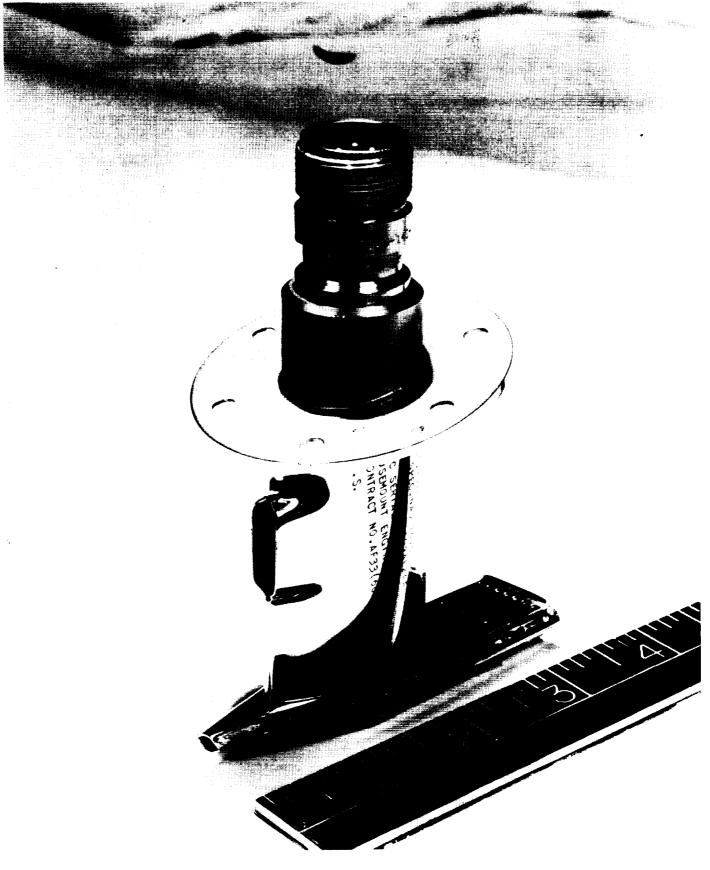
Maximum safe mach number Mach number rate Static pressure True airspeed

The subsystems receiving these output stimuli were as follows:

USING SYSTEM	TOTALS
Vertical Scale Indicator	8
Flight Augmentation Counter	6
Bomb Navs.	4 (Deleted)
Engine Control	7
Flight Director Computer	1
Landing Gear Warning	2
B-N Displays	4 (Deleted)
Flight Test Instrumentation	6
Anti-Collision Lighting	1
AGPS	2
Spares	6

The pitot-static tube (reference Exhibit 4, Page IV-560) was installed on a boom mounted to the nose of the air vehicle. The tube was connected to pneumatic lines which transmitted the dynamic and static air pressure effects to the CADS and to the standby pneumatic airspeed and altitude indicators and flight instrumentation. An electrically energized heater was provided to prevent ice accumulation on the pitot static tube.

A total temperature sensor was installed below the duct splitter located in the lower aft intermediate fuselage. The sensor element extended into the airstream to sense local temperature conditions. The sensor converted the thermal data into electrical signals which were transmitted to the CADS and to the total temperature indicator located on the pilot's main instrument panel. The total temperature sensor is shown in Exhibit 7, page IV-561.


An indicator was installed to provide mach number, maximum safe mach number and calibrated airspeed. Vertical tapes driven by electrical signals from the CADS provided the indications. An indicator which displayed vertical speed and sensitive, fine and gross altitude by means of a vertical scale was also provided. A DC power supply was installed to furnish excitation for the command functions of the indicators. These command functions initiated by the pilots would actuate counter-type indicators.

A standby altitude indicator was mounted on the main instrument panel. This indicator received pressure variation signals from the static pitot system and provided visual indication of altitude from -1000 to 80,000 feet. An 8-day mechanical clock was also installed on the pilot's and copilot's instrument panel.

IV-560

EXHIBIT 6

TOTAL TEMPERATURE SENSOR

EXHIBIT 7

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

1.10.3

- WBS CODE: -

WBS IDENTIFICATION: CENTRAL AIR DATA SYSTEM	

	CHARACTERISTIC	UNIT UF MEASURE	MARCH 1959	UECEMBER 1959	1961	MAR 1964	MAY 1966
L	WEIGHT (TOTAL SYSTEM)	POUNDS	543	155	155	155	155
	PRESSURE ALTITUDE (OUTPUT)				-		
	RANGE	FEET ALT.	-1000 to 100,000				
	RESOLUTION	PERCENT	5	ŝ	5	2	5
	RESPONSE	SECONDS	0.36	0.36	0.36	0.36	0.36
IV-	PRESSURE ALTITUDE RATE (OUTPUT)						
.562	FANGE	FEET/MI N	40,000 ASCEND OR DESCEND				
	NOILIN	FEET/MIN	25	25	25	25	25
	RESPONSE	SUNCORDS	1.0	1.0	1.0	1.0	1.0
	AIRSPEED (OUTPUT)						·
	RANGE	KIROTS	50 to 750				
	RSOLUTIT ON	STORY	1.0	1.0	1.0	1.0	1.0
SD	DESIGN TEMPERATURE RANGE	DEG F.	+32 to 160				
72-1							

Space Division North American Rockwell

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

WBS IDENTIFICATION: CENTRAL AIR DATA SYSTEM

- WBS CODE: 1.10.3

CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
TEAPERATURE (INPUT)						
RANGE	DEC F	-65 to 315	-65 to 315	-65 to 315	-65 to 315	-65 to 315
SLEW RATE	DEG F/SEC.	10	10	10	10	10
RESPONSE	SECONDS	0.6	0.6	0.6	0.6	0.6
ACCURACY						
ALTTTUDE						
AT 20,000 FEET	T SUF	+ 50	+ 50	+ 50	+ 50	+ 50
AT 60,000 FEET	FEET	+ 200	+ 1+ 200	+ 200	+ 500	500 + 1
AIRSPEED	KNOTS	5	5	5	5	ŝ
ALTITUDE RATE						
AT 2500 FPM	FEET/MI N	50	50	50	50	50
AT 40,000 FPM	FEET/MI N	2000	2000	2000	2000	2000
MACH NUMBER	MACH NO.	+ 0.020	+ 0.020	+ 0.020	+ 0.020	- 0.020

Space Division North American Rockwell

TECHNICAL DESCRIPTION

SUBSYSTEM:	FLIGHT INDICATION	WBS CODE:	1.10
MAJOR ASSEMBLY:	FLIGHT DIRECTOR COMPUTER (FDC)	WBS CODE:	1.10.4

The FDC was a two-channel computer, one for roll computations and the other for pitch computations. Input signals to the FDC are obtained from the auxiliary gyro platform subsystem (AGPS), instrument landing subsystem, TACAN, CADS and Horizontal Situation Indicator (HSI). Data outputs include computed vertical and steering signals to the Attitude Director Indicator (ADI) and automatic activation of the ADI horizontal needle when approaching the glide slope in the instrument landing mode.

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

FLIGHT DIRECTOR COMPUTER WBS IDENTIFICATION: _

WBS IDENTIFICATION: FLIGHT DIRECTOR COMPUTER	UTER			WBS CODE: -	DE: 1.10.4	t
CHARACTERISTIC	UNIT OF MEASURE	MARCH 1959	DECEMBER 1959	FEBRUARY 1961	A/V NO. 1 MAR 1964	A/V NO. 2 MAY 1966
WEIGHT	POUNDS	ZI	ମ	टा	ส	ង
DIMENSIONS						
LENGTH	INCHES	9 5/8	9 5/8	9 5/8	9 5/8	9 5/8
HIG IN	I NCHES	5 5/16	5 5/16	5 5/16	5 5/16	5 5/16
HEIGHT	INCHES	7 13/16	7 13/16	7 13/16	7 13/16	7 13/16
NUMBER CHANNELS		ONE	ONE	ONE	ONE	ONE
POWER REQUIRED	VOLT-AMPS	16	J 6	16	16	16
NUMBER OF INPUTS						
PITCH	1	Ч	Ч	Ч	Ч	1
ROLL	8	н	Ч	Ъ	Ч	ч
HEADING	I	r-1	Ч	Ч	-1	ч
COURSE ERROR	1	н	н	Ч	-1	ч
RADIO SIGNAL INPUTS	I	4	4	4	4	4
ATTITUDE HOLD	ł	н	Ч	IJ	ч	Ч

Space Division North American Rockwell

WBS IDENTIFICATION: FLIGHT DIRECTOR COMPUTER	CHARACTERISTIC	NUMBER OF OUTPUT SIGNALS	NUMBER OF OPER. MODES	I v- 566	SD72-5
MPUTER	UNIT OF MEASURE	•	1		
	MARCH 1959	9	80		
	DECEMBER 1959	9	ω		
WBS CODE:	FEBRUARY 1961	9	8		
DDE: 1.10.4	A/V NO. 1 MAR 1964	9	8		
.4	A/V NO. 2 MAY 1966	Q	Ø		

TECHNICAL CHARACTERISTICS PROGRESS SUMMARY

.

SD72-SH-0003

Space Division North American Rockwell

DEVELOPMENT DATA SUMMARY

WBS TITLE: Flight Indication Subsystem WBS CODE: 1.10

STATE OF THE ART RATING: 3 (See Text on Following 3 Pages)

PERCENT DEVELOPED MATRIX:	PRIOR TO	FLIGHT	FLIGHT TEST
	CONFIGURATION	GROUND TEST	
PROGRAM LEVEL	95%	66%	28%
EFFORT TO GO	18%	60%	90%

GROUND TESTS

TYPE OF TEST	NUMBER OF UNITS	TEST HOURS
CONFIGURATION RESEARCH	-	-
DESIGN FEASIBILITY	-	-
DESIGN VERIFICATION	9	1350
AIRWORTHINESS	26	2240
QUALIFICATION	5	650
OTHER	-	-
TOTAL	40	4240

REMARKS:

.

WBS CODE: 1.10

State-of-the-Art

The Flight Indications Subsystem was assigned an overall state-of-the-art rating of 3 based on definitions established using AFSCM 173-1 (11-28-67) as a guide. This rating was determined by comparing the RS-70 requirements with the existing capabilities at the RS-70 time period using state-of-theart criteria discussed in subsequent paragraphs. The RS-70 configuration was selected for the comparison since it was the production configuration defined. This selection is considered valid since the development status at "out-the-door" and at program "end" is also based on the scheduled production configuration.

The definitions used in determining the state-of-the-art ratings are described below. For ratings 3, 4, and 5, the following B-70 design criteria was used as an aid for rating selection.

- A. High temperature application
- B. High pressure/load/acoustics/etc., application
- C. Light-weight/special materials/unique processes

Rating

Description

- The item was off-the-shelf commercial item or a standard military issue which was installed "as-is".
 The item was off-the-shelf commercial item or a standard military issue which required only a physical modification for installation.
- 3 The item was considered within the state-of-the-art but had no commercial or military counterpart. As an aid, the item was existing but required modification to be compatible with <u>one</u> of the design criteria. Also, any new design or process has a rating of at least 3.
- The item was slightly beyond the state-of-the-art, and some development was required. As an aid, the item was based on an existing concept but required modification to be compatible with <u>two</u> of the design criteria. Also, any new design or process required to be compatible with <u>one</u> of the design criteria will be rated 4.
- 5 The item was substantially beyond the existing state-of-theart and required major development work. As an aid, any new design or process required to be compatible with <u>two</u> of the design criteria will be rated 5.

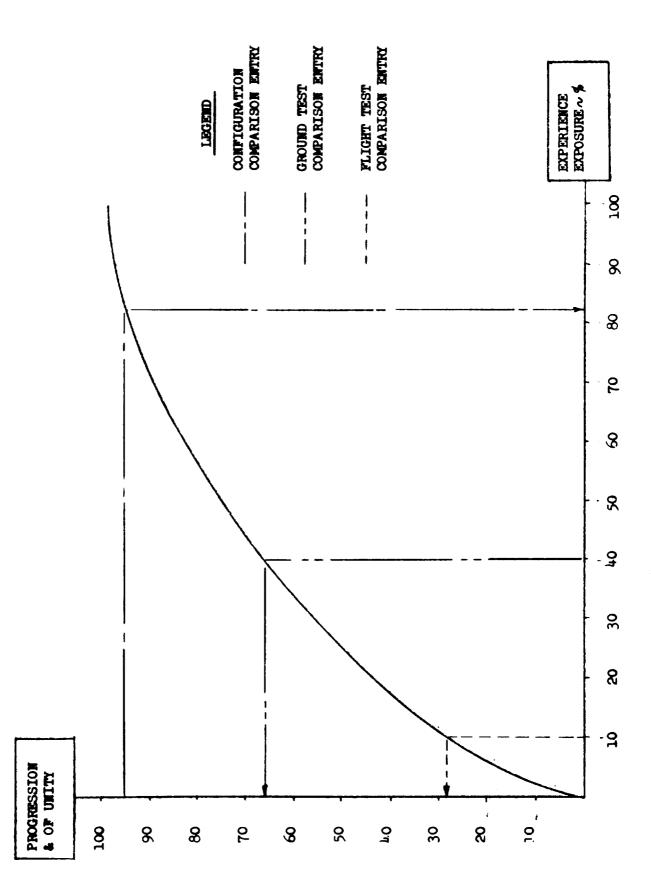
WBS CODE: 1.10

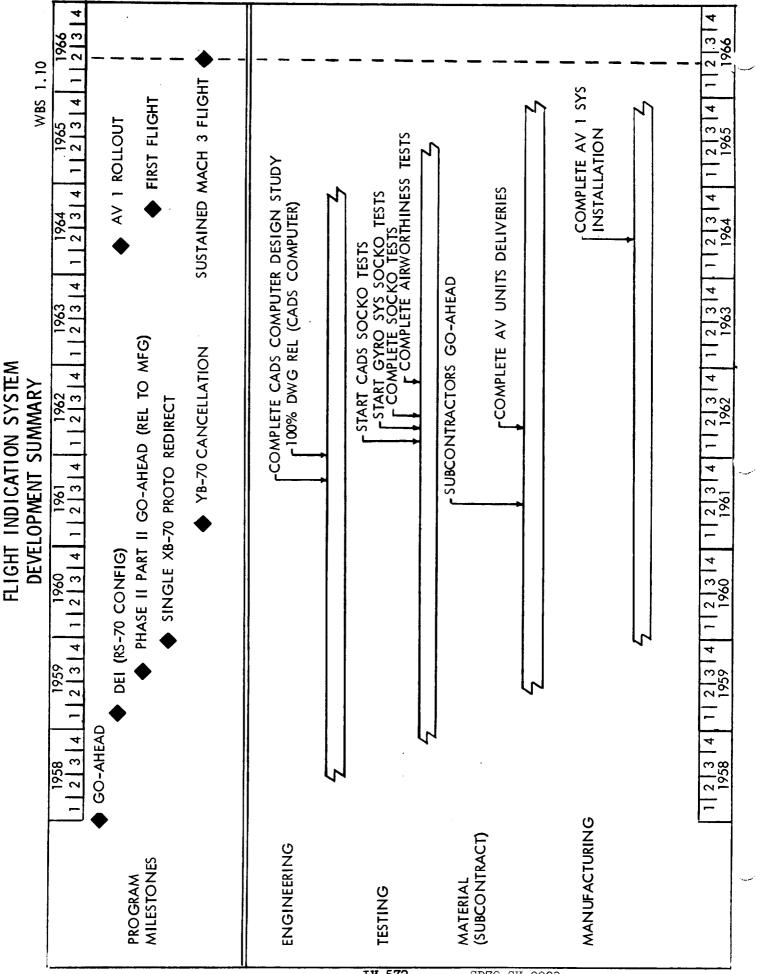
The Flight Indication Subsystem installed in the XB-70 was essentially the same as planned for the RS-70 except for a best climb speed indicator and some downgrading of equipment due to the lack of development effort. In the assessment of the RS-70 flight indication configuration, based only on its functional requirements, the Flight Indication Subsystem was assigned a state-of-the-art rating of 2. However, the Auxiliary Platform and the Central Air Data systems were unique designs for the RS-70 application and were the heart or the major part of the subsystem. Based on the above application and the ground rules established, the state-of-the-art for the Flight Indication Subsystem was upgraded to a rating of 3.

Percent Developed

The development status percent comparisons of the XB-70 Flight Indication Subsystem to that scheduled for the RS-70 were made at two development stages; one at prior-to-flight or "out-the-door" of the No. 1 air vehicle, and the other for the flight test programs. The same methodology developed and verified for the Airframe Structures Subsystem (WBS: 1.1) percent comparisons was applied in the analyses of the Flight Indication Subsystem status. As noted above, the XB-70 configuration was very close to that planned for the RS-70, being short development effort and one indicator. Based on this, the XB-70 Flight Indication Subsystem configuration was assessed as being 95 percent representative of that planned for the RS-70 for the time period of "out-the-door", excluding the ground testing status. To determine what effort would have been required to attain a first air vehicle production level status for the configuration, the same curve used for the structures subsystem was utilized for Flight Indication Subsystem; Exhibit 8, Page IV-571. Entering the exhibit in the left-hand scale at 95 percent, across to the curve and down to the bottom scale, it shows that 18 percent more effort would be required for a No. 1 RS-70 Flight Indication Subsystem, excluding ground testing.

The ground tests scheduled for the RS-70 at time of "out-the-door" was approximately 10,500 test hours. Comparing this scheduled test effort with the 4,240 test hours expended, it shows that the testing level of the XB-70 Flight Indication Subsystem to be approximately 40 percent of that planned for the RS-70 at the "out-the-door" time period. This shows that 60 percent more testing effort was required to attain a No. 1 air vehicle production level status prior to flight. Entering Exhibit 8, Page IV-571, on the bottom scale at 40 percent, the right-hand scale indicates that the No. 1 XB-70 Flight Indication Subsystem was at a confidence level of 66 percent prior-to-flight. In summary, the Flight Indication Subsystem of the XB-70, when compared to the RS-70 at the time of "out-the-door", was at a configuration level of 95 percent with 18 percent more effort required. The confidence level due to ground tests was 66 percent with 60 percent more ground testing required.


WBS CODE: 1.10


The XB-70 flight test program for the Flight Indication Subsystem was established at 15 percent of a production level status as presented by Exhibit 13, Page II-23, under Air Vehicle, WBS: 1.0. However, this percentage was obtained by a direct comparison of equivalent flight test hours and some adjustment must be applied to reflect the flight envelope flown during the XB-70 program. As shown under Air Vehicle (WBS: 1.0), the flight envelope of the XB-70 was approximately 80 percent of the RS-70 envelope. As previously established for Airframe Structures Subsystem (WBS: 1.1), the first 80 percent of the flight envelope requires only 60 percent of the total effort compared to the last 20 percent of the envelope which requires 40 percent of the total effort. For the Flight Indication Subsystem, this 2 to 3 ratio was directly applicable since all of the equivalent test hours were obtained in the first 80 percent of the flight envelope. Using this ratio as a weight factor so that direct comparisons can be made based on the RS-70 flight envelope, the flight test effort expended on the XB-70 was adjusted by the function 2:3::X:15%. Based on this function, the total flight test effort remaining to attain a production level status for the Flight Indication Subsystem would be 40% + 60% - (2 X 15+3) or 90 percent (where 40 percent is that effort required for the last 20 percent of the flight envelope). Entering Exhibit 8, Page IV-571, on the bottom scale at 10 percent, it shows by the left-hand scale that the XB-70 flight test program attained a confidence level of 28 percent as related to the Flight Indication Subsystem. Exhibit 8, page II-571, presents a summary of the flight Indication Subsystem comparisons.

> NOTE: THE USE OF THE "EFFORT TO GO" PERCENTAGES FOR COST DETERMINATION SHOULD NOT BE APPLIED WITHOUT CON-SULTING SECTION IV-7, VOLUME I, PAGE **310** FOR APPLICATION CONSIDERATIONS.

PERCENT CONPARISON TO RS-70 (UNITY)

...

DEVELOPMENT SUMMARY

TABULATION OF DATES

SUBSYSTEM: FLIGHT INDICATION	WBS CODE 1.10
ENGINEERING	
Complete - CADS Computer Design Study 100% Drawing Release (CADS Computer)	9-29-61 1-01-62
TESTING	
Start - CADS SOCKO Tests Start - Gyro System SOCKO Tests Complete - SOCKO Tests Complete - Airworthiness Tests	2-28-62 4-15-62 6-01-62 10-16-62
MATERIAL	
Subcontractor Go-Ahead Complete - Air Vehicle Unit Deliveries	6-15-61 5-07-62
MANUFACTURING	
Complete - Air Vehicle No. 1 Syst. Installation	6-10-64

COST DEFINITION

SUBSYSTEM: FLIGHT INDICATION

WBS COSE: 1.10

Total cost of \$3,292,562 assigned to this subsystem includes only the subcontractor expenditures to design, develop, fabricate, and test the purchased equipment in this subsystem. In-house costs could not be segregated from the other vehicle subsystems. Fabrication of subsystem provisions, miscellaneous purchased parts, installation materials, installation of the subsystem hardware into the vehicles and subsystem, vehicle and preflight checkout of the equipment are accumulated in WBS 1.12 (Volume IV, page 647).

Below is a discussion of the subcontractors supplying equipment.

SUBCONTRACTOR MATRIX

SUBCONTRACTOR	ENGINEERING	PROD	TOOLING	TEST	TOTAL
Sperry Gyroscope Airesearch	951,973 889,707	754,399 340,039	-	- 161,712	1,706,372 1,391,458
TOTAL	1,841,680	1,094,438	-	161,712	3,097,830

<u>SPERRY GYROSCOPE</u> was selected to furnish the Auxiliary Gyro Platform Subsystem and related Support Equipment in accordance with Design Specification NA5-7673. The two purchase orders awarded to Sperry for this effort were:

L961-GX-600123	March 6, 1959 - January 20, 1960
L1E1-YZ-600304	October 31, 1960 - July 10, 1961

The Statement of Work called for the supplier to provide engineering, management, fabrication and other services leading to the design, development, and support of an Auxiliary Gyro Platform for the B-70.

On December 2, 1959 Sperry was directed to reduce the project effort to a minimum. In addition, special studies were authorized relating to the modifications of the AGPS for use on the B-70 test vehicles. By January 20, 1960, the date Purchase Order 600123 was terminated, Sperry had complied with the redirection by reducing personnel to a hard core and completing the special studies as directed.

The second contract awarded to Sperry authorized the engineering and manufacture of twelve complete gyro systems. After proceeding with the program for six months, Sperry was redirected on March 31, 1961 to cease all work associated with the fabrication of hardware, and to maintain design study and planning effort only. Letter Contract 600304 was cancelled in its entirety on July 10, 1961. The total program effort was determined to be all design study and planning effort under the reduced program directed March 31, 1961.

WBS CODE: 1.10

<u>AIRESEARCH</u> was selected to furnish the Central Air Data Subsystem in accordance with NR Specification NA58-232. Two Letter Contracts were awarded to Airesearch for this effort:

L961-GX-600125	May 12,	1959 -	December 2, 1959
L1E1-YZ-600303	November 9,	1960 -	Nocember 22, 1961

The Statement of Work for each contract called for the subcontractor to provide management, engineering, manufacturing, and other necessary services, including but not limited to analytical and design studies directed toward the design, development, mockup, tooling, fabrication and delivery of the Central Air Data Subsystem for the B-70 Air Vehicle in accordance with NR Specification NA5-7674.

Airesearch was in the early stages of design and development effort on December 2, 1959, when the Contract 600125 was terminated for the convenience of the Government. Work on the Letter Contract 600303 was stopped on May 10, 1961 and terminated in its entirety on November 22, 1961. Airesearch was in the early hardware stage of the program at the time of termination.

The inventory from the above contracts was transferred to spares and shipped to NR for use on the B-70. The balance was disposed of as scrap. The total proceeds were applied to the source contract. NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

COST BREANDONING B-70 AIRCRAFT STUDY

4-SYSTEM	1	
5-SUB SYSTEM	10	
FLIGHT INC	ICATION	SUBSYSTEM

	6-M ASSY O HOURS DOLLARS	TOTAL HOURS DOLLARS
SUBCONTRACT MPC	3097830 136403	3097830 136403
SUB-TCTAL	3234233	3234233
GEN & ADMIN	53329	58329
TOTAL COST	3292562	3292562

SUBDIVISION OF WORK COST DETAIL - SEE PAGE IV-577 **APRIL 1972**

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

APRIL 1972

COST BREAKDOWNS 8-70 AIRCRAFT STUDY

4-SYSTEM	1
5-SUBSYSTEM	10
6-MAJ ASSY	0

FLIGHT INDICATION SUBSYSTEM

		DESIGN ZENGR HDURS DGLLARS	PROD HOURS DOLLARS	TEST /QC HOURS DGLLARS	TOTAL HOURS DOLLARS
SUBCONTRACT MPC		1841680 79378	1094438 47898	161712 9127	3097830 136403
SUB-TOTAL		1921058	1142336	170839	3234233
GEN & ADMIN		26374	19547	12408	58329
TOTAL COST		1947432	1161883	193247	3292562
	TIME-PHASED COST DETAIL - SEE PAGE	IV-578	I V- 579	IV- 580	IV- 581

•

APRIL 1972

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDEP NASA CONTRACT NAS9-12100

4-SYSTEM15-SUBSYSTEM106-MAJASSY0SUBDOF WORKDESIGN/ENGINEERING

	SUBC	MPC	SUB Tutal	GEA	TOTAL Cest
Q−1 59 Q−2 59	2 756 59	7309	282 97 8		282978
Q-3 59 Q-4 59	236366	6458	242 824		242824
Q−1 60 Q−2 60	713126	42309	755435	14393	769828
0-3 60 0-4 60	183823	10906	194729	3 71 0	198439
Q-1 61 Q-2 61	302893	3 67 8	311571	5 7 90	317361
0-3 61	129903	3718	133521	2481	136002
TJTAL	1841680	79378	1921058	26374	1947432

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM10FLIGHT INDICATION SUBSYSTEM6-MAJ ASSY0SUBD GF WORKPRODUCTION

	SUBC	MPC	SUB TUTAL	G&A	TOTAL CUST
Q-1 59 Q-2 59	36144	958	37102		37102
Q-3 59 Q-4 59	66144	1807	67951		67951
0-1 60 0-2 60	57511	3412	60923	1161	62084
Q-3 60 Q-4 60	487072	28899	515971	9831	525802
0-1 61 0-2 61	311939	8937	320876	5962	326838
Q-3 61	135628	3885	139513	2593	142106
TOTAL	1094438	47898	1142336	19547	1161883

APRIL 1972

.

~~

~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM	1	
5-SUB SYSTEM	10	FLIGHT INDICATION SUBSYSTEM
6-MAJ ASSY	0	
SUBD OF WORK	TEST/QC	

	SUBC	MPC	SUE Tutal	GξΔ	TCTAL CCST
0-3 59 0-4 59	9303	254	955 7		955 7
Q-1 60 Q-2 60	73221	4344	77505	6132	83697
Q-3 60 Q-4 60	73687	4372	78059	6171	84230
0-1 61	5501	157	5658	105	5763
TCTAL	161712	9127	170839	12498	183247

APRIL 1972

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM106-MAJ_ASSY0

j

FLIGHT INDICATION SUBSYSTEM

	SUBC	MPC	SUB Tetal	GδA	TGTAL Cost
Q-1 59 Q-2 59	311813	826 7	320080		320080
Q-3 59 Q-4 59	311813	8519	320332		320 332
Q-1 60 Q-2 60	843858	50065	893923	21686	915609
Q-3 60 Q-4 60	744582	44177	788759	19712	808471
0-1 61 0-2 61	620333	17772	638105	11857	649962
Q-3 61	265431	7603	273034	50 7 4	278108
TOTAL	3097830	136403	3234233	58329	3292562

.

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

SUBSYSTEM: TEST INSTRUMENTATION	WBS CODE: 1.11
TITLE	PAGE
WORK BREAKDOWN STRUCTURE	I V- 584
TECHNICAL DESCRIPTIONS	IV-585
WBS 1.11 Test Instrumentation Subsystem	IV-585
WBS 1.11.1 Flight Test Instrumentation	IV-587
COST SUMMARY	TV- 618
Cost Definition	IV-618
Detail Cost Data	IV-619

WBS CODE: 1.11

WORK BREAKDOWN STRUCTURE

SUBSYSTEM: TEST INSTRUMENTATION

WBS LEVELS

- 4 5 6 7 8
 - 1.11 TEST INSTRUMENTATION SUBSYSTEM

1.11.1 Flight Test

1.11.1.1 Transduces

Pressure Temperature Strain Position Rate Flow Electrical Electronic Acceleration

1.11.1.2 Installation and Routing

- Welding Bonding Shock Mounting Wire Connectors Routing References
- 1.11.1.3 Airborne Data Acquisition

Instrument Package Multiplexing Filtering Communtation Digitizing Serial Time Coding Digital Recorder Analog Recorder Telemetry

- 1.11.1.4 Instrumentation Control
- 1.11.1.4 Data Recovery Ground Station

Analog Data Reduction Digital Data Reduction Time Editing Data Formats

1.11.2 R&D Ground Tests

IV-584

0-7

SD72-SH-0003

TECHNICAL DESCRIPTION

SUBSYSTEM: TEST INSTRUMENTATION SUBSYSTEM

WBS CODE: 1.11

The Test Instrumentation Subsystem for the B-70 Program was comprised of two types of data acquisitioning equipment and components: (1), the instrumentation involved directly with data acquisition during ground or flight tests conducted on the air vehicle and/or its installed subsystems; and (2), the instrumentation required for data acquisition in the development and verification of subsystems, major assemblies, and components prior to their installation in the air vehicle. Wherever it was possible, the same transducer or type of transducer was used in the development and flight test programs to provide maximum continuity in data acquisitioning. However, the recording equipment, signal conditioning, multiplexing, etc, were generally not the same with the air vehicle or airborne system having a much greater density and more complex.

Substantial advancements were achieved in the state-of-the-art in concepts and implementation of the data acquisition systems for both the ground development test and flight test programs. For the ground development testing, these achievements were mainly in development of high temperature transducers (strain gages, pressure sensors, accelerometers, etc.,) and in bonding techniques, such as, the application of strain gages to the critical surfaces of H-ll tool steel. The high temperature transducers and installation techniques established for the subsystem development ground test programs were used in implementing the airborne system installations.

In the airborne instrumentation system, the development of "low level" multiplexing or commutation and the dynamic filter were major break throughs for data acquisition. In addition to increasing the signal to noise ratios, these two achievements deleted the requirement for 1000 amplifiers that would have been required for a "high level" multiplexing system. The basic commutation programming of the airborne instrumentation system was also an advancement in the state-of-the-art. The switching, which was solid state, switched both sides of the signal lines at 400 times per second per each master channel with the switch and system sequencing commands derived by dividing down from a master crystal controller clocking oscillator. This design concept facilitated programming and provided "real time" throughout the data acquisition system.

The Test Instrumentation Subsystem was unique, when compared to the other subsystems, in that it existed due to the other subsystems and all requirements were based on the other subsystems criteria. This dependent existence was true for both the ground test programs and the flight test program. Due to this unique existence, the Test Instrumentation Subsystem did not lend itself to the same technical definition breakdown as the other subsystems. To provide an overall description, the technical characteristics of the airborne instrumentation system are included in the narrative description and presented in summary form by exhibits of that section. Also, since by edict the instrumentation requirements for both ground and flight tests did not schedule a subsystems development, no technical drivers existed. However, these were

WBS CODE: 1.11

بمس

state-of-the-art advancements achieved and these were discussed in the preceeding paragraphs and are also included as part of the narrative descriptions in subsequent paragraphs.

TECHNICAL DESCRIPTION

SUBSYSTEM: TEST INSTRUMENTATION

WBS CODE: 1.11

MAJOR ASSEMBLY: FLIGHT TEST INSTRUMENTATION SYSTEM WBS CODE: 1.11.1

The Flight Test Instrumentation System for the XB-70 air vehicle was developed to provide the capability of obtaining data required to establish safety or flight limits, to evaluate subsystem functional operations, and to define gross problem areas within the realm of the various flight test tasks. The airborne instrumentation system also contained provisions for obtaining Supersonic Transport (SST) data and supplemental cockpit instrumentation for special flight monitoring requirements. The primary data acquisition media was magnetic tape recorded in both digital and analog formats. In addition, selected parameters were telemetered to the Ground Station and displayed in real time on chart recorders concurrent with the flight. Exhibit 1, pages IV-597 & IV-598, presents an overall perspective of the XB-70 instrumentation installations and depicts the general locations of the airframe mounted instrumentation components. Exhibit 2, page IV-599, presents a block diagram of the XB-70 airborne instrumentation system.

The high capacity airborne instrumentation system developed for the flight test program, provided the capability of subsystem test sharing during each flight of the XB-70's. As previously discussed under Air Vehicle (WBS: 1.0), the test sharing provided an equivalent test hour total five times actual flight test hours plus the invaluable capability of "looking" at all subsystems for gross problems during the first phase of flight testing. This "gross look" at all subsystems provided early detection of problem areas which resulted in a timely progression of the flight test program.

There were six basic types of parameters recorded by the airborne instrumentation system. They were miscellaneous, acceleration, position, temperature, strain, and pressure. To acquire the parameter data, three sensor or transducer installations were employed. The conventional or normal approach was where the transducer was added at, or near, the point of measurement. The second type was where an air vehicle subsystem configuration had an electrically isolated sensor incorporated as part of the basic configuration and was furnished as an integral part of that subsystem. This avoided the requirement for making a direct electrial connection and afforded maximum isolation and safety. The third type of installation was the direct pick-off method and applied only to the measurement of electrical quantities, such as, voltage, current, frequency or to parameters already existing in electrical form.

In the course of building up the overall data acquisition system it was necessary to meet requirements for data sensors which were capable of operation in high temperature and vibration environments. Much of this equipment was purchased from outside vendors, but sensors for the measurement of linear positions, rotary positions, air flow directions, and high vibration hydraulic pressures were not available. These items, therefore, were designed and developed within the Instrumentation Group. High temperature bonded strain gage and variable reluctance techniques were applied in the construction of

these devices. Exhibit 3, Page IV-600, presents several instrumentation data sensors developed for the B-70 program. A review of Exhibit 1, Pages IV-597 & IV-598, will show the general areas of transducer installations and the major routings of the instrumentation wiring from the transducers to the recording media which was mainly located in the instrumentation package.

The instrumentation package was the heart of the airborne data acquisition system. This was a specially designed package which could be lowered out of or raised into the air vehicle forward weapons bay. The equipment section was divided into four areas, three of which were compartmented for installation of modular chassis employing rack and panel connectors. The fourth area contained the tape recording equipment, the program panels, circuit breakers, operational controls and displays for performing preflight and checkout operations. Cooling air, in metered amounts, was forced through each chassis from a self-contained environmental control system which employed liquid nitrogen for cooling and pressurization. Temperature was regulated between limits of 40° and 160°F. Pressure was maintained so that it was never less than that corresponding to 8000 feet altitude. Environmental control provisions were dual, providing back-up operation in the event of an in-flight failure of the system. The instrumentation package was entirely independent of any air vehicle system with the exception of electrical power. Exhibit 4, Page IV-601, present an overall view of the instrumentation package and the air vehicle while Exhibit 5, Page IV-602, present a schematic of the instrumentation package showing the arrangement of the environmental control equipment.

As previously stated, the digital system and analog system were the primary media of data acquisition. The digital system, as shown by block diagram in Exhibit 6, Page IV-603, provided for the recording of approximately 800 channels of quasi-static data with a maximum frequency response of 20 cycles per second for selected channels. A wide variety of parameters were recorded and with the exception of thermocouples, all data channels were individually signal conditioned. The following sub-paragraphs describe the major functions of the digital system.

<u>Multiplexing</u>: A scheme of time multiplexing was employed to sample, digitize, and record each data channel in accordance with a prescribed repetitive pattern. Fifty channels of master commutation received signals sequentially from two pre-digitized data channels and 48 sub-commutators. Four subcommutation ratios, 4 to 1, 10 to 1, 20 to 1, and 100 to 1 were available.

Filtering: Filtering, to limit the signal frequency spectrum to that which could be recovered from the recorded data at the digitizing rates provided, preceded the signal operation.

<u>Commutation:</u> Commutation was accomplished, at low level, by solid state switches which switched both sides of the signal lines. The switching rate for each master channel was 400 times per second which set the total system and sampling rate at 20,000 times per second. Switch and system sequencing commands were derived by dividing down from a master crystal controlled clocking oscillator. A system time code which was recorded as data, was also generated from this source. Switching was followed by amplification to

bring the signal to the \pm 3 volt level required by the analog to digital converter. Five sequentially gated amplifiers, each operating at a 20% duty cycle, performed this function.

Digitizing: Digitizing was completed in 15 micro-seconds at a repetition rate of 20,000 times per second. The digital resolution provided was 1 part in 1024, corresponding to conversion into 10 binary bits. The converter was self-clocking, but received its command to digitize from the system programmer.

Recording: Recording of the digitized output was in parallel binary bit format on 16 track 1 inch magnetic tape, as present by Exhibit 7, Page IV-604 . Though data words were normally 10 bits in length, the recording system was capable of accepting up to 20 words of 13 bit length as derived from shaft encoders or other externally generated digital inputs. These longer words were recorded on the tape by gating them into the recorder at preset times in the data sampling sequence. Additional bits were also recorded on tracks, not used for data, to provide readout clocking and to indicate lateral parity, commutation frames and cycles, and system operational modes. The packing density on the magnetic tape was 667 words per linear inch with the tape recording speed of 30 inches per second. Two digital tape machines were employed for data acquisitioning. The switchover from the first to the second recorder occurred automatically when tape on the first machine was exhausted. A total of between 48 and 96 minutes of recording time was available depending on the thickness of the tape used; however, during the flight test program a thin tape was used so that the recording time was approximately 96 minutes. Exhibit 8, Page IV-605, presents a summary of the most significant technical characteristics of the digital system.

The analog system, which provided for the acquisition of high frequency data, employed frequency multiplexing to record up to 144 data channels in banks of up to 12 channels per data track on to a 14 track 1 inch magnetic tape. Track 13 was used for tape speed servo control only, and track 14 was used for correlation data only. A functional block diagram of the analog system, including telemetry, is shown in Exhibit 9, Page IV-606. The following subparagraphs described four major functions of the analog data acquisition system.

Frequencies: A 27KC signal was multiplexed with the composite signals of tracks 1 through 12. This signal was compatible with the tape speed compensation system, and was used in data reduction for the correction of wow and flutter. Transistorized, plug-in, subcarrier oscillators using IRIG band frequencies 3 through 14 were used to provide output lines for analog tape recording and telemetry.

Serial Time Code: Serial time code utilizing a 4 millivolt full scale output of a 3.9KC subcarrier oscillator on track 14, appeared in the format shown by Exhibit 10, Page IV-607. This same format was also on track 2 which provided serial time correlation for the telemetry system.

<u>Recording</u>: One analog tape recorder was used with a recording tape speed of 15 inches per second for the acquisitioning of the higher frequency parameters of the airborne system. At this tape speed and with thin tape, 90 minutes of recording time was provided. Exhibit 11, Page IV-608, presents a summary of the analog system's technical characteristics.

In addition to the basic recording equipment in the instrumentation package, the airborne system provided telemetry and other auxillary recording equipment as described in the following sub-paragraphs.

<u>Telemetry</u>: The real time display of 36 selected parameters, via telemetry, for the full duration of the flight, proved useful in monitoring flutter and certain other important parameters. Such monitoring made it possible to follow predicted versus actual flight conditions to guard against exceeding given limitations. It also permitted extensions of the flight envelope during the course of the test. The composite data signals appearing on analog tape tracks #1, #2, and #3 were telemetered to the ground on 3 UHF radio links operating on 228.2, 250.7, and 259.7 MC. These data were displayed on chart recorders, and provided a permanent record of the flight. Correlation with the in-flight records were provided by the analog time code format, and data record start and stop signals.

<u>VGH Recorder</u>: The NASA VGH recorder provided a time history of airspeed, altitude, and normal acceleration. Normal acceleration was measured at both the CG and the Pilot's station. The data were recorded on a 200 foot roll of 70mm photographic paper which advanced at the rate of 2-1/2 feet per hour in a removable recording drum.

<u>Cockpit Camera</u>: A lomm pulse-operated camera, installed between the Pilot's and Co-Pilot's capsules, was focused on the cockput instrument panel. The field of view included all of the Pilot's engine and flight instruments. The camera was pulsed at two frames per second, and recorded only during the instrumentation recording period.

Pilot's Voice Recorder: A compact, quickly removable tape recorder was installed in the cabin equipment compartment to record flight comments. The recorder was also wired into AIC-18 Audio Bus to record all inter-com conversation, and transmitted or received radio communications. A total of 4-1/2 hours of recording time was available at a recorder speed of 15/16 inch per second.

Landing Gear Camera: A 16mm camera was located in each main landing gear well to record the behavior of the gear at the touchdown point. These cameras operate at 100 frames per second for a 40 second duration.

Sensitive Airspeed and Altitude Recorder: A NASA recorder of the VGH type was used to record sensitive airspeed and altitude. These data were recorded on 70 mm film operating at the rate of 2-1/2 feet per hour.

Virbration and Flutter Recorder: An AR-200 recorder utilizing 1 inch magnetic tape was used to record vibration and flutter data in an analog format. The recorder operated at a tape speed of 30 inches per second in conjunction with the analog and digital systems. High frequency accelerometers and microphones were mounted on components and located throughout the air vehicle for use as data sensors.

The airborne instrumentation system had either continuous or automatic sequence recording modes that was selectable by the pilot. Automatic sequencing provided for 4.5 seconds of data recorded out of each successive 15 second period. The recording time was also under the control of the pilot and by this dual arrangement, the pilot was able to record only at those times in the test flight where meaningful data were likely to be obtained. By this pilot function, the pilot performed a first line data editing operation which was further refined during data processing on the ground. In the event of an in-flight emergency, the recording system were automatically started upon encapsulation of the crew.

The control for the operation of the instrumentation system in flight is shown in Exhibit 12, Page IV-609. The pilot's control panel, located at the left hand side of the instrument panel, was the primary control center for the in-flight operation of the instrumentation system. Exhibit 13, page IV-610, presents this control panel showing the instrumentation package warning lights, mode selections, recording time selections, tape remaining, and the manual controls for the package ECS systems. Exhibit 14, Page IV-611, presents the auxiliary controls for the copilot. The correlation counter, as shown by Exhibit 15, Page IV-612, was located above the instrument panel directly in front of the pilot. This permitted time correlation between pilot's visual readings and the magnetic tape recordings. The counter operated directly from the time code generator in the instrumentation package, and ran continuously at a one count per second rate. The engine vibration monitor (EVM) display is shown in detail by Exhibit 16. page IV-613. The normal position for the "Record Selector" was in the "AUTO" position which sequenced the vibration levels of each engine through the analog recording system. This sequencing was accomplished by an EVM commutator which scheduled each engine reading for a 4 second period. The other positions selected that engine for continuous recording.

The high speed airborne instrumentation system recorded an average of 82.5 million data points per flight of which an average of 22.6 million data points were reduced per flight. This large data yield plus an established ground rule of "first" editing within 2⁴ hours, demanded a rapid turn-around for data processing and reduction. To accomplish the massive data processing in the allotted time period, two data reduction stations were developed: one for analog data and one for the digital data. In addition, the Los Angeles Division's IBM facilities were utilized as discussed in a subsequent paragraph.

With few exceptions, notably thermocouple (temperature) data, XB-70 parameters were reduced through use of the following general expression:

Recorded Value (engineering units) = $(D - Z) \frac{F}{(C - Z)} + b$

where D = a level recorded for a known (reference) condition C = Calibrate level

- F = Factor (engineering units) associated with the net calibrate step (C - Z)
- b = an offset (engineering unit) corresponding to the reference level

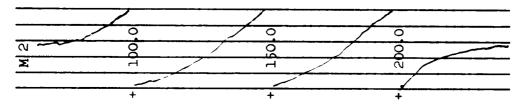
F was determined during a physical calibration of the data transducer. C and Z were recorded during the T-9 preflight, and b was measured at the time of the T-9 recording. Because of the many types of measurements recorded, the general expression assumed many forms. For example, Z_v (the level recorded when excitation voltage was removed) was sometimes used instead of Z. Therefore, data channels were categorized into groups, each of which utilized a particular form of the general expression given above. This category list, with identifying numbers appears below. Category numbers were used in the reduction of the pre-flight recording and formed an important part of the IBM processing procedure.

Category Expression $(D - Z) \frac{F}{C - Z} + b$ 1 $(D - Z) \frac{F}{C - Z}$ 2 $(D - Z) \frac{F}{C - Z_v} + b$ 3 $(D - Z) \frac{F}{C - Z_{y}}$ 4 $(D - Z_v) \frac{F}{C - Z_v} + b$ 5 (D - Z) F6 (D - Z) F + b7 8 Two states of a switch were indicated by the presence or absence of a bit in a 13 bit digital word. 9 D - Z was the ordinate value of a curve. \overline{C} - \overline{Z} The abscissa was the recorded value. (D - Z) F (Provided high resolution IEM printout) 10

0.11

Category	Expression
11	A curve consisting of eight straight line segments, each segment corresponding to 128 counts, approxi- mated the T/C calibration curve to 1 ⁰ .
12	Same as 11 except for high range T/Cs.
13	$(D - Z_v) F + b$
14	$(D - Z_v) \frac{F}{C - Z_v}$
15	512 counts indicated one state, 0 indicated the other.
16	(D - Z) (+F) & (D - Z) (-F)
17	$D \times \frac{F}{C - Z}$
18	(D - Z _v) F
21	Revolutions = $\frac{D}{1080}$ (to obtain Bogie Wheel RPM)
24	Test altitude from Aero program. Test A/S from Aero program. Test Mach No. from Aero program.
31	Altitude computed from M1 and M4.
32	A/S computed from M2 and M5.
33	Mach No. computed from M3 and M6.
34	Primary Nozzle Area #1 Engine from X559 Primary Nozzle Area #2 Engine from X560 Primary Nozzle Area #3 Engine from X561 Primary Nozzle Area #4 Engine from X562 Primary Nozzle Area #5 Engine from X563 Primary Nozzle Area #6 Engine from X564
35	Secondary Nozzle Area #1 Engine from X565 and Primary Nozzle Area.
	Secondary Nozzle Area #2 Engine from X566 and Primary Nozzle Area.
	Secondary Nozzle Area #3 Engine from X567 and Primary Nozzle Area.
	Secondary Nozzle Area #4 Engine from X568 and Pri mary N ozzle Area.

SD72-SH-0003


Secondary Nozzle Area #5 Engine from X569 and Primary Nozzle Area.

Secondary Nozzle Area #6 Engine from X570 and Primary Nozzle Area.

Analog data was reduced, without editing, one track (out of 12) at a time for the entire flight tape time. The data signal from the track was input to 12 discriminators or filters. The output of each discriminator was input to a Sanborn direct writing recorder channel for real time, scaled plotting. Three 4 channel Sanborn Recorders were used for plotting as many as 12 parameters per tape track. "Time" from the flight tape was recorded on each Sanborn Recorder. After reduction, the Sanborn plots were identified with parameter numbers and scales. "Time" was translated from the serial code in which it appeared and was written on plots in "hrs-mins-secs" at intervals throughout the data. Exhibit 17, Page IV-614, presents a view of the analog data reduction station while Exhibit 18, Page IV-615, shows by block diagram, the analog data reduction process.

The digital data was reduced by the digital data station or on the IBM 7094 computer. Except for the IBM data, the types of data described below were processed by the digital data station.

Editing Data: Five groups of 15 parameters each were plotted for the entire flight tape time. These plots were used by the various data requestors for editing purposes, i.e., to determine which areas of the flight recording should be requested for detailed data analysis. Editing data was plotted 15 parameters per sheet, each parameter occupying a band of one-half inch. A "Folded scale" scheme provided a full scale data band of about 10 times this amount. This is illustrated below.

M2, Airspeed, is shown increasing from 75 knots to 225 knots. The value of the lower grid line was automatically printed whenever a data transition occurs.

Each sheet containing a 15 parameter group was approximately 50 feet long. The 250 feet of paper from a typical flight was displayed on the walls of an editing data room the morning after a flight had been made.

Litton Transducer Plots: A/Vs #1 and #2 contained, respectively, 4 and 5 Litton pressure transducers which were recorded as 13 bit words with a resolution of 1 part in 8000. Data from the Littons were plotted for the full length of the flight recording. Each pressure was plotted within a 2 inch band, corresponding to a range of 1 psi and a plotting resolution of .005 psi. The folding scale scheme was used to provide full scale range data. All Litton Data from one A/V was plotted on the same sheet.

Thermocouple Data: Thermocouple data was plotted in time history form, 4 temperatures were read and plotted once each minute. Each temperature was plotted within a 2 inch band, corresponding to a temperature range of $200^{\circ}F$ and a plotting resolution of $1^{\circ}F$. Folded scales were used to provide full scale temperature data.

<u>Unscaled Data</u>: Requests for small amounts of data (1 to 30 parameters) were satisfied by plotting (from 1 to 4 parameters per page) or tabbing up to 18 parameters per page, the unscaled data recorded on the tape. Each point recorded was plotted for the time interval specified. Tab data rates varied from 4 samples per second to recording rate. Plotting resolution was the same as recording resolution (1 in 1000). Since the data was unscaled, the expression for reducing the data to engineering units was provided for each parameters.

<u>Wheel RPM</u>: Bogie Wheel revolutions (A/V #1) were reduced from a 13 bit counter. The numbers recorded on the flight tape were tabulated and then input to a Recomp II computer which calculated wheel RPM during and after touchdown. This data was plotted by hand.

IBM Data: After editing data had been reviewed, requests for IBM data were received. These requests specified time intervals and the type of data required. Each data type corresponded to a fixed list of parameters. For example, Structures would request Landing Parameters or Flight Parameters; Aero would specify Performance, or Inlet, or Stability, or SST Parameters, or a combination thereof. All requests for IBM data were processed in the same manner, as follows. All data recorded in the time intervals specified was read from the flight tape and written on a half inch tape. This tape was sent to the IBM 7094 Computer with a deck of cards listing the parameters to be reduced. The job instruction sheet specified use of a previously prepared magnetic tape which contained the necessary calibration data for reducing the data on the half inch tape. The half inch tape, the parameter call cards, and the calibration tape were processed, and reduced data was output on 4 magnetic tapes or 5 tapes if tabulated data had been specified. Each of the first 4 tapes contained data from parameters recorded at one of the 4 rates (100, 40, 20, and 4 times per second). These tapes were placed in reserve storage for later use by the requesting group with their IBM analysis programs. When tabulated data had been requested, the contents of the fifth tape was printed.

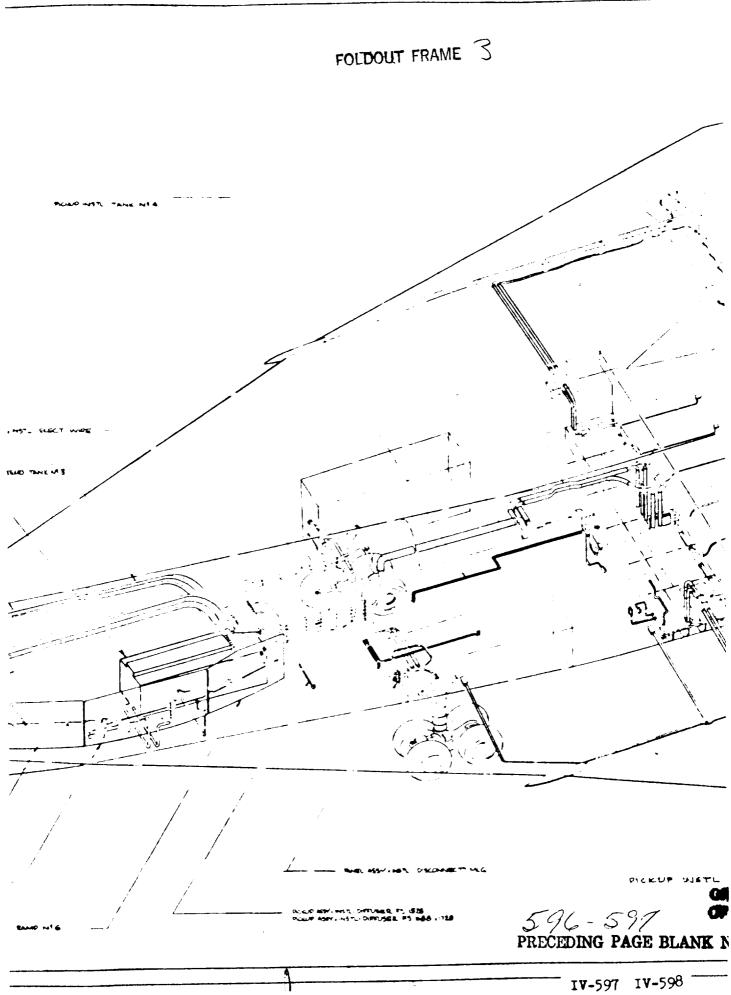
Exhibit 19, Page IV-616, presents a view of the digital data station while Exhibit 20, Page IV-617, shows by block diagram, the digital data reduction process.

FOLDOUT FRAME POLID NOT THEFNO CREW CONDY POLID NOT THEFNO EQUID CONDY ٠ ONIGINAL PAGE & OF POOR QUALITY - In the second
.

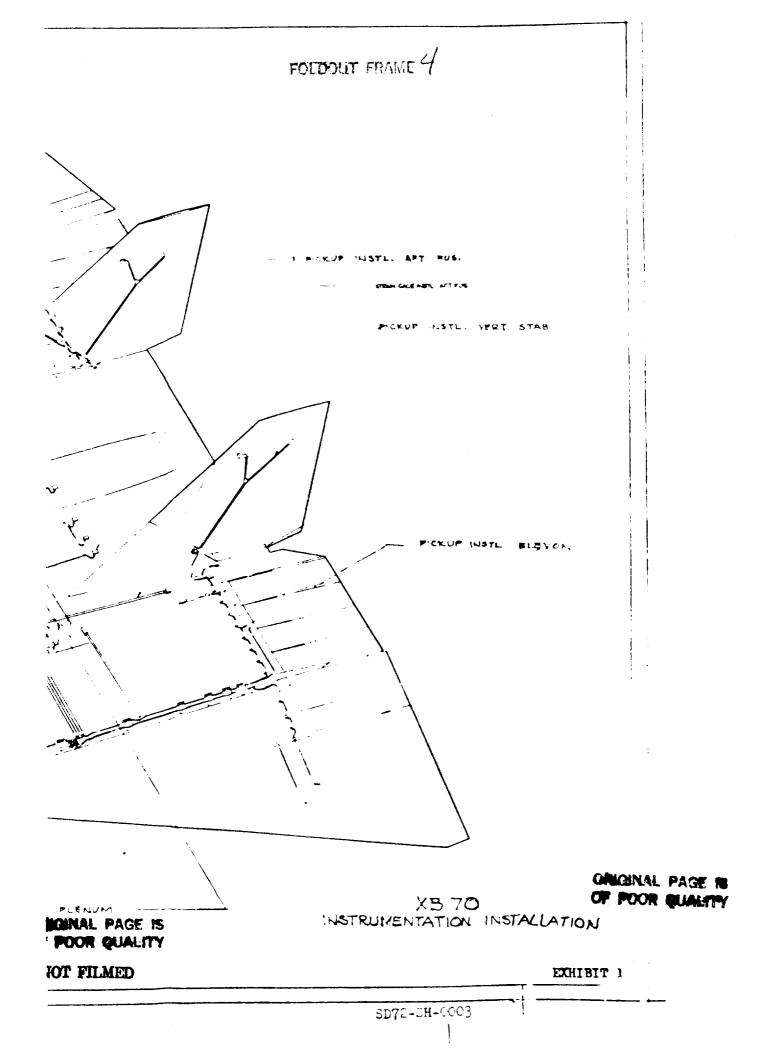
-

.

FOLDOUT FRAME 2


READ WITT- RESS , THERMO SHVIRON SYSTEM PLOUD WITT- RESS , THERMO SHVIRON SYSTEM NOT RUMENTATION PEG. PCERF HOT- RESS, THERMO TANL NIZ

Red Hill BREV. I RECHO NU I

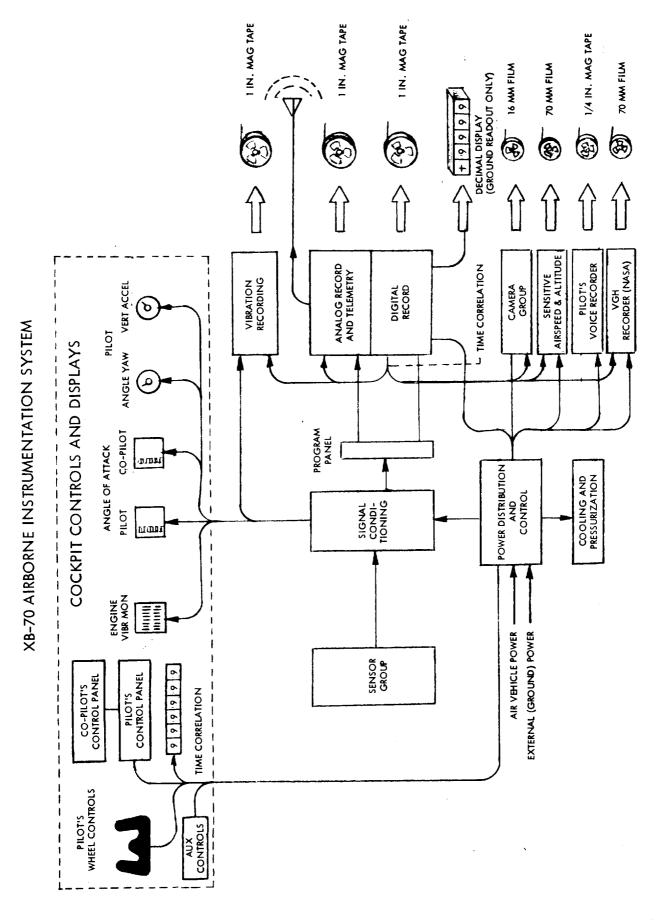

STL HORIZ STAB

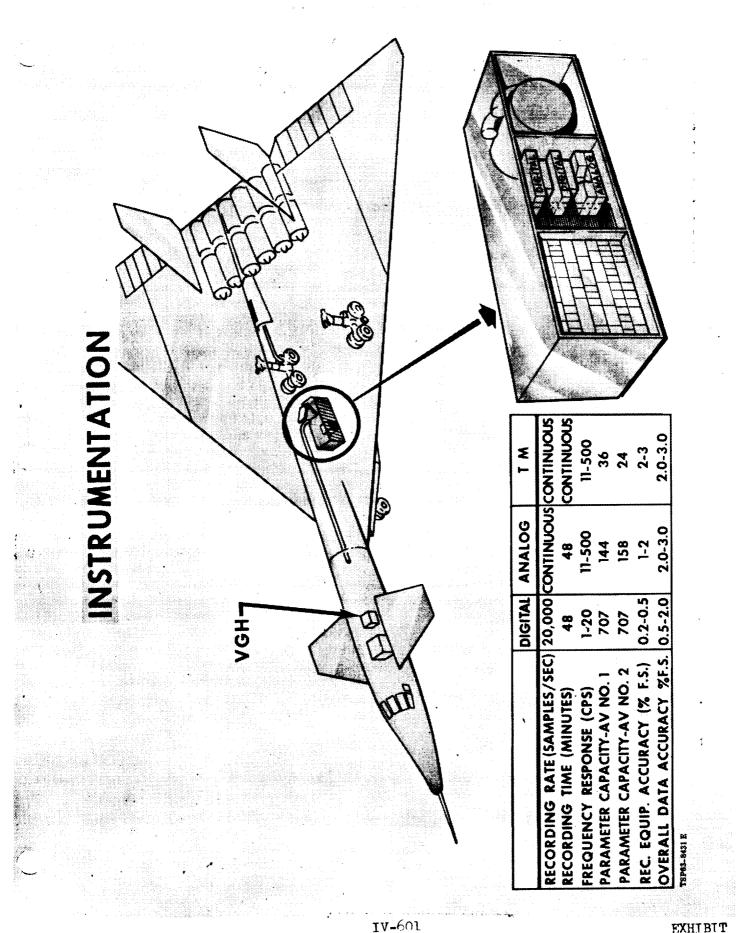
UNIGINAL PAGE 10 OF FOOR QUALITY

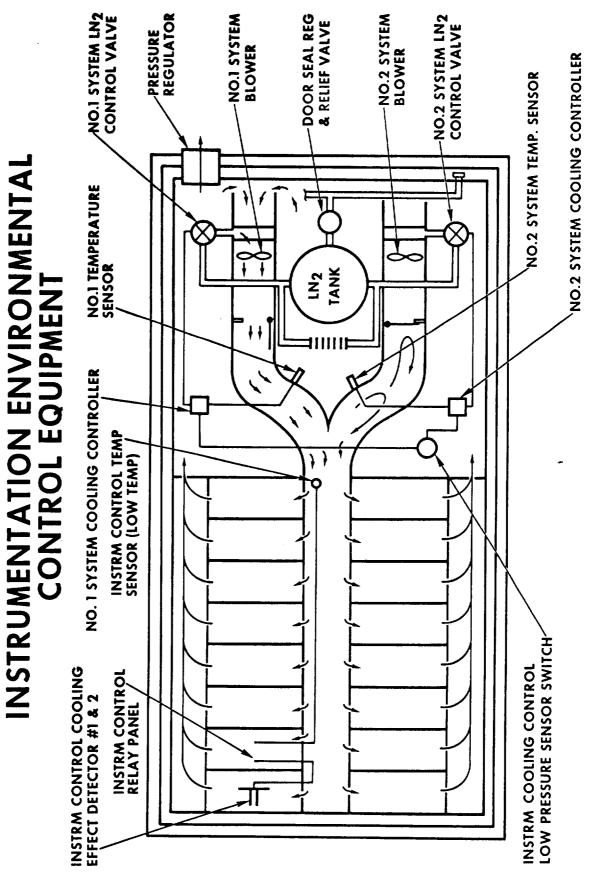
.

. . . 1

.




EXHIBIT 2


-

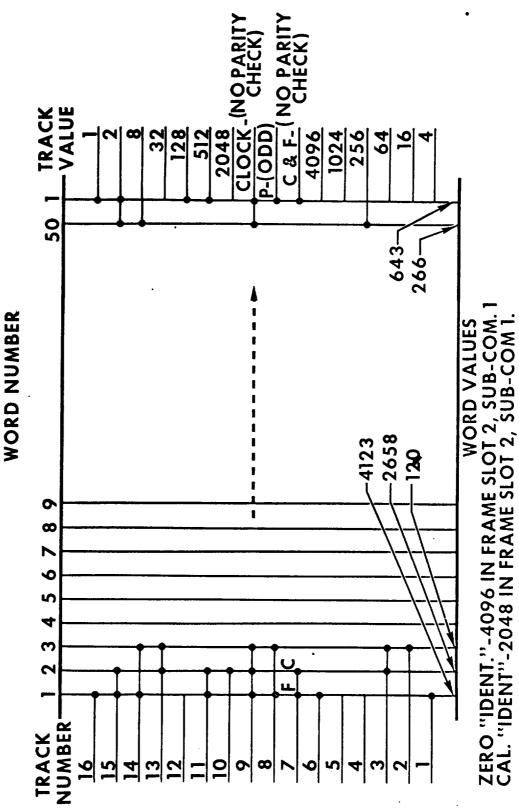
SD72-SH-0003

I**V-**602

EXHIBIT 5

SD72-SH-0003

 \mathcal{I}


TAPE REC DECOMM **PROGRAM CONTROL** OUTPUT REG PARITY GEN **NIXIE DISPLAY** (1) (3) (5) (6) (2)MASTER COMM ADC SUB. COMM SUB. COMM SUB. COMM SUB. COMM AMP C.J. COMP DIGITAL FILTER FILTER DIGITAL WORD COMMUTATOR TIME CODE GENERATOR P'ATCH PANEL SIGNAL SIGNAL SIGNAL DIGITAL **STRAIN GAGES** XDUCER PRESS. MISC ELECT. 1/C

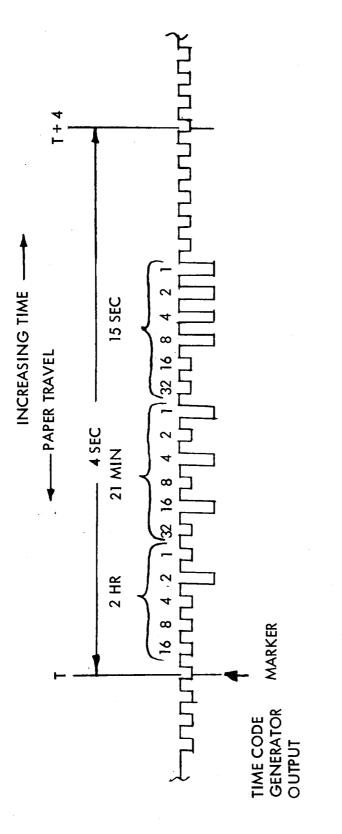
DIGITAL RECORDING SYSTEM

1**v-**603

EXHIBIT 6

DIGITAL FLIGHT TAPE FORMAT

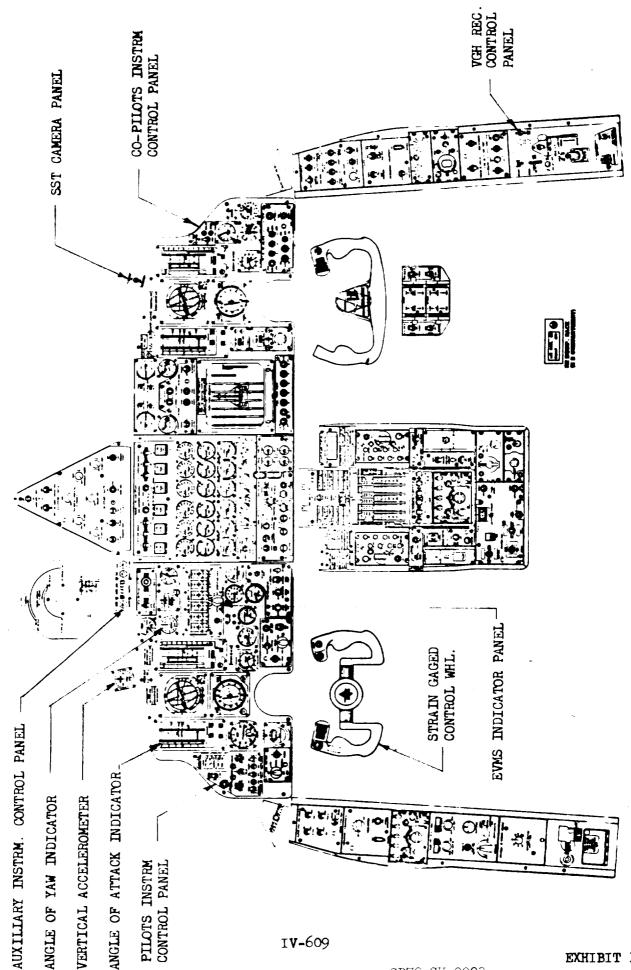
IV-604


)

RECORDING RESOLUTION	1 IN 1024 STD - 1 IN 8192 DIGITAL
RECORDING ACCURACY	0.3% F. S. TO 0.05% F. S.
TOTAL SAMPLING AND DIGITIZING RATE	20,000 SAMPLES PER SEC.
FREQUENCY RESPONSE	APPROX 1 TO 20 C. P. S.
COMMUTATION RATES	4 SAMPLES/SEC., 400 CHANNELS 20 SAMPLES/SEC., 100 CHANNELS 40 SAMPLES/SEC., 50 CHANNELS 100 SAMPLES/SEC., 136 CHANNELS
PRE-DIGITIZED DATA	20 RECORDINGS/SEC., 20 CHANNELS
TIME CODE	HOURS, MINUTES, SECONDS, AND HUNDREDTHS OF SECONDS - 24 HOURS
RECORDING DURATION	48 TO 94 MINUTES
TAPE PACKING DENSITY	667 DATA WORDS PER INCH
RECORDING MEDIUM	MAGNETIC TAPE, 1 INCH WIDE
RECORDING FORMAT	10 AND 13 BINARY BIT PARALLEL NRZ
CAPACITY	706 PARAMETERS (FIRST AIRPLANE)
SYSTEM DESIGN	SOLID STATE ELECTRONICS

.

RECORDER **TRACK 2** 3 **TRACK 12** 4 **TRACK 13 TRACK 1 TRACK 14** TRACK TRACK TAPE ANALOG RECORDING SYSTEM **RECORD AMPLIFIER** RECORD AMPLIFIER RECORD AMPLIFIER 3 RECORD AMPLIFIER 12 RECORD AMPLIFIER 13 RECORD AMPLIFIER 14 AMPLIFIER RECORD 3 TELEMETRY TRANSMITTERS ZERO CALIB MVCO SERIAL TIME CODE MVCO 2 12 MVCO 12 MVCO 12 MVCO 12 MVCO 1 MVCO 1 MVCO 1 MVCO 1 MVCO MVCO MVCO CONDITIONING SIGNAL (FROM DIGITAL SYSTEM) 17KC TAPE SPEED COMPENSATION 27KC REF OSCILLATOR SERIAL TIME CODE TRANSDUCER 133-TRANSDUCER 144 36 TRANSDUCER 12 Ś 2.4 20 37. ġ **TRANSDUCER**


IV-606

TIME CODE AS RECORDED ON ANALOG TAPE TRACK 14 USING IRIG SUBCARRIER 3.9 Hz

Serial Time Code Format

WITHIN 0.5% BANDWITH DEV ALL CHANNELS TO MI = 5 ±0.5% BANDWITH DEV FROM BEST STRAIGHT LINE ±1 OF BANDWITH 30 MIN TO 8 HR AT 25° C 90 MIN FLIGHT, NO.3 M-4901-6800 TAPE SUMMARY OF ANALOG SYSTEM CHARACTERISTICS 28 VDC ±10 AT 15 MA NOMINAL 0-11 TO 0-330 CPS AT MI = 5 -140 DB AT DC; 100 DB AT 400 $^{\circ}$ IRIG BANDS 3-14 24 HR/0.2 SEC LESS THAN 1% 20K OHMS - 74-8-8-±3% F.S. ±20 MV DATA CHANNEL PROVISIONS (POTENTIAL) TIME CODE PERIOD/RESOLUTION. COMMON MODE REJECTION RECORDING ACCURACY_ HARMONIC DISTORTION. FREQUENCY RESPONSE. FREQUENCY RESPONSE. POWER REQUIREMENT INPUT IMPEDANCE. **TELEMETERED** RECORDING TIME. RECORDED. INPUT SIGNAL BANDS USED_ LINEARITY_

XB-70A INSTRUMENT PANELS

)

SD72-SH-0003

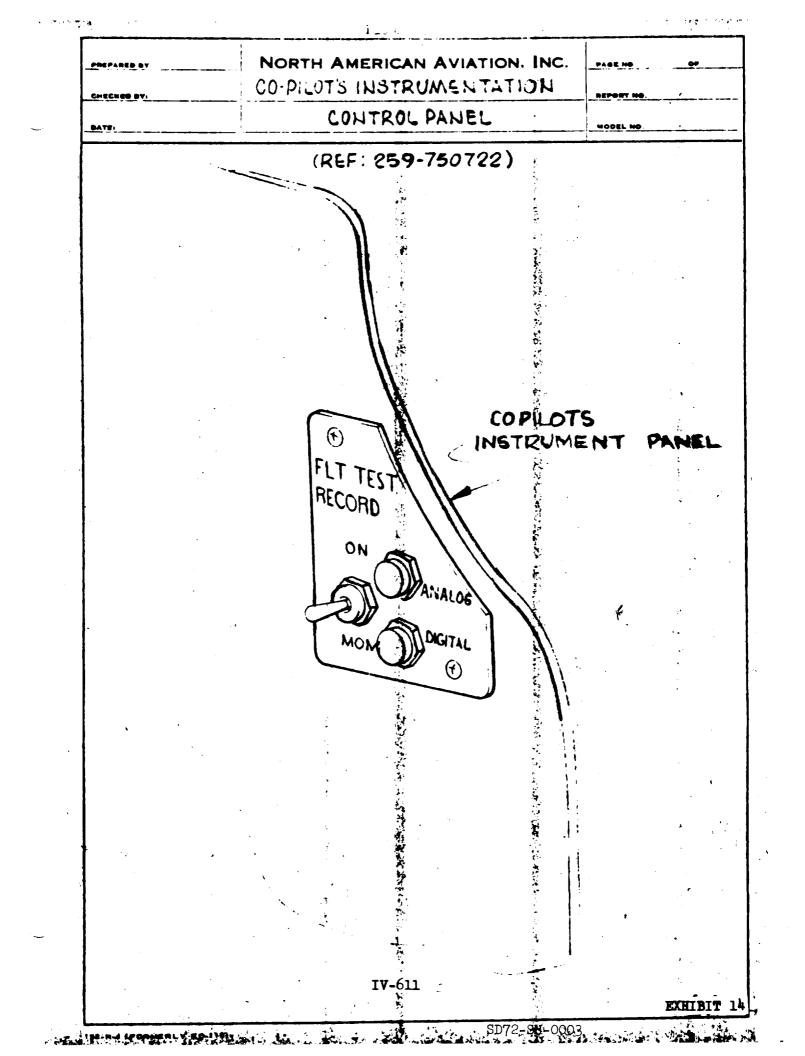
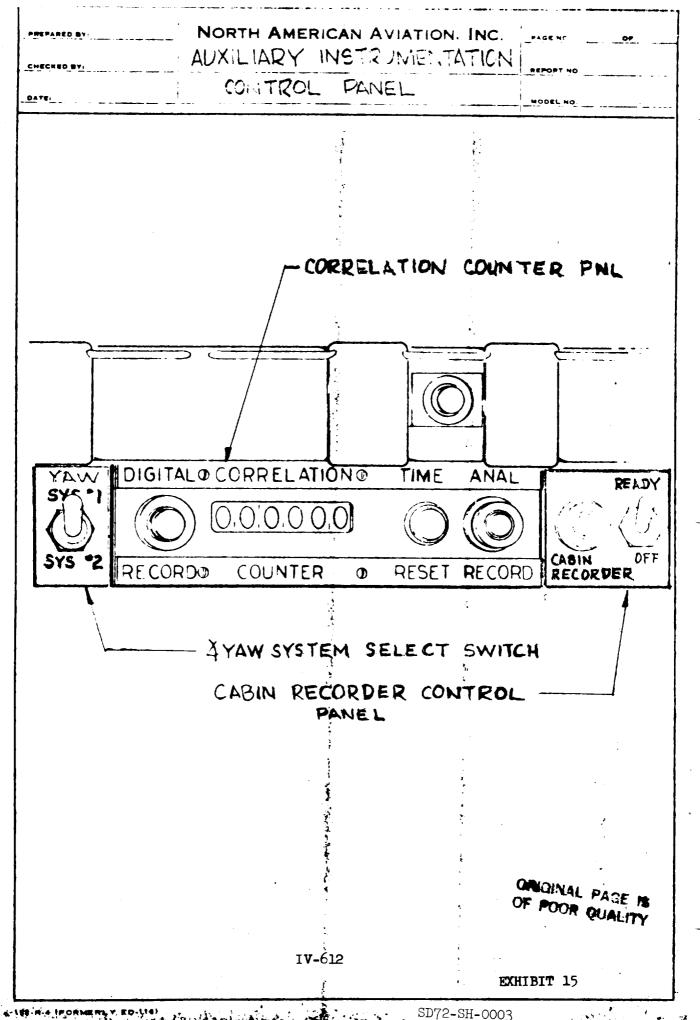
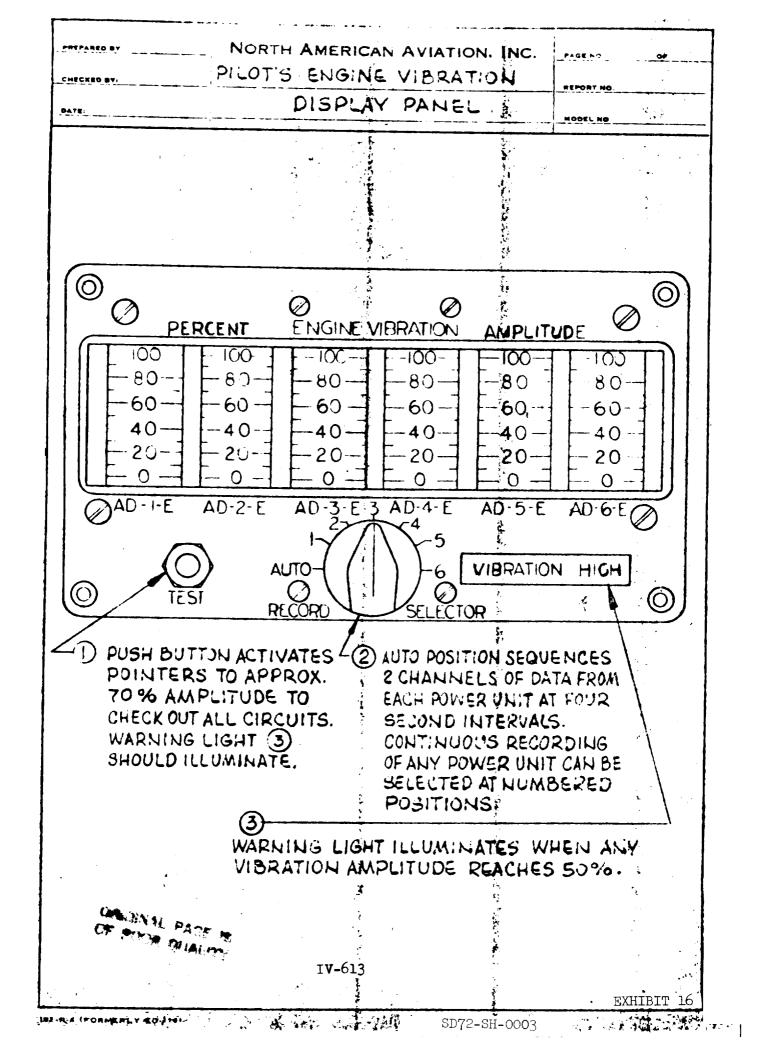
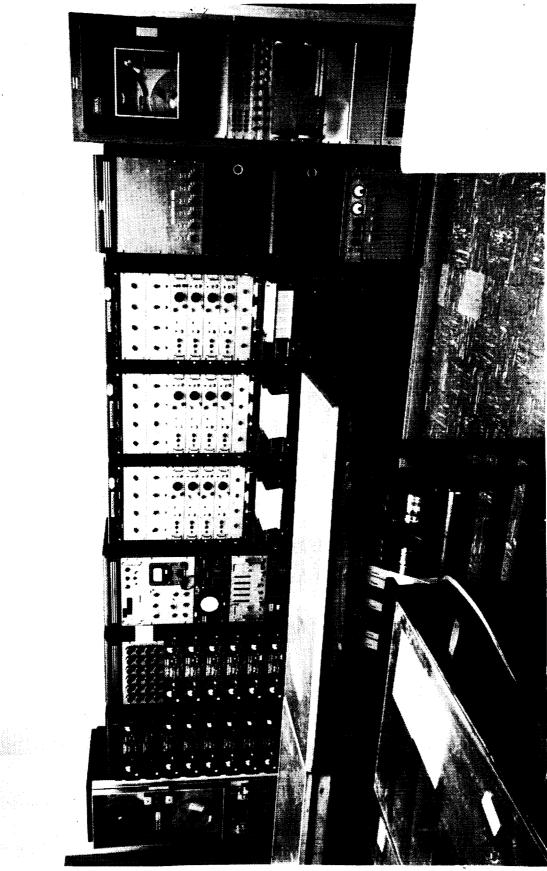




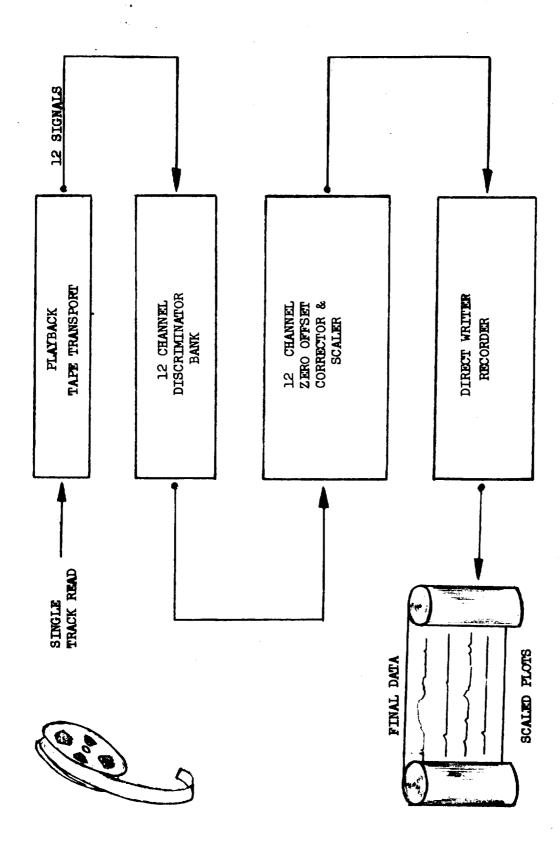
EXHIBIT 13


TV-610


SD72-SH-0003

SD72-SH-0003 the substance of the prove

ANALOG DATA STATION


EXHIBIT 17

I**V-**614

SD72-SH-0003

ANALOG DATA REDUCTION SYSTEM

ł

1**V-**615

SD72-SH-0003

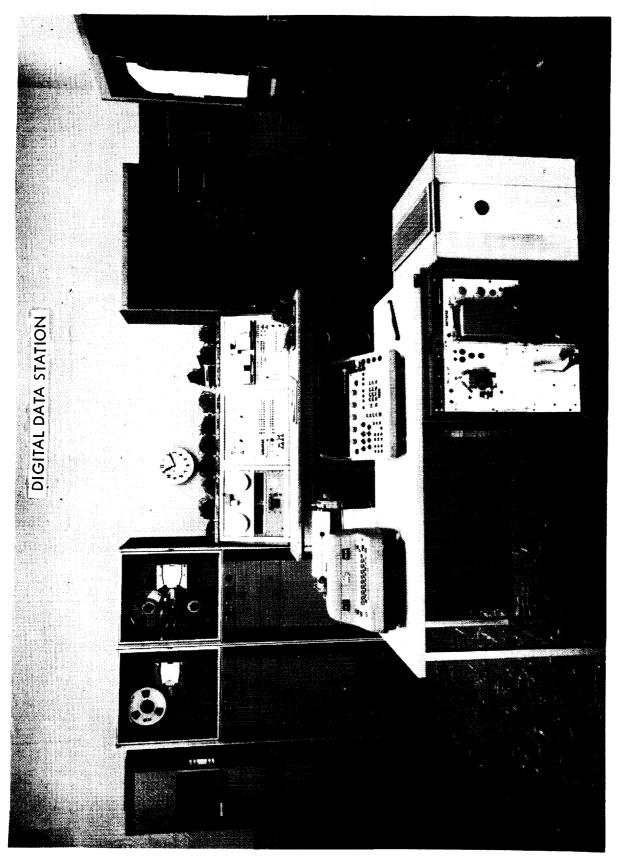
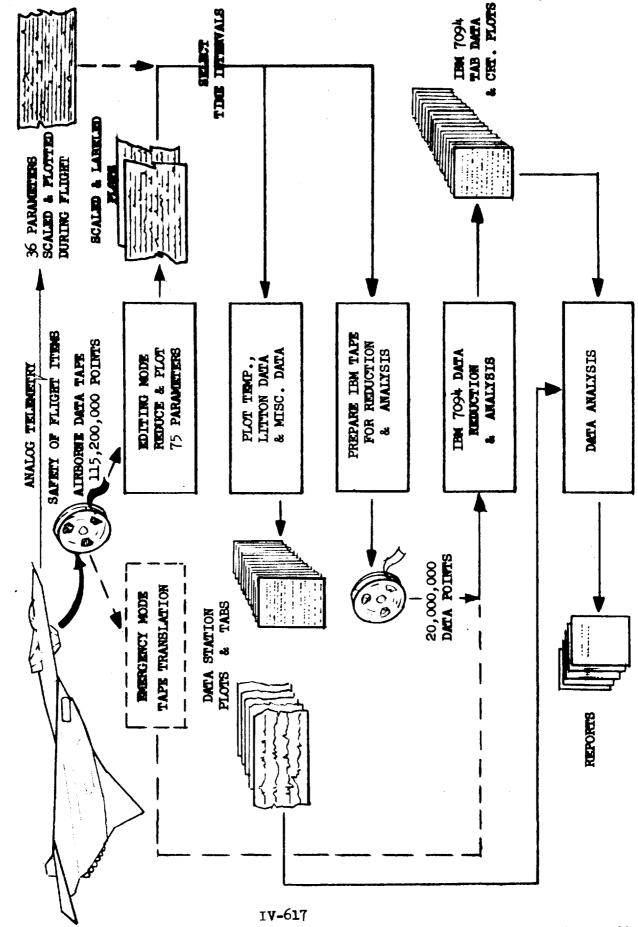



EXHIBIT 19

1**V-**616

DIGITAL DATA REDUCTION

SD72-SH-0003

EXHIBIT 20

COST DEFINITION

SUBSYSTEM: TEST INSTRUMENTATION

WBS CODE: 1.11

Total costs of \$8,937,176 reflect all identifiable expenditures for the design, development, fabrication and/or procurement of all ground and flight test instrumentation as identified by the Work Breakdown Structure. Installation of the instrumentation into the air vehicle structure is included in WBS 1.12.

Instrumentation activities occurring during the flight testing of the two air vehicles are located in WBS 4.41.3, page II-438. These costs would include installation, checkout and modification or repair of the vehicle flight test instrumentation items while the air vehicles were on flight status.

Detail of the recorded costs associated with this subsystem is provided by Element of Cost (EOC) and Subdivision of Work (SDW). Section III of Volume I provides a detail definition of these items.

As an aid in the definition and evaluation of the in-house engineering costs associated with this subsystem, a matrix of engineering hours has been developed. This matrix, displayed below, is a summary of all the in-house engineering groups that provided support to the design and development of test instrumentation.

Group No.	Title	Hours Expended
74	Flight Test Instrumentation	63,115
101	Flight Test Instrumentation Lab- Palmdale	54,535
102	Flight Test Instrumentation Lab - Los Angeles	127,801
104	Test Instrumentation Design	131,220
114	Test Instrumentation Development	119,889
	Various	34.326
	Total Engineering Hrs	530,886

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 11 TEST INSTRUMENTATION SUBSYSTEM

		HOURS	TOTAL Hours Dollars
DESIGN/ENGINEERING		530886	530886
LABOR AT \$ 5.061			2686991
ENGR BURDEN AT \$	4.987		2647685
PRODUCTION		137320	137320
LABOR AT \$ 3.272		449311	449311
SHOP SUPPORT		174639	
LABCR AT \$ 3.385		591227	591227
TEST/QC		19251	19251
LABOR AT \$ 3.479		66972	669 7 2
MFG BURDEN AT \$	4.335	1435666	1435666
ENGR MATERIAL			747683
MPC		104605	104605
OTHER COST		48942	48942
SUB-TOTAL		8779082	8779082
GEN & ADMIN		158094	158094
TOTAL COST		8937176	8937176

SUBDIVISION	0]	F WORK	IV- 620
COST DETAIL	-	SEE PAGE	10-020

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM	1	
5-SUB SYSTEM	11	TEST INSTRUMENTATION SUBSYSTEM
6-MAJ ASSY	О	

			DESIGN ZENGR HOURS DOLLARS		TEST /QC HOURS DOLLARS	HOURS
DESIGN/ENGINEF	RING		507488		23398	520004
LABCR AT \$	5.061		2590607			2686991
ENGR BURDEN	AT \$	4.987	2544969			2686791 2 6476 85
			· · · ·		102110	2041005
PRODUCTION				137320		137320
LABOR AT \$	3.272			449311		449311
SHOP SUPPORT			117189		57450	
LABCR AT \$	3.385		391359		199868	591227
TEST/QC			7173		12073	
LABOR AT \$			24300		42672	66972
MEG BURDEN	AT \$	4.335	525⊋07	601583	308171	1435666
ENGE MATERIAL			84029		662656	747 583
MPC			13816			104605
OTHER COST			10 0 10		48942	48942
						40742
SUB-TOTAL			5174987	1050899	1553196	8779082
GEN & ADMIN			106719	22846	28529	158094
TOTAL COST			6281706	1073745	1581725	8937176
	TIME-P. DETAIL	HASED COST - SEE PAGE	IV-621	IV-629	IV- 632	IV-637

 \checkmark

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 11 TEST INSTRUMENTATION SUBSYSTEM 6-MAJ ASSY 0 SUBD DF WORK DESIGN/ENGINEERING

ON-SITE LABOR

	MAN- MON THS	LABOR Hours	LABOR RATE	LABOR DOLLAR S	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-1 58 Q-2 58	15.0	2536	4.573	11597	11539	23136
Q-3 58 Q-4 53	58.5	9936	4.289	42616	38702	81318
Q - 1 59 Q - 2 59	66.0	11299	4.237	47870	38638	86508
Q-3 59 Q-4 59	106.5	18638	4.266	79515	68101	147616
0-1 60 0-2 60	96.0	16520	5.306	87655	71524	159179
Q-3 60 Q-4 60	69.0	. 11572	4.824	55829	42745	98574
Q-1 61 Q-2 61	225.0	38315	4.738	181550	133352	314902
Q-3 61 Q-4 61	240.0	43593	4.988	217431	199919	417350
Q-1 62 Q-2 62	357.5	61052	5.176	316009	280612	596621
Q-3 62 Q-4 62	418.5	70405	5.088	358228	356779	715007
Q-1 63 Q-2 63	420.0	71566	5.466	391198	396231	787429
Q-3 63 Q-4 63	373.5	62776	5.203	325632	349440	676072
Q - 1 64 Q - 2 64	306.0	52 32 0	5.171	270558	3 179 80	588538
Q = 2 04 Q = 3 64 Q = 4 64	96.0	17005	5.557	94503	112290	206793
Q-1 65	79.0	13649	5.705	77865	90005	167870

.

APRIL 1972

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 11 TEST INSTRUMENTATION SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

CN-SITE LABOR

	MAN- MON THS	LABOR HOUR S	LABOR RATE	LABOR DCLLARS	BURDEN DOLLARS	LABOR + BURDEN \$
Q-2 65						
Q-3 65 Q-4 65	36.0	5020	5.004	30486	359 83	65474
Q-1 66 Q-2 66	1.5	246	3.516	865	868	1733
Q-3 66		40	5.000	200	256	456
TOTAL	2964.0	507488		2590607	2544969	5135576

~

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 11 TEST INSTRUMENTATION SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

ON-SITE LABOR

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABUR DOLLAR S	BURDEN DOLLARS	LABOR + BURDEN \$
Q-3 62 Q-4 62	312.0	52317	3.275	171322	212102	383424
0-1 63 0-2 63	322.5	54982	3.427	183412	238851	427263
Q-3 63 Q-4 63	25.5	4233	3.353	14193	4777 6	61969
Q-1 64 Q-2 64	1.5	310	3.016	935	1519	2454
Q - 3 64 Q - 4 64	4.5	908	3.105	2819	4604	7423
Q-1 65 Q-2 65	10.5	1847	2.881	5322	8739	14061
Q-3 65 Q-4 65	10.5	1841	3.218	5925	9010	14935
Q-1 66 Q-2 66	4.5	749	3.239	2426	3370	5796
Q-3 66		2	2.500	5	-64	-59
TOTAL	691.5	117189		391359	525907	917266

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC4-SYSTEM15-SUBSYSTEM116-MAJ ASSY0SUBD OF WORKDESIGN/ENGINEERING

ON-SITE LABOR

	MAN- MON TH S	LABUR Hours	LABOR RATE	LABOR DOLLAR S	BUR DEN DOLLARS	LABOR + Burden \$
Q-3 62 Q-4 62	7.5	1278	3.154	4031		4031
Q-1 63 Q-2 63	22.5	3898	3.479	13560		13560
Q-3 63 Q-4 63	10.5	1792	3.341	5987		5987
Q-1 64 Q-2 64		1	4.COC	4		4
Q-3 64 Q-4 64		45	3.244	146		146
Q = 1 65 Q = 2 65		7	2.571	18		18
Q-3 65 Q-4 65		110	3.545	390		390
Q-1 56 Q-2 66		40	3.500	161		161
Q-3 66		1	3.000	3		3
TOTAL	40.5	7178		24300		24300

•

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM116-MAJ ASSY0SUBD OF WORKDESIGN/ENGINEERING

	MAN- MON THS	LABOR HOUR S	LABOR RATE	LABOR DCLLARS		LABOR + Burden \$	ENGR MATL
Q-1 5		2536	4.573	11597	11 5 3 9	23136	
0-2 5						_	
Q-3 5 Q-4 5		9936	4.285	42616	38702	81318	
		11200					
Q-1 5 Q-2 5		11299	4.237	47.870	38638	86508	
Q-3 5	9 106.5	18638	4.266	79515	68101	147616	
Q-4 59							
9-1 60 9-2 60		16520	5.306	87655	71524	159179	
Q-3 60		11572	4.824	55020	(07)	00574	
Q-4 6		11)12	7024	55829	42745	98574	
Q-1 61		38315	4.738	181550	133352	314902	
Q-2 61					133372	514502	
Q-3 61		43593	4 • 9 38	217431	199919	417350	
Q-4 61							
Q-1 62		61052	5.176	316009	280612	596621	
0-2 62							
Q-3 62 Q-4 62		124000	4.303	533581	568881	1102462	10810
0-4 62 0-1 63		120111	, <u> </u>	5001-0			
Q = 1 0 1 Q = 2 6 3		130446	4.547	593170	635082	1228252	12998
Q-3 63		68801	5.041	346812	397216	744028	11(10
Q-4 63		00001	20011	540012	277210	144020	11619
Q-1 64	307.5	52631	5.158	271497	319499	590996	3373
Q-2 64	•						5515
Q-3 64	100.5	17958	5.428	97468	116894	214362	389
Q-4 64	•				·····		
Q-1 65	89.5	15503	5.367	83205	98744	181949	15286
Q-2 65	i i i i i i i i i i i i i i i i i i i						
Q-3 65	46.5	7971	4.617	36801	44 998	81799	8801

.

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM116-MAJ ASSY0SUBD OF WORKDESIGN/ENGINEERING

	MAN- MONTHS	LABOR HOUR S	LABOR RATE	LABOR DOLLAR S	BURDEN DOLLARS	LABUR + Burden \$	ENCR Matl
Q-4 65							
Q-1 66 Q-2 66	6.0	1041	3.316	3452	4233	7690	17995
9-3 66		43	4.837	208	192	40 0	2758
TOTAL	3696.0	631855		3006266	3070876	6077142	84029

~

APRIL 1972

APRIL 1972

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM116-MAJASSY0SUBDCFWDRKDESIGN/ENGINEERING

		MPC	SUB Total	GξΑ	TOTAL COST
Q-1			23136		23136
Q-2 Q-3			81318		81318
Q-4 Q-1	59		86508		86508
Q-2 Q-3			147616		147616
Q-4 Q-1			159179	3033	162212
Q-2 Q-3			98574	1878	100452
Q-4 Q-1	6ŭ		314902	5852	320754
Q-2 Q-3	61				
Q-4	61		417350	7756	425106
0-1 Q-2	62		596621	10014	606635
Q-3 Q-4		852	1114124	18701	1132825
Q-1 Q-2		1280	1242530	20775	1263305
Q-3 Q-4		1144	756791	12654	769445
Q-1 Q-2		360	594729	12655	607384
Q-3 Q-4	64	142	214893	4572	219465
Q-1 Q-2	65	4567	201802	5384	207186
Q-3		1570	92170	2459	94629

.

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

4-SYSTEM 1 TEST INSTRUMENTATION SUBSYSTEM 5-SUBSYSTEM 11 6-MAJ ASSY 0 SUBD OF WORK DESIGN/ENGINEERING

	MPC	SUB TOTAL	G & A	TOTAL CCST
Q-4 65 Q-1 66 Q-2 66	3732	2941 7	386	30303
0-3 65	169	3327	10C	3427
TOTAL	13816	6174987	106719	6281706

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

PRODUCTION 4-SYSTEM 1 5-SUBSYSTEM 11 TEST INSTRUMENTATION SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK PRODUCTION

ON-SITE LABOR

	MAN- MONTHS	LABOR HOURS	LABÛR RATE	LABOR Doll ar s	BURDEN DOLLARS	LABOR + BURDEN \$
Q-3 63 Q-4 63	204.0	34352	2.422	83209	188364	271573
0-1 64 0-2 64	310.5	53025	2.458	130334	131617	261951
Q-3 64 Q-4 64	75.0	13127	7.278	95544	109582	205126
0-1 65 0-2 65	156.0	26917	3.673	98878	127394	226272
0-3 65 0-4 65	58.5	989 9	4.177	41346	34 528	75874
Q-1 66 Q-2 66					10096	10096
Q-3 66					7	7
TOTAL	804 . C	137320		449311	601588	1050899

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM116-MAJ ASSY0SUBD OF WORK PRODUCTION

	MAN- MON THS	LABOR HOUR S	LABOR RATE	LABOP DOLLARS	BUR DEN DOLL AR S	LABOR + Burden \$	GξA
Q-3 63 Q-4 63	204.0	34352	2•422	83209	188364	271573	4541
Q-1 64 Q-2 64	310.5	53025	2.458	130334	131617	261951	5574
Q-3 64 Q-4 64	75.0	13127	7.278	95544	109582	205126	4366
Q-1 65 Q-2 65	156.0	26917	3.673	933 7 8	127394	226272	6037
Q-3 65 Q-4 65	58.5	<u>9</u> 895	4.177	41346	34528	75874	2024
Q-1 66 Q-2 66					10096	10096	304
0-3 66					7	7	
TOTAL	804.0	137320		449311	501588	1050899	22846

APRIL 1972

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

.

4-SYSTEM15-SUBSYSTEM116-MAJ ASSY0SUBD CF WORKPRODUCTION

TOTAL COST

Q-3	63	276114
Q -4	63	
Q-1	64	267525
Q-2	64	
Q-3	64	209492
Q-4	64	
Q-1	65	232309
Q-2	65	
Q-3	65	77898
Q-4	65	
Q-1	66	10400
Q-2	66	
G -3	66	7

TOTAL 1073745

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 11 TEST INSTRUMENTATION SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK TEST/QC

ON-SITE LABOR

	MAN- MONTHS	LABUR HOUR S	LABOR Rate	LABOR DOLLAR S	BUR DEN DOLL ARS	LABOR + Burden \$
Q-3 60 Q-4 60	4.5	69 4	12.467	8652	8261	16913
Q-1 61 Q-2 61	3. C	454	10.761	-4886	-4114	-9000
Q-3 61 Q-4 61	10.5	1841	5.694	10482	7379	17861
0-1 62 0-2 62	28.5	4972	4.002	19899	23093	42992
Q-3 62 Q-4 62	-7.5	-1151	6.062	6979	9090	16069
Q-1 63 Q-2 63	48.0	8075	2.689	21713	2 37 05	45418
Q-3 63 Q-4 63	16.5	2725	4.852	13222	14655	27877
Q-1 64 Q-2 54	10.5	1859	3.520	6543	6707	13250
Q-3 64 Q-4 64	10.5	1813	3.515	6372	6534	12906
Q-1 55 Q-2 65	9.0	1481	3.502	5186	5184	10370
Q-3 65 Q-4 65	3.0	592	3.503	2074	2074	4148
Q-1 65		43	3.442	148	148	296
TOTAL	136.5	23398		96384	102716	199100

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

SHOP SUPPORT 4-SYSTEM 1 5-SUBSYSTEM 11 TEST INSTRUMENTATION SUBSYSTEM 6-MAJ ASSY 0 SUBD OF WORK TEST/QC

ON-SITE LABOR

	MAN- MONTHS	LABOR HOURS	LABOR Rate	LABOR DOLLARS	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-3 60		53	2.755	146	190	336
Q-4 60						
Q-1 61	1.5	192	3.026	581	1041	1622
Q-2 61						
Q-3 61	37.5	6911	3.109	21487	20462	41949
Q-4 61						
Q-1 62	220.5	37595	2.966	111516	141873	253389
Q-2 62						
Q-3 62	60.C	9982	3.001	29 9 60	44765	74725
Q-4 62						
Q-1 63	-3.0	-505	23.429	11832	15668	27500
Q-2 63						
Q-3 63	13.5	2192	9,472	20763	38507	59270
Q-4 63						
Q-1 64	3.0	540	3.498	1889	17752	19641
Q-2 64						
Q-3 64	3.0	451	3.492	1575	9610	11185
Q-4 64						
Q-1 65		33	3.091	102	10670	10772
Q-2 65						
Q-3 65		7	2.714	19	7634	7653
Q-4 65						
Q-1 66		-1	2.000	-2	-1	-3
TOT AL	336.0	57450		199868	308171	508039

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 11 TEST INSTRUMENTATION SUBSYSTEM 6-MAJ ASSY 0 SUBD UF WORK TEST/QC

UN-SITE LABOR

	MAN- MONTHS	LABOR HOURS	LABUR RATE	LABOR DOLLAR S	BUR DEN DOLL ARS	LABOR + BURDEN \$
Q-3 60 Q-4 60		2	2.500	5		5
$Q - 1 61 \\ Q - 2 61$		119	3.168	377		377
0-2 61 0-3 61 0-4 61	1.5	264	3.004	793		793
Q-1 62 Q-2 62	9. 0	1448	3.015	4365		4365
Q-3 62 Q-4 62	3 •0	456	3.011	1373		1373
Q-1 63 Q-2 63						
Q-3 63 Q-4 63	6.0	1001	3.24 7	3250		3250
Q-1 54 Q-2 64	19.5	3233	3.513	11358		11358
Q-3 64 Q-4 64	9.0	1681	3.888	6535		6535
Q = 1 65 Q = 2 65	13.5	2221	3.600	7995		7995
Q-3 65 Q-4 65	10.5	1648	4.014	6615		6615
Q-1 66				6		6
TOTAL	72.0	12073		42672		42672

.

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 11 6-MAJ ASSY 0 SUBD OF WORK TEST/QC

.

TEST INSTRUMENTATION SUBSYSTEM

		MAN- MONTHS	LABOR HOURS	LABOR Rate	LABOR DOLLARS	BUR DEN Doll Ars	LABOR + BURDEN \$	ENGR MATL
0.0	<		74.0					
Q-3 Q-4		4.5	749	11.753	8803	8451	17254	78
$\tilde{Q}-1$		4.5	765	5.134	-3928	-3073	-7001	2183
Q-2	61							2105
Q-3	61	49.5	9016	3.634	32762	27841	60603	20011
0-4								
	62	258.0	44015	3.085	135780	164966	300746	82401
Q−2			0 0 0 7					
Q-3		55.5	9287	4.125	38312	53855	92167	230032
Q-4 Q-1		45.0	7570	4.431	33545	20272	72010	70074
Q-2		T J • U	1310	4.421	.33242	39373	72918	70076
0-3		36.0	5918	6.292	37235	53162	90397	39467
Q-4	63						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	37101
Q-1	64	33.0	5632	3.514	19790	24459	44249	73400
Q-2								
Q-3	-	22.5	3945	3.671	14482	16144	30626	69618
Q-4		a a c	2725	0 554				
0-1		22.5	3735	3.556	13283	15854	29137	54977
Q-2 Q-3		13.5	22 47	3.875	8708	97 08	19414	10070
Q-4		1202	2241	5.015	0100	9100	18416	19979
0-1			42	3.619	152	147	299	1432
тот	AL	544.5	92921		338924	410887	749811	663654

NORTH AMERICAN RCCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM	1	
5-SUBSYSTEM	11	TEST INSTRUMENTATION SUBSYSTEM
6-MAJ ASSY	0	LEST INSTRUMENTATION SUBSISTEM
SUBD OF WORK	TEST/QC	

	MPC	UTHER COST	SUB Total	6 & A	TOTAL COST
Q-3 60 Q-4 60	10		17342	330	17672
Q-1 61 Q-2 61	184		-4634	-86	-4720
Q-3 61 Q-4 61	1692	538	82844	1539	84383
Q-1 62 Q-2 62	6532	616	390295	6551	396846
Q-3 62 Q-4 62	18126	132	340457	5714	346171
Q-1 63 Q-2 63	6 9 02	4269	154165	2578	156743
Q-3 63 Q-4 63	3893	101571	235323	3935	239258
Q = 1 04 Q = 2 64	7824	-61092	64381	1370	65751
Q-3 64 Q-4 64	25327	2372	128443	2733	131176
Q-1 65 Q-2 65	16443	25	100582	2684	103266
Q−3 65 Q−4 65	3 5 6 4	10	41969	1 12 C	43 08 9
9-1 66	297	1	2029	01	2090
TOTAL	90789	48942	1553196	28529	1581725

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

•

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING

4-SYSTEM 5-SUBSYSTEM	1 11	TEST INSTRUMENTATION SUBSYSTEM
6-MAJ ASSY	0	

CN-SITE LABOR

	MAN- MONTHS	LABOR HOUPS	LABOR Rate	LABÚR DOLLAR S	BURCEN DOLL ARS	LABOR + BURDEN \$
Q-1 58	15.0	2536	4.573	11597	11539	23136
Q-2 58 Q-3 59	58.5	9936	4.289	42616	38702	81318
Q-4 58 Q-1 59	65 . C	11299	4.237	4787C	38638	86508
Q-2 59 Q-3 59	106.5	18638	4.266	79515	68101	147616
Q-4 59 Q-1 60	96.0	16520	5.306	87655	71524	159179
Q-2 60 Q-3 60	73.5	12266	5.257	64481	51 006	115487
Q-4 60 Q-1 61	226.5	38765	4 . 55 7	175654	129238	305902
Q = 2 61 Q = 3 61	250.5	45434	5.016	227913	207298	435211
Q-4 61 Q-1 62	387.0	66024	5.088	335908	303705	639613
Q-2 62 Q-3 62	412.5	69254	5.273	365207	365869	731076
Q-4 62 Q-1 63	466.5	79641	5.185	412911	419536	832847
Q-2 63 Q-3 63	390.0	65501	5.189	339854	364095	703949
Q-4 53 Q-1 64	318.0	54179	5.115	277101	324687	601788
Q-2 64 Q-3 64	106.5	18818	5.361	100875	118824	219699
Q-4 64 Q-1 65	87.0	15130	5.489	83051	95189	178240
Q-2 65						

APRIL 1972

•

~

TIME PHASED EXPEND. B-70 AIRCRAFT STUCY

	DESIG	NZENGINEERING
4-SYSTEM	1	
5-SUB SYSTEM	11	
6-MAJ ASSY	C C	TEST INSTRUMENTATION SUBSYSTEM

ON-SITE LABOR

	MAN- NONTHS	LABOR HOURS	LABOR Rate	LABOR DOLLAR S	BUR DEN DCLL AR S	LABOR + BURDEN \$
Q-3 65 Q-4 65	39.0	6612	4.924	32560	38062	7 0622
Q-1 66 Q-2 66	1.5	299	3.505	1013	1016	2029
Q-3 66		40	5.000	21) C	256	456
TOTAL	3100.5	530886		2636991	2647635	5334676

......

NORTH AMERICAN RCCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

APRIL 1972

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

	PRUDUCTION			
4-SYSTEM	1			
5-SUB SYSTEM	11	TEST	INSTRUMENTATION S	SUBSYSTEM
6-MAJ ASSY	0			

CN-SITE LABOR

	MAN- MON TH S	LABOR HOUP S	LABOR RATE	LABOR DCLLARS	BUR DEN DOLL AR S	LABOR + BURDEN \$
Q-3 63 Q-4 63	204.0	34352	2.422	83209	188364	271573
Q-1 64 Q-2 64	310.5	53025	2.458	130334	131617	261951
Q-3 64 Q-4 64	75.0	13127	7.278	95544	109582	205126
Q-1 65 Q-2 65	156.0	26917	3.673	98878	127394	226272
Q-3 65 Q-4 65	58.5	9895	4.177	41346	34 52 8	75874
Q-1 66 Q-2 66					10096	10096
Q-3 66					7	7
TOTAL	804.0	137320		449311	601588	1050899

NORTH AMERICAN RECKWELL CORP. SPACE DIVISION DATA PREPARED UNDEP NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

	SHUP	SUPPORT
4-SYSTEM	1	
5-SUB SYSTEM	11	TEST INSTRUMENTATION SUBSYSTEM
6-MAJ ASSY	0	

ON-SITE LABOR

	MAN- MONTHS	LABOP HOUP S	LABOR PATE	LABUR DCLLARS	BURDEN DCLLARS	LABOR + BURDEN \$
Q-3 60 Q-4 60		ۍ ر	2.755	146	190	336
Q = 1 61 Q = 2 61	1.5	192	3.026	581	1041	1622
Q-3 61 Q-4 61	37.5	6911	3.109	21487	20462	41949
$Q = 1 62 \\ Q = 2 62$	220.5	37595	2.966	111516	141873	253389
C-3 62 Q-4 62	370.5	62239	3.231	201282	25686 7	458149
$0-4 \ 02$ $0-1 \ 63$ $0-2 \ 63$	319.5	54477	3.676	200244	254519	454763
G-3 63 G-4 63	38.5	6425	5.441	34958	85283	121239
0-1 64	4.5	35C	3.322	2824	19271	22095
Q-2 64 Q-3 64	7.5	1359	3.233	4394	14214	18608
Q-4 64 Q-1 65	10.5	1820	2.885	5424	19409	24833
Q-2 65 Q-3 65	10.5	1848	3.216	594 4	16644	22588
0-4 65 Q-1 66	4.5	748	3.241	2424	3369	5793
Q-2 66 Q-3 66		2	2.500	5	-64	-59
TOTAL	1025.5	174639		591227	834078	1425305

NURTH AMERICAN RECKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CUNTRACT NAS9-12100

.

TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

II4-SYSTEM15-SUBSYSTEM116-MAJ ASSY0

CN-SITE LABOR

	MAN- MON TH S	LABOR HOURS	LABOR RATE	LABCR DOLLARS	BURDEN DOLLARS	LABOR + BURDEN \$
	110/01/19	TROOMS				
Q-3 6C		2	2.500	5		5
Q-4 67		110	2 14 0	377		377
Q-1 61 Q-2 61		119	3.168	011		571
Q = 2 - 61 Q = 3 - 61	1.5	264	3.004	793		793
0-4 61						
Q-1 62	S.C	1448	3.015	4365		4365
Q-2 62		• • • • •	2 114	5404		5404
Q-3 62	10.5	1734	3.116	9404		7404
Q-4 62 Q-1 63	22.5	3898	3.479	13560		13560
Q-2 63						
Q-3 63	16.5	2793	3.307	9237		9237
Q-4 63		2214	2 51 3	112/2		11362
Q-1 64	19.5	3234	3.513	11362		
Q-2 64 Q-3 64	10.5	1726	3.871	6681		6681
Q-4 64						
Q-1 65	13.5	2228	3.596	8013		8013
Q-2 65		1750	2 005	7005		7005
Q-3 65	10.5	1758	3.985	1005		1005
Q-4 65 Q-1 66		46	3.630	167		167
Q-2 66						
Q-3 66		1	3.000	3		3
TOTAL	114.0	19251		66972		66972

APRIL 1972

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TIME PHASED EXPEND. B-70 AIRCRAFT STUCY

4-SYSTEM	1	
5-SUB SYSTEM	11	TEST INSTRUMENTATION SUBSYSTEM
6-MAJ ASSY	<u>C</u>	

	MAN- MON THS	LABOR HOURS	LABOR RATE	LABOR DOLLARS	BUR DEN DGLL AR S	LABUR + Burden \$	ENGR MATL
Q-1 58	15.0	2536	4.573	11597	11539	23136	
Q-2 58 Q-3 58 Q-4 58	58.5	9936	4.285	42616	38702	81318	
Q-1 59 Q-2 59	66.0	11299	4.237	4787C	38638	86508	
Q-3 59 Q-4 59	106.5	19638	4.266	79515	63101	147616	
Q-1 60 Q-2 60	96.0	16520	5.306	87655	71524	159179	
Q-3 60 Q-4 60	73.5	12321	5.246	64632	51196	115828	78
Q = 1 61 Q = 2 61	228.0	30,080	4.545	177622	130279	307901	2183
Q = 3 61 Q = 4 51	289.5	52609	4.756	250193	227760	477953	20011
$Q = 1 62 \\ Q = 2 62$	616.5	105067	4.300	451789	445578	897367	82401
Q-3 62 Q-4 6?	793.5	133287	4.291	571893	622736	1194629	240842
Q = 1 - 63 Q = 2 - 63	808.5	138016	4.541	626715	b74455	1301170	83074
Q-3 63 Q-4 63	649.0	109071	4.284	467256	638 742	1165998	51086
Q-1 64 0-2 64	652.5	111238	3.789	421621	475575	897196	76773
Q-3 64 Q-4 64	195.5	35030	5.923	207494	242620	450114	70007
9-1 65 9-2 65	267.0	46155	4.233	195366	241992	437358	70263
Q-3 65 Q-4 65	118.5	20117	4.317	86855	89234	176089	28780

APRIL 1972

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

TOTAL 5044.0 862096

~~~

• \_\_\_\_

#### **APRIL 1972**

3794501 4083351 7877852 747683

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUCY

|            | 5-SI | YSTEM 1<br>JBSYSTEM 11<br>AJASSY 0 | TESI            | INSTRUMENT    | ATION SUBSYS      | TEM                 |                      |              |
|------------|------|------------------------------------|-----------------|---------------|-------------------|---------------------|----------------------|--------------|
|            |      | MAN-<br>MONTHS                     | LABOR<br>HOUR S | LABOR<br>RATE | LABOR<br>DOLLAR S | BUR DEN<br>Doll Ars | LABOR +<br>BURDEN \$ | ENGR<br>MATL |
| Q-1<br>Q-2 |      | 6.0                                | 1083            | 3.328         | 3604              | 14481               | 18085                | 19427        |
| 0-3        | -    |                                    | 43              | 4.837         | 208               | 199                 | 407                  | 2758         |

IV-643

NORTH AMERICAN RCCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM15-SUBSYSTEM116-MAJASSY0

TEST INSTRUMENTATION SUBSYSTEM

|                                        | мрс   | CTHER<br>Cost | SUB<br>Total | G & A | TGTAL<br>COST |
|----------------------------------------|-------|---------------|--------------|-------|---------------|
| Q-1 58                                 |       |               | 23136        |       | 23136         |
| Q-2 58<br>Q-3 58                       |       |               | 81318        |       | 81318         |
| Q-4 58<br>Q-1 59                       |       |               | 86508        |       | 86508         |
| Q-2 59<br>G-3 59                       |       |               | 147616       |       | 147615        |
| Q-4 59<br>Q-1 60                       |       |               | 159179       | 3033  | 162212        |
| Q-2 60<br>Q-3 60                       | 10    |               | 115916       | 2208  | 118124        |
| Q = 4 60<br>Q = 1 61                   | 184   |               | 310268       | 5766  | 315034        |
| Q-2 61<br>Q-3 61                       | 1692  | 53P           | 500194       | 9295  | 509489        |
| Q-4 61<br>Q-1 62<br>Q-3 62             | 6532  | 616           | 986916       | 15565 | 1003481       |
| Q-2 62<br>Q-3 62                       | 18978 | 132           | 1454591      | 24415 | 1478996       |
| Q-4 62<br>Q-1 63<br>Q-2 63             | 8182  | 4269          | 1396695      | 23353 | 1420048       |
| Q = 2 + 63<br>Q = 3 + 63<br>Q = 4 + 63 | 5032  | 101571        | 1263687      | 21130 | 1284817       |
| Q = 1 64<br>Q = 2 64                   | 8194  | -61092        | 921061       | 19599 | 940.660       |
| Q-2 64<br>Q-3 64<br>Q-4 64             | 25469 | 2372          | 548462       | 11671 | 560133        |
| Q = 1 65<br>Q = 2 65                   | 21010 | 25            | 528656       | 14105 | 542761        |
| Q-2 65<br>Q-3 65<br>0-4 65             | 5134  | 10            | 210013       | 5603  | 215616        |
| (1 - 1)                                |       |               |              |       |               |

\_\_\_·

NORTH AMERICAN RCCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

**APRIL 1972** 

TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

| 4-SYSTEM     | 1  |
|--------------|----|
| 5-SUB SYSTEM | 11 |
| 6-MAJ ASSY   | 0  |

.

~

TEST INSTRUMENTATION SUBSYSTEM

|                  | MPC    | OTHER<br>COST | SUB<br>TOTAL | GEA    | TOTAL<br>Cost |
|------------------|--------|---------------|--------------|--------|---------------|
| Q-1 66<br>Q-2 66 | 4029   | 1             | 41542        | 1251   | 42 793        |
| Q-3 66           | 169    |               | 3334         | 100    | 3434          |
| TOTAL            | 104605 | 48942         | 8779082      | 158094 | 8937176       |



# PRECEDING PAGE BLANK NOT FILMED

## TABLE OF CONTENTS

SUBSYSTEM: INSTALLATION, CHECKOUT AND PREFLIGHT WBS CODE 1.12

COST DEFINITION

Page IV-648

DETAIL COST DATA

Page IV-662



## COST DEFINITION

SUBSYSTEM: INSTALLATION, CHECKOUT AND PREFLIGHT WBS CODE: 1.12

Recorded costs assigned to this WBS item include the effort associated with:

- a) fabrication of subsystem provisions (brackets, racks, wire harnesses, shelves, supports, etc.). These costs cannot be associated with a particular subsystem without developing a prorating technique. No acceptable method could be developed, therefore, costs were assigned in their entirety to this WBS item.
- b) installation of subsystems within the airframe structure. All aircraft subsystems were basically either subcontracted items or furnished as GFE equipment, therefore, no production costs appear in the subsystems. Recorded cost data does not provide a segregation of the installation costs by subsystem. These costs for all subsystems are included in this WBS item.
- c) procurement of raw material and miscellaneous purchased parts in support of fabrication (item (a)) and system installation (item (b)) activities. Also included in this item is the purchase of equipment and the fabrication and assembly effort associated with the in-house activities on the Air Induction System. See WBS 1.5 for more detail.
- d) system checkout of the installed subsystems to verify installation techniques and procedures.
- e) preflight checkout to validate and verify operational parameters.
- f) all remaining items described in WBS 4.40, page II-255.

Excluded from this item are:

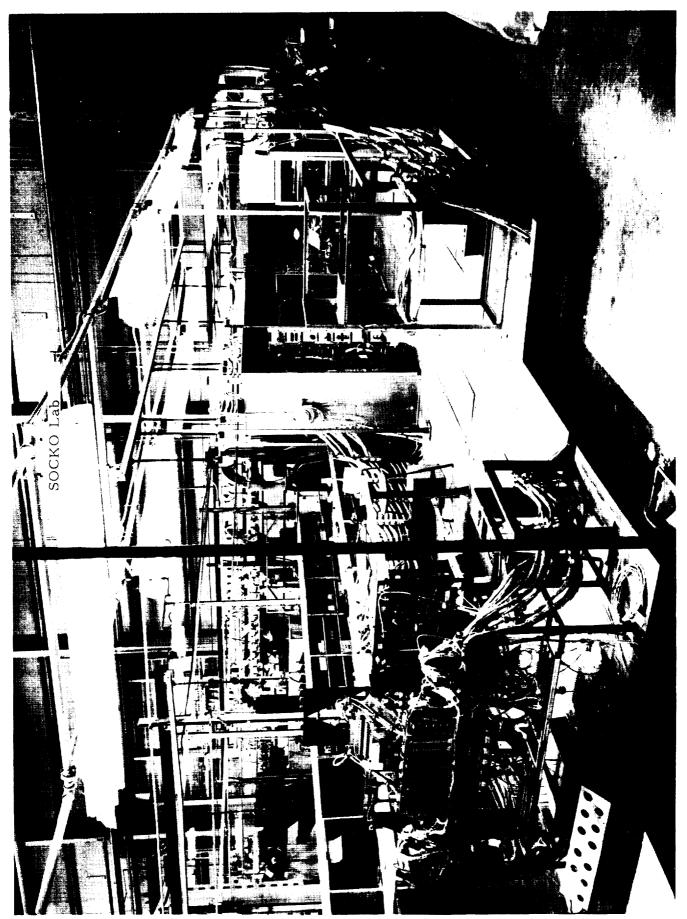
- a) mating of the major sections of the structure (WBS 3.0)
- b) flight test operations after first flight of each vehicle (WBS 4.0)
- c) special test equipment (WBS 7.0)
- d) tooling (WBS 8.0)

Combining of subsystem installation, checkout and preflight activities into one WBS item is the result of the uniqueness of the B-70 program. If the B-70 had been a production program instead of a two-vehicle research and development program, manufacturing checkout and preflight checkout would have been two separate independent activites. However, because of budgetary and schedule constraints, maximum utilization of manufacturing and flight test personnel was essential. Therefore, subsystem installation, checkout and preflight checkout were performed by manufacturing and flight test personnel concurrently. No segregation of activities in this area is available because



WBS CODE: 1.12

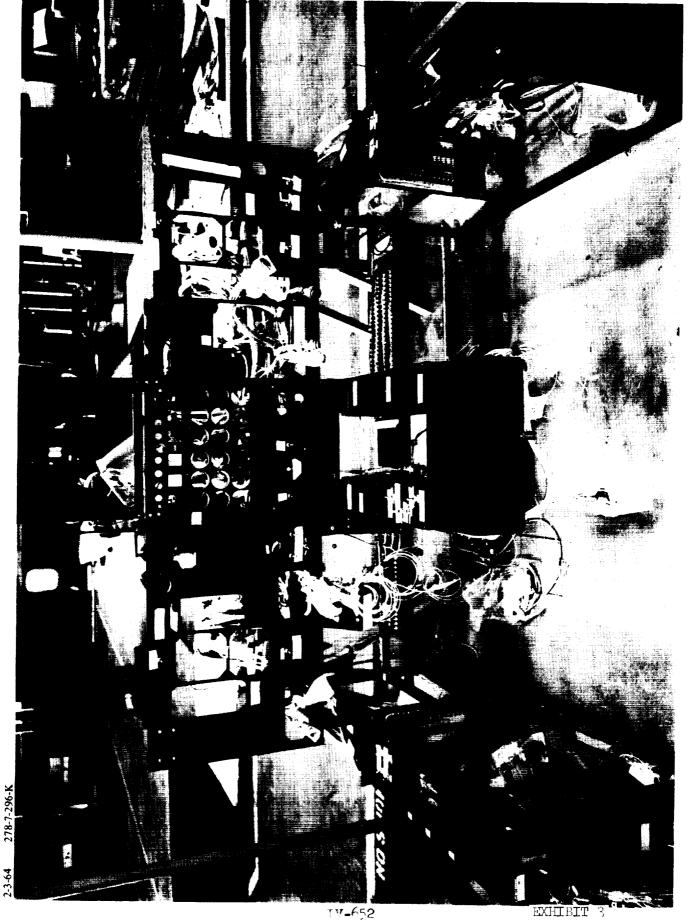
the same accounting procedures were utilized by all personnel whether performing manufacturing or flight test checkout.


The discussion of the technical problems and the subsystem and program schedule impact occurring during this period are included in the subsystem data. Normal preflight activities, including taxi testing, are discussed in section WBS 4.40.

Exhibits 1 through 4, pages IV-650 through IV-653, display Systems Operational Checkout Lab (SOCKO) facilities and milestones as completed in support of Air Vehicle No. 1. Exhibits 5 through 12, pages IV-654 through IV-661, display typical installations within fuel tanks, wire harnesses/plumbing and systems installations.



SOCKO Lab


CD70-SH-0003

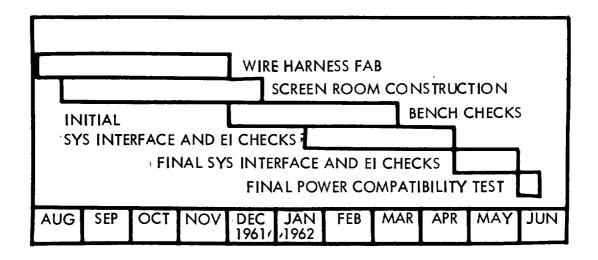


TV-651

(\* 12

SD72-SH-000



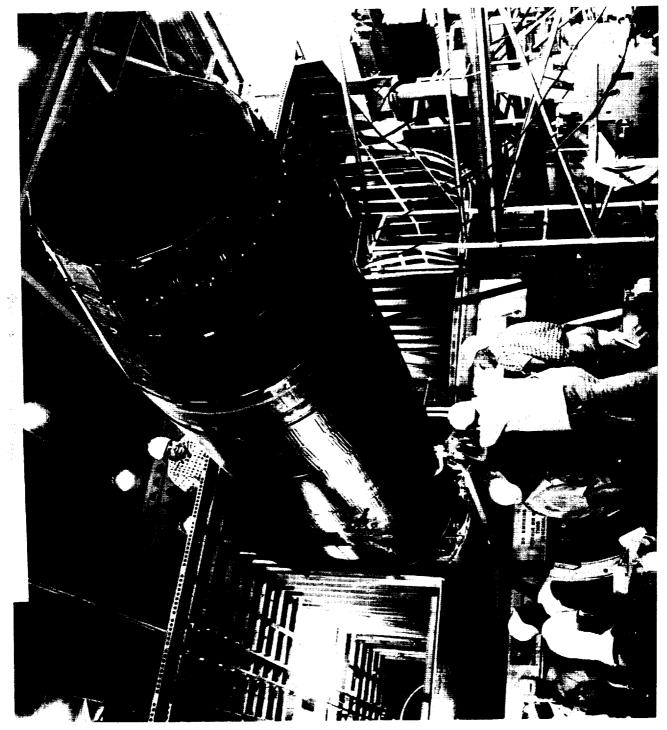

TV-652

CD70-SH-00•3


SOCKO Lab

Socko Testing



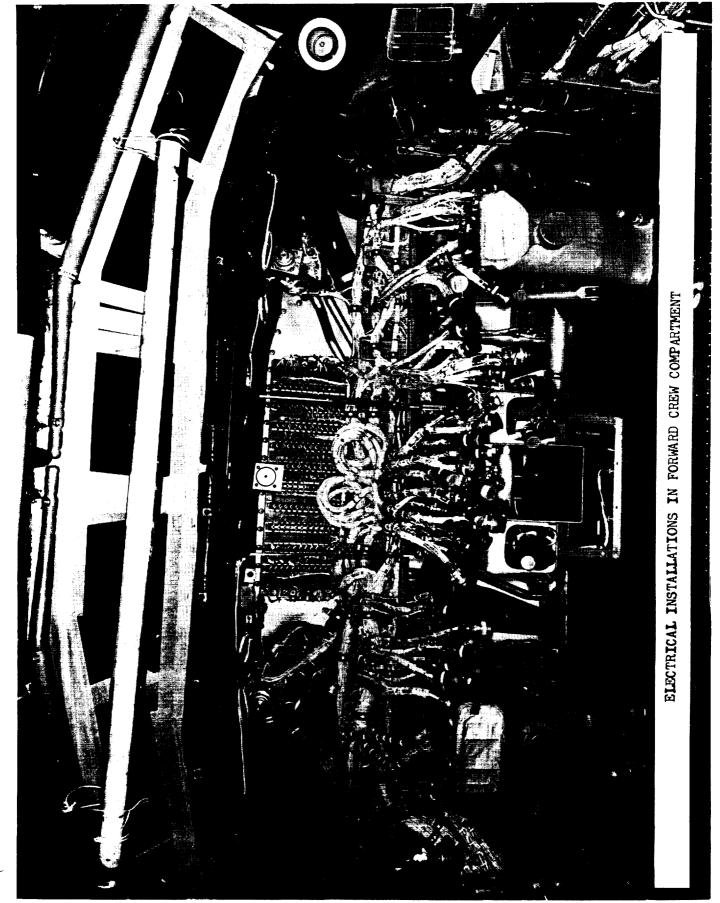



THIS WAS A SYSTEMS OPERATION AND CHECKOUT LABORATORY PROGRAM IN WHICH ALL OF THE ELECTRONIC EQUIPMENT WAS TESTED FOR FUNCTION, MUTUAL COMPATIBILITY, AND INTERACTION. THE PROGRAM WAS SUCCESSFULLY CARRIED OUT ON ACTUAL EQUIPMENT FOR THE FIRST AIR VEHICLE USING AN IDENTICAL AIRCRAFT WIRING CONFIGURATION. THE PROBLEMS SOLVED WERE OF A MINOR NATURE, REQUIRING ONLY CABLE REROUTING AND WIRE SEPARATION FOR THE REDUCTION OF RADIO OR ELECTRICAL INTERFERENCE OR MINOR CHANGES IN CIRCUITRY OR INSTALLATION TO REDUCE INTERACTION.





PPP-SH-0003




ENGINE INSTALLATION

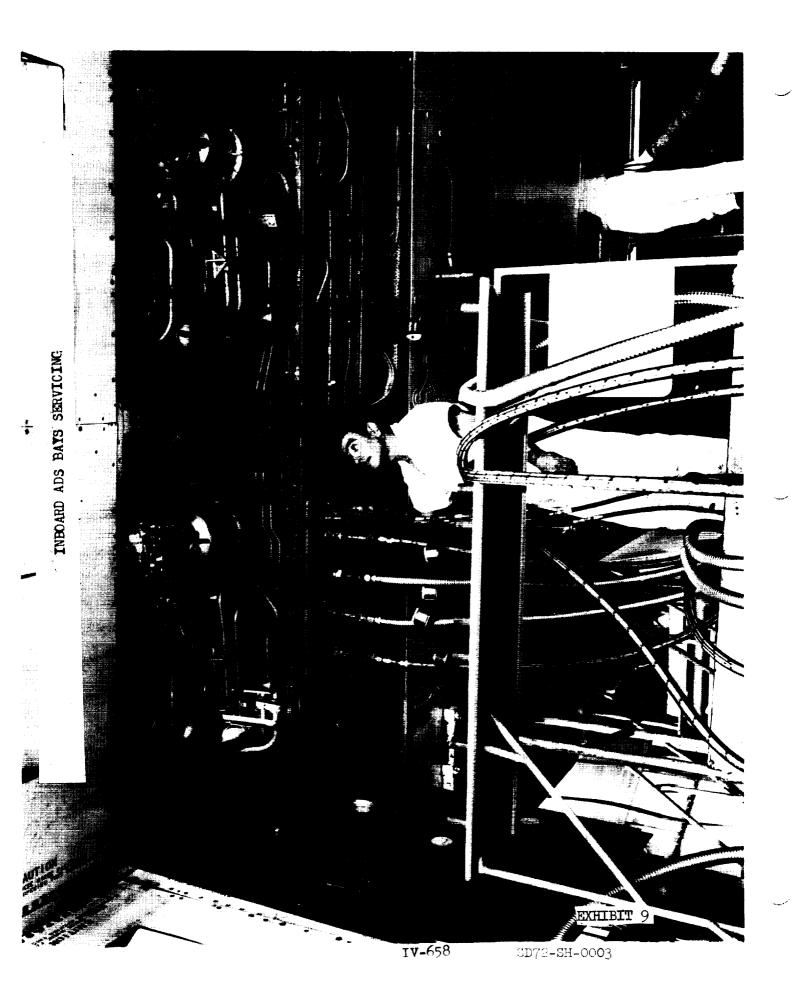

I**V-6**56

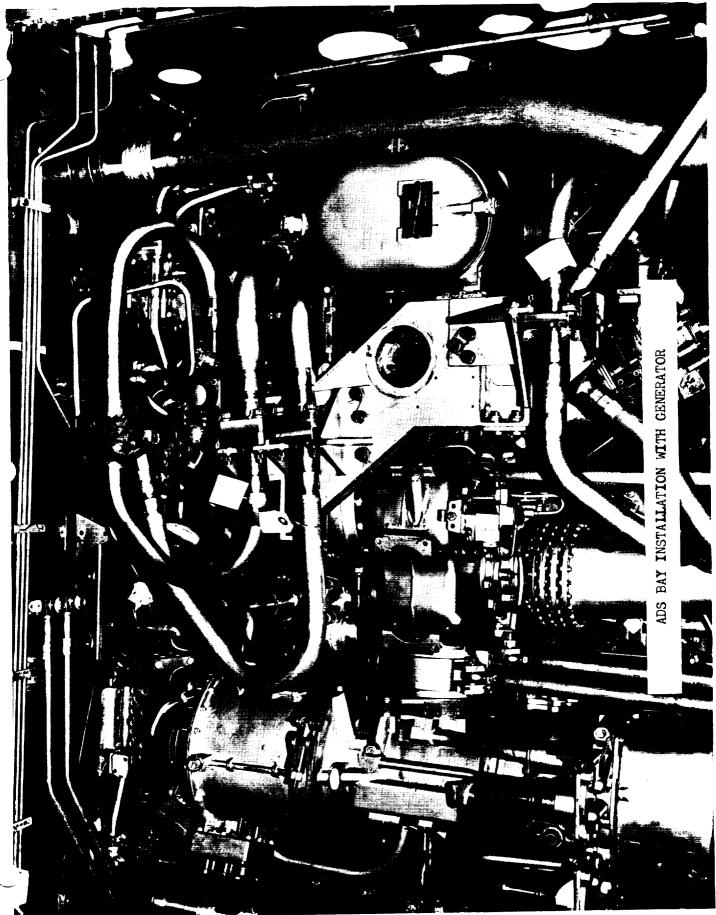
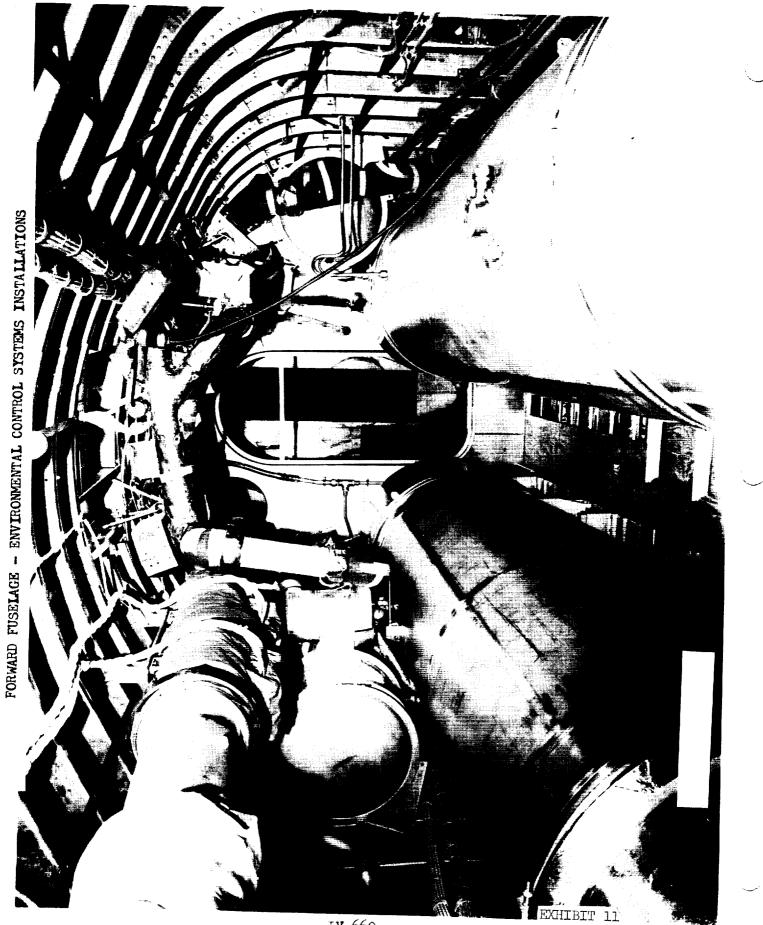
EXHIBIT 7

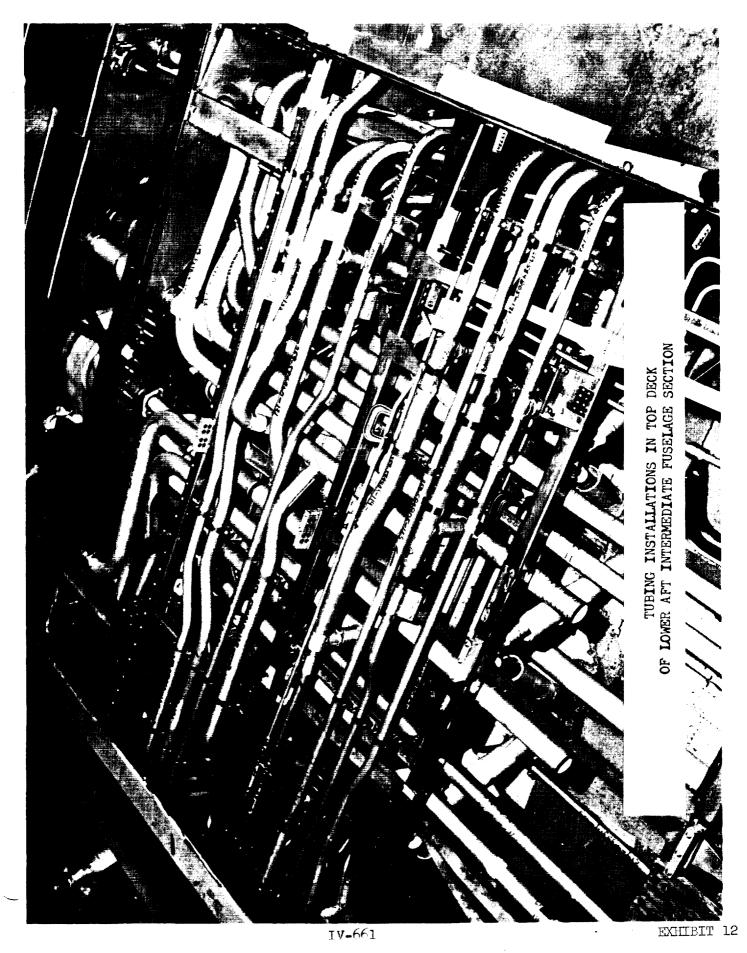
SD72-SH-0003



1**V-**657





EXHIBIT 10

SD72-SH-0003



IV-660

SDYC-RH-0005



SD72-SH-0003

NORTH AMERICAN POCKWELL COPP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

## COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 12 SUBSYSTEM INSTALLATION AND CHECKOUT

|                         | 6-M ASSY             |
|-------------------------|----------------------|
|                         | O TOTAL              |
|                         | HOURS HOURS          |
|                         | DOLLARS DOLLARS      |
| DESIGNZENGINEERING      | 318502 316502        |
| LARER AT \$ 6 217       | 1067260 1077700      |
| ENGR BURDEN AT \$ 6.16° | 1952457 1952457      |
|                         | 4590814 4590814      |
| LAGOR AT \$ 3.223       | 14796335 14796835    |
| SHOP SUPPORT            | 65703 65703          |
| LABOR AT \$ 3,598       | 235401 236401        |
| CENTINO                 | 280324 <u>280324</u> |
| LABCR AT \$ 3.438       | 963321 963321        |
| TEST/QC                 | 587203 587203        |
| LABOR AT \$ 3.637       | 2135631 2135631      |
| MEG BURDEN AT \$ 4.033  | 22277981 22277981    |
| MEG MATERIAL            | 9848132 9848132      |
| MPC                     | 1318030 1318030      |
|                         | *******              |
| SUB-TCTAL               | 55496937 55496937    |
|                         | 1155919 1155919      |
| IDWA                    | 4685745 4685745      |
| TUTAL CUST              | 61338601 61338601    |

| SUBDIVISION | OF WORK    |        |
|-------------|------------|--------|
| COST DETAIL | - SEE PAGE | IV-663 |

•

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NASS-12100

#### COST BREAKDOWNS B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 12 6-MAJ ASSY 0

|                        | PROD TOTAL                                                                                                     |   |
|------------------------|----------------------------------------------------------------------------------------------------------------|---|
|                        | HOURS HOURS                                                                                                    |   |
|                        | DOLLARS DOLLAR                                                                                                 | S |
|                        |                                                                                                                |   |
| DESIGN/ENGINEERING     | 316502 316502                                                                                                  |   |
| LABOR AT \$ 6,217      | 1967649 196764                                                                                                 | 9 |
| ENGR BURDEN AT \$ 6.16 | 9 1952457 195245                                                                                               | 7 |
|                        |                                                                                                                | · |
| PRODUCTION             | 4590814 4590814                                                                                                |   |
| LABOR AT \$ 3.223      | 14796835 1479683                                                                                               | 5 |
| SHOP SUPPORT           | 65703 65703                                                                                                    |   |
| LABOR AT \$ 3.598      | 236401 23640                                                                                                   | 1 |
| PLANN ING              | 280324 280324<br>963821 96382<br>587203 587203                                                                 |   |
| LABOR AT \$ 3.438      | 963821 96382                                                                                                   | 1 |
| TEST/QC                | 587203 587203                                                                                                  |   |
| LABOR AT 6 3.637       | 2135631 213563                                                                                                 | 1 |
| MEG BURDEN AT \$ 4.03  |                                                                                                                |   |
|                        |                                                                                                                |   |
| MFG MATERIAL           | 9848132 984813                                                                                                 | 2 |
| MPC                    | 1318030 131803                                                                                                 | 0 |
|                        | the second s |   |
| SUB-TOTAL              | 55496937 5549693                                                                                               | 7 |
|                        |                                                                                                                |   |
| GEN & ADMIN            | 1155919 115591                                                                                                 | 9 |
| IDWA                   | 4685745 468574                                                                                                 | 5 |
|                        |                                                                                                                |   |
| TOTAL COST             | 61338601 6133860                                                                                               | 1 |
|                        |                                                                                                                | • |

| TIME-PHASED | COST   |                |
|-------------|--------|----------------|
| DETAIL - SE | E PAGE | <b>IV-</b> 664 |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

DESIGN/ENGINEERING 4-SYSTEM 1 5-SUBSYSTEM 12 SUBSYSTEM INSTALLATION AND CHECKOUT 6-MAJ ASSY 0 SUBD CF WORK PRUDUCTION

## UN-SITE LABOR

|                          | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>RATE               | LABOR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABUR +<br>Burden \$ |
|--------------------------|----------------|----------------|-----------------------------|------------------|---------------------|----------------------|
| Q-1 58                   |                | 8              | 4.625                       | 37               | 36                  | 73                   |
| Q-2 53.                  |                |                |                             |                  | 0                   | 15                   |
| Q-3 58                   |                |                |                             |                  |                     |                      |
| Q-4 53                   |                |                |                             |                  |                     |                      |
| Q-1 59                   | 1.5            | 135            | 4.215                       | 569              | 461                 | 1030                 |
| Q-2 59                   |                |                |                             |                  |                     | 1030                 |
| Q-3 59                   | 13.5           | 2437           | 4.259                       | 10379            | 8932                | 19311                |
| Q-4 59                   |                |                |                             |                  |                     |                      |
| 9-1 60                   | 6.C            | 1031           | 4.564                       | 4705             | 3855                | 8560                 |
| 9-2 60                   |                |                |                             |                  |                     |                      |
| Q-3 60                   |                |                |                             |                  |                     |                      |
| Q-4 60                   |                |                |                             |                  |                     |                      |
| Q-1 61                   |                |                |                             |                  |                     |                      |
| Q-2 61                   |                |                |                             |                  |                     |                      |
| Q-3 51                   | 1.5            | 202            | 5.366                       | 1084             | 246                 | 1330                 |
| Q-4 61                   | 0.0            |                |                             |                  |                     |                      |
| Q-1 62                   | 9.0            | 1518           | 5.023                       | 7625             | 6209                | 138 <b>34</b>        |
| Q-2 62                   | 30 5           |                |                             |                  |                     |                      |
| Q-3 62<br>Q-4 62         | 28.5           | 4862           | 4.971                       | 24171            | 19667               | 43838                |
| y = 4 - 02<br>y = 1 - 63 | <b>45.</b> 0   | 7701           | F 001                       | 3 5 <b>7</b> 4 4 |                     |                      |
| Q = 2 - 63               | <b>4 J</b> • 0 | 1131           | 5.031                       | 33746            | 39168               | 77914                |
| 0-3 63                   | 49.5           | 8393           | 4.408                       | 27500            | 5 * / 3 /           |                      |
| Q-4 63                   | J              | Er CO          | 4.400                       | 37500            | 55614               | 93114                |
| Q-1 64                   | 58.5           | 9964           | 4.774                       | 47570            | 60188               | 107760               |
| 9-2 64                   |                | 2 · / · T      | <b>₹● ₹ ( <del>"</del>]</b> | +13 / G          | C0108               | 107758               |
| 0-3 64                   | 1200.0         | 211156         | 5.335                       | 1126515          | 1320733             | 2447248              |
| Q-4 64                   |                |                |                             | * 120313         | TO 40 100           | ሬማማ / ረዋ በ           |
| 0-1 65                   | 258.0          | 44827          | 5.350                       | 239833           | 291703              | 531536               |

\_\_\_\_\_

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

#### TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

#### DESIGN/ENGINEERING

4-SYSTEM15-SUBSYSTEM12SUBSYSTEM126-MAJASSY0SUBDCFWORKPRODUCTION

#### ON-SITE LABOR

|                            | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>Rate | LABUR<br>DCLLARS | BUR DEN<br>DOLL ARS | LABGR +<br>Burden \$ |
|----------------------------|----------------|-----------------|---------------|------------------|---------------------|----------------------|
| Q-2 65<br>Q-3 65<br>Q-4 65 | 144.0          | 24169           | 17.732        | 428570           | 145300              | 573870               |
| Q-1 66                     |                | 99              | 3.485         | 345              | 345                 | 690                  |
| TOTAL                      | 1815.0         | 316502          |               | 1967649          | 1952457             | 3920106              |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

## TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

PRODUCTION 4-SYSTEM 1 5-SUBSYSTEM 12 SUBSYSTEM INSTALLATION AND CHECKOUT 6-MAJ ASSY 0 SUBD OF WORK PRODUCTION

## ON-SITE LABOR

|                  | MAN-<br>MONTHS | LABOR<br>Hours | LABOR<br>RATE  | LABOR<br>DOLLAR S | BURDEN<br>DOLLARS | LABOR +<br>Burden s |
|------------------|----------------|----------------|----------------|-------------------|-------------------|---------------------|
| Q-1 60<br>Q-2 60 | 3.0            | 520            | 5.862          | 3C48              | 17                | 3065                |
| Q-3 60<br>Q-4 60 | 4.5            | 668            | 4.955          | 3310              | 1                 | 3311                |
| Q-1 61<br>Q-2 61 |                | 1              | 3.000          | 3                 | 1                 | 4                   |
| Q-3 61<br>Q-4 61 | 933.0          | 169174         | گ <b>₊1</b> 50 | 532898            | b65682            | 1198580             |
| Q-1 62<br>Q-2 62 | 3634.5         | 520314         | 3.100          | <b>192289</b> 6   | 2519877           | 4442773             |
| 0-3 62<br>0-4 62 | 5292.0         | 989072         | 3.165          | 2813733           | 3835791           | 6649524             |
| Q-1 63<br>Q-2 63 | 3829.5         | 653638         | 3.258          | 2129458           | 2905412           | 5034870             |
| 0-3 63<br>0-4 63 | 4801.5         | 806685         | 2.903          | 2341710           | 3869539           | 6211249             |
| Q-1 64<br>Q-2 64 | 2812.5         | 479999         | 3 <b>•7</b> 52 | 1801069           | 2941595           | 4742664             |
| Q-3 64<br>Q-4 64 | 3136.5         | 552036         | 3.264          | 1802017           | 2738544           | 4540561             |
| Q-1 65<br>Q-2 65 | 1747.5         | 302789         | 3.400          | 1029572           | 1540408           | 2569980             |
| Q-3 65           | 690.0          | 115918         | 3.598          | 417121            | 592154            | 1009275             |
| TOTAL            | 26884.5        | 4590814        |                | 14796935          | 21609021          | 36405856            |

\_

NORTH AMERICAN RGCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

~\_\_\_

.

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

#### SHOP SUPPORT

4-SYSTEM 1 5-SUBSYSTEM 12 SUBSYSTEM INSTALLATION AND CHECKOUT 6-MAJ ASSY 0 SUBD OF WORK PRODUCTION

#### ON-SATE LABOR

|                  | MAN-<br>MONTHS | LABUR<br>HOURS | LABOR<br>RATE | LABOR<br>DOLLAR S | BUR DEN<br>DOLL ARS | LABOP +<br>BURDEN \$ |
|------------------|----------------|----------------|---------------|-------------------|---------------------|----------------------|
| Q-3 64           | 261.0          | 45842          | 3.628         | 166336            | 233354              | 399690               |
| 0-4 64<br>G-1 65 | 114.0          | 19861          | 3.528         | <b>7</b> 0065     | 95548               | 165613               |
| Q-2 65<br>Q-3 65 |                |                |               |                   | -819                | -819                 |
| TOTAL            | 375.0          | 65703          |               | 236401            | 328083              | 564484               |

NDRTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

> TIME PHASED EXPEND. 8-70 AIRCRAFT STUDY

PLANNING 4-SYSTEM 1 5-SUBSYSTEM 12 SUBSYSTEM INSTALLATION AND CHECKOUT 6-MAJ ASSY C SUBD OF WORK PRODUCTION

UN-SITE LABUR

|                          | MAN-<br>MONTHS | LABOR<br>HOURS | LABOR<br>RATE  | LABOP<br>DOLLARS | BURDEN<br>DOLLARS | LABUR +<br>Burden \$ |
|--------------------------|----------------|----------------|----------------|------------------|-------------------|----------------------|
| 0-3 60<br>Q-4 60         | 160.5          | 20986          | 3.066          | 8 <b>?72</b> 8   |                   | 82728                |
| Q-1 61<br>Q-2 61         | 292.5          | 49820          | 3.032          | 151 077          | 17095             | 168172               |
| 0-3 61<br>0-4 61         | 264.0          | 47744          | 2.938          | 14025¢           | 21411             | 161667               |
| Q-1 62<br>Q-2 62         | 255.0          | 49593          | 2.983          | 130048           | 23034             | 153082               |
| Q-3 52<br>Q-4 62         | 235.5          | 39441          | 2 <b>.9</b> 80 | 117543           | 25313             | 142856               |
| Q-1 63<br>Q-2 53         |                |                |                |                  |                   |                      |
| )-3 63<br>0-4 63         | 271.5          | 4558 <b>7</b>  | 5.789          | 263881           | 111965            | 375787               |
| 9 <b>−1</b> 64<br>9−2 64 | 108.3          | 13448          | 2.726          | 50294            | 94345             | 144639               |
| Q−3 64<br>Q <b>−4 64</b> | 34.5           | 6043           | 3.284          | 19862            | 32728             | 52590                |
| Q-1 65<br>Q-2 65         | 12.0           | 2161           | 3.039          | 5568             | 11971             | 18539                |
| Q-3 65<br>Q-4 65         | 3.0            | 5 <b>≑3</b>    | 2.994          | 1506             | 3058              | 4564                 |
| Q-1 66                   |                | - 7            | 8.285          | 58               | 16                | 74                   |
| TOTAL                    | 1636.5         | 280324         |                | 963821           | 340877            | 130+698              |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

TEST/QC 4-SYSTEM 1 5-SUBSYSTEM 12 SUBSYSTEM INSTALLATION AND CHECKOUT 6-MAJ ASSY 0 SUBD OF WORK PRODUCTION

#### ON-SITE LABOR

|                                                | MAN-<br>MONTHS | LAEOR<br>HOURS | LABOR<br>RATE | LABOR<br>DOLLARS | BUR DEN<br>DOLL ARS | LABOR +<br>Burden \$ |
|------------------------------------------------|----------------|----------------|---------------|------------------|---------------------|----------------------|
| Q-1 60<br>Q-2 60<br>Q-3 60<br>Q-4 60<br>Q-1 61 | 1.5            | 200            | 5.425         | 1085             |                     | 1085                 |
| 0-2 61<br>0-3 61<br>0-4 61                     | 123.0          | 22305          | 3.283         | 73230            |                     | 73230                |
| Q-1 62<br>Q-2 62                               | 478.5          | 81785          | 3.075         | 251504           |                     | 251504               |
| Q-3 62<br>Q-4 62                               | 697.5          | 117214         | 3.498         | 410064           |                     | 410064               |
| Q = 1  63<br>Q = 2  63                         | 505.5          | 86180          | 3.615         | 311558           |                     | 311558               |
| Q-3 63<br>Q-4 63                               | 585.5          | 99150          | 4.287         | 425-186          |                     | 425086               |
| Q-1 64<br>Q-2 64                               | 331.5          | 56643          | 3.609         | 204390           |                     | 204390               |
| Q-3 64<br>Q-4 64                               | 385.5          | 67824          | 3. 621        | 245581           |                     | 245581               |
| Q - 1 65<br>Q - 2 65                           | 234.0          | 40595          | 3.775         | 153246           |                     | 153246               |
| Q-3 65                                         | 91.5           | 15306          | 3.913         | 5988 <b>7</b>    |                     | 59887                |
| TOTAL                                          | 3438.0         | 587203         |               | 2135631          |                     | 2135631              |

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

## APRIL 1972

## TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 12 SUBSYSTEM INSTALLATION AND CHECKLUT

|                  | MAN-<br>MONTHS | LABOR<br>HOUR S | LABOR<br>RATE | LABGR<br>DGLLARS |         |               | ENGP<br>Matl |
|------------------|----------------|-----------------|---------------|------------------|---------|---------------|--------------|
| Q-1 58           |                | 8               | 4.625         | 3 <b>7</b>       | 36      | 73            |              |
| Q-2 53           |                |                 |               |                  |         | • -/          |              |
| Q-3 58           |                |                 |               |                  |         |               |              |
| Q−4 53           |                |                 |               |                  |         |               |              |
| Q-1 59           | 1.5            | 135             | 4.215         | 565              | 461     | 1030          |              |
| 0-2 59           |                |                 |               |                  |         |               |              |
| Q-3 59           | 13.5           | 2437            | 4.259         | 10379            | 8932    | 19311         |              |
| ର <b>−</b> 4 5 ∂ |                |                 |               |                  |         |               |              |
| Q-1 60           | 10.5           | 1751            | 5.347         | 3836             | 3872    | <b>1271</b> 0 |              |
| 0-2 60           |                |                 |               |                  |         |               |              |
| <b>W-3 60</b>    | 165.0          | 27654           | 3.111         | 8 <b>6</b> 038   | 1       | 86039         |              |
| Q-4 60           |                |                 |               |                  |         |               |              |
| 0-1 61           | 292.5          | 49821           | 3.032         | 15108€           | 17696   | 163176        |              |
| <u>u-2 61</u>    |                |                 |               |                  |         |               |              |
| Q-3 61           | 1321.5         | 239425          | 3.122         | 747469           | 697339  | 1434807       |              |
| Q-4 61           |                |                 |               |                  |         |               |              |
| 0-1 62           | 4377.0         | 747211          | 3.094         | 2312073          | 2549120 | 4861193       |              |
| Q-2 b2           |                |                 |               |                  |         |               |              |
| 0-3 62           | 6253.5         | 1050539         | 3.204         | 3365511          | 3880771 | 7246282       |              |
| Q-4 62           |                |                 |               |                  |         |               |              |
| 6-1 63           | 4380.0         | 747515          | 3.317         | 2479702          | 2944580 | 5424342       |              |
| 0-2 63           |                | 050315          |               |                  |         |               |              |
| Q-3 63           | 5712.C         | 959215          | 3.197         | 3055177          | 4037(59 | 7105236       |              |
| Q-4 63           |                | C / C > C /     |               |                  |         |               |              |
| <b>ũ−1</b> 64    | 3310.5         | 565054          | 3.722         | 2103323          | 3096128 | 5199451       |              |
| Q-2 64<br>Q-3 64 | 5 C 1 7 F      | 6630E4          | 2             |                  |         | _             |              |
|                  | 5017.5         | 882956          | 3.806         | 3360311          | 4325359 | 7685670       |              |
| Q-4 64<br>Q-1 сэ | 2245 E         | 41.3 3 3 3      | 2 4 5 5       | 140000           | 10-0-0- |               |              |
| 0-1 65<br>0-2 65 | 2365.5         | 410233          | 3.655         | 1499234          | 1939630 | 3433914       |              |
| 0-2 85<br>0-3 85 | ope ≡          | 155007          | 5 01 (        | 5030 V           | 700/00  |               |              |
|                  | 928.5          | 155896          | 2.812         | 507084           | 739693  | 1646777       |              |
| Q-4 65           |                |                 |               |                  |         |               |              |

.

----

NORTH AMERICAN POCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

## TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

## 4-SYSTEM 1 5-SUBSYSTEM 12 SUBSYSTEM INSTALLATION AND CHECKOUT

|                            | MAN-<br>Months | LABOR<br>HOURS | LABOR<br>Rate | LABUF<br>DOLLAR S | BURDEN<br>Doll Ars | LABUR +<br>Burden \$ | ENGR<br>MATL |
|----------------------------|----------------|----------------|---------------|-------------------|--------------------|----------------------|--------------|
| Q-1 66<br>Q-2 66<br>Q-3 66 |                | 92             | 4.380         | 403               | 301                | 764                  |              |
| TOTAL                      | 34149.0        | 5840546        |               | 20100337          | 24230438           | 44330775             |              |

-

----

.

NURTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CUNTRACT NAS9-12100

#### APRIL 1972

#### TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 12 SUBSYSTEM INSTALLATION AND CHECKOUT

|                  | MEG<br>Matl         | TCTAL<br>MATERIAL | MPC           | SUB<br>TUTAL   | GεA    | IDWA                       | TGTAL<br>Cost |
|------------------|---------------------|-------------------|---------------|----------------|--------|----------------------------|---------------|
| <b>Q</b> −1 53   |                     |                   |               | 73             |        |                            | 73            |
| Q-2 53           |                     |                   |               |                |        |                            |               |
| ų́−3 53          |                     |                   |               |                |        |                            |               |
| Q-4 58           |                     |                   |               |                |        |                            |               |
| Q-1 59           |                     |                   |               | 1030           |        |                            | 1030          |
| Q-2 59           |                     |                   |               |                |        |                            |               |
| Q-3 59           |                     |                   |               | 19311          |        |                            | 19311         |
| <b>9-4</b> 59    |                     |                   |               |                |        |                            |               |
| <b>G-1</b> 60    |                     |                   |               | 1271C          | 242    |                            | 12952         |
| Q-2 60           |                     |                   |               |                |        |                            |               |
| G-3 65           |                     |                   |               | 86039          | 2131   | 25832                      | 114002        |
| 6-4 50           |                     |                   |               |                |        |                            |               |
| 0-1 ol           |                     |                   |               | 168176         | 19146  | 862112                     | 1049434       |
| 0-2 61           | <b></b>             | <b></b>           |               |                |        |                            |               |
| u-3 61           | 314664              | 314664            | 26589         | 1776060        | 47176  | 762616                     | 2585852       |
| Q = 4 - 61       | 11527/0             | 11527/0           | 00017         |                |        |                            |               |
| Q <b>-1</b> 62   | 1153769             | 1153769           | 909 <b>17</b> | 6105879        | 102487 |                            | 6208366       |
| 9-2 62           | 1/636.00            | 1/50500           | 1 1 0 2 0 2   | 000.1144       |        |                            |               |
| Q-3 62           | 1653580             | 165358C           | 130302        | 9030164        | 151571 |                            | 9131735       |
| Q-4 62           | 1//7317             | 1// 701 7         |               | 702/100        |        |                            |               |
| Q-1 63<br>Q-2 63 | 1467317             | 1467317           | 144 53 1      | 7036190        | 117645 |                            | 7153835       |
| Q-2 65<br>Q-3 63 | 2217861             | 2217861           | 218459        | C. 6 / 1 6 6 / | 140000 | <b>7 7</b> 0 <b>7 7 7</b>  | 100000        |
| Q-4 63           | 2211001             | 2211001           | 210409        | 9541556        | 169208 | 578537                     | 10289301      |
| Q-1 64           | 1286574             | 1286574           | 137149        | 6623174        | 189172 | 22 - <b>7</b> 2 <b>2</b> 0 | 2070/7/       |
| 0-2 64           | 1200514             | 1200014           | 131147        | 0020114        | 109112 | 2257330                    | 9079676       |
| <u>u-3 64</u>    | 1100129             | 1100129           | 400227        | 9186026        | 199305 | 180726                     | 0564 157      |
| Q-4 64           | 1100120             | A L D D L C D     | 400261        | 9100020        | 122207 | 100720                     | 9566057       |
| 0-1 65           | 409925              | 409925            | 122009        | 3971448        | 106052 | 3530                       | 4081030       |
| Q-2 65           | , , , , , , , , , , | 147767            |               | - / / 1 7 7 6  | 100072 | 1000                       | 4001000       |
| 6-3 65           | 269109              | 2691.)9           | 480/19        | 1963895        | 52531  | 5062                       | 2021488       |
| 0-4 65           |                     |                   |               |                |        | 300Z                       | CULLTIG       |
|                  |                     |                   |               |                |        |                            |               |

.

NORTH AMERICAN ROCKWELL CORP. SPACE DIVISION DATA PREPARED UNDER NASA CONTRACT NAS9-12100

.

**`~**\_\_\_

## TIME PHASED EXPEND. B-70 AIRCRAFT STUDY

4-SYSTEM 1 5-SUBSYSTEM 12 SUBSYSTEM INSTALLATION AND CHECKOUT

|                  | MEG<br>MATL | TUTAL<br>MATERIAL | MPC     | SUB<br>Total | GδA          | I DW A  | TOTAL<br>COST |
|------------------|-------------|-------------------|---------|--------------|--------------|---------|---------------|
| Q-1 66<br>Q-2 66 | 5?27        | 5227              | 1034    | 7075         | 213          |         | 7288          |
| Q-3 66           | -30023      | -30023            | -1846   | -31869       | <b>-96</b> 0 |         | -32329        |
| TOTAL            | 9848132     | 9848132           | 1318030 | 55496937     | 1155919      | 4035745 | 61338601      |