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ABSTRACT

The fractal (correlation) dimensions
are calculated which characterize the
distribution of stations in the

ground-based total ozone measuring
network and the distribution of nodes in

a latitude-longitude grid. The dimension
of the ground-based ozonometric network
equals 1.67±0.1 with an appropriate

scaling in the 60 - 400 k_ range. For the
latitude-longitude grid two scaling
regimes are revealed. One regime, with

the dimension somewhat greater than I, is
peculiar to smaller scales and limited
from a larger scale by the latitudinal

resolution of the grid. Another scaling
regime, with the dimension equaled 1.84,
ranges up to 15,OO0 km scale. The fact
that the dimension of a measuring network
is less than 2, possesses problems in

observing sparse phenomena. This has to
have important consequences for ozone
statistics.

I. INTRODUCTION

A geometrical set of points can be
characterized by a dimension. There are

different methods for estimating the
dimension (Eckman and Ruelle, 1985). For

example, the so-called correlation
dimension, v, can be calculated through:

<Zn n(r)>

: Ztm , (1)
r-*O Zrt r

where n(r) is the number of points within

the r-neighborhood of each point, r is

the size (e.g. diameter) of the
neighborhood, the angle brackets denote
averaging over all points of a set. The
existence of V implies the existence of

scaling (at small r):

<nfr)> r t'. (2)

If the dimension is fractional it is

called the fractal dimension. In

practice, r and the number of points in a
set are limited, and dimension v is
determined as an angle coefficient in

graph of _ <_(r)> versus _n r, and
scaling (I) can exist at finite intervals
of r.

If D is the dimension of a space

including a point set, the density of a
point set in this space is proportional

to r_/r D= r -c. Here c=D-_ is the

co-dimension of a point set (Lovejoy and
Schertzer, 1990). If c=O, the density of
a point set does not depend (on the

average) upon the scale of r (in the
scale range where (2) holds). If c>O, the
density of points decreases with a scale,
i.e. points are concentrated on

diminishing relative part of a space.
Hence, the fractal dimension of a point
set is a measure of sparseness of a set
(Lovejoy and Schertzer, 1990).

2. FRACTAL STRUCTURE OF THE GROUND-
BASED OZONOMETRIC NETWORK

Any ground-based measuring network
is mainly distributed on continents,

concentrating in densely populated
regions. Hence, its surface distribution

is highly inhomo_eneous and has to have a
• Y

fractal dlmenslon. So, the global
meteorological network has the fractal
(correlation) dimension equaled 1.75
(Lovejoy et al, 1985; Lovejoy and

Schertzer, 1990). The ground-based total
ozone measuring network includes more
than a hundred stations. Fig.1 shows the
location of the 137 stations which worked

during the last decade. Calculating the
fractal dimension of the network, one

should take into account the sphericity
of the Earth's surface. Let r be the

radius of the covering sphere, R be the
radius of the Earth (Fig.2). Then r = 2R
stn(O/2).

Fim.3 shows the graph ef .in(L)>
versus _-)r. In the 60-400 km range the
scaling (2) holds with v=l.67tO.1. The
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Fig.1. The location of 137 stations in

the ground-based total ozone
measuring network.

function L 1"67 is shown in Fig.3 by the

straight line. Following Lovejoy et al
(1986) one can estimate the greatest
possible scale range, where the found
scaling holds. Proceeding from the
limited number of stations, one finds

the minimum value, <_(L)> _ ~ 1/137

7.3.10 -3 , and the maximum value,

<_(LJ>.n,o. x ~ 137/2 _ 69. The assumption

that the scaling of Z 1"67 holds in this

range, gives L_ ~ 50 km and Lm_ x ~

10,000 km. Fig.3 shows that the lower

limit of the scaling of the L I"67

function coincides approximately L {_

However, this scaling is broken at L>400
km. Perhaps, there is another scaling at
L>IO00 km, but an appropriate reliable
value cannot be determined because of
insufficient number of stations and

saturation of the <n(L)> function at

large scales.

2° FRACTAL CHARACTERISTICS OF A GLOBAL
LATITUDE-LONGITUDE GRID

Satellite measurements give more
full and detailed information about the

ozone global distribution. For different
practical purposes, the information

collected by a satellite during a lot of
circuits may be considered as related to

a single time moment. Necessarily, data
of measurements can be brought to the
standard times by interpolating in time
and space, if one has wind data. In any

case, satellite data are inhomogeneous,
because satellite orbits are nearer each

other over polar regions than over
tropics. In order to estimate the fractal
dimension of such a "network", let us

consider it as a regular latitude-
longitude grid with nodes denoting the
sites ,0f satellite measurements. Note

that in different problems data of

Fig.2. The geometry for calculating
the correlation dimension of a

point set on a sphere.

measurements are interpolated to such a
grid.

3.1. AneZyt_ccZ constderGt_on

Let Ne+I be the number of nodes
T

along meridian (including the poles), N k

be the number of nodes along a circle of

latitude. Then the density of nodes along

meridian, n_= N_/ru_, is constant, and the
T

density of nodes along a circle,

nL=NL/(2w2 8tn_), depends upon latitude,

_. To simplify the analytical analysis

let the grid be dense enough to replace
summation by integration. The number of

nodes within the 8-neighborhood of any
node at the polar angle, _ (see Fig.2),
is

_2kz

_'1 '"I

where the integration limits satisfy the
equation for the intersection of the two

spheres. Calculating the integral (3),
one should distinguish two cases: _8 and
_>8.

a) Case I, the near-pole
neighborhood: _8. Besides this, let 8<<I
and, hence, _<<I. In this

integration of (3) gives:

where E is the full normal

integral of the second type.
b) Case 2, the

neighborhood: _>8. Let also

hence, _<<I. Then the integration of
gives:

case the

(4)

elliptical

out-polar
_<<1 and,

(3)
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Fig.3. The average number of stations
in the ground-based ozonometric
network, <_(L)>, within annuli of
geometrically increasing radii.

The straight line corresponds to
scaling with an index equaled 1.67.

_ 2R/_ nJ_,_ _ (E(_)-(1-_z)K(_)}. (5)

Here K is the full normal elliptical

integral of the first type, and 7_=8_nX ,

where k is determined through:

/
coax = 1/s_nr_ \/ 2co8((cosO-coar_).

m

Now let _ be arbitrary, but such

that (>>0. Then

,._.,.,.

Let the local scaling of type (2

exist: n(e) ~ e t'. Transition from r to 9

is correct, as z'_Re when e<<1. Then !;

(8/T%)(dn/de), if _ does not depend upon e
or v is a slow function of e. Under this

condition ,one gets from (a) that for the
near-polar region
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Fig.4. The average number of nodes in
a latitude-longitude grid, <n(L)>,
within annuli of geometrically

increasing radii, at different
values of latitudinal, A_, and
longitudinal, AX, resolutions.
Five series of points correspond

(from top _ to bottom) to:
I)Aq0=AX=OA25_; 2)Aq0=OA25 _ , AX=I°;

3)A_=AX=I_; 4)A(p=I _ , AX=5°;
5)A_=AX=5 . The numbers at series
denote correlation dimensions.

_ 1 + 1/2 ((/O) 2.

while for out-polar region (but at _<<1)

l_ _ 2 - 1/2 (0/_) 2.

If q is large one gets from (6) that _2
with a high precision. Thus, the local

fractal dimension of a latitude-longitude
grid is a monotonous function of latitude
and changes from I at the poles to 2 at
the equator• It is evident that the
correlation dimension (1) which
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characterizes the _lobal distribution of
nodes of the grzd, has to have an
intermediate value.

3.2. ]_ptPtCaZ IractaZ ch£b"ctcteP_sttc8

In practice the distribution of the

grid nodes is discrete. Fig.4 shows the
calculated mean value, <n>, as a function
of Z at different values of latitudinal

and longitudinal resolutions. This

function has two different scaling
regimes. One regime is peculiar to

smaller scales and limited from a larger
scale by the latitudinal grid resolution.
This regime is characterized by the small
correlation dimension which decreases if

the grid resolution improves. One can

show that p_1 then. Another scaling
regime ranges up to a global scale and is
characterized by a correlation dimension

equaled to 1.84 at sufficiently good
resolution.

4. CONCLUDING R_AARKS

The fact that the fractal dimension

of ozone measuring network is less than
the Earth's surface dimension (equaled
2), canhave important consequences for

ozone statistics. According to Lovejoy et
al (1986), such a networkis not able to
detect phenomena with dimension w < D-_.

p

The detectability limits are: p =
p

2-1.67=0.33 for the _round-based
ozonometric network, v =0.16 for the

p

latitude-longitude network at large
scales, and v ~ 0.4÷0.7 for the

p
latitude-longitude network at small

scales. If one suppose the fractal
dimension of ozone field to be decreasing
function of ozone content (similar to the

case of some meteorological fields, see
e.g. Lovejoy et al., 1986; Lovejoy and
Schertzer, 1990), then insufficiently
large fractal dimension of ozone
measuring network has to lead to biases
in ozone statistics. In particular, this

can lead to biases in the spatial
averages.
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