N95- 10646

203577

FRACTAL CHARACTERISTICS OF OZONOMETRIC NETWORK

Alerander N. Gruzdevu

Institute of Atmospheric Physics
Russian Academy of Sciences, Pyzhevsky per.3, Moscow 109017, Russia

ABSTRACT

The fractal (correlation) dimensions
are oalculated which characterize the
distribution of stations in the
ground-based total ozone measuring
network and the distribution of nodes in
a latitude-longitude grid. The dimension
of the ground-based ozonometric network
equals 1.67+0.1 with an appropriate

scaling in the 60 - 400 km range. For the
latitude-longitude grid two scaling
regimes are revealed. One regime, with
the dimension somewhat greater than 1, is
peculiar to smaller scales and limited
from a larger scale by the Ilatitudinal
resolution of the grid. Another scaling
regime, with the dimension equaled 1.84,
ranges up to 15,000 km scale. The fact
that the dimension of a measuring network
is less than 2, possesses problems in
observing sparse phenomena. This has to

have important consequences for ozone
statistics.
1. INTRODUCTION

A geometirical set of points can be
characterized by a dimension. There are
different methods for estimati the

dimension (Eckman and Ruelle, 1985). PFor
example, the so-called correlation
dimension, vV, can be calculated through:
<In n(r)>
v = im —— (1)
0 inr

where n(r) is the number of points within
the r-neighborhood of each point, r is
the size (e.g. diameter) of the
neighborhood, the angle brackets denote
averaging over all points of a set. The
existence of v implies the existence of
scaling (at small r):

aqur)>  re. (2)

If the dimension is fractional

[8%)

[§9]

called the fractal dimension. In
practice, r and the number of points in a

set are 1limited, and dimension v is
determined as an angle coefficient in
graph of 1In <n(r)> versus In r, and

scaling (1) can exist at finite intervals
of r.

If D is the
including a point
point set in this
to rtrP= poe,
co-dimension of a
Schertzer, 1990).

dimension of a space
get, the density of a
space 1s proportional

Here c=D-v is the
point set (Lovejoy and
It ¢c=0, the density of
a point set does not depend (on the
average) upon the scale of r (in the
scale range where (2) holds). If ¢>0, the
density of points decreases with a scale,
i.e. points are concentrated on
diminishing relative part of a space.
Hence, the fractal dimension of a point
set is a measure of sparseness of a set
(Lovejoy and Schertzer, 1990).

2. FRACTAL STRUCTURE OF THE GROUND-
BASED OZONOMETRIC NETWORK
Any ground-based measuring network
is mainly distributed on continents,
concentrating in densely populated
regions. Hence, its surface distribution

is highly inhomogeneous and has to have a

fractal dimension. So, the global
meteorologioal network has the fractal
(correlation) dimension equaled 1.75
(LoveJjoy et al, 1985; Love joy and

Schertzer, 1990). The ground-based total
ozone measuring network includes more
than a hundred stations. Fig.1 shows the
location of the 137 stations which worked

during the last decade. Calculating the
fractal dimension of the network, one
should take into account the sphericity
of the Earth's surface. Let 7 be the
radius of the covering sphere, K be the
radius of the Earth (Fig.2). Then r = ZR
3in(8-2).

Fig.3 schows the graph of -n{lL):
versus I=2r. In the 6J-400 km range the
scaling (2) helds with v=1.67:0.1. The
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Pig.1. The location of 137 stations in

the und-based total ozone
measur network.

function I'*®7 is shown in Pig.3 by the
straight line. Following Lovejoy et al
(1986) one can estimate the greatest
possible scale range, where the found
scaling holds. Proceeding from the
limited number of stations, one finds

the minimum value, <n(L)>mtn ~ 1/137 »

7.3~1O_3, and the maximum value,
<n(L)>mam ~ 137/2 » 69. The assumption

that the scaling of 2''®" holds in this
range, gives Lmtn ~ 50 km and Lma ~

Xz
10,000 km. Pig.3 shows that the

lower
limit of +the scaling of  the

L1 .67
function coincides approximately Lmin

However, this scaling is broken at L>400
km. Perhaps, there is another scaling at
I>1000 km, but an appropriate reliable v
value cannot be determined because of
insufficient number of stations and
saturation of the <n(L)> function at
large scales.

3. FRACTAL CHARACTERISTICS OF A GLOBAL
LATITUDE-LONGITUDE GRID
Satellite measurements give more
full and detailed information about the

ozone global distribution. For different
practical purposes, the information
collected by a satellite during a lot of
circuits may be considered as related +to
a single time moment. Necessarily, data
of measurements can be brought to the
standard times by interpolating in time
and space, if one has wind data. In any
case, satellite data are inhomogeneous,
because satellite orbits are nearer each
other over polar regions than over
tropics. In order to estimate the fractal
dimension of such a 'network", let us
consider 1t as a regular latitude-
longitude grid with nodes denoting the
sites of satellite measurements. Note
that in different problems data of
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Fig.2. The geometry for calculating
the oorrelation dimension of a
point set on a sphere.

measurements are interpolated to such a

grid.
3.1. 4dnalyttical consideration

Let N +7 be the number of nodes
along meridian (including the poles), Nk
be the number of nodes along a circle of

latitude. Then the density of nodes along
meridian, n¢; N _/mR, is constant, and the

deneity of nodes along a cirecle,
nh=Nh/(2“R aingp), depends upon latitude,

¢. To simplify the analytioal analysis

let the grid be dense enough to replace

summation by integration. The number of

nodes within the O-neighborhood of any

node at the polar angle, { (see Fig.2),

is

P2z

n = { j}n{PnAJRZ sing dy dA,
1|

where the integration limits satisfy the
equation for the intersection of the two
spheres. Calculating the integral (3),
one should distinguish two cases: (<6 and

(3)

{>0.

a) Case 1, the near-pole
neighborhood: {<B. Besides this, let 8<<?
and, hence, {<<1. In this ocase the
integration of (3) gives:

. nw~2RMn N, 8 E((/8) (4)
Ty

where E is the full normal elliptiocal

integral of the second type.

b) Case 2, the out-polar
neighborhood: {>6. ZLet also {<<! and,

hence, @<<7. Then the integration of (3)

gives:
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Fig.3. The average number of stations
in the ground-based ozonometric
network, <n(L)>, within annuli of
geometrically incoreasing radii.
The straight line corresponds to

scaling with an index equaled 1.67.

n o~ 2R/ n N, C(E(R)-(1-EF)K(R)Y. (5)

Here K is the full normal elliptical
integral of the first type, and sttnkm .

where Xm is determined through:

/
1/78inl \/ 2cosl (cosb-cosl).

CO3A_ =
m
Now let { be arbitrary, but such
that {>>8. Then
n ~ R/2atnf n N, 6°. (6)
Let the local sealing of type (2)

ne|) ~ 8.

is correct, as r=H8 when B<<7. Then V ~
{6/n)(dn/d8), if v does not depend upon O
or ¥ is a slow function of 8. Under this
condition one gets from (4) that for the
near-polar region

exist: ransition from r to 9
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Fig.4. The average number of nodes in
a latitude-longitude grid, <n(L)>,
within annuli of geometrically
increasing radii, at different
values of latitudinal, A¢, and
longitudinal, AA, resolutions.
Five series of points correspond
(gzomAx top o to)A bottgm) n tg:
1 =AA=0.25"; 2 0,257, =173
3)A$;Ax=1°; 4)A$Z1°. AA=5°;
5)AQ=AA=5°. The numbers at series
denote correlation dimensions.

v+ 172 (L/8)2,

while for out-polar region (but at {<<7)

Va2 - 172 (8/0)%.

If 7 is large one gets from (6) that v»2
with a high precision. Thus, the 1loecal
fractal dimension of a latitude-longitude

grid is a monotonous function of latitude

and changes from 1 at the poles to 2 at
the equator. It is evident that the
correlation dimension (1) which



characterizes the global distribution of
nodes of the grid, has to have an
intermediate value.

3.2. Empirical fractal characteristics

In practice the distribution of the
grid nodes is discrete. Fig.4 shows the
calculated mean value, <n>, as a funotion
of L at different values of latitudinal

and longitudinal resolutions. This
function has two different scaling
regimes. One regime is peculiar to

smaller scales and limited from a larger
scale by the latitudinal grid resolution.
This regime is characterized by the small

correlation dimension which decreases if
the grid resolution improves. One can
show that v-»1 +then. Another scaling

regime ranges up to a global scale and is
characterized by a correlation dimension
equaled to 1.84 at sufficiently good
resolution.

4. CONCLUDING REMARKS

The fact that the fractal dimension
of ozone measuring network is less than
the Earth's surface dimension (equaled
2), can have important consequences for
ozone statistics. Accordi to Lovejoy et
al (1986), such a network is not able to
detect phenomena with dimension vp< D-v.
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The detectability 1limits are: vp=
2~1.67=0.33 for the Tound-based
ozonometric network, vp=O.1 for the
latitude-longitude network at large
scales, and vp ~ 0.4+0.7 for the
latitude-longitude network at small
scales. If one suppose the fractal

dimension of ozone field to be decreasing
funotion of ozone content (similar to the
case of some meteorological fields, see
e.g. Lovejoy et al., 1986; ILovejoy and
Schertzer, 1990), then insufficiently
large fractal dimension  of ozone
measuring network has to lead 1o biases
in ozone statisties. In particular, this
can lead to biases in the spatial
averages.
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