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Abstract 

Two micromechanical models . were developed to investigate the thermal expansion of 

graphite/copper (Gr/Cu) composites. The models incorporate the effects of temperature-dependent material 

properties, matrix inelasticity, initial residual stresses due to processing history, and nonunifonn fiber 

distribution. The first model is based on the multiple concentric cylinder geometry, with each cylinder 

treated as a two-phase composite with a characteristic fiber voiume fraction. By altering the fiber volume 

fraction of the individual cylinders, unidirectional composites with radially nonunifonn fiber distributions can 

be investigated using this model. The second model is based on the inelastic lamination theory. By varying 

the fiber content in the individual laminae, composites with nonunifonn fiber distribution in the thickness 

direction can be investigated. In both models, the properties of the individual regions (cylinders or laminae) 

are calculated using the method of cells micromechanical model. Classical incremental plasticity theory is 

used to model the inelastic response of the copper matrix at the micro-level. 

The models were used to characterize the effects of nonunifonn fiber distribution on the thermal 

expansion of Gr/Cu. These effects were compared to the effects of matrix plasticity, choice of stress-free 

temperature, and slight fiber misalignment. It was found that the radially nonuniform fiber distribution has 

little effect on the thermal expansion of Gr/Cu but could become significant for composites with large fiber

matrix transverse CTE and Young's modulus mismatch. The effect of nonuniform fiber distribution in the 

through-thickness direction of a laminate was more significant, but only approached that of the stress-free 

temperature for the most extreme cases that include large amounts of bending. Subsequent comparison with 

experimental thermal expansion data indicated the need for more accurate characterization of the graphite 

fiber thermo-mechanical properties. Correlation with cyclic data revealed the presence of a mechanism not 

considered in the developed models. The predicted response did, however, exhibit ratcheting behavior that 

has been observed experimentally in Gr/Cu. Finally, simulation of the actual fiber distribution of particular 

specimens had little effect on the predicted thermal expansion. 
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A composite material is formed by reinforcing one material with another. The result is a new 

material with properties distinct from either of the constituents. Composites are classified by the type of 

matrix material (polymer, ceramic, or metal) and by the type of reinforcements (particles, chopped fibers, 

or continuous fibers) . Continuous fiber-reinforced metal matrix composites consist of a metal matrix rein

forced with continuous fibers. This type of composite may have unidirectional fibers only, or it may have 

layers with fibers oriented in different directions. The latter type of fiber-reinforced composite is referred 

to as a laminate. 

Figure 1.1 shows a micrograph of unidirectional graphite/copper (Gr/Cu), a continuous fiber

reinforced metal matrix composite, with the long fiber direction perpendicular to the page. Composite 

materials are desirable for many applications because they are generally stiff and strong but low in 

density. This is the case for Gr/Cu. Copper is displaced by the less dense graphite fibers, so the 

composite is lighter than pure copper. In addition, the fibers are stiffer and stronger than pure copper in 

the long fiber direction, thus the composite is stiffer and stronger in this direction as well. 

In recent years, many new applications have become apparent for composite materials, partially 

fueled by reduced manufacturing costs and improved quality. However, use of composites actually dates 
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Figure 1.1: Micrograph of a cross-section of unidirectional Gr/Cu. Dark circles are graphite fibers, light 
areas are copper. Courtesy of S.M. DeVincent. 

back a long time. Wood, one of the first structural materials used by man, is a natural composite. It 

consists of lignin, an amorphous polymer, reinforced with cellulose fibers (Ashby and Jones, 1980). One 

of the oldest and most common man-made composites is reinforced concrete. Steel rods are imbedded in 

the concrete in the direction of loading to increase the strength of the material. Fiberglass is a good 

example of another composite that has been in use for decades. This and other polymer matrix composites 

are easy to manufacture because of the low melting or softening temperatures of polymers. Thus, polymer 

matrix composites have been used extensively for applications including boat components and sporting 

goods. Ceramic matrix composites have also found a niche in the sporting goods industry. 

Many of the current generation high-performance aircraft are manufactured partly from 

composite materials. Examples include the boron/epoxy horizontal stabilizer of the Grumman F-14, and 

the vertical and horizontal stabilizers of the McDonnell-Douglas F-15 (Jones, 1975). The main drawback 

J 
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of polymer matrix composites is the same characteristic that makes them easy to manufacture; namely 

their low softening temperature. Thus for elevated temperature applications for aircraft and reentry 

vehicles, metal matrix composites are desirable. Metal matrix composites are much more difficult to 

manufacture, but the weight savings over un-reinforced metals can be dramatic. This is why there is 

currently much research focusing on metal matrix composites such as silicon carbide/titanium. This and 

other metal matrix composites may potentially become major structural materials for aerospace 

applications well into the next century. 

One might wonder why entire structures are not made from the reinforcement material since it 

provides superior strength and stiffness and lower density than unreinforced metals. The answer is that 

reinforcement materials such as graphite, boron, and silicon carbide are ceramics. Thus they are brittle 

and susceptible to rapid crack growth and fracture. When drawn into fibers, many of these materials have 

oriented microstructures, giving them highly favorable properties in one direction at the expense of the 

properties in the other directions. In addition, some inclusion materials, such as graphite, oxidize 

significantly in air at temperatures well below the melting point of matrix metals. By combining fibers 

with metals, the most desirable properties of both materials are preserved while many drawbacks 

associated with the individual materials are eliminated. 

Gr/Cu is unique from other metal matrix composites in several ways. Copper exhibits the 

highest thermal conductivity of any metal, but it also has a high density and a high coefficient of thermal 

expansion (CTE). By reinforcing copper with graphite fibers, the density and longitudinal thermal 

expansion are significantly reduced while the thermal conductivity remains quite high. This unique 

combination of features has made Gr/Cu a leading candidate material for high heat transfer applications 

in which low weight is a design consideration. These applications include heat exchangers for spacecraft 

and reentry vehicles. The leading edges of the airfoil of the proposed national aerospace plane (NASP) 

were to reach temperatures on the order of 1450° C as the vehicle reentered the atmosphere (Upadhya, 

1992). NASA proposed to actively cool the leading edges with a hydrogen slurry. To make this process 

efficient, the material from which the heat exchanger is manufactured should have a high thermal 

conductivity. A lower density, high thermal conductivity material such as Gr/Cu ~ save weight, 
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allowing reentry vehicles like the NASP to operate more economically. The same holds for spacecraft 

power thermal management systems. As an example, for the SP-lOO nuclear power system, the mass of 

the radiators may account for as much as 90% of the total mass of the power system (Ellis, 1992). Using 

Gr/Cu for this application will save weight. Thus, NASA is interested in developing Gr/Cu composites 

and better understanding their thermo-mechanical behavior. The thermal expansion of this material is of 

particular importance since it is likely that Gr/Cu components will experience a wide range of 

temperatures over their lifetimes. 

Composites may seem ideal for many applications, but drawbacks do exist which depend on the 

particular material system. For metal matrix composites such as Gr/Cu, these drawbacks include the 

difficulty and the expense of manufacturing them. The fabrication of Gr/Cu has been the topic of much 

research at NASA Lewis. Bonding between the fiber and the matrix has been a problem because graphite 

surfaces are not easily wetted by copper. Evidence suggests that by adding a small amount of chromium 

to the copper matrix, the fiber/matrix bonding can be significantly improved (DeVincent, 1994a). 

Non-uniform fiber distribution has been identified as another problem that may affect the 

properties and performance of Gr/Cu. For a composite to possess optimal properties, the reinforcement 

phase should typically be distributed as uniformly as possible. Regions with a low density of inclusions 

behave more like the matrix material, and they may potentially degrade the overall behavior of the 

composite. An exception to this rule is the emerging class of functionally graded composites in which the 

distribution of the reinforcement phase is deliberately tailored for specific applications. Micrographs of 

the Gr/Cu specimens tested for this investigation revealed that the material may contain large channels of 

copper with few fibers. Figure 1.2 shows these channels in a Gr/Cu specimen. The current investigation 

seeks to determine the effects of these copper channels, and non-uniform fiber distribution in general, on 

the thermal expansion of Gr/Cu. The thermal expansion of this material is important not only because of 

the large change in temperature it experiences during fabrication, but also because of the hundreds of 

thermal cycles that it will experience as part of a spacecraft power system or a reentry vehicle. 

This thesis outlines the development and implementation of two micromechanical models that 

were used to investigate the thermal expansion of Gr/Cu composites with non-uniform fiber distribution. 
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Figure 1.2: Micrograph of a cross-section of a unidirectional Gr/Cu thermal expansion specimen. Note 
the presence of large copper chamiels. Courtesy of S.M. DeVincent. 

The first model combines elements of the multiple concentric cylinder model (Pindera et aI. , 1992, 1993) 

with the method of cells (Aboudi, 1989) to simulate the thermal expansion behavior of composites with a 

radial variation in fiber distribution. This model will be referred to as CCMICRON. Figure 1.3a shows a 

composite with radially nonuniform fiber distribution that could be modeled with CCMICRON, and 

Figure l.3b illustrates how the microstructure at a point in a cylinder can be modeled with the method of . 

cells. The second model combines elements of the classical lamination theory (Jones, 1975) with the 

method of cells to allow fiber distnbution variation in the through-thickness direction. This model will 

be referred to as MCLAM. Figure 1.4a shows a composite with fiber distribution that is nonuniform in 

the through-thickness direction that could be modeled with MCLAM, and Figure 1.4b illustrates how the 

microstructure at a point in a layer can be modeled with the method of cells. 

The method of cells is employed to evaluate the effective properties of each composite cylinder in 

the case of CCMICRON, and each composite layer in MCLAM. Since the stresses that arise in the 

composite due to the thermal expansion mismatch between the fiber and matrix phases can cause yielding 

in the matrix, an inelastic constitutive theory is needed to model the thermal expansion accurately . In 

both models, the inelastic constitutive theory used is classical incremental plasticity. Classical 
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Figure l.3a: A composite with radially nonuniform fiber distribution. 
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Figure 1.3b: The micro-scale geometry of inhomogeneous cylinders in an assemblage of concentric 
cylinders represented by the method of cells. 
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Figure 1.4a: A composite with nonuniform fiber distribution in a Cartesian direction. 
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Figure 1.4b: The micro-scale geometry of a laminate represented by the method of cells. 
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incremental plasticity is employed to model the response of the copper matrix at the micro-level (the 

subcellievel). The strains that arise at a particular location in a composite cylinder or a composite layer 

are considered to be acting on a repeating unit cell consisting of a fiber subcell and three matrix subcells. 

Yielding can then occur in any of the three matrix subcells in the unit cell, and if it does, the inelastic 

strains that arise at the particular location in the composite cylinder or composite layer are calculated 

using the method of cells. 

Although a fair amount of work has been done to investigate the effect of nonuniform fiber 

distribution on the mechanical properties of composites, relatively little effort has been expended to 

characterize the thermal expansion behavior of composites with nonuniform microstructures. The next 

chapter reviews the work done to date on characterizing the effects of nonuniform fiber distribution on the 

thermo-mechanical response of composites. Most of the work has involved modeling, but several purely 

experimental investigations also have been conducted. By examining the work that has been done to date 

on this subject, the justification for the present investigation becomes apparent. 
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2.1 Overview 

Much effort has been expended in modeling the thermal and mechanical response of composites 

during the past 30 years. As an increasing number of factors that affect the response of these materials 

became apparent, different models were developed that take these factors into account. These factors 

include anisotropy and temperature-dependent properties of the phases, plasticity of the matrix, inclusion 

microstructure, imperfect interfacial bonding, complex fiber geometries, and inhomogeneous fiber 

distribution. 

The idea of investigating the effect of the proximity or arrangement of inclusions on the overall 

composite response while holding the fiber volume fraction constant is not particularly new. In 1967, an 

elastic finite difference model was used by Adams and Doner (1967a) to investigate transverse normal 

loading of a unidirectional continuous-fiber composite. A doubly periodic rectangular array of fibers in a 

matrix was considered, and the shape and volume fraction of the fibers was varied. This model was used 

again by the same authors to examine longitudinal shear loading of a unidirectional composite (Adams 

and Doner, 1967b). This latter investigation considered the effect of fiber distribution by modeling the 

composite as a square array of fibers in the matrix and comparing the resulting predicted composite shear 
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modulus with the predictions of the composite cylinder assemblage model developed by Hashin and Rosen 

(1964). It was determined that the square packing arrangement results in a higher shear modulus when 

the fiber volume fractions of both arrangements are identical. The investigation also pointed out the fact 

that closely spaced fibers produce high stress concentrations in the matrix. 

An early analytical investigation of the effects of different fiber arrangements was performed by 

Pickett (1968). An elasticity formulation based on the Airy stress function approach was used to 

determine the composite stiffness matrix for hexagonal and rectangular arrays of continuous 

unidirectional fibers in an elastic matrix. However, the emphasis was placed on varying the fiber volume 

fraction and the properties of the fiber; results were not presented for a variation in the packing 

arrangement with all other relevant parameters held constant. 

When continuous fiber composites are modeled, unit cells are usually constructed in the cross

section perpendicular to the long fiber direction. Thus, long cylindrical fibers appeared as circles. For 

short fiber or whisker composites, it is often preferable to consider a cross-section parallel to the long fiber 

direction. Thus, short cylinders appear as rectangles. This latter type of cross-section was considered by 

Chang and Conway (1968). An analytical approach was employed in this investigation. The plane strain 

elasticity problem was solved for an infinite sheet containing columns of short fibers subjected to normal 

loading in the fiber direction. The representative volume element (RYE) considered consisted of the 

rectangle of matrix between two adjacent aligned short fibers. A point-matching technique was used to 

impose interfacial continuity. The effect of different fiber distributions was examined by varying the 

aspect ratio of the RYE, but in doing this, the amount of fiber in the RYE changed as well. Thus the 

effect of the variation in fiber distribution or spacing was not isolated. 

Adams (1970) performed a finite-element analysis of unidirectional continuous-fiber composites 

subjected to transverse normal loading taking into account the elastoplastic response of the matrix until 

failure. Analysis was performed for square and rectangular arrays of fibers which were modeled using a 

unit cell consisting of a rectangle of matrix surrounding a single fiber (with appropriate boundary 

conditions). The rectangular fiber array was oriented such that in the direction of the applied load the 

fiber spacing was smaller (i.e., shorter sides of rectangle parallel to loading). The results showed that the 
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stress concentration in the matrix and the transverse stiffness were far greater for the rectangular array 

than the square array. It was also found that the square array exhibited more matrix yielding than the 

rectangular array. This is expected since the rectangular array exhibits a higher fiber volume fraction in 

the loading direction than does the square array. 

In recent years, several finite-element investigations have been performed that, like the early 

work of Adams, take into account fiber distribution by use of different unit cells. Brockenbrough and 

Suresh (1990) considered fiber shape and fiber packing in continuous fiber composites simultaneously 

with unit cells representing square edge-packed square fibers, square diagonal-packed square fibers, 

hexagonally-packed hexagonal fibers, square edge-packed circular fibers, and square diagonal-packed 

circular fibers using the commercially available finite-element code ABAQUS. The matrix was 

considered to be elastoplastic. The term "square edge-packed" refers to an array in which the squares 

(whose comers are the fibers) are aligned such that the edges are parallel to the transverse axes while 

"square diagonal-packed" refers to the same array rotated 45° with respect to the transverse axes. The 

results indicated that for axial tension, the packing arrangements have no effect since they are all 

equivalent in this direction. In response to transverse tension, on the other hand, it was found that for 

both square and circular fibers, the square diagonal-packed arrangements exhibited lower yield and more 

plastic flow than the square edge-packed arrangements. This is in agreement with the results of Adams, 

since in the transverse direction the square-diagonal packed arrangement has greater fiber spacing. The 

square edge-packing has a higher effective fiber volume fraction in the transverse direction, thus the 

properties of the fiber are more dominant. 

A random distribution of 26 square fibers was also considered by the authors in the same study. 

The longitudinal response of the random distribution was very close for all of the packing arrangements 

considered, while the transverse response corresponded most closely to the response of the square edge

packed square fibers . This suggests that square edge-packing best models the response of an actual 

composite. 

In a similar study performed by Brockenbrough et al. (1990) using the same finite-element 

model, the response of square edge, square diagonal, triangular, and random arrays with continuous 
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circular fibers was investigated. Triangular-packing is equivalent to hexagonal-packing. Elastoplastic 

stress-strain curves were generated for longitudinal and transverse normal, as well as transverse shear 

loading. For all packing arrangements the response to longitudinal loading was elastic to failure and very 

similar. The predicted response of composites with the different packing arrangements to transverse 

normal and transverse shear loading was presented in the form of elastic modulus, yield stress, and degree 

of hardening. The square edge-packing arrangement provided the highest values for each of these 

properties, followed by random packing, triangular-packing, and square diagonal-packing. Again, 

expected trends were obtained given the fiber spacing in the loading direction. The response of the 

random fiber distribution arrangements subjected to shear and transverse normal loading lay nearly 

halfway between the response of the square edge and triangular packing arrangements, but slightly closer 

to that of the triangular-packing. 

In another investigation performed by Nakamura and Suresh (1993) using ABAQUS and the 

same packing arrangements, more random packing cases were considered, and the analysis was repeated 

after a cool-down from 520°C to account for residual stresses. The matrix was treated as elastoplastic. 

The trends due to fiber packing arrangement were the same as those found by Brockenbrough et aJ. 

(1990). Transverse composite CTEs were also generated for the different configurations by taking the 

average of the lateral expansions in the two transverse directions. The transverse CTEs were similar for 

each packing arrangement, and no trend was apparent. Nakamura and Suresh also presented a single 

value for the longitudinal CTE and stated that the value was independent of fiber packing arrangement. 

Mueller (1994) developed a nonlinear finite-element model to investigate the effect of hexagonal 

and square packing arrays on the predicted thermo-mechanical properties and the plastic behavior (for 

transverse normal loading) of continuous boron/aluminum composites. It was found that the packing 

arrangement did not significantly affect the predicted longitudinal mechanical properties but did 

significantly affect the predicted transverse mechanical properties. Neither the predicted longitudinal nor 

transverse CTE was affected by the packing arrangement. Comparison of the plastic behavior of the 

composite predicted using the two packing arrangements revealed that the square packing arrangement 

. exhibits significantly more hardening than the hexagonal packing arrangement. 
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A different approach using a finite-element model was taken by Bigelow (1992) to examine the 

effects of non-uniform fiber distribution. A rectangular packing arrangement of 16 continuous fibers was 

considered. One fiber was then moved successively closer to one of its neighbors, until the two fibers were 

touching. The magnitude of each stress component was then examined in the matrix region between the 

two fibers. It was found that as the space between fibers decreased, each stress component became 

proportionally greater in this matrix region. It was concluded that the stress concentration in the region 

was sufficiently large to cause local yielding and fiber-matrix debonding. 

WiSDom (1990) used ABAQUS to examine the transverse tensile strength of unidirectional 

continuous fiber composites using interface failure criteria to account for a weak fiber/matrix bond. The 

matrix was treated as elastoplastic. One factor considered was the effect of two different packing 

arrangements, namely rectangular and diamond (which is nearly hexagonal). The method by which the 

fiber packing arrangement was accounted for was different in this case. Instead of considering two 

different unit cells, the same unit cell was considered with different boundary conditions to account for the 

interaction of adjacent fibers. Results indicated that the different packing arrangements did not affect the 

transverse strength significantly. This conclusion is disputed by Nakamura and Suresh (1993) who 

observed significant shifts in the post-yield stress-strain response based on packing arrangement. 

A finite-element model was also used by Hiemstra and Sottos (1993) to investigate the interaction 

of four continuous fibers in an infinite matrix subjected to a uniform change in temperature. The spacing 

among the fibers was varied, and it was found that smaller spacing of the fibers resulted in higher radial 

and hoop stresses at the interface. Predictions of the location of the onset of microcracking were also 

made, and they were shown to be consistent with experimental evidence. 

Dragone and Nix (1990) addressed the non-uniform inclusion distribution problem using a finite

element model to simulate creep in composites reinforced by long plate-like inclusions. The reinforcing 

plates were considered to be infinite in one direction and finite in the other two. The load was applied in 

the infinite plate direction, and power law creep was used to model the response of the matrix. The unit 

cell, taken from a cross-section of the infinite direction, included eight plate-like inclusions initially 

aligned in two columns of four. The middle two plate-like inclusions of each column were moved toward 
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the outside of the unit cell to form new inclusion patterns. The results showed that increased shifting of 

the plates caused higher stresses and creep in the matrix, while the stresses in the inclusions were highest 

for the aligned arrangement. 

A uniform distribution and two different clustering arrangements of aligned short fibers or 

whiskers were modeled by Christman et al. (1989) using a finite~lement approach. The unit cells were 

taken from the plane parallel to the fiber direction. Normal loading parallel to the whiskers was 

simulated, and stress-strain curves, hydrostatic stress distributions, and plastic strain distributions were 

generated. The investigation indicated that higher degrees of clustering result in lower yielding and more 

plastic flow. 

Tvergaard (1990) also considered a uriit cell from the plane parallel to the direction of aligned 

short fibers. In this case the unit cell consisted of one quarter of a fiber and the surrounding matrix that 

forms a rectangle. A finite~lement model was employed to examine the response of short fiber 

composites subjected to normal loading in the fiber direction. Fiber distribution was taken into account by 

varying the aspect ratio of the unit cell, and in order to maintain a constant fiber volume fraction, the 

aspect ratio of the fiber had to be changed as well. Thus as the fiber distribution was changed, the size 

and shape of the fiber were changed as well. Therefore the effect of the fiber distribution was not isolated 

in this investigation. 

McHugh et al. (1993) used a materials science-based approach to investigate the response of a 

particle reinforced composite. The authors employed an elastic-viscoplastic two-dimensional polycrystal 

finite~lement model based on crystallographic slip theory that considers individual hexagonal grains. 

The reinforcement phase was introduced by replacing individual matrix grains with reinforcement 

particles. Thus the inclusion arrangement could be easily altered. Two of the arrangements considered, 

rectangular and rhombus, had the same inclusion volume fraction The model simulated the application of 

normal uniform displacement. It was found that the rectangular arrangement produces higher strain 

concentrations in the matrix near the inclusions. This higher degree of strain concentration allows the 

strain field in a larger volume of the matrix to be relatively low in magnitude compared to the rhombus 

arrangement during elastic deformation. Thus the rectangular arrangement provides a stronger constraint 
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on plastic flow than the rhombus arrangement because a lower volume of the matrix is subjected to 

concentrated strain. 

The Ritz method, which deals with minimizing potential energy, was used by Martin and Leissa 

(1989) to determine the elastic stress and displacement fields in a unidirectional composite sheet with 

variable fiber spacing. The fiber volume fraction could be varied as a function of the transverse direction. 

The case analyzed was a parabolic variation in the fiber content with a high fiber volume fraction in the 

middle and low fiber volume fraction at the edges of the sheet. . Cases with several different boundary 

conditions were examined. While most of the results presented focus on the convergence of the required 

numeric integration, it was found that under transverse loading regions with low fiber volume content 

experience greater displacements. 

Pandey and Sherbourne (1993) used potential energy minimization to examine the prebuckling 

stress fields in composite plates with inhomogeneous fiber distributions, which were introduced by 

allowing the fiber volume content to vary in the transverse direction. It was found that a parabolic fiber 

distribution, like that investigated by Martin and Leissa, is an effective way to increase the transverse 

buckling load of composite plates. 

A shear lag analysis was performed by Ochiai and Osamura (1989a) to examine the stress 

concentration in a continuous-fiber composite plate with non-uniform fiber spacing and broken fibers. 

The plate modeled consisted of two intact fibers on either side of three broken fibers in an elastoplastic 

matrix subjected to in-plane shear. The positions of the intact fibers were varied, and the stresses in each 

fiber were found. It was determined that the stress in the intact fibers was more dependent on the 

proximity to the broken fibers than the proximity to another intact fiber. Small spaces between the intact 

fibers and the broken fibers lead to higher stresses in the intact fibers, as did large spaces between adjacent 

intact fibers . 

Ochiai and Osamura (1989b) subsequently used the same model to investigate the tensile 

strength of a composite plate with non-uniform fiber spacing. In this case, the plate modeled consisted of 

a repeating pattern of three fibers separated by large spaces followed by three fibers separated by small 

spaces. The composite was subjected to longitudinal tension, and the strength of each fiber was taken 
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from statistical data via a Monte Carlo method. The simulation was also performed on a composite plate 

with the same number of fibers with uniform fiber spacing. Results indicated that due to stress 

concentration in the regions with small spaces between fibers, the tensile strength of the composite with 

non-uniform fiber spacing was smaller than the tensile strength of the composite with uniform fiber 

spacing. 

A shear lag model was also used by Karbhari and Wilkins (1991) in an investigation to study 

fiber-matrix debonding in a unidirectional continuous fiber composite under normal loading in the fiber 

direction. Concentric cylinder geometry was considered. The formulation included a term to account for 

the proximity of the nearest neighbor fiber to the one being considered in the concentric cylinder. This 

term depends not only on the fiber volume fraction, but also on a packing factor. The packing factor can 

be chosen to simulate different fiber packing arrangements. This investigation considered hexagonal and 

square packing as well as the cylindrical RVE alone with no interaction from other fibers . The generated 

results consist of the out-of-plane shear stress at the fiber-matrix interface and the axial stress distribution 

in the fiber. The effect of the two different packing arrangements was shown to be small, but there was a 

difference between the two arrangements and the cylinder with no other fiber interaction. The inclusion 

of the outside fibers in the analysis decreased the interfacial shear stress as well as the longitudinal stress 

in the fiber. This suggests that interactions from closely situated fibers can have a significant effect on the 

stress field near the fibers. 

In order to examine a different kind of variation in fiber spacing, Pagano and Brown (1993) 

considered a concentric cylinder assemblage consisting of a fiber embedded in a matrix annulus which 

was surrounded by composite annuli with 0.2 and 0.6 fiber volume fractions. Thus, the fiber was 

surrounded by a composite with a fiber volume fraction that increased in a step-wise manner with 

increasing radius. The interface was permitted to debond and radially propagating annular cracks were 

introduced. A variational model was employed in which the fiber and matrix were treated as isotropic and 

elastic to failure . The loading considered was combined uniform radial pressure and a uniform 

temperature change. It was found that a lower fiber volume fraction near the fiber and the surrounding 

matrix lead to a higher energy release rate, higher stresses, and thus faster crack propag~tion. 
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Pindera and Freed (1992) considered a similar geometric arrangement. The concentric cylinder 

assemblage model was combined with the method of cells to model unidirectional fibers in an elastic 

matrix with elastoplastic inclusions. The·inclusion volume fraction in the matrix was varied radially from 

0.0 at the fiber/matrix interface to 1.0 at the outer radius of the assemblage. The opposite case (high 

inclusion content near the fiber, low inclusion content in the outer region) was also considered. Results 

were generated in the form of residual stress distributions in the matrix due to a change in temperature of 

-1425 OF. It was found that the radial, longitudinal, and hoop stresses were greater for the case of low 

inclusion volume fraction near the fiber than the opposite case. 

There have also been several experimental investigations into the effect of non-uniform fiber 

distribution. MacKay (1990) used scanning electron microscopy to examine unidirectional Ti-15V-3Cr-

3AI-3SnlSCS 6 SiC composites for microcracks. The microstructure of the composite was such that the 

fibers were arranged in rows; very closely spaced in one direction, and widely spaced in the other. It was 

found that microcracks due to cool down from fabrication temperatures were present in the matrix and in 

the outer layer of the fiber in regions of close fiber spacing. These microcracks are believed to be caused 

by large hoop stress concentrations in the aforementioned regions due to the close fiber spacing. 

Komenda and Henderson (1993) performed creep tests on short alumina fibers in AI - 0.3 Cu 

matrix. In order to account for scatter in the results, a method to quantify the fiber spacing was 

developed. A graphical method was used to represent a composite cross-section as fiber-rich zones and 

fiber-free zones. Then a parameter called the coefficient of variation of fiber-free zone size was defined as 

the standard deviation in the fiber-free zone size divided by the mean fiber-free zone size. This parameter 

accounted for the scatter in the creep test results, and proved to be a more important factor than fiber 

volume fraction alone for composites with fiber volume fractions of 0.1, 0.2, and 0.3. 

Tensile tests were performed by Zhenhai et a/. (1991) on unidirectional composites consisting of 

bundles of graphite fibers in an aluminum matrix. At failure, the bundles, rather than the individual 

fibers, pulled out of the matrix, resulting in a higher composite tensile strength than would be the case if 

individual fibers pulled out. The bundle pull-out occurred because the bundle regions had high strength 

due to high local fiber volume fraction while the inter-bundle regions had low yield strengths. The 
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bundles were more difficult to pull out than individual fibers, so the composite strength was greater 

relative to similar composites with uniformly distributed fibers. 

A recent series of papers authored by Rammerstorfer and co-workers deserves special attention. 

This work, performed in Austria, represents the only in-depth investigation into the effects of non-uniform 

fiber distribution on the thermal expansion behavior of composites to date. As described below, it is all 

based on finite-element analysis. 

Siegmund et al. (1992) considered the thermal expansion behavior of a short fiber metal matrix 

composite. Temperature-dependent properties were used for both the fiber and the matrix, and the matrix 

was treated as elastoplastic. A rectangular unit cell consisting of one quarter of a fiber and the 

surrounding matrix taken from a plane parallel to the long fiber direction (i.e., plane in which short fibers 

appear as rectangles) was used for the finite-element analysis. Staggered and non-staggered fiber arrays 

were analyzed separately with constant fiber volume fraction, constant fiber aspect ratio, and variable unit 

cell aspect ratio. Varying the unit cell aspect ratio corresponds to moving the fibers closer together in one 

direction and farther apart in the other. It was found that this variation had little effect on the thermal 

expansion of the staggered arrangement, but in the non-staggered arrangement, larger unit cell aspect 

ratios (i.e., larger end-to-end spacing of fibers, smaller side-to-side spacing of fibers) lead to a 

significantly larger amount of thermal expansion. This can be explained by the fact that the staggered 

array is more isotropic, and the shifting makes less of a difference than in the non-staggered array. In the 

non-staggered array, the greater aspect ratio leads to a larger area of fiber-free matrix which causes the 

greater thermal expansion. 

B6hrn et al. (1993) used a similar approach to model a wide range of fiber arrangements with 

varying degrees of fiber staggering for short fiber metal matrix composites. The results were presented 

only qualitatively. While the response to axial mechanical loading did not vary significantly with the 

degree of staggering, the overall thermal expansion behavior did vary significantly. The fact that the 

thermal expansion of the less staggered arrangements showed significant dependence on unit cell aspect 

ratio (as was found in the previous investigation) was also mentioned. This investigation also addressed 

modeling of unidirectional continuous fiber composites. Once again, a finite-element model treating the 
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matrix as elastoplastic was used, but in this case the unit cells were taken from the plane perpendicular to 

the fiber direction. A hexagonal array, a square array, three perturbed square arrays, and a clustered 

square array of fibers were considered. A great deal of numerical and graphical results were presented for 

each fiber arrangement. The significant result from the stand point of the present investigation is that, as 

was the case in Nakamura and Suresh (1993), the predicted longitudinal and transverse CTEs for the 

continuous fiber composites showed little variation with fiber arrangement, and no trend was apparent. 

Weissenbek and Rammerstorfer (1993) considered short fibers in staggered and unstaggered 

arrangements with varying unit cell aspect ratios. As was the case in previous investigations, it was found 

that the thermal expansion of the staggered arrangement had little dependence on the unit cell aspect 

ratio, while the unstaggered arrangement showed a large degree of dependence. As the aspect ratio 

changed, resulting in larger areas void of fibers and larger areas with a high density of fibers, the thermal 

expansion increased. 

Weissenbek et al. (1993) examined the thermal response of particulate composites by considering 

several three-dimensional unit cells with the inclusions in simple cubic, face centered cubic, and base 

centered cubic arrangements. Cubic, spherical, and cylindrical inclusions were modeled. A finite

element model was used with the matrix treated as elastoplastic. Results indicated that the three particle 

arrangements considered had no significant effect on the thermal expansion. Thus, this type of inclusion 

non-uniformity in which packing arrangements are considered is different than shifting short fibers with 

respect to each other, which was shown in the previous investigations to have a significant effect. 
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2.2 Role of the Present Investigation 

The majority of the investigations discussed in the previous section examine the effect of different 

periodic fiber arrays on the mechanical properties, stress fields, and yield behavior of composites. Most of 

the inclusions that were considered were continuous fibers or short fibers. Some of the investigations 

account for the nonuniformity in the distribution of the fibers by considering random fiber packing 

arrangements. Some considered a geometry taken from a plane perpendicular to the fiber direction, while 

others considered a geometry taken from a plane parallel to the fiber direction. Some of the work done in 

the area is analytical and some is experimental, but most is numerical, based on the finite-element 

approach. Typically, the investigations revealed that different fiber arrangements do have a significant 

impact on the quantities being studied. Thus, in general, it can be inferred that nonuniform fiber 

distribution may be an important factor influencing the response of composites. 

Little work has been done to characterize the effect of nonuniform fiber distribution on the 

thermal expansion of composites. Nakamura and Suresh (1993) presented composite CTEs for different 

continuous fiber packing arrangements through the use of a finite-element model and found that the fiber 

packing had no effect. A similar result was published by Mueller (1994). The finite-element 

investigations by Rammerstorfer and co-workers addressed the thermal expansion of short fiber 

composites with different periodic fiber arrangements and found the effect of the packing arrangement to 

be significant. However, when they investigated different fiber packing arrangements in continuous fiber 

composites, they too found no significant effect (Bohm et aI. , 1993). 

The most important conclusion that follows from the work of Rammerstorfer and co-workers is 

that regions in a composite with a lower density of inclusions than the overall composite can have a 

significant effect on the thermal expansion of composites. Thus there is reason to believe that nonuniform 

fiber distribution can affect the thermal expansion of continuous-fiber composites. A more thorough 

investigation for continuous-fiber composites thus appears to be warranted. An analytical approach is 

taken in the current investigation rather than the finite-element approach that has been used previously. 

Thus the models developed herein can be used in a more efficient manner than those developed previously 
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to examine similar effects. Furthermore, instead of accounting for fiber distribution through fiber packing 

arrangements, the present investigation considers macroscopic nonuniform fiber distributions. As will be 

demonstrated, this approach allows the simulation of the actual microstructures of individual composite 

specimens. This cannot be done when considering micro-scale packing arrangements. 

The model referred to as CCMICRON, developed in this thesis, is similar to the model of Pindera 

and Freed (1992). It has some additional features, such as thermal cycling capability rather than a 

monotonic temperature change, and it admits fibers that are transversely isotropic rather than simply 

isotropic. The model referred to as MCLAM also has these features. Both models are used in this thesis 

to examine the longitudinal and transverse thermal expansion of unidirectional Gr/Cu composites. The 

fiber is treated as transversely isotropic and elastic, and the matrix is treated as isotropic and elastoplastic. 

Both the fiber and the matrix are considered to have temperature-dependent properties. In CCMICRON, 

the composite is modeled as a cylinder with a step-wise variable fiber volume fraction in the radial 

direction, while in MCLAM the step-wise fiber volume fraction variation is in the through-thickness 

direction. Residual stresses from fabrication are accounted for by cooling the composite from an assumed 

stress-free consolidation temperature before heating it to simulate a thermal expansion test. 

In summary, the effect of non-uniform fiber distribution on the thermal expansion of composites 

has not been thoroughly addressed. The approach taken in the current investigation is different than the 

previous investigations that addressed the thermal expansion of continuous fiber composites with different 

fiber packing arrangements (Nakamura and Suresh, 1993; Mueller, 1994; B6hm et ai. , 1993). Instead of 

varying the fiber packing arrangement, macro-scale nonuniformity is simulated by allowing the fiber 

volume fraction to vary in a piece-wise manner in the radial or through-thickness direction. In addition, 

efficient analytical models are developed in contrast to the finite-element models used previously. 
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This chapter outlines the development of the multiple concentric cylinder model, inelastic 

lamination theory, the method of cells, and classical incremental plasticity theory. Section 3.4 describes 

the procedure through which the method of cells is incorporated into both the concentric cylinder model 

and lamination theory to produce the computer codes CCMICRON and MCLAM, respectively. Section 

3.5 discusses the solution procedure for the models. As discussed in Chapter 1, CCMICRON is capable of 

modeling the thermal expansion of composites with radially nonuniform fiber distribution (see Figure 

l.3). Similarly, MCLAM is capable of modeling the thermal expansion of composites with fiber 

distribution that is nonuniform in the through-thickness direction (see Figure 1.4). 
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3.1 Multiple Concentric Cylinder Model 

Figure 3.1 illustrates the geometry that is the basis for the multiple concentric cylinder model 

(Williams and Pindera, 1994b). The core of the assemblage of cylinders is denoted by the subscript or 

superscript "I" and the outermost shell by On". An arbitrary shell is denoted by "k" and has inner radius 

rk _1 and outer radius rk . Traction and displacement components are assigned a "." superscript at the inner 

radius and a "+" superscript at the outer radius. The coordinate system is cylindrical with the origin at the 

center of the assemblage. The displacement components in the coordinate directions ( x, e, r) are, 

respectively, (u, v, w). 

A displacement formulation is used to solve the boundary value problem with time independent 

plasticity under the assumption of generalized plane strain. For axisymmetric loading, the displacement 

x 
Fiber 

Matrix 

%B--+-++--- r 

Figure 3.1: Multiple concentric cylinder geometry. 
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components take the form 

U=U(X)=EoX, V=O, w=w(r) (3 .1) 

where Eo is the uniform longitudinal strain throughout the assemblage. Utilizing standaId strain-

displacement relations yields, 

w(r) 
E(}(}=--, . 

r 

dw(r) 
E = ----'-"'-

rr dT (3 .2) 

with the shear strain components identically zero. Applying the equations of equilibrium, recognizing that 

the stress components, like the strain components, are at most functions of the coordinate r, yields, 

(3.3) 

as the only surviving equation. 

It is desired to express the differential equation (3.3) in terms of displacements. To do so stress-

strain equations are needed. For an orthotropic material in cylindrical coordinates with thermal and 

inelastic strains, but in the absence of shear strains, the stress-strain relations are given by, 

(3.4) 

where E jj are total normal strains, E:: are plastic normal strains, and a jj (T -1'0) are thermal strains. 1'0 

denotes the reference temperature and T represents the current temperature. 

Substituting (3.2) into (3 .4) and then the result into (3 .3), the following governing differential 

equations are obtained in terms of displacements for the three cases: 

-.------------- ........ ___ . _________ J 
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Transversely Isotropic, Elastic Layers (C;r(} = C;rr , C(}(} = err' a(}(} = a rr ) 

(3 .5a) 

Orthotropic, Elastic Layers 

Transversely Isotropic, Inelastic Layers 

(3.5c) 

The plastic strain distribution is assumed to be known at the start of each loading increment. 

For thermal loading, there are no tractions on the outside of the assemblage, 

(3 .6) 

while continuity of interfacial tractions and displacements requires that, 

~-J(rk_J) = ~(rk_J) . (3 .7) 

Further, for unconstrained thermal expansion, longitudinal equilibrium across the cross-sectional area of 

the assemblage, Ac, is satisfied by the condition 

(3.8) 

The solutions to the differential equations given in (3.5) are obtained in the form, 



Transversely Isotropic, Elastic Layers 

Orthotropic, Elastic Layers 

A 
w(r) = A)r+-2 

r 

(c -C ) L (C .-C .) w(r) = A r). + .d r-). + 9c rx re + n BI a .. r (T - I) 
) ~ (C -C ) 0 (C -C ) II 0 

rr (}(} i=:r.B.r rr (}(} 

Transversely Isotropic, Inelastic Layers 

where rk _ ) ~ r ~ rk in the kth layer. 
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(3 .9a) 

(3.9b) 

Thus the displacement field is known in terms of two unknown coefficients in each layer, A)k and 

~ , the uniform longitudinal strain, e o, and the plastic strain distributions. Since the radial displacement 

at the center of the assemblage must vanish, ~ must vanish for the solid core. With the use of the 

boundary, continuity, and longitudinal equilibrium conditions, equations (3.6), (3 .7), and (3 .8), 

respectively, the unknown coefficients and eo can be found. In the presence of plasticity, an iterative 

procedure must be employed since the inelastic strains are dependent upon the unknown coefficients. The 

procedure developed by Mendelson (1983) is used to accomplish this, as described in Section 3.5 . 
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It is desirable to reformulate the problem using the concept of a local stiffness matrix in order to 

reduce the number of simultaneous equations in the solution of the prescribed boundaIy-value problem. 

This procedure replaces the coefficients A: and ~ with the interfacial displacements w; and w; as the 

basic unknowns in the system of equations obtained through the application of equations (3.6), (3 .7), and 

(3 .8). The replacement entails evaluating w; and w; using equation (3.9) (i.e. , successively substituting 

rk _) and rk for r) and solving for A)k and ~ . The resulting expressions are then used to determine the 

strains in terms of the interfacial displacements from equation (3 .2), and ultimately the interfacial radial 

stresses, CY-;" and CY:, from (3.4). The results can be written in the form, 

(3 .10) 

In this expression k: are the components of the local stiffness matrix and are functions of the geometry 

and temperature-dependent elastic properties of the material. The vector elements J; k and gik account for 

the thermal and plastic effects, respectively. Expressions for these elements for the three types of layers 

described by (3 .9) are given in Appendix A. 

Restating the interfacial traction and displacement continuity conditions, (3 .7), in the notation of 

(3 .10) yields, 

~+ -~+)- =0 
" " , k = l, ... ,n-l (3 .11) 

(3 .12) 

By applying (3 .11) and (3 .12) to each interface using (3 .10), the following equations arise, 

(3.13) 
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Note that equation (3 .6) and the fact that ~ vanishes have been employed. The remaining equation 

necessary to determine eo is given by the longitudinal equilibrium condition, (3 .8), and it can be expressed 

as, 

(3 .14) 

Equations (3 .13) and (3 .14) can now be used to form the global stiffness matrix equation, 

k~ +k\2\ k~2 0 k~ +k~3 W\ 12\ + 1;2 g~ + g~ 

k;\ k;' +k\3\ k\32 W2 
0 k;\ (T-1'o)-

k n 
22 k n 

23 Wn 12n g; 

¢;2 + ¢~\ ¢; L'IIk eo LOk Lilk 

(3 .15) 

The global stiffness matrix can be constructed by superposing the local stiffness matrix of each layer along 

the matrix diagonal in an overlapping fashion, and then adding a row and a column. 

By reformulating the problem using the local global stiffness matrix approach the number of 

equations that must be solved is reduced by nearly 50% for a large number of concentric cylinders in the 

assemblage. Additionally, the global stiffness matrix is ideal for computer implementation because of its 

simple construction for an arbitrary number of layers. 

i 

.~ 
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3.2 Lamination Theory 

Figure 3.2 illustrates the lamination theory geometry. The 1-2 coordinates refer to the principle 

material coordinates of a lamina while the x-y coordinates refer to the laminate, as shown in Figure 3.3. 

Jones (1975) provides a text book derivation of the lamination theory equations without considering 

inelastic effects. Herein, the lamination theory equations are re-derived taking these effects into account. 

Assuming plane stress, the constitutive equations for a lamina in the presence of inelastic strains 

are: 

(3 .16) 

where Q; are the components of the reduced stiffness matrix for the kth layer and are functions of the 

Loyer Number 

Z 0 

Zk-\ 
H 

y 
Z k 

Z Z N-l 

ZN 

Midplane 

Figure 3.2: Lamination theory geometry. 
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Z,3 X 

Figure 3.3 : The laminate (x-y) and principle material (1-2) coordinates in a laminated composite. 

layer elastic properties (see Appendix B for equations), a~ and a~ are the layer secant CTEs, ~T is the 

change in temperature from a reference temperature, and ei, ef, and riz are the components of plastic 

strain. The rotation equations given in Appendix B are applied to (3 .16) resulting in the lamina 

constitutive equations in the laminate coordinate system: 

(3.17) 

Here, the Qi/ are the components of the rotated reduced stiffness matrix, and each vector from (3.16) has 

been rotated to x-y coordinates. 

According to the Kirchoff-Love hypothesis for plates, a plane cross-section that is originally 

. perpendicular to the midplane of the laminate (an x-y plane) remains planar and perpendicular to the 
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midplane when the laminate is subjected to bending and extension. This hypothesis leads to the following 

expressions for the in-plane displacement components, U and V : 

Ow u=uo _z __ o 
ox 

Ow 
v=vo-z-_o 

oy 
(3.18) 

where uO' vo' and wo are the midplane displacements. Using standard strain-displacement relations, the 

laminate in-plane strain components are written as 

(3 .19) 

where 

ouo 
02W __ 0 

[;IJ~ 
oX 

[;J~ 
ox2 

Ovo 0 2W __ 0 
(3.20) 

oy oy2 
Ouo Ovo 2 0 2WO --+--
oy ox oxoy 

e~, e~, and r: are the midplane strains, and K x ' Ky ' and Kry are the midplane curvatures. Combining 

(3 .17) and (3 .19) yields 

(3.21) 

The resultant laminate forces per unit length (Nx ' N y, and N ry) and moments per unit length 

(Mx ' M y, and M ry) are obtained by integrating stresses over the laminate thickness H. The integration 

is performed in a piecewise manner across each layer as indicated below. 
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(3 .22) 

(3 .23) 

Substituting (3 .21) into (3 .22) and (3 .23) yields, 

(3.24) 

(3 .25) 

Recognizing that the midplane strains, midplane curvatures, and lamina eTEs are independent 

of Z, the following definitions are introduced: 

-----



-, 

33 

[Bll B12 ] [-. -I: -.] B16 N QII QI2 Q16 

BI2 Bn B26 = I Q1~ -I: -I: 2 2 
Q22 Q2: (ZI: - ZI:_1) 

B16 B26 B .. 1:=1 QI: -I: 
66 16 Q26 Q66 

(3.27) 

[ Dll D12 ] [-. -I: 

-.] DI6 N QII QI2 QI6 

DI2 Dn D26 = I Q1; 
-I: -I: 3 3 
Q22 ~ (Z. -Z._,) 

DI6 D26 D 1:=1 QI: -I: 
66 16 Q26 

(3 .28) 

where the matrix A is called the extensional stiffness, B is called the coupling stiffness, and D is called 

the bending stiffness. Additionally, 

[T] [-. 
-I: 

Q':] [ ~] N x N QII Q12 

T I-I: Q~ Q2~ ~ ~T(zl: - ZI:_I) Ny = QI2 (3.29) 

N~ 1:=1 QI~ 
-I: QI: al: Q26 66 xy 

[T] [-. 
-I: -.][ ~] Mx N QII QI2 QI6 x 

T I-I: -I: 
Q2! a; ~T( z; - Z;_I) My = QI2 Q22 (3.30) 

M~ 1:=1 QI~ -I: 
Q26 Q66 axy 

[] [-. -I: -.] [ ] N: N QII Q12 QI6 z, e: 
I -I: -I: 

Q2! I 8; (ZI: - ZI:_Jdz N: = Q12 Q22 (3.31) 

N~ 1:=1 QI~ -I: 
Q26 Q66 Z'_1 r xy 

[ ] [-. -I: -.] [ ] M: N QII Q12 QI6 z, e: 
I -I: -I: 

Q2: I 8; (Z; -Z;_I)dz M: = QI2 Q22 (3.32) 

M~ 1:=1 QI~ -I: 
Q26 Q66 Z._1 r xy 

where [ NT] and [ MT ] are the thermal force and moment vectors, and [ N P ] and [ M P ] are the plastic 

force and moment vectors. Note that the plastic strains are dependent on z, and thus the integrals in 

(3.31) and (3.32) cannot be solved a priori. 
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Using the above definitions, equations (3.24) and (3.25) can be written as 

Nr+N; +N: All Al2 AI6 Bll Bl2 BI6 £0 
r 

Ny+ N; +N; Al2 ~2 ~6 BI2 B22 B26 £0 y 

Nry +N~ +N~ AI6 ~6 ~ BI6 B26 B66 r~ (3.33) 
M +MT +MP Bll Bl2 BI6 Dl1 Dl2 DI6 Kr r r r 

M y+M; +M; BI2 E22 B26 "Dl2 D22 D26 Ky 
M +MT +MP 

ry ry ry BI6 B26 B66 DI6 D26 D66 Kry 

In order to determine the out-of-plane strain, £ z' the out-of-plane stress, uz ' is set to zero, and 

the standard constitutive equation is used to yield, 

(3.34) 

where Cijk are rotated stiffness matrix components in the kth layer, and a! = a~ for transversely 

isotropic layers. 

The six-by-six matrix in (3.33) is referred to as the ABD matrix or the laminate stiffness matrix. 

This equation is the key to lamination theory. If the loading applied to the laminate and the plastic strains 

are known, the laminate stiffness matrix is inverted, and the midplane strains and curvatures are 

calculated. Then using (3.19), the strains at every point in the laminate are calculated, and from (3.21), 

the stresses can be calculated as well. The solution procedure in the presence of plastic effects is discussed 

in Section 3.5 . 

.-- .----. - -------------- _J 
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3.3 The Method of Cells 

The method of cells, developed by Aboudi (1989), is based on the representation of a doubly 

periodic array of infinitely long fibers in a matrix by the geometry shown in Figures 3.4. The basic 

building block of this doubly periodic array of fibers in a matrix, the repeating unit cell, is shown in 

Figure 3.5. The four individual subcells that make up the unit cell are denoted by (Pr)= (11), (12), (21), 

or (22). Each subcell has a local Cartesian coordinate system denoted by XI , x2(8) , Xir) . 

The subcell displacement components are represented by a first order Taylor series expansion in 

x<P> x (r) 
2 , 3 ' 

i = 1,2,3 (3.35) 

where Wj<Pr) are the displacement components of the center of the subcell, and the microvariables tlllr) 

and ,;;'r) represent the dependence of the subcell displacements on the local coordinates. In order to 

Fiber 

Matrix 

Repealing Unil Cell 

~------------------------------------ X3 

Figure 3.4: Method of cells geometry: doubly periodic array of square fibers in the matrix. 
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Figure 3.5: Method of cells geometry: the repeating unit cell. 

obtain the effective constitutive equation for the composite, expressions for the microvariables in terms of 

the average strains of the composite are required. These expressions are found with the use of strain-

displacement relations for the subcells, subcell constitutive equations, continuity conditions between the 

subcells and between adjacent unit cells, and relations between the subcell stresses and strains and the 

average composite stresses and strains. The procedure for generating all the required relations is outlined 

below. 

The microvariables can be related to the subcell strain components through the standard strain-

displacement relations: 

&(JJr) = _ I + __ 1_ 1 (iJu (JJr) t3u(JJr) J 
ij 28ft) Irx;CO) 

i = 1,2, 3 . (3.36) 

Continuity of interfacial displacements between the four subcells within the unit cell requires that 

- - --- --------- ~ ---- ----
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(3 .37) 

and, 

(3 .38) 

These continuity conditions are applied in an average sense; the integrals of the displacement components 

along the boundary are required to be continuous. Thus, 

(3.39) 

and, 

(3.40) 

Substituting for u;Sr) in (3 .39) and (3.40) with (3.35), and perfonning the integration yields, 

w(1r) _!2 ",(1r) = w(2r) + 1. ",(2r) 
I 2 'f/, z ''2 'f', (3.41) 

and, 

/ 
w(81) +.J.. .,jJJl) = wCP2) _/ • .J112) . 

J 2 'Pj I 2 'Pi (3 .42) 

Continuity between adjacent cells is also required. Considering first the x2 -direction yields, 

(3 .43) 

and, 
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(3 .44) 

where "above" and "below" refer to the adjacent cells. Applying these conditions in an average sense, 

substituting with (3.35), and integrating yields, 

W ( lr) +!i ",(l r) I = w (2r) _ ~ ",(2r) 

• 2 'Y. • 2 'Y. 
below 

(3 .45) 

and, 

W ( lr) +!i ",( I r) = W (2r ) _ ~ ",(2r ) I . 
• 2 'Y. • 2 'Y. 

above 

(3.46) 

The quantities from the cells above and below are represented using a Taylor series expansion of the form 

Retaining only terms up to the first order in the cell dimension hp in equation (3 .45) yields, 

aw(lr) J" J" 
w (lr) _ (J" + J,,) j + ~ ",(Ir) = w (2r) _ _ "2 ",(2r). 

• "I " 2 OX
2 

2 'Y. • 2 'Y. 

Similarly, equation (3.46) becomes, 

Subtracting (3.49) from (3 .48) yields, 

and subtracting (3.49) from (3.38) yields; 

t3w(2r) 
• 

~ ",(2 r ) 
2 'Y. 

(3 .47) 

(3 .48) 

(3 .49) 

(3 .50) 
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A similar application of displacement continuity between cells in the X3 -direction yields, 

8w(J!2) 
I 

and, 

Requiring 5i-fr ) to be uniform in the cell and using (3 .36) yields, 

The conditions of (3.50), (3.52), and (3.54) can be satisfied by requiring 

w(lI ) = W(l2) = W(21) = W(22 ) = w . 
I I I I " 

The average strain components in the composite are given by 

- _ 1 2 V. (jJr) 
5if - - L Pr 5 if V P.r=1 
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(3.51) 

(3.52) 

(3 .53) 

(3.54) 

(3 .55) 

(3 .56) 

where VPr = hp Ir and V = (h. + ~ )(/1 + 12) · Substituting using (3.36), (3 .51), (3.53), and (3 .55) yields 

(3.57) 

This expression relates the gradients of the subcell center displacements to average cell strains. It will be 

used to relate the subcell strains to the average cell strains. 
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The total strain components in the subcells are represented as the sum of the elastic (e), plastic 

(p), and thermal (1) strains, 

E(fJr) = Ee(Pr) + E!,(fir) + l:!(fir) . 
IJ IJ IJ I) 

(3 .58) 

The subcell constitutive equations are used to relate the subcell stresses and strains. For transversely 

isotropic constituents with 2-3 isotropy they are given by 

d!!r) C(ftr) c{fir) c{fir) 0 0 0 • (fir) 
11 11 12 12 Ell 

d:!!,r) c (Pr) c{fir) c{fir) 0 0 0 e (fir) 
22 . 12 22 23 E22 

d!!,r) c(ftr) c{fir) c{fir) 0 0 0 • (fir) 
33 12 23 22 E33 (3 .59) 

d!!,r) c{fir) 2 e (fir) 
12 0 0 0 44 0 0 E12 

d!!r) 
13 0 0 0 0 C (ftr) 

44 0 2 E! (fir) 
13 

~r) 0 0 0 0 0 c{fir) 
66 

2 e (fir) 
E23 

where c~r) = ~ (c~r) - c~r» ) . Note that the shear strains, E~ (fir) (i :f:. j) , are tensorial quantities. 

The average stress components in the composite are given by 

- - 1 ~ V. S(fir) 
(Jij - - L- Pr ij 

V P.r=1 

where Sitr) are the average subcell stresses, given by 

(3 .60) 

(3.61) 

However, from (3 .36) and (3.55) it is clear that the subcell strain components are independent of x2(ft) and 

xir) Then from (3 .59), eftr) are independent of x2(ft) and xi') as well, and (3.61) reduces to, 

S (j3r) = d!!r) . 
IJ I) 

(3.62) 

- .. - - -- - - ... . .. __ .. --- -_. -.---~ 
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Equations (3.60) and (3.62) will be used to relate the subcell stresses and the average cell stresses. 

Substituting (3 .37) into (3.62) and using (3 .36), (3.54), (3.55), and (3.57), as well as the condition of 

incompressibility of plastic deformation, 

p (fir) + ~ (fir) + ~ (fir) - 0 
8 11 22 33- (3 .63) 

the following relations are obtained: 

s(JJr) = c(JJr) f: + C(JJr) ",(JJr) + C(fir) .. ffir) _ [CCBr) a(fir) + (CCBr) + CCBr» ) a CBr) ]I:J.T 
22 12 11 22 'f'2 23 'f/3 12 I 22 23 2 

_ (CCBr) _ C(JJr») ~ (fir) 
11 12 33 

(3.64) 

where a c;r) are the subcell CTEs. It should be noted that the coefficients of the inelastic terms are 

specialized to an isotropic material because the inelastic constitutive theory that will be used is applicable 

only for an isotropic material. If the material is transversely isotropic, it is required to be elastic in both 

CCMICRON arId MCLAM. 

As the last step in generating the effective constitutive equations, continuity of tractions is 

applied along the subcell arId cell interfaces in arI average sense yielding 

SC1 r) = S (2r ) 
2i 2i (3.65) 
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S (f!i) = S(j!2) 
3; 3i (3.66) 

At this point, there is a sufficient number of equations to solve for the microvariables to obtain the overall 

composite stress-strain relations. From (3.51) with i = 2, 

(3.67) 

(3.68) 

where h = ~ + ~ . Similarly, from (3 .53) with i = 3, 

(3 .69) 

(3 .70) 

where / = II + /2. From (3 .65) with i = 2, using (3.64) and (3.67)-(3.70), we obtain: 

em (1 ~) ",(22) em i .. ..(11) em .. ..(22) _ em ~ - em i - _ (em _ em)( p (12) _ _ p (22») 
22 + '1-'2 + 23 0/3 + 23 '1/3 - 22 8 22 + 23 8 33 11 12 8 22 en 

~ 12 ~ 12 

(3.72) 

.. _ __ J 
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where F/ =C:2~ +(C22 +C~)d2 (i=j,m). Recognizingthatthe(ll)subcellisoccupiedby 

the fiber while the remaining subcells are occupied by matrix, "f' and "m" superscripts have been used in 

(3 .71) and (3 .72). From (3.66) with i=3, using (3.64) and (3.67)-(3 .70), we obtain: 

Cf ",(II) Cm ~ ",(22) (Cf em 'I J .. ,(11) - (em ef )- em h - em' -
23 '1"2 + 23 -'1"2 + 22 + 22 - 'P3 - 12 - 12 &1 1 + 23 -&22 + 22 -&33 

~ '2 ~ '2 (3 .73) 

(FT FT) AT (em em) p (12) (ef em) p (11) 
- m - f Ll - II - 12 &33 + II - . II &33 

(3 .74) 

Equations (3.71) - (3 .74) form a set of simultaneous equations that can be written, 

0 AI ~ A3 ¢~Il ) JI 
A4 0 As ~ ¢~22) J2 

A7 As ~ 0 ~II ) J3 
(3.75) 

AJO All 0 AJ2 ~22) J4 

Equation (3 .75) can then be inverted to solve for the rnicrovariables, 

¢~Il) 7; ~ ~ ~ JI 

¢~22) 1's 1;, T., Tg J2 
(3.76) = 

~J1) T:; 7;0 7;1 7;2 J3 

~22) 
7;3 7;4 7;5 7;6 J4 

Where explicit expressions for 4, 1;, and Ji are given in Appendix C. 

The remaining rnicrovariables involved in the normal stress-strain relations can be determined 

using (3 .67) - (3.70). Then using (3.60) and (3 .64) the composite constitutive relations are obtained in the 

form, 
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(3 .77) 

where b ij are components of the effective stiffness matrix, H ij contain the plastic terms, and a; are the 

effective composite CTEs. The effective CTEs that arise from the method of cells are identical to those 

predicted by Levin's formula (Aboudi 1991). The expressions for bij , Hij ' and a; are given in Appendix 

C. 

For a square cell and square subcells (i.e., ~ = ~ and II = 12 ) , bl2 = b]3 ' b22 = b33 , and 

b 44 = b 55. This leaves 6 independent elastic constants, rather than 5 for the transversely isotropic case. It 

is desirable to have cylinders in CCMICRON and layers in MCLAM that are transversely isotropic (with 

isotropy in the plane transverse to the fiber direction). Thus the effective stiffness matrix components are 

rotationally averaged about the X I axis to yield a transversely isotropic set of effective stiffness 

components. The results of this averaging procedure are given in Appendix C. 

The effective shear stress-strain relations are not needed for CCMICRON since all shear 

components of stress and strain are zero for the axisymmetric loading that is considered in the 

development of the model. For MCLAM, while the out-of-plane shear stress and strain components 

(0"]3,6]3,0"23,623 ) in a lamina are zero, the in-plane shear stress and strain components (0"12,612 ) are, 

in general, non-zero. Thus, effective in-plane shear stress-strain relations are needed. 

From (3 .51) with i=l, we obtain: 

h Owl _ ~ ¢~22) 
",(12) _ t3x2 
'1'1 - --=------

~ 

and from (3.65) with i=l, using (3 .64), we have: 

(3.78) 

(3 .79) 



- --- .. -.~-. ~ ' . ' ... _---_ .. _ .. __ ._-

ef (~(II) + Ow2 J -2 ef Ef. (II) = em (~(21) + Ow2 J- 2 em p (21) 
44 'f'1.::l 44 12 44 'f'1.::l 44 8 12 

v~ v~ 

~(12) _ 2 P (12) = ~(22) _ 2 P (22) 
'f'1 8 12 'f'1 8 12 , 
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(3.80) 

(3 .81) 

Equations (3 .78) and (3 .80) can be solved for ¢;II) and ¢;21) while (3.79) and (3 .81) can be solved for 

~(12 ) d ~(22 ) 
'f'1 an 'f'1 . 

(3.82) 

(3 .83) 

~(12) _ Owl + 2' ~( P (12) _ p (22») 
~ - ~2 ~2 

f}x
2 

h 
(3 .84) 

",(22 ) _ Owl -2!i( P (12) _ p (22 ») 
'f'1 - 8 12 8 12 f}x

2 
h 

(3 .85) 

The remaining constitutive relation can then be determined as follows. 

2 

- - 1 "v: s(f3r) - 2b - H 
0"12 - V ~ fir 12 - 44 8 12 - 12 (3 .86) 

P,r;:1 

- 1 ( Owl Ow2 J . b H .. . C thi where 8 12 = - --+ -- . The expressions for 44 and 12 are glVen In Appendix . At s 
2 fJw

2 
fJw

l 

point, everything that is needed from the method of cells for CCMICRON and MCLAM has been 

determined. 
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3.4 Incorporation of the Method of CeUs into CCMICRON and MCLAM 

The process of incorporating the method of cells into CCMICRON and MCLAM is 

straightforward. CCMICRON relies on the effective properties for each cylinder and MCLAM relies on 

effective properties for each layer. These effective properties, in the form of effective stiffness components 

and effective CTEs, are determined from the method of cells using equations (3.77) and (3 .86) given in 

the preceding section. For elastic cases, this is all that is necessary. However, for cases in which 

plasticity is present, the microgeometry of the method of cells is utilized again. 

In CCMICRON, the stress and strain components are dependent on the radial distance, r. In 

MCLAM, the stress and strain components are dependent on the through-thickness position, z. In both 

models the plastic strains are integrated over the model geometry to find the plastic force terms in 

equations (3.15) and (3 .33). To accurately account for this variation in the plastic strain integrals, the 

individual cylinders in CCMICRON and the individual layers in MCLAM are divided into 20 regions. 

This results in 21 evaluation points in each cylinder or layer, where the first and last point coincide with 

the individual cylinder or layer boundaries. The stress and strain components at these 21 points are 

continuously updated throughout the specified loading cycle. When plasticity is present, the strain 

components are evaluated from the solution of equation (3.15) or (3.33) at a particular evaluation point 

and subsequently applied as the average cell strains within the method of cells. It should be noted that for 

MCLAM, the average cell strains correspond to the strains at the evaluation point in the principle 

material (1-2) coordinate system for the layer. The subcell strains are then determined from (3.36). The 

results are, 

&<pr) _ ",<Pr) 
22 - 'f/2 

&<pr) = .. lOr) 
33 '1/33 

(21) C£,;(~ +~) -
G - G 

12 - ~C~ +~C£,; 12 

-----~ 
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E(12) = £i22) = &: 
12 12 12 (3 .87) 

where the microvariables are obtained from the solution of equation (3.76). 

Thus, the subcell strains are known at each evaluation point. The knowledge of the average and 

subcell strains allows the determination of plastic strain increments within each subceII using the classical 

incremental plasticity theory equations presented in Section 3.6. These subcell plastic strain increments 

are then used to evaluate increments in the plasticity terms (the Hi} terms) in (3 .77) and (3 .86). The Hil 

increments are then used to determine the macroscopic plastic strain increments from, 

dd. = dH12 

12 b 
44 

(3 .88) 

These plastic strain increments are then used to re-evaluate the plastic force terms, resulting in new 

macroscopic strains at each evaluation point upon solution of the respective global equations, (3 .15) and 

(3.33). The new estimates of the total macroscopic strains at the various radial or through-thickness 

locations are then passed to the method of cells, and the process is repeated, as described in the following 

section, until the desired convergence is achieved. 

To summarize the process, when plasticity is present, the strain components at the evaluation 

points obtained from CCMICRON and MCLAM are taken as the average cell strain components in the 

method of cells. The subcell strains are then calculated and used to evaluate the subcell plastic strain 

increments using the classical incremental plasticity theory equations. These are then employed to 

calculate the macroscopic plastic strain increments. 
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3.5 Solution Procedure 

In CCMICRON and MCLAM, the sets of equations that must be solved are given by (3.15) and 

(3.33) respectively. They can both be written in the form, 

(3 .89) 

where SM is a type of stiffness matrix, ~ is a vector consisting of the unknown displacements in the case 
--- -

of CCMICRON, or midplane strains and curvatures in the case of MCLAM, F m 
is the mechanical force 

vector, FT is the thermal force vector, and F P is the plastic force vector. In the derivation presented in 

Section 3.1, it is assumed that there is no mechanical loading for CCMICRON. In both models, when 

plasticity is present, equation (3.89) cannot be solved for ~ directly because the components of F P 

depend on total strain components, which themselves depend on the components of ~ . Since ~ is not 

known, the total strain components cannot be evaluated directly, and neither can the components of F P
. 

Thus an iterative process is necessary, together with application of mechanical and thennalloading in an 

incremental manner. 

Once yielding has occurred, the plastic strains are set to what they were after the completion of 

the previous loading increment. The loading is incremented (Le., a small temperature or mechanical 

loading step is applied) and the appropriate equations are used to calculate the components of the plastic 

force vector based on the previous plastic strain values. The thermal and mechanical force tenns are 

known exactly, so (3.89) can be solved for the unknown vector, ~. The components of this vector are the 

interfacial radial displacements and the uniform axial strain in CCMICRON, and the midplane strains 

and curvatures in the lamination theory. These tenns are then used to evaluate the strain field in the 

cylindrical assemblage or laminate. These new strain values are then used to calculate plastic strain 

increments through the use of the method of cells and the classical incremental plasticity constitutive 

theory. If the plastic strain increments are non-zero, the assumption that the plastic strains were the same 

------ - --------- ------ ._._J 
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as they were after the previous loading increment was incorrect. The strain increments are added to these 

previous plastic strains following the procedure outlined by Mendelson (1983), 

e!'. = e!'./ + de! 
I) I) prwious I) 

(3 .90) 

where d8f; are the plastic strain increments. Section 3.6 will discuss how the plastic strain increments 

are calculated using the classical incremental plasticity theory. 

Using the new values for the plastic strain components, the components of the plastic force vector 

are re-evaluated. Clearly, from (3.89), when the plastic force vector components change, the components 

of the unknown vector will change as well. The total strain field is modified, thus the plastic strains 

change again, and the process must be repeated. Eventually, after a number of iterations, the plastic 

strains converge, and another loading increment can be applied. 

As noted in the previous section, since the strain components depend on the radial coordinate r in 

CCMICRON and the through-thickness coordinate z in MCLAM, they must be evaluated at a number of 

points in each cylinder or layer. The integrals that appear in the plastic force vector (see Appendix A and 

equations (3.31) and (3.32» are evaluated numerically based on the plastic strains at a number of points in 

each layer or cylinder. Twenty-one evaluation points are used for this purpose. 
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3.6 Classical Incremental Plasticity Theory 

The inelastic constitutive theory used in CCMICRON and MCLAM is based on modified 

Prandtl-Reuss incremental classical plasticity equations proposed by Mendelson (1983). Omitting the 

designation (fir) that identifies a given subcell for notational simplicity, the plastic strain increments for 

each subcell are calculated from 

dB{; =e; d). (3 .91) 

where e;. is the modified strain deviator and d)' is a proportionality constant that ensures that the stress 

vector remains on the yield surface during plastic loading (Williams and Pindera, 1994b). The modified 

strain deviator is defined as 

(3 .92) 

where Gy' is the total strain tensor for the subcell, and 8ij is the Kronecker delta. It should be noted that 

the shear strains in this section are tensorial quantities. The proportionality constant, d)' , is given by 

(J 
d)' = 1- eff 

3GGet 

(3 .93) 

where G is the subcell shear modulus, (Jeff is the effective stress in the matrix subcells, and Get is the 

equivalent modified total strain. d)' > ° for plastic loading, and d)' ~ ° for neutral loading or 

unloading. In the modified Prandtl-Reuss equations proposed by Mendelson, the von Mises yield 

condition is built into (3 .93); if d)' ~ 0, no further yielding takes place. The equivalent modified strain 

required in (3 .93) is given by, 

(3 .94) 
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where the modified strain deviator, e~. , is known from (3.92). 

The stress-strain response of the fiber is taken to be linearly elastic and temperature-dependent, 

and the elastoplastic matrix is taken to be bilinear and temperature-dependent. Input data for the models 

are required in the form of the yield stress (Y) and the post -yield slope of the stress-strain curve 

("hardening slope", H) at a user-determined number of temperatures. The effective stress in the matrix is 

given by, 

(Yejf = He~ +Y (3 .95) 

where e:". is the effective plastic strain, calculated from 

(3 .96) 

where the effective plastic strain increment is given by 

(3.97) 
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This chapter addresses the effects of matrix plasticity, stress-free temperature, nonuniform fiber 

distribution, and misalignment of fibers on the thermal expansion of Gr/Cu composites. The objective is 

to determine under what conditions these effects are important and should be considered in modeling the 

thermal response of real Gr/Cu composites. The examination of the effect of nonuniform fiber 

distribution comprises the majority of the chapter. Radially nonuniform fiber distribution and fiber 

distribution that is nonuniform in the through-thickness direction are modeled using CCMICRON and 

MCLAM, respectively. 
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4.1 Material Properties 

In order to model the effective thermal expansion of Gr/Cu, material properties for graphite 

fibers and copper are needed as input data to the models described in the previous chapter. The required 

properties are the Young's moduli, the Poisson's ratios, the axial shear moduli (for transversely isotropic 

materials), the CTEs, and two quantities that characterize the inelastic behavior, namely the yield stress 

and the hardening slope. The constitutive response of inelastic materials is taken to be bilinear; the slope 

of the post-yield response is called the hardening slope (HSP). Table 4.1 gives the material properties for 

PIOO graphite fibers and OFHC copper at a number of temperatures, together with the source of the data. 

The ability of the models to accurately predict the composite behavior depends on the reliability 

of the material properties of the individual constituents. Unfortunately, the properties of the PI00 

graphite are not well characterized. The mechanical properties of the graphite fibers from Yolk et. al. 

(1991) were backed out of a concentric cylinder model, while the fiber axial CTEs were obtained from 

measurements using a fiber dilatometer. The transverse fiber CTEs, on the other hand, were backed out 

using Chamberlain's equation with experimental transverse thermal expansion data for Gr/Cu (Ellis, 

1992). These values may contain some error since Chamberlain's equation assumes that the composite 

behaves elastically (Raghava, 1988). 
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P100 Graphite Fibers 

Temp EA ET GA vA VI 
10C:t;oF 10C:J;oF of Msi Msi Msi 

70 100 0.5 · 1.42 0.41 0.45 -5.03 0 
100 100 0.5 1.42 0.41 0.45 -4.75 1.2 
300 100 0.5 1.42 0.41 0.45 -2.27 9.2 
500 100 0.5 1.42 0.41 0.45 -0.208 14 
700 101 0.5 1.42 0.41 0.45 0.992 14.4 
900 102 0.5 1.42 0.41 0.45 2.53 14.8 

1100 103.5 0.5 1.42 0.41 0.45 4.97 15.6 
1300 104.5 0.5 1.42 0.41 0.45 5.45 16.3 
1500 105.5 0.5 1.42 0.41 0.45 5.45 17.1 
1700 106.5 0.5 1.42 0.41 0.45 5.45 17.9 

Source 1 1 1 1 1 2 2 

OFHC Copper 

Temp E v 0. cry HSP 
OF Msi 10-6/oF Ksi Msi 

70 18.8 0.35 8.18 10.3 1.425 
100 18.7 0.35 8.28 9.97 1.403 
300 18.0 0.35 9.35 9.37 1.270 
500 17.2 0.36 10.1 8.95 1.126 
700 16.4 0.37 10.7 8.42 1.000 
900 15.5 0.375 11.6 6 .15 0.760 

1100 14.5 0.38 12.0 3.87 0.521 
1300 13.2 0.38 12.3 2.25 0.363 
1500 11 .7 0.37 12.6 1.25 0.282 
1700 9.8 0.35 14.7 0.27 0.204 

Source 3 3 3 3/4 3/4 

Table 4.1: Material properties for PI00 graphite fibers and OFHC copper. Sources: 1 - Yolk et. a/. 
(1991); 2 - Ellis (1992); 3 - Rocketdyne Materials Properties Manual (1987); 4 - NASA Lewis Research 
Center (1992). 
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4.2 Effect of Plasticity 

It is generally accepted that matrix yielding can occur in metal matrix composites when they are 

subjected to sufficiently high temperature changes. This is due to the large mismatch in the CTE of 

ceramic fibers and metallic matrices. When a temperature change is applied to a composite, the fiber and 

matrix tend to expand or contract by different amounts, especially in the direction of the fibers . However, 

since the fiber and matrix are bonded together, they must expand or contract the same amount in the fiber 

direction. This gives rise to stresses that are often high enough to yield the matrix. 

If the effect of plasticity is ignored, the stresses in the matrix will continue to increase with 

increasing thermal load to a level that may be unrealistic for the material, resulting in a predicted 

composite response that will also be unrealistic. Figures 4.1 and 4.2 present a comparison of predictions 

for the longitudinal and transverse thermal expansion of Gr/Cu with an elastic matrix and an elastoplastic 
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Figure 4.1 : Longitudinal thermal expansion of 50 vlo Gr/Cu. Comparison between elastic and 
elastoplastic analysis. MCLAM was used with uniform fiber distribution to generate the composite results 
shown. 



56 

2.5 

-...- Ptastic 
0.5 

---- OFHCCopp..-

--Pl00Fiber 

0+---~==~------1-------1-------1-------1-------1-------~------~ 

200 400 600 600 1000 1200 1400 1600 
T ___ I"Fl 

Figure 4.2: Transverse thermal expansion of 50 vlo Gr/Cu. Comparison between elastic and elastoplastic 
analysis. MCLAM was used with uniform fiber distribution to generate the composite results shown. 

matrix. A stress-free temperature of 1700 of was employed in the calculations. MCLAM was used to 

model this uniform unidirectional composite starting at 1700 of, decreasing the temperature 

incrementally to 70 of, and then increasing the temperature incrementally to 1500 of to model a thermal 

expansion test. CCMICRON yields identical results since for composites with uniformly distributed 

fibers, the models are the same. For plotting purposes, the thermal expansion curve of the composite was 

shifted to eliminate the change in length induced during the fabrication cool-down. The thermal 

expansion curve then simulates a thermal expansion test which begins at 70 OF, with the thermally 

induced strain during the heating cycle measured relative to the specimen's dimensions at this 

temperature. This slUfting of the curve to eliminate strain induced during the processing history is done 

for all thermal expansion plots presented in this investigation. 

Thermal expansion curves are presented rather than plots of the instantaneous effective CTE of 

the composite because plastic deformation is an irreversible process. A CTE can only be defined when the 

thermal expansion is reversible since a CTE represents a material property independent of previous 

J 
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deformation history. This is the case when a single phase material is subjected to thermal loading, or 

when the effects of prior inelastic deformation in multi-phase materials shake down due to sufficient 

strain hardening in the inelastic phases. 

Figure 4.1 shows that plasticity has a major effect on the longitudinal response of Gr/Cu. For 

temperatures up to 300 of the elastic and plastic predictions are the same since the matrix has not yet 

yielded. After yielding occurs, the plastic response diverges substantially from the elastic response. In the 

plastic case, the stresses in the matrix do not build up to the high levels observed in the elastic case. The 

matrix defonns much more easily in the plastic range, so its ability to restrain or transfer stress to the fiber 

is diminished. Thus the response is more dominated by the fiber in the plastic case than in the elastic 

case. 

Figure 4.2 shows that the effect of plasticity on the thermal expansion is not as great in the 

transverse direction, but it is still substantial. Again, the elastic and plastic responses are identical until 

matrix yielding initiates at approximately 300 OF. The result that the predicted transverse composite 

response is not bounded by the transverse response of the fiber and the matrix indicates that the Poisson's 

effect has a significant impact. Since the copper matrix tends to expand more than the fiber in the 

longitudinal direction during heating, the fiber restrains the copper, placing the copper in compression. 

Thus, in addition to the positive thermal expansion in the transverse direction, there is a positive 

mechanical strain in the matrix in the transverse direction induced by the compressive stress in the 

longitudinal direction. 

Matrix plasticity is a major factor affecting the thermal response of Gr/Cu. As the figures 

indicate, matrix yielding can occur at temperatures as low as 300 OF. The melting temperature of copper 

is 1981oF, so yielding is occurring well within the useful temperature range for pure copper. Thus 

treating the material as elastic and employing a yield-limited design strategy would reduce the service 

temperature of Gr/Cu components to a level that would render them ineffectual for most high heat flux 

applications. Alternatively, treating Gr/Cu as elastic at higher temperatures results in unrealistic 

predictions. Therefore, to obtain a useful and realistic model of the response of this composite, matrix 

inelasticity must be included at the expense of a simple analytical solution. 
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4.3 Effect of Stress-Free Temperature 

When a thermal expansion test is performed on a composite, the expansion is usually measured 

as a change in length from room temperature. However, as briefly discussed in the preceding section, 

room temperature is not the true starting point of the thermal history of the composite. During the 

manufacturing process the composite is subjected to an elevated temperature required for consolidation of 

the fiber and matrix phases. In the case of Gr/Cu and most other metal matrix composites, the life of the 

composite begins near the melting temperature of matrix. The composite is then cooled to room 

temperature, which itself amounts to thermal loading. At some point during cool down, the molten or 

softened metal forms a bond with the fibers, and residual stresses arise because of the CTE mismatch just 

as they do during a thermal expansion test. Thus at the start of a thermal expansion test, high residual 

stresses may already exist in the composite, and the matrix may have already yielded. The residual 

stresses can have a profound effect on the behavior of the composite, and it is thus necessary to take these 

stresses into account when modeling the thermal expansion of metal matrix composites. 

To account for residual stresses, a stress-free temperature other than room temperature is chosen. 

This is a temperature at which it is assumed that no stresses initially exist in the composite. The 

temperature cycle is started at the stress-free temperature and incrementally decreased to the starting 

temperature of the simulated thermal expansion test. The actual thermal expansion is then modeled by 

incrementally increasing the temperature, and the resulting thermal expansion curve is shifted, as 

described in the previous section, so that the starting temperature of the simulated thermal expansion test 

corresponds to zero thermal expansion. 

The choice of the stress-free temperature can have a profound effect on the thermal expansion 

behavior. Figures 4.3 - 4.8 show the thermal expansion curves for stress-free temperatures of 1500 OF, 

1000 OF, and 70 OF when the fiber volume fraction ranges from 0.70 to 0.30. Several trends should be 

noted from these figures. Higher stress-free temperatures result in greater thermal expansion in both the 

longitudinal and transverse directions. For the longitudinal direction, this may be attributable to greater 

strain-hardening of the matrix during cool down from higher stress-free temperatures. This increases the 
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Figure 4.3: Longitudinal thermal expansion of 70 vlo PIOO Gr/Cu for three stress-free temperatures 
(SITs). 
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Figure 4.4: Transverse thermal expansion of 70 vlo PIOO Gr/Cu for three stress-free temperatures (SFfs). 
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Figure 4.6: Transverse thermal expansion of 50 vlo PlOO Gr/Cu for three stress-free temperatures (SITs). 
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Figure 4.7: Longitudinal thermal expansion of 30 v/o PIOO Gr/Cu for three stress-free temperatures 
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yield stress of the matrix, thus allowing the matrix to transfer greater stresses to the fibers at higher 

temperatures. In the longitudinal direction, the effect of the stress-free temperature becomes more 

profound with decreasing fiber volume fraction. In the transverse direction, however, the effect of the 

stress-free temperature becomes less pronounced with decreasing fiber volume fraction. 

Since the results presented in Figures 4.3 - 4.8 indicate that the effect of stress-free temperature 

may potentially be significant, a method is needed to estimate at what point during the fabrication cool

down residual stresses initiate. Developing such a method is complicated by the difficulty in identifying 

the point at which a chemical bond forms between the fiber and the matrix. An additional complication 

arises due to time-dependent or viscoplastic response of copper at elevated temperatures and the associated 

relaxation of the residual stresses during the fabrication cool-down. Viscoplasticity becomes significant 

for metals at temperatures starting from between 0.3 and 0.4 times the absolute melting temperature 

(Ashby and Jones, 1981). This places the range for copper between 273 OF and 517 OF. Thus, for Gr/Cu, 

stress relaxation in the matrix may be an important factor. 

A potential solution is to estimate bounds for the stress-free temperature. A conservative 

estimate of the stress-free temperature is obtained by assuming that the composite is stress-free when the 

matrix is near its molten state. A stress-free temperature that is as high as possible with the known matrix 

properties is chosen in this case. For copper this temperature is 1700 OF. A lower estimate of the stress

free temperature is obtained by employing a model which accounts for time-dependent or viscoplastic 

effects. Incorporating a viscoplastic constitutive scheme directly into CCMICRON and MCLAM was 

beyond the scope of this investigation. However, to gain a better understanding of the residual stress 

build up during cool down, a multiple concentric cylinder model developed by Williams and Pindera 

(1994a) was employed. This model allows the user a choice of several viscoplastic constitutive theories to 

model the inelastic response of the matrix phase. 

The multiple concentric cylinder model was used with the classical incremental plasticity and 

Freed-Walker viscoplasticity theories to compare stresses in the matrix near the fiber-matrix interface 

after fabrication cool-down. The viscoplasticity theory developed by Freed et al. (1993) for application to 

copper and its alloys has been shown to be generally accurate. Figures 4.9 - 4.11 show the matrix 
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Figure 4.9: Matrix interfacial axial stress in 55 v/o Gr/Cu using multiple concentric cylinder model by 
Williams and Pindera (l994a) with Freed-Walker viscoplasticity and classical incremental plasticity. 
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Figure 4.10: Matrix interfacial radial stress in 55 v/o Gr/Cu using multiple concentric cylinder model by 
Williams and Pindera (l994a) with Freed-Walker viscoplasticity and classical incremental plasticity. 
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Figure 4.11 : Matrix interfacial hoop stress in 55 v/o Gr/Cu using multiple concentric cylinder model by 
Williams and Pindera (1994a) with Freed-Walker viscoplasticity and classical incremental plasticity. 

interfacial stress components predicted using the Freed-Walker viscoplasticity theory after cool-down from 

1700 OF to room temperature in 15 minutes, simulating the actual cooling time of a unidirectional Gr/Cu 

plate after consolidation via pressure infiltration casting (DeVincent, 1994b). Included in the figures are 

the predictions obtained using the classical incremental plasticity theory to simulate cool-down from 

several different temperatures. The results based on the viscoplastic model for the copper matrix show 

that the radial and hoop stress build up slowly from 1700 OF to approximately 500 OF, at which point they 

grow rapidly in magnitude. The axial stress builds up gradually over the entire temperature range from 

1700 OF. Cooling from 1700 OF using plasticity overestimates the stress compop.ents at 70 OF relative to 

the Freed-Walker model. This indicates that significant stress relaxation occurs which is not taken into 

account by the classical incremental plasticity. When classical incremental plasticity theory is used to 

model the response of the matrix while cooling from 800 OF the stress components are still overestimated. 

It should be noted that the knees in the axial stress curve for the cases in which classical incremental 

- - .-.. ~-.-.-. ----
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plasticity was used with stress-free temperatures of800 of, 200 of, and 150 of correspond to the onset of 

yielding in the matrix. 

In order to achieve approximately the same axial residual stress as the Freed-Walker model with 

plasticity, the stress-free temperature is taken to be 100 OF. Cooling from 100 OF to 70 OF does not cause 

yielding in the matrix. Since the axial stress is the most significant of the three stress components, 100 OF 

will be used as one approximation for the stress-free temperature. Using the reasoning described above, 

and in order to provide an upper bound, 1700 OF will be taken as a second approximation of the stress-free 

temperature. Subsequent effects that will be examined will be presented for both stress-free temperatures. 



66 

4.4 Effect of Nonuniform Fiber Distribution 

4.4.1 CCMICRON 

CCMICRON allows one to vary the fiber volume fraction in the radial direction in a piecewise 

fashion. This is accomplished by assembling concentric cylinders with different fiber volume fractions . 

Since an arbitrary number of concentric cylinders can be used, the radial fiber volume fraction variation 

can be as continuous as desired. To examine the effects of this type of nonuniform fiber distribution on 

the thermal expansion of Gr/Cu. it is necessary to compare the thermal expansion of a uniform composite 

with a nonuniform composite using an identical fiber volume fraction. In order to see the maximum 

effect, a composite with a large and abrupt change in fiber volume fraction was considered. Thus a 

composite with a fiber volume fraction of 0.55 was modeled with three different microstructures: uniform, 

a low fiber volume fraction core surrounded by a high fiber volume fraction cylinder (designated Low

High), and a high fiber volume fraction core surrounded by a low fiber volume fraction cylinder 

(designated High-Low). The boundary between the high and low fiber volume fraction regions was set at 

0.7071 times the assemblage radius, so that the volume of the composite was divided evenly between the 

two regions. The fiber volume fraction of the dense region was chosen to be 0.9069 to correspond with 

the densest possible packing of cylinders. In order to achieve an overall fiber volume fraction of 0.55, the 

fiber volume fraction of the dilute region was set to 0.1931. Figure 4.12 shows the cross-sections of these 

two configurations. 

Longitudinal and transverse thermal expansion curves for the three configurations using stress

free temperatures of 100 OF and 1700 OF are given in Figures 4.13 and 4.14. In the longitudinal direction, 

the effect of the nonuniform fiber distribution is nearly negligible for both stress-free temperatures. In the 

transverse direction there is a slight but noticeable variation for a stress-free temperature of 1700 OF. The 

Low-High configuration shows more divergence from the uniform case than does the High-Low 

configuration. However, the transverse thermal expansion with a stress-free temperature of 100 OF is not 

significantly affected by the nonuniform fiber distribution. In all cases shown in Figures 4.13 and 4.14 it 

. is clear that the effect of the chosen stress-free temperatures is far greater than that of the nonuniform 
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Figure 4.12: CCMICRON composite cylinder microstructures. 
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Figure 4.13 : Longitudinal thermal expansion of 55 vlo PIOO Gr/Cu. Uniform fiber distribution and the 
two cylinder arrangements are shown for stress-free temperatures of 100 OF and 1700 OF. 
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Figure 4.14: Transverse thermal expansion of 55 vlo PI00 Gr/Cu. Uniform fiber distribution and the two 
cylinder arrangements are shown for stress-free temperatures of 100 of and 1700 of. 

microstructure. Thus, this type of radially nonuniform fiber distribution appears not to be of great 

importance to the thermal expansion of Gr/Cu. 

In an attempt to determine under what circumstances radially nonuniform fiber distribution may 

have a significant effect on the thermal expansion response of a composite, a parametric study was 

performed using CC1v1ICRON. First, the Young's modulus of the fiber was taken to be isotropic using the 

value of the axial Young's modulus. This produces a much larger Young's modulus mismatch between 

the fiber and the matrix in the transverse direction than is the case using the transversely isotropic 

properties. The thermal expansion response for this case is shown in Figures 4.15 and 4.16. The effect of 

the fiber nonuniformity is much more evident for this case in both directions and for both stress-free 

temperatures. In the transverse direction the magnitude of the effect is now approximately the same as the 

magnitude of the effect of the stress-free temperature variation. It is also apparent that the Low-High 

configuration has a greater effect than does the High-Low configuration. 
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Figure 4.15: Longitudinal thermal expansion of 55 vlo PlOD Gr/Cu with the fiber Young's modulus taken 
to be isotropic. Uniform fiber distribution and the two cylinder arrangements are shown for stress-free 
temperatures of 100 OF and 1700 OF. 
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Figure 4.16: Transverse thermal expansion of 55 vlo PlOD Gr/Cu with the fiber Young's modulus taken to 
be isotropic. Uniform fiber distribution and the two cylinder arrangements are shown for stress-free 
temperatures of 100 OF and 1700 OF. 
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The fiber CTE rather than the Young's modulus was then taken to be isotropic using the axial 

value. This causes a large transverse CTEmismatch between the fiber and the matrix. The thermal 

expansion curves for this case are shown in Figures 4.17 and 4.18. The curves are similar to those 

generated assuming that the fiber Young's modulus is isotropic. In the longitudinal direction, the effect of 

the nonuniform fiber distribution is small, but greater than for the transversely isotropic fiber case. In the 

transverse direction, the effect is more significant; on the order of the effect of the stress-free temperature. 

The final case examined involved taking both the fiber Young's modulus and CTE to be isotropic 

using the axial values. The thermal expansion results are shown in Figures 4.19 and 4.20. The effect of 

the fiber distribution is much more significant in this case. It is mainly the Low-High configuration that 

shows the effect, and the effect is quite large for both stress-free temperatures. In the longitudinal 

direction the effect of the nonuniform fiber distribution is nearly as great as the effect of the stress-free 

temperature, while in the transverse direction, it is much greater. Since the effect of the nonuniform fiber 
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Figure 4.17: Longitudinal thermal expansion of 55 vlo PIOO Gr/Cu with the fiber CTE taken to be 
isotropic. Unifonn fiber distribution and the two cylinder arrangements are shown for stress-free 
temperatures of 100 OF and 1700 OF. 
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Figure 4.18: Transverse thermal expansion of 55 v/o PIOO Gr/Cu with the fiber CTE taken to be 
isotropic. Uniform fiber distribution and the two cylinder arrangements are shown for stress-free 
temperatures of 100 of and 1700 of. 
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Figure 4.19: Longitudinal thermal expansion of 55 v/o PIOO Gr/Cu with the fiber Young's Modulus and 
CTE taken to be isotropic. Uniform fiber distribution and the two cylinder arrangements are shown for 
stress-free temperatures of 100 of and 1700 of. 
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Figure 4.20: Transverse thermal expansion of 55 v/o PIOO Gr/Cu with the fiber Young's Modulus and 
C1E taken to be isotropic. Uniform fiber distribution and the two cylinder arrangements are shown for 
stress-free temperatures of 100 OF and 1700 OF. 

distribution was small when just the fiber Young's modulus or the fiber C1E were taken to be isotropic, it 

can be concluded that some sort of coupling between the transverse Young's modulus and C1E exists. In 

order for a radially nonuniform fiber distribution to have a significant effect on the thermal expansion 

behavior of the Gr/Cu composite, there must be a large mismatch in both the transverse Young's modulus 

and the transverse C1E. 
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4.4.2 MeLAM 

One of the effects that MCLAM can be used to examine is variation in the fiber volume fraction 

of a composite laminate in the through-thickness direction. As was the case with CCMICRON, an 

arbitrary number of layers can be used, so the variation in fiber volume fraction can be as continuous as 

desired. To examine the effect that this type of through-thickness fiber distribution nonuniformity has on 

the thermal expansion, it is necessary to compare the thermal expansion of a nonuniform composite with a 

uniform composite with the same average fiber volume fraction. To this end, the first six laminates 

shown in Figure 4.21 were considered (the last two will be addressed in Section 4.5). 

The laminates Lam 1 through Lam 6 were divided into layers with 0.1931 and 0.9069 fiber 

volume fractions such that the average laminate fiber volume fraction was 0.55 in all six cases. As before, 

0.9069 was chosen because it is an upper bound on the fiber volume fraction of a composite with 

unidirectional cylindrical fibers, while 0.1931 was chosen to produce a composite with an average fiber 

volume fraction of 0.55 when the composite was divided into equal parts of each fiber volume fraction. 

These fiber volume fractions represent an extreme case since a region cannot have a fiber volume fraction 

greater than 0.9069, and a fiber volume fraction of 0.1931 is quite low for a material such as Gr/Cu. Lam 

4 has additional layers with fiber volume fractions of 0.65 and 0.45 separating the layers with the two 

extreme fiber volume fractions in order to simulate a more gradual change in the fiber distribution. 

Lam I represents the most extreme case examined. The regions with high and low fiber volume 

fractions are large and continuous, and the change in fiber volume fraction is abrupt. In Lam 2 and Lam 

3, the transitions from regions of high and low fiber volume fraction are equally as abrupt, but the regions 

are separated into four and six alternating layers rather than just two. On the macro scale, Lam 2 and 

Lam 3 appear much more uniform than does Lam 1. It should be noted that these three laminates are non 

symmetric, with non-zero B matrices (see equation 3.27). Thus bending-stretching coupling will occur 

when the laminates are subjected to a temperature change. 

Predicted longitudinal and transverse thermal expansion curves for Lam 1, Lam 2, and Lam 3 are 

shown in Figures 4.22 and 4.23 along with the uniformly distributed 0.55 fiber volume fraction case. 

Since bending does occur, the average change in length is reported. Figure 4.22 shows that the 
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Figure 4.21: Laminate configurations. 



0.3 

0.25 

0.2 

_ 0.15 
~ 

t 0.1 .t= 
U 

:a 
l 
-' 0.05 

~ 
~ 
"-

-0.05 

-0.1 

-0.15 t 
0 800 800 

T--"'("F) 

1000 1200 

75 

- Uniform SFT = 100 "F 

-- Lam 25FT = l00"F 

-- Lam 35FT =1OO"F 

--<>-- Uniform SFT = 1700 "F 

--0-- lom 1 5FT = 1700 "F 

--6- Lam 25FT = 1700-F 

~ Lam 3SFT= 1700"F 

1400 1800 

Figure 4.22: Longitudinal thermal expansion of 55 v/o PIOO Gr/Cu. Uniform fiber distribution and 
laminate configurations with one, two, and three sets of high V f and low V f laminae are shown. 
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Figure 4.23 : Transverse thermal expansion of 55 v/o PIOO Gr/Cu. Uniform fiber distribution and 
laminate configurations with one, two, and three sets of high V f and low V f laminae are shown. 
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nonuniform fiber distribution has a substantial effect on the longitudinal thermal response of Lam 1 for 

both stress-free temperatures. The effect is greater for a stress-free temperature of 1700 of. The 

nonuniformity in the fiber distribution causes more thermal expansion to occur, so the thermal expansion 

curve appears higher. The response of Lam 2 and Lam 3 is affected to a lesser degree since these 

laminates are more symmetric as indicated by the smaller magnitudes of the B matrix elements. 

Comparing the B matrix for Lam I and Lam 2 at 70 of it is observed that the elements of the B matrix for 

Lam 2 are exactly one-half those of Lam 1: 

[

-7.134 

BLaml = 0. ~20 

0.320 

0.920 

o [

-3.567 

Bram2 = O. ~60 

0.160 

0.460 

o 

However, as shown in Figures 4.22 and 4.23, the effect of this difference on the thermal expansion is 

much more than a factor of two. For a stress-free temperature of 100 OF, the predicted thermal expansion 

curves for Lam 2 and Lam 3 show almost no difference from the uniform case. 

In the transverse direction (Figure 4.23), the trend is similar. Lam I exhibits a noticeable 

deviation from the uniform case, whereas Lam 2 and Lam 3 do not. The effect is more noticeable for a 

stress-free temperature of 1700 OF than for 100 OF. In this direction, however, the fiber distribution 

nonuniformity causes less thenna! expansion to occur; the expansion curve appears lower relative to the 

uniform configuration. This same trend was observed in the results generated by CCMICRON. 

The thenna! expansion behavior of Lam 1, Lam 2, and Lam 3 indicates that for through-

thickness fiber distribution nonuniformity to have a significant effect on the thermal expansion behavior, 

the degree of nonuniformity must be great, and a great deal of bending must occur. Adding layers with 

high and low fiber volume fraction to the laminate in an alternating manner reduces the bending-

stretching coupling and lessens the effect of the nonuniformity dramatically. 

In order to determine the importance of the abruptness in the change in fiber distribution, Lam 4 

was considered. It represents the same overall fiber volume fraction, and the same overall change in fiber 

volume fraction as Lam I , but the change is more gradual. The thermal expansion of Lam 4 is shown in 
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Figures 4.24 and 4.25. The thermal expansion of the uniform laminate and Lam I are also plotted for 

comparison. The figures show that the effect of the nonuniform fiber distribution is lessened when the 

change is more gradual, but the effect is still significant. Examining the elements of the B matrix for Lam 

4 at 70 OF shows that they are approximately 80% as large as the elements of the B matrix for Lam 1: 

[

-5.851 

BLam4 = 0. ~61 

0.261 

0.749 

o 

Thus, introducing layers to create a more gradual change in the fiber distribution produces a substantially 

different result than refining the microstructure by adding increasingly thinner layers in an alternating 

fashion, as was the case with Lam 2 and Lam 3. 

To determine what effect nonuniform fiber distribution has on the thermal expansion of 

symmetric Gr/Cu laminates, Lam 5 and Lam 6 were considered. Lam 5 has low fiber volume fraction in 
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Figure 4.24: Longitudinal thermal expansion of 55 vlo PIOO Gr/Cu. Uniform fiber distribution and 
laminate configurations with an abrupt change in V f, and a more gradual change in V f are shown. 
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Figure 4.25: Transverse thermal expansion of 55 v/o PI00 Gr/Cu. Uniform fiber distribution and 
laminate configurations with an abrupt change in V f and a more gradual change in V f are shown. , 

the middle plies and high fiber volume fraction in the outer plies, while in Lam 6 the arrangements of the 

plies is reversed. These configurations are similar to the Low-High and High-Low cylinder configurations 

used in CCMICRON. The thermal expansion curves of Lam 5 and Lam 6, plotted in Figures 4.26 and 

4.27, show that, as was the case with the Low-High and High-Low configurations, little effect of the fiber 

distribution nonuniformity is observed. In the transverse direction, there is a slight but noticeable effect, 

but in the longitudinal direction, the effect is nearly negligible. It should be noted that the thermal 

expansion curves of Lam 5 and Lam 6 are identical. This is because both laminates are symmetric, so 

there is no bending, and because all the layers are unidirectional, there is no shear. Since there is no 

bending or shear, the stacking sequence has no effect on the thermal expansion behavior of the laminates 

under the assumption of plane stress. 

Since Lam 5 and Lam 6 are symmetric, they are similar to the Low-High and High-Low cases 

respectively, generated with CCMICRON. Figures 4.28 - 4.31 compare Lam 5 and Lam 6 to the Low-

High and High-Low cases. As the figures show, the thermal expansion response of these cases are very 
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Figure 4.26: Longitudinal thenna! expansion of 55 v/o PIOO Gr/Cu laminates with uniform and 
symmetrically arranged fiber distribution. 
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Figure 4.27: Transverse thenna! expansion of 55 v/o PIOO Gr/Cu laminates with uniform and 
symmetrically arranged fiber distribution. 
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Figure 4.28: Longitudinal thermal expansion of 55 vlo P100 Gr/Cu using a stress-free temperature of 100 
OF. Uniform, Low-High, and High-Low cases generated with CCMICRON are shown along with two 
symmetric cases generated with MCLAM. . 
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Figure 4.29: Transverse thermal expansion of 55 vlo P100 Gr/Cu using a stress-free temperature of 100 ° 
F. Uniform, Low-High, and High-Low cases generated with CCMICRON are shown along with two 
symmetric cases generated with MCLAM. 
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Figure 4.30: Longitudinal thermal expansion of 55 vlo PI00 Gr/Cu using a stress-free temperature of 
1700 of. Uniform, Low-High, and High-Low cases generated with CCMICRON are shown along with 
two symmetric cases generated with MCLAM. 
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Figure 4.31 : Transverse thermal expansion of 55 vlo PI00 Gr/Cu using a stress-free temperature of 1700 ° 
F. Uniform, Low-High, and High-Low cases generated with CCMlCRON are shown along with two 
symmetric cases generated with MCLAM. 
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similar. The slight differences are due to the different states of stress predicted by the CCMICRON and 

MCLAM models due to the coupled effect of nonuniform fiber distribution and the model geometries 

The result that the nonuniform fiber distribution has little effect on the predicted thermal 

expansion of symmetric laminates indicates that bending is the cause of most of the observed effect. 

When a large degree of bending is induced, as was the case in Lam 1 and Lam 4, the effect of the fiber 

distribution is significant. Alternatively, when little or no bending is induced, as was the case in Lam 2, 

Lam 3, Lam 5, and Lam 6, the effect of the fiber distribution is insignificant. 

-.-- ~.-.-.----- - ---_._----
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4.5 Effect of Fiber Misalignment 

The laminates Lam 7 and Lam 8 shown in Figure 4.21 were considered in order to examine the 

effect of a slight fiber misalignment or rotation in a layer thought to be a 0° layer. Figures 4.32 and 4.33 

show the thermal expansion of these laminates. In the longitudinal direction, the thermal expansion of 

both configurations is noticeably different from that of the uniform laminate for a stress-free temperature 

of 1700 oF. These laminates exhibit more longitudinal expansion than the uniform laminate because the 

fibers are not providing as much restraint in the longitudinal direction due to the slight misalignment. 

The effect becomes much less noticeable for a stress-free temperature of 100 OF. 

In the transverse direction, the effect of the angle misalignment becomes more noticeable at a 

stress-free temperature of 100 OF. For a stress-free temperature of 1700 OF, the effect is negligible. This 

is the reverse of the trend in the longitudinal direction. In addition, the transverse response indicates that 

the [±4°] configuration of Lam 7 has a greater effect than the [-4°/0°] configuration of Lam 8. This 
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Figure 4.32: Longitudinal thermal expansion of 55 vlo PlOO Gr/Cu. Uniform fiber distribution and two 
laminates with slight fiber misalignment are shown. 
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Figure 4.33 : Transverse thermal expansion of 55 vlo PlOD Gr/Cu. Uniform fiber distribution and two 
laminates with slight fiber misalignment are shown. 

differs from the longitudinal response in which the thermal expansion curves of Lam 7 and Lam 8 are 

nearly identical. Clearly, Figures 4.32 and 4.33 indicate that in some cases slight angle misalignment can 

have a noticeable effect on the thermal expansion of Gr/Cu. 

In order to better explain why in the longitudinal direction a stress-free temperature of 1700 OF 

resulted in a greater deviation from the response of the uniform laminate than a stress-free temperature of 

100 OF, with the opposite being true in the transverse direction, MCLAM was used to model five 

symmetric angle-ply laminates. The laminates that were modeled are [±l5°]s, [±300]s, [±45°]s, [±600]s, 

and [±75°]s' In addition, a component of the thermal expansion that has not previously been addressed is 

the through-thickness expansion. In cases in which no shear is present, the through-thickness thermal 

expansion is almost identical to the transverse thermal expansion. However, in angle-ply laminates, a 

great deal of shearing occurs, and thus the through-thickness thermal expansion for these laminates will 

be presented as well. 
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Figures 4.34 and 4.35 show the longitudinal thermal expansion for the symmetric laminates for 

the two stress-free temperatures. Figure 4.34 shows that for a stress-free temperature of the 100 of, the 

longitudinal thermal expansion is relatively insensitive to changes in the angle for the lower angle-ply 

configurations. Figure 4.35 shows that the same is true for a stress-free temperature of 1700 OF, but there 

is clearly more of an effect at these lower ply angles than for a stress-free temperature of 100 OF. At the 

higher ply angles, the reverse is true. The thermal expansion behavior generated using a stress-free 

temperature of 100 OF is more sensitive to changes in the off-axis angle for these higher ply angles. This 

explains why for a small angle misalignment a greater effect was observed in the longitudinal direction 

than the transverse direction for a stress-free temperature of 1700 OF, while the opposite was observed for 

a stress-free temperature of 100 OF. 

Figures 4.36 and 4.37 show the through-thickness thermal expansion of the laminates for the two 

stress-free temperatures. It should be noted that the through-thickness response of a [±e]s laminate is the 

same as the response of a [±(90-8)]s' This is because these laminates are identical in the through-
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Figure 4.34: Longitudinal thermal expansion of 50 vlo symmetric angle ply PIOO Gr/Cu using a stress
free temperature of 100 OF. 



86 

2.5 

-0" 
2 

-(+1~15)o 

---+-- (+3(».30)0 

~ 
1.5 

· 
--(+45J-45)o 

--0-- (+eoI-eO)o 

i ---0-- (.1~15)o 
~ 
u 

• 1 ---o--(~)o · ~ .... 

! 
i .. 0 .5 

0 

-D.5 

0 200 1000 1200 1800 

Figure 4.35: Longitudinal thermal expansion of 50 vlo symmetric angle ply PlOO Gr/Cu using a stress
free temperature of 1700 OF. 
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Figure 4.36: Through-thickness thermal expansion of 50 vlo symmetric angle ply PlOO Gr/Cu using a 
stress-free temperature of 100 OF. 
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Figure 4.37: Through-thickness thenna! expansion of 50 vlo symmetric angle ply P100 Gr/Cu using a 
stress-free temperature of 1700 of. 

thickness direction. Thus, for example, the response of the [±151s laminate also represents the response of 

a [±751 s laminate. 

Unlike the longitudinal thenna! expansion, the through-thickness thenna! expansion of each 

laminate is greater for a stress-free temperature of 100 OF than it is for 1700 of. For both stress-free 

temperatures, the through-thickness thenna! expansion is low for high and low ply angles, and it attains a 

maximum at a ply angle value of 45°. At this peak value, the through-thickness thenna! expansion is 

much greater than the transverse thermal expansion of the 0° configuration, which is the same in the 

through-thickness direction. In addition, significant changes in the through-thickness thermal expansion 

occur with relatively small changes in the ply angle for the lower angle ply configurations. 
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It has been shown in the previous chapter that matrix plasticity, choice of stress-free temperature, 

nonuniform fiber distribution, and fiber misalignment affect the thermal expansion of Gr/Cu to various 

degrees. This chapter presents comparison between the predicted response obtained from the developed 

models in the presence of these effects and experimentally-measured thermal expansion data. Since the 

actual microstructure of Gr/Cu is better modeled as a laminate with layers of different fiber volume 

fraction than an assemblage of cylinders, MCLAM will be used exclusively in this chapter. 

In addition to monotonic thermal loading, a comparison is also made between the predicted and 

experimental cyclic thermal expansion of Gr/Cu. A discussion of potential factors that may be causing 

discrepancy between the predicted and measured response of the composite is also included. 



... - ~-~ -~---
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5.1 Monotonic Thermal Expansion 

One of the objectives of this investigation was to develop models to simulate the experimentally 

observed thermal expansion of Gr/Cu in the presence of nonuniform fiber distribution. It was shown in 

Chapter 4 that the radial fiber distribution nonuniformity modeled with CCMICRON did not have a 

significant effect on the thermal expansion behavior of Gr/Cu. Furthermore, as will be shown, the actual 

fiber distribution in Gr/Cu does not exhibit radial character. Thus modeling actual Gr/Cu thermal 

expansion specimens using CCMICRON is not appropriate for this particular composite system. In real 

Gr/Cu, areas of high and low fiber volume fraction can be approximated by layers or plies. This is one of 

the reasons that MCLAM was developed; to model the actual microstructure of Gr/Cu thermal expansion 

specimens. 

For the purpose of this investigation, three longitudinal and two transverse thermal expansion 

specimens were tested. The tests were performed by S.M. DeVincent at NASA Lewis Research Center. A 

single push-rod dilatometer was used. Micrographs of the cross sections of the specimens perpendicular 

to the fiber direction are shown in Figures 5.1 - 5.5. While the entire cross section is shown for the 

longitudinal specimens, only a portion of the cross section is displayed for the transverse specimens. The 

longitudinal specimens are designated d7-O, d8-O, and diO-O, and the transverse specimens are designated 

dl-90 and d2-90. 

The longitudinal specimens exhibit a great deal of fiber distribution nonuniformity. The large 

white areas in Figures 5.1, 5.2, and 5.3 are regions of pure copper where there are literally no fibers. In 

contrast, the two transverse specimens have a much more uniform fiber distribution. This is due to the 

fact that the longitudinal and transverse specimens were cut from different Gr/Cu plates. Clearly, the 

longitudinal specimens lend themselves much more readily to be modeled as laminates rather then 

concentric cylinders. It should be noted that 0.1 weight percent of chromium was added to the copper 

matrix to ensure a good bond between the fiber and matrix. It was determined that this chromium, which 

collects at the interface, does not significantly affect the properties of the individual phases. 
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----1mm 

Figure 5.1: Micr~graph of specimen d7 -0. Courtesy of S.M. DeVincent. 

---- 1 mm 

Figure 5.2: Micrograph of specimen d8-O. Courtesy of S.M . DeVmcent 

----1 mm 

Figure 5.3: Micrograph of specimen diO-O. Courtesy of S.M. DeVincent. 
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--- - 1 mm 

Figure 5.4: Micrograph ofaportion ofspecimendl-90. CourtesyofS.M DeVincent 

----1mm 

Figure 5.5: Micrograph of a portion of specimen d2-90. Courtesy of S.M. DeVincent. 
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Figure 5.6 indicates how the longitudinal specimens were partitioned into layers for modeling 

purposes. The thickness and fiber volume fraction of each layer are indicated in the figure. The layer 

dimensions are based on a total laminate thickness of unity. The method by which the longitudinal 

specimens were divided into layers was visual. An attempt was made to isolate layers with large regions 

of pure copper. After each specimen was partitioned, layers without any large regions of copper were 

taken to have a fiber volume fraction of 0.75. This value approximates the maximum fiber volume 

fraction that has been achieved for Gr/Cu with pressure infiltration casting. The fiber volume fractions of 

all but one of the remaining layers were then estimated, and the fiber volume fraction of the remaining 

layer was calculated based on the known overall fiber volume fraction of the specimen determined in the 

manner described below. This process does not yield exact values for the fiber volume fraction of each 

layer, however, as shown in Chapter 4, small changes in the fiber volume fraction of a single layer do not 

significantly affect the predicted thermal expansion of the composite when the overall fiber volume 

fraction of the composite is maintained. Future work may use optical techniques to obtain more precise 

estimates for the layer fiber volume fractions. 
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Figure 5.6: Actual specimens simulated as laminates for use with MCLAM. 



The overall fiber volume fractions of the specimens are given in Table 5.1. 

Specimen 

d7-O 
d8-O 

dlO-O 
dl-90 
d2-90 

Fiber Volume 
Fraction 

0.55 
0.56 
0.50 
0.66 
0.66 

Table 5.1: Fiber volume fractions of the experimental specimens 

The fiber volume fractions were calculated from the mass balance, 
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(5.1) 

where Pc, Pf' and Pm are the densities of the composite, fiber, and matrix, respectively, and where Vc 

and Vf are the composite and the fiber volumes, respectively. The mass and volume of the composite can 

be measured, and the density of the fiber and the matrix are known, so Vf can be calculated. This is 

divided by the volume of the composite to yield the fiber volume fraction. 

The measured thermal expansion for the Gr/Cu specimens is shown in Figure 5.7 and Figure 5.8. 

The cause of the oscillatory nature of the longitudinal thermal expansion curves in Figure 5.7 has not been 

conclusively determined, however, ignoring the oscillations, the data has been shown to be accurate (Ellis, 

1994). The longitudinal specimens show reasonably good repeatability as do the transverse specimens. It 

should be noted that specimen dl-90 showed evidence of cracking (not shown in Figure 5.4). 

MCLAM was used to predict the thermal expansion behavior of the laminates shown in Figure 

5.6 which simulate the actual microstructure of the longitudinal specimens. The results are given in 

Figures 5.9, Figure 5.10, and Figure 5.11 for the d7-O, d8-O, and dlO-O specimens, respectively. The 

thermal expansion curves are plotted for stress-free temperatures of 100 OF and 1700 OF for three cases, 

namely: a uniform fiber distribution; the simulation of the actual specimen microstructure; and the 

simulation of the actual microstructure with slight fiber misalignment. The slight fiber misalignment was 
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Figure 5.7: The measured longitudinal thermal expansion ofP100 Gr/Cu - 0.1 Cr. 
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Figure 5.8: The measured transverse thermal expansion ofPlOO Gr/Cu - 0.1 Cr. 
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Figure 5.9: Longitudinal thermal expansion of 55 v/o PIOO Gr/Cu. Uniform fiber distribution, a 
simulation of thermal expansion specimen d7-O, a simulation of thermal expansion specimen d7-O with 
slight fiber misalignment (d7-O*), and experimental results are shown. 
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Figure 5.10: Longitudinal thermal expansion of 56 v/o PIOO Gr/Cu. Uniform fiber distribution, a 
simulation of thermal expansion specimen d8-O, a simulation of thermal expansion specimen d8-O with 
slight fiber misalignment (d8-O*), and experimental results are shown. 
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Figure 5.11 : Longitudinal thermal expansion of 50 vlo P100 Gr/Cu. Uniform fiber distribution, a 
simulation of thermal expansion specimen d10-O, a simulation of thermal expansion specimen d10-O with 
slight fiber misalignment (d10-O*), and experimental results are shown. 

introduced by setting the fiber angle to 4° in the lower two layers of each laminate shown in Figure 5.6. 

In specimen d8-O, the middle layer was partitioned into two halves for this purpose. The experimental 

thermal expansion curves for each specimen are also included for comparison. 

For all three specimens, simulating the actual microstructure and simulating the actual 

microstructure with slight fiber misalignment made only a slight difference when compared tc the 

uniform case for the stress-free temperature of 100 OF. The effect increased slightly for the stress-free 

temperature of 1700 OF and was most significant for the specimen d8-O. The effect of a slight fiber 

misalignment was small. For all three specimens, the effect of the stress-free temperature is far greater 

than the effect of the nonuniform fiber distribution. As was shown in Chapter 4, fiber distribution 

nonuniformity must be quite extreme to have an effect that rivals that of the stress-free temperature. Thus 

little is gained in the attempt to accurately model the thermal expansion of Gr/Cu by simulating the 

specimen microstructure for the cases examined. 

--- ... -----
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Since the effect of the nonuniform fiber distribution is so small, taking nonuniform fiber 

distribution into account does not improve the experimental/analytical correlation. Thus the effect of the 

fiber distribution will not be discussed further. It should be noted that CCMICRON and MCLAM both 

reduce to the method of cells with classical incremental plasticity for the uniform case, producing 

identical results. Therefore only one model must be used to generate the results for the uniform cases 

(MCLAM was used). Figure 5.9, Figure 5.10, and Figure 5.11 indicate that for the longitudinal thermal 

response the differences between the two stress-free temperatures is on the order of the oscillatory effects 

in the experimental results. Thus, the stress-free temperature will be ignored in the discussion of the 

monotonic longitudinal response, but in modeling the cyclic longitudinal response, both stress-free 

temperatures will be used. 

The models predict the longitudinal thermal expansion quite well up to a temperature of 

approximately 700 OF, at which point the model predicts that the composite will expand rapidly, whereas 

the measured response remains quite flat. This rapid expansion is predicted because the composite 

longitudinal thermal response is fiber dominated. The axial CTE input data for the fiber indicates that the 

fiber itself expands rapidly in the longitudinal direction at higher temperatures (see Figure 4.1). The poor 

experimental/analytical correlation at the higher temperatures indicates that the axial CTE data for the 

fiber may be inaccurate for temperatures above 700 OF. If, for example, the axial fiber CTE is set to the 

value at 700 OF for all temperatures above 700 OF, the predicted thermal expansion shown in Figure 5.12 

is obtained for a composite with uniform fiber distribution. This case is plotted for a fiber volume fraction 

of 0.55 and a stress-free temperature of 100 OF along with the experimental results. Obviously, 

CCMICRON and MCLAM produce much better predictions for this case. 

The transverse thermal expansion of dl-90 and d2-90 specimens was modeled treating the 

specimens as uniform since the specimens show little fiber distribution nonuniformity (see Figures 5.4 and 

5.5). The results are presented in Figure 5.13 . The models overpredict the transverse thermal expansion 

substantially. The measured thermal expansion curves for the two transverse specimens are closer to the 

response of the fiber and the matrix. As discussed in Section 4.2, the predicted response is above the 

response of the fiber and matrix because of the Poisson's effect that occurs due to compressive stress in the 
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Figure 5.12: The measured longitudinal thermal expansion of PIOO Gr/Cu - 0.1 Cr and the predicted 
thermal expansion for the case where the axial fiber CTEs are set to the value at 700 OF at every 
temperature above 700 OF. A stress-free temperature of 100 OF was used. 
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matrix in the longitudinal direction. The experimental results indicate that this effect is overpredicted. 

To determine if the overprediction is due to stress relaxation occurring in the matrix of the actual 

specimen which is not taken into account by classical incremental plasticity, the model of Williams and 

Pindera (1994a) with Freed-Walker viscoplasticity (see Section 4.3), which allows stress relaxation in the 

matrix, was used. This model predicts the transverse thermal expansion of specimens dl-90 and d2-90 to 

be similar to the prediction of classical incremental plasticity. This is shown in Figure 5.14. Thus taking 

stress relaxation effects into account does not significantly improve the experimental/analytical correlation 

for the transverse thermal expansion response. 
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Figure 5.14: Transverse thermal expansion of 55 vlo PIOO Gr/Cu. Predictions are shown using Freed
Walker viscoplasticity and classical incremental plasticity along with the response of the fiber and the 
matrix. 
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5.2 Cyclic Thermal Expansion 

When a composite undergoes plastic deformation during thermal loading, the thermal expansion 

curve will not necessarily retrace the same path or return to the initial configuration if the thermal loading 

is reversed. Plastic deformation is not a reversible process. Thus when Gr/Cu is heated to a temperature 

beyond which plastic deformation occurs and then cooled, the thermal expansion curve forms hysteresis a 

loop. This can be seen in Figure 5.15. The experimental thermal expansion curve for specimen d7-O is 

low during heating and high during cooling. It is desirable to have the ability to predict not only the 

thermal expansion during heating, but also the thermal expansion during cooling and subsequent heating-

cooling cycles. 

The predicted cyclic thermal expansion for a Gr/Cu composite with uniform fiber distribution 

and the predicted cyclic thermal expansion for a Gr/Cu composite with the nonuniform fiber distribution 

of Lam 1 (see Figure 4.23) are also shown in Figure 5.15. Lam 1 is included to show an upper bound of 

0.15 

0.1 

0 .05 

.{I.l 

--Elc!>erlment 

--Model - Un1fcnn 
.{I.1S 

--- - - Medel - Lam 1 

.{I.2 +-------4-------4-------4-------4-------+-------+-------+-----~ 

200 &Xl 800 

T~(F) 

1000 1200 1400 1800 

Figure 5.15: Cyclic longitudinal thermal expansion of 55 v/o PIOO Gr/Cu. Experimental data for d7-O, 
the predicted response for the uniform case, and the predicted response of the Lam 1 configuration are 
shown. A stress-free temperature of 100 OF was used. 
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the effect that nonuniform fiber distribution has on the cyclic thermal expansion of Gr/Cu. The predicted 

curves were generated with MCLAM, and as discussed in Section 5.1, the axial CTE of the fiber was set 

equal to the value at 700 of for every temperature above 700 of. This was shown to more accurately 

model the heating thermal expansion curves for the specimens that were tested. A stress-free temperature 

of 100 OF was used to generate the predicted curves in Figure 5.15. 

As was shown in Section 5.1, the uniform model with the altered fiber CTEs compares 

reasonably well with the experimental results for the heating portion of the curve. The heating curve for 

the Lam 1 configuration is raised slightly and thus compares more favorably with experiment at low 

temperature and less favorably at high temperature. In both cases, the model predicts that the cooling 

curve for the cycle will be lower than the heating curve of the cycle. This conflicts with the experimental 

data, and the predicted cooling curves for the cycle are vastly different from what is observed 

experimentally. The predicted cooling curve for the Lam 1 configuration is lower than that of the uniform 

case and is thus even further from the experimental cooling curve. Furthermore, the experimental data 

shows that after the thermal cycle, the specimen nearly returns to its original length while the model 

predicts a substantial negative change in length for both cases. 

Figures 5.16 and 5.17 show the predicted longitudinal thermal expansion for three cycles for the 

uniform case and the Lam I configuration, respectively, using a stress-free temperature of 100 OF. Both 

cases exhibit an increasing amount of deformation at 1500 OF with each additional cycle. This 

"ratcheting" behavior causes the thermal expansion curve of each subsequent cycle to appear higher at the 

high temperatures. This sort of behavior has been observed experimentally in Gr/Cu with no chromium 

added to the matrix (DeVincent, 1994a). The effect was reduced significantly by adding chromium to the 

matrix, and thus is thought to be the result of debonding. Figures 5.16 and 5.17 indicate that cyclic 

ratcheting may occur in the presence of perfect bonding. Comparing the cyclic response of the uniform 

case and the Lam I configuration indicates that the ratcheting effect can be greater for composites with 

nonuniform fiber distribution. 

Figures 5.18 - 5.20 differ from Figures 5.15 - 5.17 only in that the stress-free temperature used in 

the latter set of figures is 1700 OF rather than 100 OF. Figure 5.18 shows that the predicted heating 
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Figure 5.16: Cyclic longitudinal thermal expansion of 55 vlo PI00 Gr/Cu. The predicted response for the 
uniform case using a stress-free temperature of 100 of is shown. 
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Figure 5.17: Cyclic longitudinal thermal expansion of 55 vlo PIOO Gr/Cu. The predicted response for the 
Lam 1 configuration using a stress-free temperature of 100 OF is shown. 
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Figure 5_18: Cyclic longitudinal thermal expansion of 55 vlo PI00 Gr/Cu. Experimental data for d7-O, 
the predicted response for the uniform case, and the predicted response of the Lam 1 configuration are 
shown. A stress-free temperature of 1700 OF was used. 
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Figure 5.19: Cyclic longitudinal thermal expansion of 55 vlo P100 Gr/Cu. The predicted response for the 
uniform case using a stress-free temperature of 1700 OF is shown. 
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Figure 5.20: Cyclic longitudinal thermal expansion of 55 v/o P100 Gr/Cu. The predicted response for the 
Lam 1 configuration using a stress-free temperature of 1700 OF is shown. 

portion of the thermal expansion curves for a stress-free temperature of 1700 OF does not agree with 

experiment as well as for a stress-free temperature of 100 OF. Also, the predicted response for the Lam 1 

configuration in this case deviates to a greater extent from the uniform case during the heating portion of 

the cycle. 

The thermal expansion of the two configurations over three cycles using a stress-free temperature 

of 1700 OF, shown in Figures 5.19 and 5.20, exhibits the effect of ratcheting to a greater extent than was 

the case with a stress-free temperature of 100 OF. It should be noted that even when a great deal of 

ratcheting is predicted at the high temperatures, the curve returns to nearly the same location at the end of 

each cycle (see Figure 5.20). 

The transverse cyclic thermal expansion of Gr/Cu will not be addressed because the transverse 

cooling curve is similar to the heating curve as are subsequent cycles. The significant observation that can 

be taken from this examination of cyclic thermal expansion is that the model predicts the thermal 

expansion loop of Gr/Cu to have the opposite direction of the loop observed experimentally. Thus a 
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mechanism that is not taken into account in MCLAM must be present. Further research is warranted in 

this area. 
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Two micromechanical models were developed for characterizing the thermal expansion of Gr/Cu 

composites with nonuniform fiber distributions. A previously developed multiple concentric cylinder 

model was further extended to allow each cylinder to be modeled as a two-phase composite. This model 

(CCMICRON) was used to simulate the thermal expansion behavior of Gr/Cu with a radially nonuniform 

microstructure by assigning each concentric cylinder an independent fiber volume fraction. The second 

model developed (MCLAM) consisted of an extension of classical lamination theory to include inelastic 

behavior of the matrix phase. Since the fiber volume fraction of each lamina is user-defined in MCLAM, 

this model was used to examine the thermal expansion behavior of Gr/Cu with nonuniform microstructure 

in the through-thickness direction. Additionally, MCLAM includes a user-defined fiber orientation in 

each lamina which is taken into account by the lamination theory equations, thus allowing one to 

investigate the effect of fiber misalignment on the thermal expansion. 

The features of both CCMICRON and MCLAM are quite similar. In both models, the method of 

cells micromechanics model is used to evaluate the effective temperature-dependent properties of the 

uniform regions. In addition, the inelastic constitutive theory (classical incremental plasticity theory) is 

applied to the matrix phase at the micro-level in both cases. Thus for uniform fiber distributions 

--- ._. __ ._-----
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CCMICRON and MCLAM reduce to the method of cells with classical incremental plasticity. Because of 

the presence of inelastic strains in the matrix, the governing set of simultaneous equations in the models 

are implicit and thus must be solved iteratively. The iterative solution procedure developed by Mendelson 

(1983) is thus used. 

Incorporating plastic behavior of the matrix into the models results in a more difficult analytical 

solution and increased computational time. However, it was shown in Section 4.2 that the effect of matrix 

inelasticity on the thermal expansion of Gr/Cu is significant. Disregarding yielding and subsequent 

plastic flow in the matrix results in unreliable predictions. 

To account for residual stresses in the composite and processing-induced yielding in the matrix, 

the concept of a stress-free temperature was employed during the implementation of both models. The 

procedure involved simulating a cool-down from an assumed stress-free temperature prior to beginning 

the simulation of a thermal expansion test. It was found that, like matrix plasticity, the assumed stress-

free temperature has a major effect on the thermal expansion of Gr/Cu. Actual values for the stress-free 

temperature could not be determined. Thus 1700 OF and 100 OF were chosen as approximate upper and 

lower bounds on the true stress-free temperature. 

In order to examine the effect of radially nonuniform fiber distribution on the thermal expansion 

of Gr/Cu, two extreme cases were considered using CCMICRON. The first case was a core with a low 

fiber volume fraction surrounded by a cylinder with the highest possible fiber volume fraction for 

composites reinforced with continuous cylindrical fibers . The second case was the opposite; a core with 

high fiber volume fraction surrounded by a cylinder with low fiber volume fraction. These cases 

represented an extreme because the change in fiber volume fraction was large and abrupt. 

Results indicated that for the thermal expansion of Gr/Cu, radially nonuniform fiber distribution 

was not significant, even in the most extreme cases mentioned above. Through further investigation it 

was found that treating the fiber as isotropic rather than transversely isotropic by setting the transverse 

crn and Young's modulus to the axial values increased the effect of the nonuniform fiber distribution 

considerably. Thus the thermal expansion behavior of a composite with a large transverse CTE mismatch 
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and a large transverse Young's modulus mismatch could be significantly affected by radially nonuniform 

fiber distribution. 

MCLAM was used to examine the effect of fiber distribution nonuniformity in the through-

thickness direction on the thermal expansion of Gr/Cu. This type of fiber distribution more closely 

approximates the situation in real Gr/Cu composites. Several laminate configurations were considered 

using MCLAM. The one that exhibited the largest effect of the fiber distribution nonuniformity was an 

unsymmetric two-ply laminate with one ply having high fiber volume fraction and one ply having low 

fiber volume fraction. Like the cases examined using MCLAM, this case represents a large and abrupt 

change in fiber volume fraction. In addition, since this laminate is unsymmetric, bending occurs when it 

is subjected to thermal loading. 

Results for MCLAM indicated that when there is significant bending, as there is for the laminate 

described above, the effect of the nonuniform fiber distribution on the thermal expansion is significant. 

Reducing or eliminating the bending significantly reduces the observed effect. For the cases in which 

bending is induced, the effect of the nonuniform fiber distribution is of approximately the same magnitude 

as the effect of the choice of stress-free temperature 

Slight fiber misalignment proved to have different effects on the thermal expansion depending on 

the stress-free temperature used. For a low stress-free temperature, the fiber misalignment had little effect 

on the longitudinal thermal expansion but a noticeable effect on the transverse thermal expansion. For a 

high stress-free temperature, the opposite was true. This was explained by examining the thermal 

expansion of several symmetric angle-ply composites at high and low stress-free temperatures. It was 

found that for a low stress-free temperature the longitudinal thermal expansion at low ply angles was less 

sensitive to changes in the ply angle than was the case for a high stress-free temperature. At high ply 

angles, the low stress-free temperature case was more sensitive to changes in the ply angle than the high 

stress-free temperature case. Thus, when considering slight fiber misalignment, using a low stress-free 

temperature causes greater sensitivity in the transverse direction (which is the same as a slight change in 

ply angle at a high ply angle) while using a high stress-free temperature cause greater sensitivity in the 

longitudinal direction. 

l I 
----- ---- - -- ----- -- ------
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Experimental thermal expansion data were generated for three longitudinal and two transverse 

specimens. The actual microstructure of the longitudinal specimens was inhomogeneous while the 

transverse specimens exhibited nearly uniform fiber distribution. Results generated using MCLAM 

indicated that the simulated microstructure of the longitudinal specimens had little effect on the predicted 

thermal expansion of those specimens. Adding slight fiber misalignment likewise had little effect. 

Oscillations in the experimental data were much greater than the effect of the nonuniform fiber 

distribution and even the choice of stress-free temperature. 

The model with uniform fiber distribution agreed reasonably well with experiment in the 

I longitudinal direction up to a temperature of approximately 700 OF at which point the predicted response 
I . 

increased rapidly while the measured response remained reasonably flat. This discrepancy called into 

question the reliability of the high temperature axial CTEs of the graphite fibers since at these 

temperatures the measured longitudinal thermal expansion of the composite was far less than that of both 

the fiber and the matrix. To compensate, the axial fiber CTEs were set to the value of the fiber axial CTE 

at 700 OF, and much better agreement was obtained. The predicted transverse thermal expansion curve 

for Gr/Cu was significantly higher than the experimental curve for reasons that have not been determined. 

The longitudinal cyclic thermal expansion of Gr/Cu was modeled using the altered high 

temperature axial fiber CTEs and compared to the single cycle experimental response. While the heating 

portion of the predicted response was in good agreement with the experimental response, the cooling 

portion was incorrectly predicted. In particular, experiment shows that the direction of the cyclic thermal 

expansion loop is the reverse of what is predicted. Thus a mechanism that is unaccounted for in the 

model may be operative. This requires further investigation. Additional cycles were generated, and the 

predicted response exhibited "ratcheting" behavior that has been observed experimentally in Gr/Cu. 
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Transversely Isotropic Elastic Layers 

.f.. = CrOa= +(Ci/r +CIT)alT 

12 = -[ C.rOan + (Ci/r +CIT)alT ] 

¢22 = 2:rC.rOr/c 

'1'= :rCn (r/c2 - r/c2_1) 

n = -:r(Cn an +2C.ro a lT)(r; -rLl) 
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~ 12 ~ II ' 

+v22 (C;;7;+4 +C;7;+12) i = 1,2,3,4 

Q"= v11 (C~ 7; + C~ 7;+8) - Vl2 (c; ~ 7;+4 + C;; i 7;+8) - V21 (c; !i. 7; + C;; 12 7;+12) 

~ 12 ~ II 

+v22 (C;7;+4 +C;;7;+12) i = 1,2,3,4 

VH -o(cm-cm)( p(12)_ p(22))+Q [(em_em) p(21)_(em_em) p(II)] 
II - _I II 12 E22 E22 2 11 12 E22 II 12 E22 

O [(em em) p (12) (em em) p (II) ] n(em em)( p (21) ,JJ (22) ) 
+ -3 11 - 12 E33 - II - 12 8 33 + ~ 11 - 12 8 33 - G33 

VH - Q'(em - em )( e:. (12) _ e:. (22) ) + 0' [(em _ em) p (21) _ (em _ em) p (II) ] 
22 - I 11 12 22 22 _2 11 12 E22 II 12 8 22 

+ Q'[(em _ em) p (12) _ (em _ em) p (II)] + n'(em _ em)( p (21) _ p (22) ) 
3 11 12 E33 II 12 8 33 ~ 11 12 E33 8 33 

(Cf ef) p (II) (em em )( p (12) (21) (22) ) 
+VII II - 12 8 22 + II - 12 V12 8 22 +V21 8f2 +V22 8f2 

VH - o"(em _ em )(e:. (12) _ p (22) ) + o"[(em _ em) p (21) _ (em _ em) p (II)] 
33 - _I 11 12 22 E22 _2 II 12 E22 11 12 8 22 

Q'l(em - em)e:. (12) _ (em _ cm) p (11) ] + O"(em _ cm)( p (21) _ e:. (22) ) 
+ 3 11 12 33 11 12 8 33 _4 11 12 E33 33 

VH - [ c! p (11) Cm (v. P (12) V. P (21) V. P (22))] 2 Cm (v. 10 V. H)( P (12) p (22)) 
12 - 2 V;I 44 8 12 + 44 12812 + 21 812 + 22 8 12 +;; 44 22"1 - 12 2 812 - 812 

2 (z"C! V. z"Cm )(C! P (II) Cm p (21)) 
- m f V;1"2 44 - 21"1 44 44 8 12 - 44 8 12 
~C44 +~C44 
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where g. is the effective CTE vector, gm is the matrix CTE vector, fI is the fiber CTE vector, s.... is the 

effective compliance matrix, s...m is the matrix compliance matrix, and s..f is the fiber compliance matrix. 

C• c· 3 (b b) b23 b66 
22 = 33 = - 22 + 33 + - +-

842 
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