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1 Introduction

1.1 Summary

Gravity gradiometers in satellites have received a lot of attention because of their ability to

measure a combination of the local gravity gradient, plus instrument rotation effects. After

a series of measures to isolate the gradient, a global mesh of measurements can be combined

to determine the planetary external gravity potential, a result of great importance in

geophysics and geodynamics.

In 1993, Mr. Seymor Kant, the sponsor of this study, put forth the idea that, if the gravity

potential were known, the same measurements, unsupported by any other information,

could be used to infer the spacecraft attitude. In May 1993, this idea led to a joint
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proposal of the Colorado Center for Astrodynamic Research, of the University of Colorado,

and the Analytical Engineering Co. of Boulder Colorado, to examine the feasibility of the

suggestion. Subsequently, Goddard Space Flight Center gave a grant to the University of

Colorado, which in August 1993 issued a subcontract to the Analytical Engineering Co.

to perform the bulk of the work. This Final Report presents the overall theoretical and

numerical results of the study.

The report has 3 main sections. In the 1st, Static Attitude Estimation, the gravity gradient

tensor is determined in instrument coordinates, as a function of instrument attitude. It is

shown that, if rotation effects could be somehow removed, spacecraft roll and pitch could

be determined at the microradian level; but that yaw isn't observable at all.

The next main section, Dynamic Attitude Estimation, expands the inquiry to include

all the rotational effects, but also introduces dynamic estimation, based on the Euler

equations of rigid body motion, plus the kinematic equations of a spacecraft nominally in

an observational orbit configuration. The state variables comprise the Euler angles and

the angular velocity, linearized about this o]=ientation. The Euler equations specifically

include pitch bias momentum, gravity gradient torque, and torque from unbalanced air

drag. Air density variations lead to;a process noise, for which a crude power spectrum is

derived.

The gradiometer is taken to be composed of an ensemble of accelerometers. For each

accelerometer, a model is constructed, showing how the output depends on its location,

the state variables, and the drag. A measurement noise model is given, relating the power

spectrum to rms noise and averaging time.

The filter, or estimator based on the plant, noise, and measurement models looks super-

ficially like a Kalman filter. However, in a dramatic departure from existing theory and

practice, the filter feedback gains are obtained by minimizing a performance index that

penalizes the error covariance and the filter settling time. These in turn are computed from

the power spectra of the various noises. Bryson weighting is used to adjust the penalties

according to the user's engineering requirements and desires. This new filter theory has

previously appeared in print only in [1], which is a condensation of the present report, as

it then existed.

Detailed results are presented in Section 3.11. Here it's sufficient to say that dynamic

estimation does permit the entire state to be observed, including yaw, for the 3 different

gradiometer configurations studied; and even in roll and pitch, dramatic gains over static

estimation are evident. For instance, a 4 single axis accelerometer instrument, with a

sensitivity of 2 x 10 -8 m/s 2, averaged over 1 s, could deliver 263, 10, and 29 microradian

accuracy; in yaw, roll, and pitch respectively; with a filter settling time of 36 s. Worsening

the accelerometers to 2 × 10 -5 m/s 2 still yielded 141 11 and 2 milliradians; with a filter

settling time of 63 s. Some 30 cases are examined and interpreted in Section 3.11.



The last main section,SelfGravity, examinesthe disturbingeffectof the gravitational
field arisingfrom the spacecraft'sownmass.Spacecraftcomponentsthat are fixed in in-
strumentcoordinatescauseonlybias;soonlypartsthat canmovearea potential concern.
Exploratory calculationsare madeof severalcommonsourcesof selfgravity, including
articulateddevicessuchasscanplatforms,antennas,and rotating solararrays; thermal
distortionsof the spacecraftstructure;andliquidsfreeto movein tanks.

Articulated devicesare shownto yield variablegradientfield distortions in the tens to
hundredsof microradiansrange;however,modeling,supportedby thearticulation sensors
canremovemost of the effect.Thermaldistortionis typicallysmaller,but not necessarily
negligible.Heretoo, modeling,supported by strain gauges and/or temperature sensors,

should be adequate to deal with the problem. If liquids are free to move in tanks near the

gradiometer, they are potentially the worst problem. If nothing is done, field distortions

of a few hundred microradians are typical. However, with a few extra accelerometers,

a simple filter can separate the liquid and external fields. Results from a least squares

analysis are given for 3 different accelerom_ter configurations, and several liquid-tank

arrangement s.

The author would like to acknowlec_ge the support of the University of Colorado, partic-

ularly the Colorado Center for Astrodynamic Research, and its Director, Prof. George

H. Born, also the Principal Investigator on the Grant to the university on this study.

Other CCAR personnel contributed substantially, notably graduate student Thomas G.

Gardner, co-author of [1]; Profs. Penina Axelrad and Donald L. Mackison; and Research

Associate Dr. Michael E. Parke. Also contributing useful discussions and insights were

Profs. Daniel B. DeBra and Arthur E. Bryson of Stanford University, Profs. Jason L.

Spever and Dino Mingori of U.C.L.A, and Dr. Darrell Zimbleman of Ithaco Inc. And

there is no forgetting the sponsor, Mr. Seymor Kant of Goddard, originator of the main

idea, whose continued support throughout, and many hours of consultation, direction, and

insights were invaluable.

1.2 Notation

Uppercase bold roman and greek letters are 2 dimensional arrays; e.g., F.

Lowercase bold roman or greek letters are column vectors; e.g., r.

Magnitudes of vectors are non-bold; e.g., r = Irl.

Lowercase greek subscripts are indices. The Einstein summation convention is used for

repeated lower case greek indices.

Overdots signify time derivatives; e.g., ic = dx/dt.
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A T superscript denotes transpose.

Primes denote scaled variables; e.g., x _.

Sines and cosines are denoted by s and c respectively.

i

ae----

a/=

B=

Ci =

direction cosine matrix; also, constant matrix in Riccati equation

fe/rn = external non-gravitational acceleration on spacecraft

inertial acceleration of the ith accelerometer

process noise state distribution matrix

concern for xi

Ct -- settling time concern value

D(w) = matrix satisfying Lyapunov equation (78)

E(x) = expectation of x

eaZ = unit vector along axis a in coordinate system x

F --- plant matrix

fe --- external non-gravitational force on spacecraft

G = matrix defined in (86)

g(u) ---- controls vector appearing in (53)

G = universal gravitational constant = 6.67259 × 10 -11 N-m2/kg 2

g = gravity field vector at r

g_ = gravitational acceleration at the ith accelerometer

H --= measurement partials matrix

h = spacecraft pitch momentum bias

hs = atmospheric scale height

In = identity tensor of order n

J = overall spacecraft inertia tensor

K = filter feedback gain matrix

kl-4 = constants defined in (24)

kB = Boltzmann's constant = 1.38 × 10 -23 J/K

k/-= air drag force constant defined in (35)

L = white measurement noise matrix defined in (102)

1 = set of spacecraft dimensions; also direction cosine vector of disturbing mass

M = combined "equivalent" white noise matrix defined in (98); also a priori eovariance

m = spacecraft mass; also field source mass

N(w) = matrix defined in (83)

P, P_ = eovariance of the error of the estimate

Q(ta) = function of power spectra defined in (74)

q = filter performance index; also dynamic pressure

R -- measurement error eovarianee

R(r) = autocorrelation matrix with delay r

R(0) = average power in stationary process

r = field position vector relative to m



rcp = spacecraft center of pressure, relative to center of mass

re = earth mean radius = 6.367 x 106 m

S(w) = general noise power spectrum

Sv, $w = white noise spectra

s, t superscripts signify spacecraft and trajectory coordinates

T = absolute temperature

t = time in s_conds

t _ = t/Ct = scaled time

ts = filter settling time

U -- process noise measurement distribution matrix

u -- vector of controls

V -- BSwU T -- white process noise effect matrix

vo = satellite orbital speed

W = B - KU = process noise effect matrix

w = process noise vector

wd = dimensionless air drag random process"

X = F - VM-1H = linear term matrix in Riccati equation

x = state vector

-- estimate of x

= dx/dt I

Y = measurement noise distribution matrix

y = disturbing mass position vector

Z = F - KH = observer system matrix

z = vector of measurements

= error in estimate of liquid location

= variation in spacecraft w

1" -- gravity gradient tensor

ro = Grn/r 3 = gradient scalar due to mass m at distance r

A = diagonal matrix of eigenvalues

,k(Z) -- eigenvalue of Z; also ,_ = atmospheric density correlation length

i_e = Grne = gravitational constant of the earth = 3.98603 x 1014 m3/s 0"

-- _ - x = error in the state estimate

a = _R(,k) = real part of eigenvalue

re --- non-gravitational external torque

T = measurement noise matrix defined in (88)

¢I' = noise matrix integral defined in (90)

= gravitational potential

12 = process noise matrix defined in (88)

w -- spacecraft angular velocity

= angular frequency used in power spectra

wc -- break frequency in power spectrum

Wh = half power frequency in power spectrum



wo = orbital mean motion

1.3 A Note on Units

Unless otherw." ise stated, the units used throughout this report are the SI (International

System), also known as rationalized MKS units. However, I have also followed common

practice in the field of gradiometry on the units of the gravity gradient. The natural SI

unit of gravity gradient is (m/s2)/m, or just s -2. Since gradient components at the earth's

surface are on the order of 1.5 × 10 -8 s -2, and are routinely measured to 10 -9 s -2, or

better, this has proved to be a rather unwieldy unit. Thus, there has now been world wide

acceptance of the E6tvSs unit1:1 E = 10 -9 s -2. In this report, the SI unit will be used

everywhere in the formulas; but EStvSs units will be occasionally employed in the text.

2 Static Attitude Estimation

2.1 The Tilted Gradient

Gravitational fields may all be described by a scalar potential field field _. The potential

due to a particle of mass m at a distance r is:

= --Gm/r (1)

Note that this potential is negative, but increases toward zero with increasing r. The

vector gravitational field at this point, due to m, is the acceleration of a free test particle

there:

g = -V¢ = -Gmr-3r - -For (2)

Finally, the gravity gradient tensor field due to rn, is:

(3)

The symbol rr T is an outer product, or tensor product, or dyadic, whatever you're com-

fortable with; in contrast to the scalar product rTr -= r 2.

Outside the earth, the fields are closely approximated by these formulas. Accepting this,

if the test mass is a spacecraft, in circular orbit about the earth at radius r, then the

1Honoring Baron Roland yon EStvSs, for his extraordinary experimental work on the equivalence prin-
ciple in the last century.



orbital angularvelocity,or meanmotionwo is given by:

2 r0 #_/r 3 (4)

in which Pe is the gravitational constant of the earth. The actual potential of the earth is

quite complicated; but differs from (1) by only about 1 part in 1000 in low earth orbit, and

by even less at higher altitudes. The variations in turn are known to better than 1 part

in 1000. Thus, if spacecraft attitude is actually inferred from gradiometer measurements,

this error in knowledge of the field would lead to corresponding attitude determination

errors on the order of 10 -6 rad, almost surely not the worst error contribution. In any

case, the intent of the study is to find the accuracy with which a gradiometer can measure

attitude, given that the field is known. Thus, the study will neglect the effect of field

knowledge errors.

On the other hand, neglect of the known deviation from sphericity (mainly oblateness)

would lead to attitude errors on the order of 10 -3 radians, usually unacceptable. However,

the intent of the study is to determine feasib'/lity; so the form of the necessary oblateness

correction is outside the scope. Later, if feasibility is demonstrated, an add on study, to

find the form and practical implementation of the correction, would be called for. In the

same vein, the design of a real system would have to deal with eccentric orbits; but as the

orbit is not being solved for, the obser.vability of the attitude can't be seriously affected

by eccentricity; and the spacecraft orbit will be taken here as circular.

At this point it's necessary to introduce coordinates. In general, coordinate systems will

z wherea= 1, 2, or 3be described by a set of right handed orthonormal base vectors ca,

denotes the axis, and x indicates the system. Most important perhaps is the spacecraft

system e s. This is the physical system in the spacecraft to which all the accelerometer

input axes, and all other instruments, are aligned. For simplicity, it will be assumed that

the origin of e s is at the spacecraft center of mass. The term "spacecraft attitude" will

be taken here to mean the rotation that connects e s to a trajectory system e t. In the

latter system, e_ is defined as the local upward vertical, through the origin of e s, and

e_ is parallel to the orbital angular momentum, e_ completes a right handed system,

and is along the spacecraft velocity vector. It must be emphasized that e t isn't inertial,

but rotates uniformly at a rate wo about e_ relative to a system that will be regarded as

inertial, but won't need to be identified further.

The connection between systems may be described by a matrix of direction cosines A:

= (5)eo_

In this study, the spacecraft is assumed to be earth pointing; so A will be taken as a small

rotation. It then can be expressed in terms of small yaw (¢), roll (¢), and pitch (0) angles;



about e_, e_.ande_,respectively.In theseterms,andto 1storderin the angles:

t

I 1 0 -¢
-0 1

¢ -¢ 1

(6)

From here to'Section 4, the fields will all be due to the earth. The need for e t is that g

and Y are most conveniently expressed there:

gt=-r0re] = F0r[-1, 0, 0] T (7)

F t = F0diag [2, -1, -1] (s)

and expressing these in e s, where the instruments reside:

gS= Ag'= r0r[-1, 0, _¢]r (9)

r s =ArtA T = F0

2 -3O 3¢

-30 -1 0

3¢ 0 -1

(10)

again to 1st order in the angles. These are the transformation rules for contravariant

vectors and tensors, respectively. Note first, that while pitch and roll turn up in these

expressions, yaw does not. Physically, this is because r is an axis of symmetry of the fields.

2.2 Error Analysis

If we could measure either the gravity or gradient field in e s, we could infer both t?

and ¢. Unfortunately, accelerometers don't measure gravitational acceleration at all, and

gradiometers are strongly perturbed by angular velocities and accelerations (see Section 3

for details). Still, it's helpful to see how well these angles could be determined if the

dynamic effects could be removed. For example, if a spot measurement of F_3 were possible,

the error in ¢ would be:

6¢ = -- + (11)
3F0 r

Suppose a spacecraft altitude of 500 kin. Then r -- 6.867 x 106 m, and F0 -- 1231 E. A

gradient component measurement accuracy of .01 E would then contribute 2.708 x 10 -6

rad to 6¢. The analysis of 60 leads to the same result, given a measurement of F_2. In

each case, the 2nd contribution to the error comes from the uncertainty in the knowledge

of r. Supposing 6r = 10 m, and ¢ = 0.1 rad, say, this contribution to 6¢ comes to

4.37 × 10 -r tad. Since satellite tracking usually leads to determining r much better

than the horizontal components of position; and attitude control is typically much better



than this; the tracking contribution may be regardedas conservative.It will not be
consideredfurther in this report. Thus, the conclusionof the static analysisis that, if
spot measurementsof the gradientcanbe madeat the .01E level,then roll and pitch
determinationat the microradianlevelwouldbepossible.

If this gradientmeasurementcamefrom apair of accelerometers,with an0.5m separation
andindependenterrors,then their requiredaccuracywouldbe

_a= 0.5(10-11)/21/"= 3.536× 10-1"°m/s"

within the capability of the best room temperatureaccelerometerstoday, operatingin
space.A pretty stiff requirement;but it will be shownthat dynamicestimationallowsa
considerablerelaxation.

3 Dynamic Attitude Estimation

3.1 Overview

If gradiometers actually measured the gradient, then a model would be something like

z -- r' plus noise, or a subset of its components. A least squares analysis would then

yield the covariance of the errors in the estimate of the desired _ and 0, for each discrete

sample z. However, once it's recognized that any real gradiometer measurement z contains

functions of w and &, it becomes clear that least squares analysis won't suffice; and we

have to resort to dynamic estimation. In the present case, the plant equations take the

form of the Euler equations of more or less rigid body motion, plus kinematic equations

relating w to the attitude angular rates. This structure is developed in Section 3.3 below.

Actually, as there is very little process noise (external torque variations), these equations

add considerable strength to the estimates; thus turning a practical necessity into a virtue.

In the following subsections, these plant equations are developed and linearized, a process

noise model is spelled out, a filter is synthesized, and the terminal covariance of the errors

in the estimates is computed; for specific spacecraft, orbit, and instrument combinations.

A major variation from the earlier g-radiometer dynamic estimation studies, [6] and [5],

is that, instead of treating gradiometers as measuring the intrinsic tensor plus noise, this

study follows [9] in treating the instrument as an array of accelerometers. The measure-

ment models then consist of what each accelerometer should measure, plus noise. One

advantage of this structure is that the measurement noises may now be regarded as un-

correlated, avoiding the careful treatment needed in [6]. But the big gain comes from the

much simpler treatment of self gravity, and its detection, to be found in Section 4. This

model is constructed in Section 3, followed by a measurement noise model.
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3.2 Spacecraft & Orbit Models

For simplicity,the spacecraftwill besupposedto be a rectangularparallelopiped,with
s Supposing a uniform density p, the space-edges la aligned along the spacecraft axes e a-

craft mass is:

rn = p111213 (12)

and the principal moments of inertia are readily shown to be:

Jl=rn(l_+l_)/12 ; J2=rn(l_+l_)/12 ; Ja=m( 12+l_)/12 (13)

A typical density might be p --- 1000 kg/m3; but if articulated solar panels or large antennas

are present, a lower value would ensue.

The spacecraft orbit will be assumed circular, at a radius r. For the numerical examples

an altitude of 500 km will be assumed, for which r = 6.867 x l06 m, Wo = .0011095 rad/s,

and F0 = 1231 E. No assumption will be laaade on the orbit inclination, as it doesn't

appear in the present analysis. Also, the spacecraft speed in orbit is Vo = two = 7614 m/s.

3.3 Plant Equations

In [5] it's shown that the Euler equations of rigid body motion, when modified to include

an arbitrary bias momentum hw, can be written as:

J&= (Jw+hw) xw+rgg+re (14)

in which the external torque has been separated into the gravity gradient torque rgg and

the nongravitational torque re, the latter mostly due to air drag. Note that the derivative

on the left side is the rate of change as seen in e s. Control torques could be included in

re; but as they would then reappear in the filter structure equations, the)' cancel out in

the covariance study.

Unfortunately, this system is nonlinear in w. Since we are analyzing a nominally earth

pointing satellite, the nominal value ofw is woet3. However, because of the body derivatives,

a much simpler procedure is to define the variation e by:

w = woe_ + e (15)

Another simplification comes by arguing that, in an earth pointing satellite, bias momen-

tum, if any, is usually confined to the pitch axis:

hw=he_ (16)

11



The possibilityof additionalwheelsfor controlis not precludedby this specification;it's
only requiredthat their nominalmomentumiszero.Substitutingtheserelationsinto (14),
anddeletingquadratictermsin e, results in:

J_ = wo(JE) x e_ + wo(Je_) x (woe_ + e) + he_ × e + "rgg + "re (17)

Before proceeding with this, it's helpful to work out -rgg. The well known formula in e t

may be put in the form:

t = 3r0e_ × (jte_) (18)"r gg

Since only js is readily available, and as what we really need is rggs, we need to work out

8 = 3r0A[e_ × (ATjSAet)] = 3r0"r gg

-J12¢- J138

(Jn -- J33)¢ + J238 - J13

(Jll - J22)8 + J23¢ + J12

(19)

Note that, while nothing depends on ¢, there is a yaw torque, arising from off diagonal

components of J. These also produce bias torques in roll and pitch. This is why, for earth

pointing satellites, it is generally preferable to point some principal axis down. Moreover,

by making this axis (e_) have the least moment of inertia, the gravity gradient torques

are restoring. In this report, where the main issue is observability, it will be assumed that

this condition is met. Thus, our assumption for further analysis is:

js diag [J1, J2, J3] (20)

In the numerical examples, it will be further assumed that J1 < J2 < J3, known to be

the best configuration for gravity gradient stabilized satellites. With tbe principal axis

assumption, the torque reduces to:

[ o ]
On inserting these expressions into (17), the component Euler equations become:

Jlel = ["_o(J2 - J3) - h]e2 + Tel

J2_2 = [wo(J3- J1)+h]¢l+3F0(J1- J3)¢+re2

J3t3 = 3Fo(J1 - J2)O + _3

(22)

We can put these in standard form by dividing by the moments of inertia:

_1 -= kle2 + Jll'rel

t2 = k2_ + k3¢+ J{lre2

_3 = k4O + J31Te.3

(23)

12



in whichthe constantsaredefinedas:

kl = [_o(g2 - J3) - h]/J_

ks = Po(:3 - J1) + hi�J2

k3 = 3F0(J1 - J3)/J2

k4 = 3F0(J1 --J2)/J3

(24)

Note that, with the most likely design choices, J1 < J2 < J3, and h 2> 0, only k2 > 0. In

this same vein, if the gravity gradient and other external torque terms are neglected, then

el and e2 decouple from e3 in (23), resulting in a harmonic oscillator with frequency wg

given by:

= -klk (25)

This is the natural nutation frequency, arising mainly from the momentum bias h.

To complete the plant equations we must add the kinematical relations. With the same

linearizing assumptions, these are easily sho_en to be (see for instance [5]):

(b = el +woe

"_ : £3

(26)

We now have a linear system of plant equations of 6th order in e, ¢, ¢, and 8.

3.4 Process Noise Model

The random process appearing in the Euler equations (23) is the external non-gravitational

torque re. At our nominal altitude, this is largely due to air drag; and the random

component is largely from variations in air density Pa. At this writing, actual data on

high frequency lateral density variations is extremely sparse. The question of a suitable

air density model for gradiometer studies was addressed in [5]. A flat earth barometric

model was adopted there:

pa(r 4- br) -_ pa(r)e -&r/h" (27)

where hs is the density scale height. At 500 km, [10] lists pa = 1.905 x 10 -12 kg/m 3,

hs = 83 km, and a mean free path of 25 km. These numbers are, admittedly, quite shaky.

In any case, the dynamic pressure then comes from the speed:

q = pov_/2 (28)

and with the above numbers, q = 1.106 × 10 -4 N/m 2.
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Sincethespeedis alonge_,andthespacecraftattitude isnot far fromnominal,the steady
forcefrom air dragis verynearly:

fe= --qlll3CDe_ (29)

Because the mean free path is much larger than the spacecraft, the drag is essentially

Newtonian, and the drag coefficient is essentially CD = 2. However, since some inelastic,

oblique, and diffuse scattering of air molecules is likely, this CD may be a bit high. In this

study, the value Co = 1.5 will be adopted, subject to change if a more definite spacecraft

model is later considered.

We should also look at radiation pressure. The quantity corresponding to q is Is�c, where

Is = 1360 w/m 2 is the mean insolance at the earth's mean distance from the sun, and

c = 2.99776 × 108 m/s is the speed of light. With these numbers, the "radiation dynamic

pressure" is 4.54 x 10 -6 N/m:. As this value is well below q, and as the variation frequency

band is much below that for air drag, radiation pressure will be ignored in what follows.

This point should be revisited if altitudes substantially above 500 km are ever considered.

[5] goes on to develop a statistical model. It supposes that Pa is actually the mean of a

distribution, to which a random component is added:

pr = powu(t) (30)

where wd(t) is a dimensionless, zero mean, random function of position and time. At

satellite speed, the spatial variation is much more important. Suppose that Wd(t) has a

standard deviation aw. What's needed now is a power spectrum.

Physically, we are looking at dynamic variations in density, with scale lengths on the

order of hs, plus the more or less orbital frequency variation due to solar heating of the

atmosphere. The latter, while reaching substantial amplitudes, at least for orbits which

pass close to local noon, is confined to such low frequencies as to have little effect on the

attitude estimates; so we will ignore it in what follows. As for the dynamic variations,

we can imagine variability on all length scales, but petering out below distances on the

order of hs. This is the sort of situation that led to the development of the cubic power

spectrum in I31:

=  n(o) 1 - 1+ (0 < < 2 c) (311
t_ c

and zero otherwise. Here, R(0) is the average power in the process, and wc is the break

frequency where S(wc) = S(0)/2. Suppose the autocorrelation of variations falls by half

at a distance ahs. The time to travel this distance is

=  h,/Vo (32)

14



and [3] shows that, for the cubic spectrum, we should choose:

7r lrVo (33)
wc_ = 2A ½_hs

We must also pick Rw(O) and a. For numbers, the best information presently available to

the author is an analysis of CACTUS data in [11]. Accelerometer data over approximately

800 s intervals was analyzed at altitudes between 270 and 320 km. Density variations

of _ 4%, peak to peak were typical; rising sometimes to _ 15%, during severe magnetic

disturbances. The corresponding aw values are .014 and .05. A reasonable balance between

these values would be ,_ .02; but, allowing for a bit greater variability at higher altitudes,

we will accept aw = .025 as the baseline value. Then, as these time series meet the

oversampling conditions discussed in Appendix B, Rw(0) = _r2u,= 6.25 × 10 -4.

As for a, [11] doesn't show a power spectrum, but it does show representative time series

of a normal and a disturbed interval; and it is stated that the apparent wavelengths

concentrate in the range of 700 to 1500 km. ,Examination of the time series suggests that

R(r) falls to 0.5 at r --_ 50 s. Translating this to 500 km, the corresponding distance is 381

km, when a = 4.6. Since for a sinusoid, R(r) falls by half at 1/3 of a wavelength, these

numbers are at least consistent. Again, to allow for a bit more variability at 500 km, we

will take c_ = 4 as the baseline• For numerical studies, this leads to wow = 0.03606 rad/s.

It remains to convert this to torque. The overall drag force is vet3' nearly:

fe = -k/[1 + wd(t)}e_ (34)

where
° 2 (35)kf ==- pavolll3CD /

Supposing a center of pressure at a location rcp in the spacecraft, the torque due this is:

"re = rcp × fe = kf[1 + Wd(t)][rcp3, O, --rcpl] T (36)

Note that there a deterministic bias force and torque, which must be treated correctly in

the filter below. Also, while the box structure used here gives rise to no torque along e_,

an actual spacecraft would likely possess irregularities that would lead to a small torque

on this axis (propeller torque). To allow for this bit of realism, a component rcp2 can

replace the zero in (36) above. This provision is included in the filter structure below.

3.5 Gradiometer Model

In earlier studies ([6] and [4]), the instrument was modeled as measuring elements of the
• . • ,,_lntrlnslc tensor:

T = r + w213 - ww T + 6d_ (37)
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wheree is the 3-indexpermutationsymbol.Thequadraticw terms amount to centrifugal

effects. Because the accelerometers are fixed in e s, there is no coriolis. Here, the instru-

ment is dissolved into its component accelerometers, partly to avoid the noise correlations

required in [6] and [4], but mainly to prepare for later studies requiring more elaborate

error models. This model is also needed in the self gravity studies in Section 4.

For the purpose of this study, the gradiometer will be taken to be an array of 3 axis

accelerometers, with their input axes aligned along the e s For 1 axis accelerometers, it's

only necessary to select out the appropriate row. It's convenient to identify a "center"

of the instrument re, relative to the origin of e s. Then, the ith accelerometer will have a

position rai, relative to the center. Thus, its location relative to the center of mass is:

ri = rc + rai (38)

Identifying the center in this way is a convenience, useful for entering symmetrical arrays;

re should turn out to have no effect on the observability of the state.

Next, we identify the inertial acceleration. For a perfectly circular orbit, the center of

mass is subject to 2 t-_orel. As for rotation effects, e s is rotating at a rate w, relative

to an inertial or non-rotating frame e'L So, purely due to rotation, the inertial velocity

of the ith accelerometer is (the superscripts indicate the frame in which the derivative is

observed):
d n d s

/'i = _--/ri = _-_ri + w × ri = w × r_ (39)

the latter because ri is invariant in e s. Going to the next derivative

d n dn

ri = --dt r,'. = d, × ri + w x --ridt = d,, × ri + w x (w x ri) (40)

Note that tb is the same, whether viewed from e '_ or e s. Finally, on including the external

non-gravitational acceleration at, the ith accelerometer is subject to:

') t
ai = --_orel + w x (w x ri) + d., X ri + at (41)

Again, there are no coriolis terms, as ri is fixed in e s.

On the other hand, the gravitational acceleration of the ith accelerometer is gt plus the

correction at r_ due to the gradient. Prom (7) and (4), this comes to:

o t
gi = --worel + Fri (42)

Now, actual accelerometers measure only non-gravitational acceleration; i.e., the difference

between inertial and gravitational acceleration. These are identical in free fall, when an

accelerometer measures zero. Conversely, for an accelerometer on a table on earth, it

measures the acceleration imposed by the table that keeps the instrument from falling

through the floor.
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We'renowreadyto constructa modelof the instrument. For the ith accelerometer, this

model is:

zi = ai - gi + vi (43)

where v_ is the noise in the 3 measurements made by that accelerometer. On substituting

the above expressions this becomes:

zi = w x (w x ri) + & x ri - rr_ + a_ + v_ (44)

Note that the acceleration of the center of mass has dropped out, as would be expected

for an accelerometer placed there.

The next step is to linearize this using (15). On neglecting the quadratic terms, and

recalling that & is the same in e n and e s, we get:

zi = Wo (woe_ + e) x (e_ x ri) + woe_ x (e x ri) + _ x ri - rri + a_ + v_ (45)

We'll work this out term by term, in the fwm of matrices of constants times the state

variables, plus whatever is left over. Starting on the left:

e_ x (eg × ri) = ri3e_- ri = -[ril, ri2, 01T (46)

e x (e_ × ri) = (ri. _)e_'- e3ri =
I 0 0 --ril (1 1

0 0 --ri2 e2

ril ri2 0 e3

(47)

_2

e3

ri3 0 --ril 1

e_ x (E x ri) = ri3£ -- ¢3ri = 0 ri3 --ri2 J (48)0 0 0

The _ term can't be expressed directly in the state variables; however, by making use of

the plant equations (23), there follows:

_;xri =

0 ri3 -- ri2

--r_ 0 ril

ri2 --ril (}

0 kl 0 0

k2 0 k3 0

0 0 0 k4

k2ri3 0 k3ri3 -k4ri2 1

0 --klri3 0 k4ril J--k2ril klri2 --k3ril 0

The F term comes directly from (10):

l"ri = F0
2 -30

-3O -1

3¢ 0

0 ri2

-1 ri3

= 3F0

_2

¢
0

1le2
¢ +

0

ri3 --ri2

0 --ril

ril 0

-ri x

JllTel

J21re2

[ d21ri3_-e2- J_-Iri2-re. 3 ]
j_irilre3 j_- Zri3rel (49)

J_Zri27-e1 J21ri1_-e2

¢ + F0 -ri2
0

--ri3

(50)
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andon combiningall these,andsubstitutingfrom theprocessnoisemodel:

zi _-_

+ F0

(k2 + wo)ri3 0 -2woril 0 (k3 - 3F0)r/3 (3F0 -- k4)ri2

0 (Wo -- kl)ri3 -2wori2 0 0 (k4 + 3F0)rn

(_o -- k_o)ri_ (kl + _o)r_2 0 0 --(k3 + 3r0)_ 0

--3rilri30 I
+ kf

-1
J2 ri3rcp2 + J31ri2rcpl

- j_lrilrcp 1 - jllri3rvp3 - rn-1

Jllri2rcp3- j_lrilrcp 2

_2

_3

¢

¢

[1 + w_(t)l + v_ (51)

This completes the description of the accelerometers. There is 1 such 3 vector for each

accelerometer.

3.6 Measurement Noise Model

All accelerometers of the quality needed for this application consist of a case with an

internal cavity, a proof mass within this cavity, a sensor for determining the relative

position of the proof mass in the cavity; and a "rebalance" control system for forcing the

proof mass to the center of the cavity. The force necessary for rebalance is the measure

of the non-gravitational acceleration of the case. Some instruments use a separate proof

mass for each axis being measured, while others use a single proof mass for all 3 axes.

The distinction will not be important here, as separate, independent position sensors are

assumed on each axis.

There are 3 main sources of noise in this class of instruments -- Brownian motion of the

proof mass relative to the cavity, thermal gradient variations in the cavity, and sensor noise.

Brownian motion is the result of the thermal energy kBT/2 coming to equilibrium with

the energy stored in the effective spring of the rebalance system. The effect is worsened

by high temperature T, and by light proof masses. The thermal gradient effect is caused

by failure of the instrument's thermal control system to hold down the spatial variation

in temperature of the cavity. This causes thermal distortion and asymmetry of the cavity,

leading to errors in the position sensor. A fixed gradient only causes a bias, presumably

removed by calibration; but variations, either from external heating variations, or from

noise in the temperature sensors, can be a source of trouble. Finally, sensor noise can

arise either from the actual sensor amplifiers, or from the power source (either voltage

or current) used for rebalance. The latter is because this voltage or current is the actual

measure of acceleration.

All of these noise sources depend critically on the instrument design. As this part of

the study is only for feasibility, no specific instrument will be used; but later, if actual
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instrumentsarestudied,actualpowerspectrawill be needed.Still, we requirea power
spectrumevenfor a genericinstrument;so,for simplicity,a cubicspectrum,of the form
(31)will beassumed.Thediscussionin AppendixB showshowthe averagepowerRv(0)

for this spectrum, and the break frequency Wcv, are determined from the rms acceleration

error and the averaging time _- of the measurement.

3.7 Filter Structure

The 1st step in calculating the terminal covariance in a dynamic estimation problem is to

determine the structure of the filter. This starts with identifying the set of state variables

that appear in the plant and measurement equations. From (23) and (26), it's clear that

we should choose:

X : I_l, _2, _3, ¢, ¢, @iT (52)

Following [8], it's conventional to consolidate the plant equations in standard linearized

form: •

= Fx + g(u) + Bw (53)

Here, F is the plant matrix, u is a vector of controls, g(u), a possibly nonlinear vector

function, distributes the controls, w is a vector of independent process noises, and B is

the process noise state distribution matrix. The matrices are readily identified. From (23)

F

and (26), we find:

0 kl 0 0 0 0

k2 0 0 0 k3 0

0 0 0 0 0 k4

1 0 0 0 wo 0

0 1 0 -Wo 0 0

0 0 1 0 0 0

(54)

As for the control and process noise terms, it's convenient to separate the deterministic

process noise bias from the random components, and combine them with the actual con-

trols, if any, to produce the g(u) used here. Since these terms will eventually cancel out

in the analysis below, the actual controls have no effect on filter performance, and there

is no need to spell out g(u). Finally, by identifying w with wd(t) in (36), and including

propeller torque, we have:

]3 = kf[rcp3/J1, rcp2/J2, --rcpl/J3, O, O, 0] T (55)

Turning now to the measurement model, the direct appearance of the process noise in each

of the accelerometer measurements requires a modification of the usual standard model:

z = I-Ix + Yv + Uw + z B (56)
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Here,I-I is the measurementpartialsmatrix, developedin Section3.5above.From (51).
this is:

(k2q-wo)ri3 0 -2u_oril 0 (k3 - 3r0)ri3 (3F0 - k4)ri2

H_ = 0 (Wo- kl)ri3 -2wori2 0 0 (k4 + 3F0)ril (57)

(wo - k2)ril (kl + _'o)ri2 0 0 -(k3 + 3r0)ril 0

and the compdete measurement partials matrix is:

R= ...]r (ss)

For example, if there are 7 vector accelerometers, H will be a 21 x 6 matrix. Again, for a

1 axis accelerometer, merely select the row in I-Ii corresponding to the input axis.

For the measurement noise, it will be assumed that each measured axis of each accelerom-

eter has a separate independent sensor noise. Thus, v(t) has one element for each element

of z, and Y is just an identity matrix. A more elaborate model may be found in [2]; so,

to accommodate specific hardware in later work, Y will be retained in what follows. The

spectral properties of v(t) were developed above. As for the process noise term, having

established that w is wd(t), U comes immediately from (51):

j_l ri3rcp 2 q- J31ri2rcpl

- -1 1 (59)V i -----kf -J3 lrilrcp 1 - J1 ri3rep3 - rn-

_]_'l ri2rcp 3 -- J_lrilrcp 2

The overall U is a column vector with 3 such elements for each accelerometer (or 1 row

for each 1 axis accelerometer). The remaining terms in (51) constitute the bias ZB. As it

doesn't affect the covariance analysis below, it need not be spelled out.

An observer based on these models starts with an estimate _ of the state x. This is caused

to follow the deterministic parts of the plant equations (53), corrected by feeding back the

residuals, i.e., the actual measurements z minus the measurement model (56). In this case,

this filter structure takes the form:

x ---- F:_ + g(u) + K(z - H_ - ZB) (60)

Note that this structure assumes that the control and bias terms are known, and available

to the filter. The issue buried here is that the controls, whatever they are, are accurately

modeled in the filter, and that the biases have been accurately determined by some sort

of in flight calibration technique. Pursuing these points is outside the scope of the study.

3.8 Terminal Covariance

The performance of a dynamic filter is generally examined by determining the statistics

of the error in the estimate, defined by:

- _( - x (61)
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The evolutionof _ comesfromsubtracting(53)from (60):

-- Z_ + KYv(t) - Ww(t) (62)

wherethe observersystemmatrix is definedas:

Z __F - KH (63)

and the processnoiseeffectmatrix is:

W -- B - KU (64)

There's a lot to learn from (62). First, x, 5, and all the control and bias terms have

disappeared, a consequence of the linearizations. Thus, the quality of the estimate doesn't

depend on the controls in any way, even if they fail to stabilize the plant. This is known in

the controls business as "the Separation Theorem", meaning that the design of the filter

can be separated from the design of the controls (but, alas, not vice versa). The 2nd major

fallout from (62) is that filter stability requires Z to be stable; i.e., all its eigenvalues are

in the left half plane. This is a standard requirement in any negative feedback system.

In filter theory this is put somewhat differently: if a feedback gain K can be found such

that Z is stable, then the state x is said to be observable by the measurements z. 3rd,

the diagonal elements and the eigenvalues of Z have the dimensions of inverse time; and

the filter settling time is essentially given by the inverse of its least negative eigenvalue.

This fact will be used in the numerical work below to insure that the "optimal" filter has

a reasonable settling time. Finally 4th, since the noises appearing in (62) are all free of

bias, then after settling, _(t) will also be free of bias.

Various measures have been proposed to study the quality of the estimate. Here, and

generally in the references, attention has centered on the covariance of the error:

Pc(t) =_E[¢(OCr(t)] ' (65)

where E is the expectation operator. The idea that, in a stationary system, PC(t) would

have a terminal or asymptotic value, has been around a long time. Calculating this

terminal value could be quite tedious, if the settling time was long. About 4 years ago,

William McEneaney, co-author of [6], in unpublished notes, showed that this terminal

value P_ could be calculated directly from the structural information, and the statistics

of the noises. After generalizing to allow arbitrary power spectra in the noises, his ideas

led to [7] and [81.

The present problem differs from [8] by the inclusion of process noise in the measurement

model, and various bias terms. Also, [8] required the solution of a set of Lyapunov equa-

tions involving the autocovariances of all the noises, and it has since been found much

easier to work with power spectra directly. Since none of these changes and improvements

21



havebeendocumentedin any published work, the algorithm for calculating P_ will be
derived here.

To begin the analysis, it may be supposed that the filter has been running for all past

time; so the initial conditions have settled out. Then (62) is solved for "now" in this form:

f oo z
((0) = ] e U[KYv(/z) - Bw(#)]d#

J0
(66)

Here, the dummy variable # may be interpreted as past time. Strictly, the noise terms

should be v(-#) and w(-#); but, as we are only after the statistical properties of _, it

will make no difference. An apparently graver problem is the exponential term -- the

dimensions of tZ depend on those of x, thus calling into question the validity of the formal

expansion of e tz. However, from (62), the dimensions of the vector tZx are just those of x.

Thus, all terms of the form t_Zix have the same dimensions, and if the exponential is merely

viewed as a shorthand for the formal expansion, there are no dimensional difficulties.

The terminal covariance may now be found by substituting this into (65):

fo°C_fO °° T TzTv
PC = eZ'{KYE[v(_z)vT(v)]yTKT + WE[w(_)w (v)]W }e d_dv (67)

This supposes that the expectation and integration operators may be commuted, and

uses the assumption that w and v are independent and free of bias. On recognizing the

autocorrelations of the noises, this is:

/++]0+P_ = eZ"[KYRv(rI)yTK T + WRw(rl)WT]eZTVdl.zdu (68)

where

n = _ - z, (69)

Well, autocorrelations and power spectra are Fourier transforms of each other. Using the

one sided spectra of [7], these relations for any noise component are:

1 f0 °+ S(_)c(n_)d_ (70)n(.) =

i+= 2 (71)

from which the average power is:

R(O) = -7rlfO0°° S(w)dw (72)

After substituting (70) into (68), and interchanging the order of integrations, there results:

z.p, = 1 o_ oo _e q(w)e c(rlw)d#dvd., (73)
IT
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in which:

Q(w) = KYSv(w)yTK T + WSw(a.')W T (74)

Considerable progress can now be made by a change of coordinates. Combining (69) with

0 - _ + _ (75)

the double in'tegration region is now the quadrant surrounding the +8 axis, when

] c_ cc

P' - 2_ _ [L e Z'7/2 _? ezO/2Q(w)ezrO/2dOe-zT?/2c(wo)dr]

-{- fO°ceZ'7/2 _°°eZO/2Q(w)eZTO/2dOe-ZT?/2c(wrl)drlJ dw (76)

Now, it's not hard to establish that

e z0/2Q (_) zro/2da = 2 z°/:D (w) zr 0/2 + const ant (77)e e e

where D(w) satisfies the Lyapunov equation:

ZD(w) + D(w)Z T = Q(w) (78)

Putting this into (76), and evaluating at the required limits, a considerable simplification
results:

p, =_1re _oo [_. D(w)e-ZTvc(_w)dv + j£o°c eZnD(w)c(w_)drj] dw (79)

and setting V ---*-77 in the 1st integral:

when another analytic integral has surfaced:

fo _ _Z'c(,_)a_ = -(z + _z-_) -_ (81)

leading finally to:

where:

0C"
p_ _- 1 [N(w) + NT(w)]dw (82)

?T

N(w) = (Z +w2Z-1)-ID(w) (83)

It may be noted that this analysis would break down in several places but for Z being

stable. Once again, especially in (81), the dimensions may look flaky. However, letting u{

represent the dimensions of x_, it is readily shown from the differential equations that the
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expressions Zijt, Zij/w, and wZ_j 1 all have the dimensions ui/uj. By extension, the ijth

element of (81) has the dimensions tui/uj.

This work has established one possible forward procedure. For a given K, Z and W are

computed from (63) and (64). A set of w values is chosen to cover the region where any

of the noise spectra are nonzero, with reasonable density. Q(_d) is then determined over

this set from.(74). Each Q(w) yields a corresponding D(w) by solution of the Lyapunov

equation (78), and a corresponding N(w) from (83). Once this is complete, P_ is found

by integrating (82).

Since this study began, a remarkable resource has been found to reduce the labor. From

(82), we can construct the following:

l f0°°ZP_ + P_Z T = _ [ZN(w) + ZNT(w) + N(w)Z T + NT(_d)ZT]dw (84)

Next, eliminate N with (83); and, after reco_Tnizing that Z and (Z + w2Z-1) -1 commute,
the Lyapunov equation (78) reappears. Thus,

ZPg+P_Z T= G+G T (85)

where

1/fiG = - z (86)
_T

The new procedure calls for computing G directly by (86) from Q(w) and Z, followed by

solving (85) for Pk. The advantage is that only one Lyapunov equation needs to be solved,

rather than the 50 or so required for an accurate numerical integration of (82). Note that

the tempting simplification ZP = G of (85) holds only if Z is symmetric, not the case

here.

The main issue now is the integration of (86). This too may be simplified by recognizing

that Q(w) is a linear combination of its component noises. Since the power spectra Sv(w)

and Sw(w) are diagonal matrices, with non-zero elements Svk(W) and S_ol(w) respectively,

we may expand (74) as:

k l
(87)

where

Tk = (KY)k(KY) T ; _z- WzWF (88)

in each case meaning the outer product of the indicated column with itself. With this:

G = + Z ®,a, (89)
k l
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in which:

¢ -- _ (Z + w2Z-1)-ls(w)dw (90)

The virtue of this dissection is that the integrals need only be taken over the range where

S(w) is finite. Moreover, in several theoretical cases, analytic solutions for ¢ are available,

considerably reducing the arithmetic.

3.9 Optimal Terminal Covariance

Having found how to compute P_ from K, we still need to find the feedback gain matrix

K that yields optimal filter performance. 1st, it's necessary to quantify "optimal perfor-

mance". While P_ certainly contains the necessary information, in this 6th order problem

there are 21 independent matrix elements; so some sort of scalar measure of P_ is needed.

The software used here is based on a performance index q, constructed from the weighted

trace of P_: ,.

q = P_/C_ (91)

In this technique, known as "Bryson weighting", each Ci is the "level of concern" for the

error _i. For example, if xi were a position, the level of concern might be Ci -- 1 m. On

the other hand, Ci = 10 m would show less concern, and cause the optimization to put

less weight on the variance of _i. Note that the Bryson technique has the virtue that q is

the sum of dimensionless terms -- it doesn't add apples and oranges.

A further concern can be added to the performance index q -- filter settling time. If

the K that minimizes (91) also leads to a Z with some eigenvalues whose real parts are

small (though negative), then we may see from (62) that the settling time of the filter

will be long, perhaps excessively so. To avoid such a problem, a term may be added to

(91) penalizing the filter settling time. To see how to do this, consider the behavior of

the filter evolution equation (62). If Aa symbolizes the eigenvalues of Z, and c_a -- N(Aa),

then the filter response to initial conditions or perturbations may be regarded as a set of

n exponentially decaying modes, with individual settling times -1/aa. Since all n modes

decay simultaneously, the overall settling time is given by:

( )-1ts = maax(-a_l) = - m axaa (92)

Once again, for the notion of settling to have any meaning, we must rely on Z being stable.

If overall filter settling is the main issue, we could introduce a concern level Ct in seconds

for the settling time ts, and add ts/Ct to q. However, this has the practical effect of causing

2 or more filter modes to coalesce during minimization. In effect, settling of naturally rapid

modes is sacrificed to minimize the slowest. I believe a better course is to penalize all the
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modalsettling timesequally.To do this, theoverallperformanceindexmaybe takenas:

q=  gl/ct (93)
Ol

Note: In choosing Ct, keep in mind that it is the sum of the modal settling times that

is penalized. In the software, (93) is modified to penalize any _m > 0 very heavily. This

adds considerable robustness, but has no effect when Z < 0.

The added term serves another function. The stability boundary for Z is that all am < 0.

Thus, as some aa "0 0 from the left, ts ---* oo. So, adding the Ct term erects a barrier in

the minimizing process against Z going unstable, when P_ > 0 may no longer hold.

It may be added in passing that an earlier q formulation based on Z -1 instead of Z failed

badly. The problem was eventually traced to the behavior of complex eigenvalues of Z -_.

If Aa is real, then as cra --_ 0, the corresponding real part of the eigenvalue of Z -1 (call it

pm)---_ -co, as would be expected. However, if Am is complex, it's not hard to show that.

as _r,, --* 0, Pa --* 0 as well, and doesn't serve as a proper measure of ts.

Now suppose we have picked the concerns Ci and Ct, and have a K, such that Z is stable.

Then P_ may be found as detailed above, and q computed. Next, each element of K

is varied, and the procedure is repeated to get a 6q. Taken together, these constitute a

gradient of q, relative to the elements of K. A parabolic fit technique is then used to find

the minimum q along the backward gradient. This whole process is iterated until q has

reached a stable minimum. The final K is the optimal feedback gain, and the final P_

represents the filter performance at that gain.
?

There is one serious loose end in this procedure -- the starting K must yield a stable Z.

The method initially used in the software is based on Kalman theory. Since S(,_) > 0 for

all w, we can introduce the idea of the half pbwer frequency Wh. This is the frequency

such that half of the total average power is in the interval 0 < w < Wh. From (72), Wh is

given by:

2 R(O)= rc-lffohS(w)dw (94)

The idea has no meaning for white noise, as R(0) = co. For colored noise, S(w) =

2R(O)wcl(w 2 + w_), and Wh = We. For flat bounded noise, i.e., S(w) = S for 0 _< w _< fl

and zero otherwise, Wh = _/2. For cubic noise, from the spectrum (31), it can be shown

that wh = 7Wc, where 7 = 0.5327705. Finally, for an arbitrary spectrum, Wh is obtained

from (94), in which R(0) comes from (72).

In each case, we form a white noise "equivalent" to S(w). For colored noise, we take the

level to be S -- S(0) = 2R(O)/wc. For any other S(w), we substitute the "equivalent"

colored noise -- the same R(0) and we = Wh. Thus, the "equivalent" white noise is flat at

the level

S =-2R(O)/wh (95)
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Replacing all the noise components with these white noise "equivalents" causes the Lya-

punov equation (78) to reduce to:

ZD + DZ T --- KYSvyTK T + WSwW T (96)

which holds for all w. Since D is now independent of w, P_ may be integrated analytically,

leading to P_ = -D, when (96) gives a clean connection between K and P_. On reorga-

nizing this with the help of (63) and (64), so as to make the dependence on K explicit, we

have:

KHP_ + P_I"ITK T - FP_ - P_F T = KMK T - KV T - VK T + BSwB T (97)

where:

and:

M - YSvY T + USwU T (98)

V - BSwU T (99)

Since an optimum P_ is necessarily stationary relative to variations in K, (97) may be ex-

pressed in components, and differentiated relative to each K_L,, leading to this stationarity

condition for P{:

KM = P_H T + V (100)

While this can't be used directly to eliminate either K or P_ from (97), we need only

assume that some noise contaminates every measurement component to insure that M is

non-singnlar. Thus:

K = (P_H T + V)M-L (101)

which, except for the V term, is a staple of Kalman theory. When this is substituted back

into (97), an equally well known algebraic Ricoati equation emerges:

A + XP_ + P_X T = p_HTM-tHP_ - P_LP_ (102)

where:

A - B(S_ - swuTM-IUSw)B T (103)

and:

X = F - VM-1H (104)

All this reduces to the usual Kalman theory when the measurements don't depend on

w(t); i.e., U -- V = 0. In the software, (102) was solved for P{, and K was" computed

from (101). While this K is far from optimal for the real power spectra, it does guarantee a

stable Z to start the real iteration. Indeed, it's known that, while the Riccati equation has

many solutions, no more than 1 possesses this property. All this is very interesting; but

when the performance index (93) was made more robust, it was found that the minimizer

could find Z < 0 territory, even from a badly indefinite initial guess.
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3.10 Scaling

This is quite a large optimization problem. We are minimizing q relative to K. For

example, if the gradiometer is composed of 4 vector accelerometers, K has 72 elements,

all of which must be determined. Such problems are touchy, and the di/_cu]ties are

aggravated by poor conditioning in PC or Z. Some sort of scaling is usually applied to

alleviate this. In the present problem, a natural scaling already exists -- the Bryson

concern levels introduced above. On the hypothesis that the variance P¢ii is on the same

order of magnitude as C 2, consider scaling the state variables:

x_= x,/c, (lOS)

which are non-dimensional. A similar non-dimensional time may be introduced in the

same way:

t'= t/ct (106)

Recall that, in the convention adopted in this report, summation is only over lower case

greek indices. The covariance of the scaled variables is then:

P_ij i I= E(x,xj) = P_e/(C, Cj) (107)

The real virtue of such a scaling is that the eigenvalues of P_ should be much closer

together than those of Pf, with a corresponding improvement in the condition number.

To carry out this scaling, (105) is substituted into (53), leading to:

_' = F'x' + g'(u) + B'w (108)

in which

F[i = FijCtCj/Ci ; B_j = B'iiCt/Ci ; g_ = giCt/Ci (109)

It's not hard to show that the scaling makes all these arrays dimensionless. While it's not

necessary to scale the measurements, in the model we must set

Hx = II_x ' (Ii0)

from which

I = CjHij

The filter structure then becomes:

x'= F'$¢' + g'(u) + K'(z - I-I'R'- zs)

(111)

(112)

in which the derivatives are with respect to t _, and

s(,'j = t¢_ct/ c, (11a)
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and the error in the estimate
x i - x_ = _i/C_ (114)

evolves as
,I

= g'Vv(t) - W'w(0 (115)
where

W I=B I-KIU ; Z I=F I-KpH t (116)

In components, these matrices are related to the unscaled versions by:

W[i = WijC_/Ci ; Zi) = Z_jCtCj/Ci (117)

Note that the matrices Y and U, and thus M aren't affected by scaling.

From the determinant relation for eigenvalues, it's not hard to show that those of Z' obey

I

Ac_ = CtXc_ (118)

leading to

and

a s Ctaa (119)

t s' = ts/Ct (120)

On substituting these scaling relations into (93), q becomes rather simple:

' (121)q= Tr(P )+ ,

The modified iteration starts by forming B / and F I. Then, transforming the algebraic

Riccati equation with (107) leads to

A'+ X'P_ + P_xtT = P_L'P_ (122)

in which the primed replacements for A, X, and L are computed as above, except that F,

B, and I'I are replaced by their primed equivalents. Note that V ---* V r, but no scaling of

M is required. Solving this leads to a starting value P_ for the main iteration. A similar

scaling of the _i would seem plausible; but a careful review of the formulas shows that it's

not necessary.

Applying the scaling everywhere, the iteration becomes:

Q'(_) _= K'YSv(w)yTK cr + W'Sw(w)W rr (123)

The Lyapunov equation is then:

ZrD'(w) + D'(co)Z cr = Q'(w) (124)
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whosesolutionleadsto N_and P_. In the alternativesolution technique,the matrices
Tk, l_l, _, andG aremerelycomputedfrom K', W', and ZI.

Finally,whenq has settled to a minimum, yielding the terminal K t and P_, the unscaled
covariance is obtained from

P_ij = CiCjP_ij (125)

and if the gain matrix is needed:

Kij = CiK_j/Ct (126)

3.11 Results &: Interpretation

The calculation of the terminal covariance for a given set of input data requires the exercise

of 5 programs in sequence, all of which are more or less interactive. These are: (1)

GRANNY, which asks the user for all the data called for in the above theory, forms the

various structural matrices, and puts them in the form needed by the later programs; (2)

ENTRY, which accepts the data package from GRANNY, calculates all the power spectra,

and constructs the scaled input matrices and arrays needed by the next 2 programs; (3)

ALRIC, which solves the algebraic Riccati equation (102) to get a starting value for P_;

(4) TERM, which iteratively computes the feedback gain matrix K which minimizes the

performance index q, using the algorithm developed in the last 2 sections, resulting in a

final value of P_; and (5) GRANPRT, that prints o.ut a summary of all the input data,

and the results from TERM. Of these programs, GRANNY and GRANPRT are written

specifically for this study; while the other 3, plus a host of called subprograms, are general

terminal covariance software.

During the study, the performance index q, frQm (93), was modified to heavily penalize

unstable eigenvalues of Z. The new algorithm is contained in a subroutine CQ. This so im-

proved the robustness of the main algorithm that it was found that TERM could recover

even from an indefinite Z. Following this, ALRIC was no longer needed. Structurally,

TERM calls a general function minimization routine DFP, which has several optional

minimization techniques, including gradient and quasi Newton algorithms. However, nei-

ther of these performed very well on this problem; mostly because the eigenvalues often

tend to coalesce near a minimum; when q isn't a smooth function of K. The problem was

aggravated here because absolute yaw information comes only from orbital coupling in the

kinematics equations (26); so, with a reasonable settling time concern value, the settling

terms in q dominate the covariance terms.

To get around 'this, a random jump technique was added to DFP. In this, a controllably

limited random increment is added to each element of K. A search along the line from the

old to the new K is made to find a new minimum q, similar to standard gradient methods.
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Thevirtue of therandomschemeis that thetediouscalculationof the gradientis avoided;
but morestepsareneededbecausethereis nothingto motivatethe directionof the jump.

The programs are all written in APL, and implemented on a 486DX 33 Mhz computer.

Of the lot, TERM (really the called minimizer DFP) is, far and away, the most time

consuming. It requires only a few seconds for each line search; but anywhere from 104

to 105 iterations are needed to insure a stable minimum. One run required 3 days to

complete; but most are much shorter.

Having found a K yielding a "minimum" q, there is no guarantee that this minimum

is global. On the other hand, the system designer is assured that the calculated filter

performance is achievable; although a different K might, conceivably, yield improvements.

Another possibility is that the program might have found something like a saddle point;

so that, a short distance away in K space, q might turn down again. Once something like

convergence has set in, a good tactic is to command sets of a few hundred random steps,

with successive sets at increasingly larger jump sizes. In several cases, a new down slope

was discovered, occasionally leading to substantially better performance.

The development of the theory presented here, and its software implementation has been

long, and, because of the slowness of convergence in many cases, rather frustrating. On

both theoretical and practical grounds, most important was the discovery that the direct

calculation of Q(ca) by (74) could be replaced by dissolving it into integrals over the

individual noise components, according to (87 - 90). Another major improvement was the

discovery that the direct calculation of P_ by (78), (82) , and (83), requiring the solution

of a Lyapunov equation at each value of w, was much more work than forming G from

(86), and then solving the single Lyapunov equation (85)j These theoretical improvements

were eventually combined in the software; so that when all the integrals (90) are analytic,

numerical integration can be completely avoided.

About the time these improvements were implemented, an error was detected in the for-

mulation of the measurement partials matrix I-I appearing in (51) and (57). While the

error might not have caused any serious effect, the results are certainly suspect; and none

of the 30+ runs made prior to the fix are presented here.

With occasional variations, the bulk of the cases examined conform to what is called here

the Baseline configuration. This term covers the satellite orbit, the spacecraft physical

properties and bias momentum, and the process noise specification. The Baseline orbit is

circular at 500 km altitude, relative to the mean earth radius. Since the earth is assumed

to have a spherically symmetric gravity field, nothing depends on the orbit inclination.

The parameters depending on this altitude are wo = .0011094 rad/s, vo = 7618.5 m/s, and

F0 = 1.2307 × 10 -6 s -2.

The Baseline spacecraft is taken to be a rectangular box, of dimensions 2.0, 0.7, and 0.5 m

along the yaw, roll, and pitch axes respectively; and with a mass m = 140 kg. Assuming
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themassis uniformlydistributedin the box, theprincipalmomentsof inertia workout to
8.6333,49.583,and52.383kg-m2. Thepitchmomentumbiaswastakenasa ratherstiff 10
N-m-s, leadingto plant constantskl = -1.1587/s, k2 = 0.20266/s, k3 ---- -3.2577 x 10 -e

/s 2, and k4 = -2.8862 x 10 -6 /s 2. The spacecraft natural nutation frequency is then

0.48458 rad/s. The spacecraft drag coefficient is 1.5, and the center of pressure offset is

0.2, .01, and .05 m in the 3 axes, as discussed in Section 3.4.

The process noise model developed in Section 3.4 led to the numbers pa = 1.905 x 10 -12

kg/m 3, kf = 8.2928 x 10 -5 N, air density variation ratio aw = .025, and the air cell size

a = 4 scale heights. The resulting process noise break frequency is wow = .019204 rad/s.

The instrument configuration adopted in the early studies consisted of a set of four 3 axis

accelerometers, located at the corners of a regular tetrahedron. This was done at the time

the author entertained serious doubts that the entire state would prove to be observable by

dynamic estimation. Later, when it was shown that as few as 4 single axis accelerometers

yielded full observability, this configuration (and even richer ones) was abandoned. Still,

one set of 5 runs was made on the tetrahedral configuration, following all the theoretical

updates and fixes referred to above; and a table of results will be given. The tetrahedron

is assumed to be inscribed in a sphere of radius 0.25 m, which gives an edge length of

0.40825 m. The accelerometer locations ri are then given by the geometric relations listed

in Appendix A. The instrument center was taken to be at the spacecraft center of mass

in all cases, although, presumably, this doesn't matter.

While the accelerometer noise level was varied between runs, the averaging time was

always taken as 1 s. The power spectrum was assumed to be cubic, when the discussion

in Appendix B yields a break frequency of wc = 62.832 rad/s. Unfortunately, a fully

satisfactory analytic treatment of the integral (90) has yet to be developed for the cubic

spectrum. The existing theory of this integral is presented in Appendix C, and involves

an eigenvalue--eigenvector decomposition of Z. *Fhe problem is that, even near a multiple

eigenvalue, the program available in APL runs very quickly for eigenvalues alone; but

when the eigenvectors are also requested, the running time increases dramatically, and

the program sometimes fails completely. Further research on this integral is intended; but

there is no guarantee that a fully satisfactory evaluation technique will be found.

To avoid tedious numerical integrations at each iteration, and get results in a reasonable

time, it was decided that each cubic spectrum should be replaced by its "equivalent"

colored noise. This is defined as the colored noise spectrum that has the same average

power R(0), and the same half power frequency aJh; i.e., the frequency within .which half

of the total power is found. For colored noise, the solution of (94) is Wh = we; while for

cubic noise, if we let _h : "_U_c, then the substitution of (31) into (94) leads to

"r4 - 4"_3 + 16"r - 8 = 0 (127)

whose only positive real solution is y = 0.532770504326. Thus, if we have a cubic spectrum
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for which wcis given,the "equivalent"colorednoisehasa breakfrequencygivenby 7we.

Lacking a better approach, an option for doing this has been temporarily included in

ENTRY. The key advantage of the colored noise substitution is that a complete analytic

evaluation of (90) is available when Z is definite. A sketch of the proof is given in Appendix

D. The result is included in the routine CQ for evaluating q.

Results for the tetrahedral configuration are given in Table 1 below. In all cases, the

concern level for the angular velocity _ was taken as 10 -6 rad/s, tighter I now think than

most applications require. As in most places in this report, the concern level for roll and

pitch was 5 x 10 -5 rad/s. On the other hand, recognizing that yaw is both harder to

measure and less critical in many applications, the yaw concern was taken as .005 rad/s.

Except for Case 5, the settling time concern of 10 s was adopted. The reader should keep

in mind that this concern is applied to the sum of the settling times of all 6 modes of the

filter; and, typically, 3 or 4 dominant modes would have similar settling times.

In all the tables, the 1st column is the Case number, sometimes with a 0, indicating a

note below. The 2nd column is the standard deviation of the measurement noise. Column

3 contains the final value of the performance index q. Column 4 provides the settling time

of the slowest mode. Columns 5 - 7 contain the standard deviations of the components of

w_ while Columns 8 - 10 give the corresponding results for the angles.

Now for some discussion of the results. The accelerometer for Case 1 represents a very

high quality instrument, if not the absolute best (and most expensive). Ordinary inertial

grade accelerometers, if space qualified, probably couldn't deliver this performance, even

with the greatly lowered scale factor errors from operating in free fall. Nevertheless, on

examining the performance, the settling time is found to be quite unsatisfactory. Moreover,

on dividing the 6 following standard deviations by their corresponding concern levels and

summing, it may be seen that q depends on settling time, almost to the exclusion of

anything else. The message seems clear -- low'settling times are intrinsically difficult to

achieve. This conclusion is certainly in line with the observation that _ is only observable

through roll-yaw coupling, whose characteristic time is 1/wo = 901 s. However, read on.

Case 2 raises the measurement noise by an order of magnitude. Sure enough, the error

levels, with the exception of wl, all increase; but they still fail to contribute siguifically

to q; and both ts and q increase moderately. Case 3 raises measurement noise by another

order of magnitude, but entering the range where accelerometer costs might not dominate

the attitude control system. To my intense surprise, both q and ts dropped, although,

except for _o, all the errors worsened; and q continues to be dominated by sett!ing times.

This case caused a great deal of soul searching. After a lot of checking failed to find any

further errors in either the theory or the software, it was concluded that the performance

seen in this table is achievable; but it probably doesn't represent the best; i.e., global

minima for q.
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Continuing to Case 4, measurement noise was again raised by an order of magnitude,

representing the crudest instruments likely to see this kind of service (and the lowest cost).

in this case, the run was interrupted, printed out with GRANNY, and later resumed. It's

instructive to list both results in the table, and they are referred to as Cases 4A and 4B.

This time, everything but _p has worsened, and the settling time dominance continues.

On continuation, a further reduction of q by 3.6% was observed, to a result that was

stable enough to insure at least a local minimum. Various small adjustments are seen in

the errors, while ts was dropping by only 1.9%. An examination of the eigenvalues of Z

showed that settling is dominated by 2 close complex pairs, and the improvement between

4A and 4B was only 2% in the worst pair; but 5.7% in the slightly better pair. I believe

that the message here is that an overall improvement in performance can sometimes be

achieved, at the cost of worsening some error components that aren't contributing much

to q.

The final run, Case 5, returned to the noise level of Case 3; and, in an attempt to improve

settling, lowered Ct by an order of magnitude to 1 s. The rather startling result was

success of a sort, in that ts dropped by nearly half, at the cost of having all the errors rise

dramatically, except for _3 which had been unusually high in Case 3. Settling still domi-

nates q, but not by so overwhelming a margin. Because of the change in Ct, the increase

in q over Case 3 shouldn't be viewed as a worsening of performance. An examination of

the eigenvalues shows that settling is dominated by 2 complex pairs in Case 3; but has

shifted to a single complex pair plus a single real in Case 5. This was the 1st appearance

of what might be a different valley in K space.

On reviewing these findings with the sponsor, he felt that this exploration should be

abandoned, in favor of studies of sparser, and lower _ost instruments. At this time,

the features for making the q calculation more robust had not yet been added; so large

random jumps in K space were hazardous, in t kat they might lead to an indefinite Z, and

what amounted to a program crash. Thus, although clearly desirable, a search for better

tetrahedral gradiometer solutions was never carried out.

Case # orv

()=note nm/s -°
1 O.2

2 2

3 20

4A 200

4B 200

5 (1) 20

q

244.1

371.3

230.0

464.9

448.1

1081

Table 1 -- Tetrahedral gradiometer

s

786.2

928.9

624.1

1173

1151

351.1

nrad/s
13.24

5.851

8.912

30.1

30.58

72.75

0.5723

2.522

0.2826

3.274

3.376

6.934

a_3

nrad/s
9.479

50.74

122.3

128.4

137.3

2.281

¢
_rad
1.836

61.6

216.1

104.1

93.0

2933

0

_rad #rad
0.8203 0.7304

27.91 12.97

48.78 20.79

69.81 32.89

66.15 35.15

243.1 57.15

(1) Ct lowered to 1 s
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In deciding on candidate sparse configurations of accelerometers, we were guided by (10),

which tells us that the 12, 13, 31, and 32 components carry useful information; but that the

latter 2 only repeat the former. Of course, this is because 1_ is symmetric. This suggests

that the minimum configuration could take either of 2 forms. In the Ist, called here the

"yaw gradiometer", a pair of roll input accelerometers, separated in yaw, is augmented by

a pair of pitch input accelerometers, also separated in yaw. The 2nd configuration, called

here the "cross gradiometer", consists of 4 yaw input accelerometers, 2 separated in roll,

and the other pair in pitch. There are other possible arrangements of 4 accelerometers,

but they haven't been explored.

In this static view, with similar separations and sensitivities, these 2 configurations should

yield the same performance. However, as shown in the next section, they don't act the

same in the face of self gravity disturbances. Moreover, in dynamic estimation, since the

intrinsic tensor (37) isn't symmetric, equal performance of the 2 configurations shouldn't

be expected.

In going from Table 1 to Table 2, the principal change is the switch to the yaw gradiometer.

The Baseline orbit, spacecraft, and process noise assumptions are all the same, as are the

angular and angular velocity concern levels. However, except for Case 9, all the settling

time concerns are set to 1 second. For comparison, the only entry in Table 1 with this

settling time concern is Case 5. The overall result was nothing short of startling -- the

drop in settling times by more than an order of magnitude is very hard to understand.

Some insight comes from from looking at the physical, arrangement. In the yaw gradiome-

ter, the separation was taken as 0.5 m, along the yaw axis. From the tables in Appendix

A, the corresponding separation in the tetrahedral configuration is only 0.28868 m. On

the other hand, the tetrahedral configuration has 12 measurements, vs. 4 in the yaw gra-

diometer. However, from the standpoint of the gradient tensor, only 8 of these make any

direct contribution to observing the angles; so the "overkill" is only 2 to 1, relative to the

yaw gradiometer, for a relative advantage of v_. On combining these factors, the yaw

gradiometer appears to have a relative advantage of 1.2247, hardly enough to explain the

improvement in performance.

In the author's view, the main difference is that K has 72 elements in the tetrahedral

configuration, vs. only 24 for the yaw gradiometer; and we are searching for a minimum of

q in a space of this many dimensions. Clearly, the opportunities for additional local minima

will be much greater in the former case. In support of this view, note that the error in _3

in Case 5 is improbably low, suggesting that the solution there is far from the best. Also,

an examination of the eigenvalues (not shown in the tables) indicates that the solutions

in cases with identical assumptions tend to fall into groups. The interpretation that each

group represents a separate valley is hard to escape. Unfortunately, the robustness features

were still to come when the runs of Table 2 were made. A lot of additional insight might

result from reruns of a couple of cases from Tables 1 and 2.
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Cases 6 - 8 were the 1st test of the yaw gradiometer, and differ only in the accelerometer

noise levels. The surprisingly good performance in Case 8, with the most noise, suggests

that the results in Cases 6 and 7 are suboptimal; and indeed, the eigenvalue constellations

look completely different. With the trial assumption that Case 8 is near optimal, let's do

some analysis.

Ist, the roll and pitch performance are better than that predicted by the static theory in

Section 2.2 by a factor of about 18,000. Can dynamic estimation really yield so large an

improvement? Well, yes. Suppose there were no process noise. Then (74) shows that by

merely choosing K = 0, we would get Q(w) = 0, when PC -=- 0; i.e., the terminal estimate

is perfect, in spite of noisy measurements. This is actually a common occurance in filters

that compute K on the fly. If, through unwarranted optimism, the filter decides that

P_ is small, it will compute a correspondingly small K. It will then tend to ignore the

measurements, and "go to sleep". This is essentially what happens in the current theory,

if the effect of the measurement noise dominates that of the process noise.

1st, consider pitch. From (36), the torque noise is crwkfrcpl = 4.146 × 10 -7 N-m. The

pitch measurement noise comes from the pair of roll input accelerometers; and expressing

this as torque, the noise is v/2J3av/6l -- 2.963 × 10 -5 N-m, where _l = 0.5 m is the

separation along yaw. However, the filter also knows that the measurement noise has a

break frequency of 33.475 tad/s, vs. _vcw --= .019204 rad/s for the process noise, whose ratio

is 1743. The filter can then safely conclude that the bulk of the accelerometer output is

high frequency noise, rather than the result of process noise, and choose gains to suppress

it. Assuming it could do this perfectly, its estimate of the residual measurement noise

would be act = 2.963 x 10-5/,¢/_ = 7.097 x 10 -7 N-m, comparable with the process

noise. Then, with the assumed pitch dynamics, the corresponding angular error would be

'3

_o _ orcr/(J3w_w) = 3.674 x I0 -5 rad

within a factor of 7 of the "optimal" solution. Not bad for an arm waving argument.

The argument for roll is a bit more subtle. This time, the dynamics come from (23). On

removing the slow gravity gradient term, the roll dynamics are

the last from (36), with the constant term removed. Since (Vd(t) _ WcwWd(t), the 2nd term

is negligible with the Case 8 numbers, and the particular integral of the solution may be

written as

e2(t) --- k fk2rcp 3 --jot

With a page of algebra, the statistics could be worked out in terms of Sw (w), and evaluated;
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but this is only a roughargument,so:

j_O t k f k2r cp3W d( t )

kfk2rcvp3ffw = (8.293 x 10-5)(0.2027)(.05)(.025) = 9.628 x 10 -6 rad
Ot4_ ~ V/_JI_N_ v/2(8.633)(0.4846)(.0192) 2

The corresponding argument for the roll measurement noise is similar to pitch. The

angular acceleration noise level is the same as for pitch: v_av/Sl. However, the dynamics

are now those of nutation; so the roll standard deviation, as inferred directly from the

measurements, is

v/-2Crv v/-2(2 × 10-r) = 2.409 x 10 -6 rad
a¢ = _ = (0.4846)(0.5)

but once again, the filter will know that the bulk of this is high frequency measurement

noise, rather than the result of process noise; so the same argument as for pitch yields

_¢/V'_-_ : 5.77 x 10 -s rad. Of course, the optimization process wouldn't waste the

filter resources on driving a¢ so low; but the argument certainly shows why relatively

crude accelerometers should be able to deliver microradian performance, and that static

estimates have little to do with the performance to be expected from dynamic estimation,

at least when there isn't much process noise.

The other question is how the filter can settle in 20. s, when the characteristic time for

yaw determination is 901 s? To make this more plausible, recall that settling time doesn't

pertain to acquisition, a nonlinear process, but rather _the recovery of the filter from a

small unmodeled perturbation. The size of the perturbation doesn't matter, so long as

the linearization assumptions in the theory aren't violated. So settling is the time for the

filter to pile up enough information to reduce _ts step error by 1/e. This information is

accreted from the measurements, and depleted by the process noise.

Here, (26) tells us that measurements of _ ought to yield information about g, at orbital

rate. Thus, if we could ignore the process noise, in 1 settling time we should achieve

a performance 6_ .._ 6_/(wots); and with the numbers from Case 8 this is .0003 rad,

compared to .0008 rad in the actual run. Since the process noise for this Case has been

shown to have a slightly greater effect on the filter than the measurement noise, our arm

waving argument appears to be quite good, as is the argument that Case 8 is nearly

optimal. In general, if we are satisfied with crude performance in yaw, compared with

roll, then we can get in a time that is short compared with the orbital periocl. On the

other hand, if we demand equivalent performance, we'll have to wait for something like an

orbital period to get it.

In Case 9, the settling time concern was weakened to 10 s, relative to Case 8. This

gave the disturbing result that ts slightly improved, while all the errors increased, the
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opposite of what was intended. The only reasonable conclusion is that the result is seriously
suboptimal, a conclusion backed up by the drastically different eigenstructure.

Case 10 was the same as Case 6, except that the process noise O'w was raised by a factor of

4. Physically, this was an increase in the variability of air density to a quite unreasonable

level. The result was that everything turned sour, including the settling time, which

increased by a factor of 5. In the light of the settling time discussion above, this makes

excellent sense, in that information about yaw is being removed about as fast as it's being

created. This result also suggests that at satellite altitudes well below 500 kin, steps should

be taken to streamline the spacecraft, or improve its symmetry, so as to reduce rcp.

Cases 11 - 20 started out as a run to settle the question of whether moving the gradiometer

away from the spacecraft center of mass would make any difference. All these runs followed

Case 6, with the difference that rc = [1.0, 0.5, 0.4] T m, instead of zero. When Case 11

differed substantially from Case 6, in spite of the belief that re should make no difference,

it was decided to repeat the run. Since these cases didn't consume much time, 10 such

cases were run in all, without clarifying the original question at all, but strengthening the

notion of multiple minima considerably. Note in particular that Cases 15 - 18 do appear

to lie in the same valley; but then, why were they consecutive? At the request of the

sponsor, the inquiry was given up to adopt a set of parameters closer to current spacecraft
needs.

Case _ o" v

()=note nm/s 2

6 2O

7 2

8 200

9 (1) 200

10 (2) 20

11 (3) 20

12 (3) 20

13 (3) 20

14 (3) 20

15 (3) 20
16 (3) 20
17 (3) 20
18 (3) 20
19 (3) 20

20 (3) 20

Table 2 -- Early yaw g'radiometer results

q

i

74. 75

60.14

106.4

9.025

267.6

57.43

31.7

51.97

81.5

49.19

54.12

48.89

48.81

36.52

21.8

S

23.24

12.01

19.58

16.64

114.2

15.67

7.92

11.23

19.78

9.812

9.739

9.804

9.751

9.037

5.806

_1 u;2

nrad/s nrad/s
27.93 22.88

49.64 29.14

158.7 46.49

335.8 138.5

458.1 340.3

36.08 21.01

183.4 24.31

72.79 4.746

94.52 23.03

79.35 35.39

78.53 35.37

78.61 35.37

78.11 35.27

38.02 25.03

76.69 24.04

¢a3

l__rad/s
1104

835.1

315.8

493.9

1670

158.0

434.7

133.5

115.2

267.4

263.9

264.7

263.3

119.4

477.8

¢

/_rad

1674

1261

802.8

1229

17,621

454.4

1380

116.9

690.9

610.4

612.9

612.1

610.9

291.1

917.8

P ¢
#rad

10.6

12.91

6.587

14.28

71.65

2.6031

11.33!

5.558

9.7251

9.34 ]

9.295

9.298"

9.252

3.658

4.682

0

#rad

4.443

5.243

5.484

11.47

26.85

4.899

6.201

6.026

4.455

3.505

3.471

3.475

3.477

4.339

5.133

(1) Settling time concern = 10 s
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(2) Raise process noise _rw to 0.1

(3) Offset instrument to [1, 0.5, 0.4] m from [0, 0, 0]

In going to the final set of runs, several major changes were made. 1st, the robustness

improvements in CQ were completed, and the use of ALRIC to start the iteration was

abandoned. 2nd, detailed notes were taken during each run, showing the progress in

reducing q, and the maximum random step size and number of steps in each automatic

sequence. This is an interactive feature of the minimizer DFP, in which the user is asked to

provide this information; the program carries out the commands, and shows the running

progress on the screen. On completion of a sequence, it pauses to permit a review of the

current results. During these final runs, a technique was developed of alternately using

large steps to locate new valleys, and small steps to refine the results. Once q appears

to have stabilized, several thousand steps should be taken, with increasingly larger steps,

until the running screen results show frequent jumps into the unstable region (indefinite

Z). If this shows no further improvement in q, the current minimum is likely to be global.

The 3rd major change was in the concern levels. After a lengthy consultation with the

sponsor, it was decided that the earlier runs had far too much concern for angular velocity

errors. Accordingly, the concern was weakened by 3 orders of magnitude to .001 rad/s

in all 3 axes for all the remaining runs. However, it was recognized that some mission

applications would require tighter angular rates, and thus lower concern values. In most

applications, yaw determination isn't as important as roll and pitch. The values chosen

here for most of the final runs was .001 tad in yaw, somewhat tighter than before, and

5 × 10 -5 rad in roll and pitch, as in most of the earlie_ runs. However, the angle concerns

were loosened by an order of magnitude for Cases 26 and 27. The settling time concern
J

was taken as 10 s for all of the remaining runs.

The 4th and last major change was that the line search routine, called by DFP during

each step, was completely rebuilt. Now, if a jump failed to improve, the opposite direction

is also tried. Then, if either improves, successively larger jumps are made along the line,

until q turns upward. A parabolic fit is then made to the last 3 points, and q is again

computed. Whichever actual q calculation yields the least value is kept as the result of

the line search. Large jumps rarely yield improvements; but when they do, the drop can
be dramatic.

For all the final runs, the Baseline orbit and spacecraft were used. The atmospheric

model was also the same, except for increased process noise in Case 28. The pitch bias

momentum was Baseline, except for lower values in Cases 29 and 30. The instrtiment was

a yaw gradiometer, except for Case 23, in which the cross configuration was examined.

Various accelerometer sensitivities were employed; but the averaging time was 1 s in all

cases. The lowest measurement noise level, 2 × 10 -8 m/s 2, is not the best available, but

was regarded as the most expensive instrument likely to be used in attitude determination.
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Cases21and22wereactuallytile samerun, featuringtile bestaccelerometer.In Case21,
about2000stepsof varyingsizesbroughtq from tile unstable region to about q = 52, and

another 2000 to 49. Then, another 1000 at, a large step dropped it to 28. Another 1000"

nmdium and small steps yielded a stable q -- 26.2, the listed result in Table 3. Because

of a mistake, tile program had to be restarted as Case 22, leading almost immediately to

a new valley, with q -- 24.5; and after another 2000 medium and small steps, stabilized

at q = 18.16. Unfortunately, no more large steps were attempted, to insure that this

minimum is global. Moreover, there is nothing quite like this case to compare to, as the

similar runs in Table 2 were all made with Ct -- 1 s. Except for settling time, the results

are quite impressive, since all the errors are well below their concern levels. Even a settling

time of 36 s isn't too bad; and it suggests that a betteI' solution might have been found.

Cases 24 - 27 successively raised the measurement noise, to see how fast the performance

degraded as the instrument was cheapened. At the highest 9oise levels, Cases 26 and

27, lowered expectations caused us to weaken all the angular concern levels by an order

of magnitude. Except for an initial drop in ts, further impugning Case 22, it steadily

degraded, until Case 27, where it jumped to an impractically high level. By and large,

except for a minor glitch at Case 25, and a major one at Case 27, the errors worsened

monotonically. While it's unlikely that the Case 27 result is global, an improvement in ts

would almost surely be accompanied by a further worsening of the errors. Thus, Case 26,

with a measurement error of 2 × 10 -5 m/s 2, and yielding milliradian angular error levels,

is probably the minimum instrument quality that should be considered.

Case 28 differed from Case 22 by raising the process noise by a factor of 4, similar to Case

10. Nothing dramatic happened to the errors, and ts even dropped, lending weight to the

argument that Case 22 wasn't a global minimum, although no large jumps were tried here

at the end either. Nevertheless, it's likely that Case 28 did find the global minimum.

A quite different experiment was tried in Case 29. The pitch momentum bias was lowered

from 10 N-m-s to only .08 N-m-s, relative to Case 22, in order to reduce the nutation

frequency wg to .005 rad/s, only 4.5 times wo. The result was disastrous, in that ts rose

to 3887 s, although the errors were certainly tolerable. Since some 3500 large steps were

made at the end of this run, without effect, the result is fairly credible. What appears to

have happened here is that, in reducing the stiffening effect of the momentum bias, the

roll - yaw behavior becomes much more susceptible to process noise. The message is that,

if we wish to get away with so low a bias, either a much higher altitude, or a much cleaner

spacecraft, or both would be required.

Because of the huge change from Case 22 to Case 29, a final Case 30 was thrown in with

the intermediate value of 1 N-m-s for the bias. This proved to be an extremely tedious

run, involving at least 60,000 medium steps, and several days. And it didn't appear to be

quite done then. This sluggishness discouraged any attempt to find another valley with

large steps, especially as the cause of this behavior isn't known. As for the results, they
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are intermediate between Cases 22 and 29, lending much credibility to the conclusions

reached from Case 29.

Case # or v

0 =note nm/s 2

21 20

22 20

23 (1) 20
24 200

25 1000

26 (2) 20,000

27 (2) 200,000

28 (3) 20
29 (4) 20
30 (5) 20

q

26.21

18.16

29.47

15.15

30.15

48.54

555.1

11.27

812.0

52.15

Table 3 -- Final runs

_8

s

48.55!

36.33

43.98

24.08

40.23

62.64

1253

24.2

3887

103.7

Wl

nrad/s
759.9

170.4

5777

1479

17,447

366,788

238,845
284.0

358.6

644.2

w2

nrad/s

176.1

550.1

20,118

2612

2695

5_,463

99,403

1104

1489

539.7

w3

nrad/s
732.5

1561

50,059

10,966
3997

86,995
9316

2286 *

2957

1302

_raG I

6o.19 !
262.5

1369

1928

323.0

13,607
7117

224.0

77.53

335.8

¢

/_rad
24.29

10.11

184.3

29.45

50.49

1028

2398

16.37

24.3

39.12

0

#rad
70.76

28.87

42.9

73.04

110.7

1828

2615

25.05

6.274

27.83

(I)Cross configuration

(2) Angular concern levels raised to 1.01, .0005, .0005] rad

(3) a,o raised to 0.1

(4) Bias momentum reduced to .08 N-m-s

(5) Bias momentum mid value of 1.0 N-m-s

4 Self Gravity

4.1 Discussion

In Section 3.5, a model of the gradiometer was developed, showing how variations in the

local gravitational acceleration field would affect the individual accelerometers. However,

there it was tacitly assumed that tile field is entirely due to tile planet. In fact, the

spacecraft generates its own field, with its own substantial gradient. To get an idea of

the importance of this, consider a sphere of radius r, and density p. Then, from (2), the

gravitational scalar for this sphere at its surface is:

Gm G 4_ 3 4_
FO- _-_ -- r-3 3 r p= Tap

(128)

and is independent of the radius. Thus, if a bowling ball had the same density as the

earth, the gradient tensor due to the ball would have the same value at its surface as the

field at the surface of the earth, or in low earth orbit. (A real bowling ball is less by a
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factor of about2.) It shouldbeclearfromthis that, whiletypicalspacecraftdensitiesrun
1 or 2 ordersof magnitudelessthan theearth, its internalfield canseriouslydistort the
externalfield, and leadto unacceptableattitudedeterminationerrors. In general,in the.
inertial instrumentfield, this effectisknownas"selfgravity".

The simplest,and mostconservativeway to lookat this problemis to askhowmuchthe
field is tilted by a spacecraftcomponent,and thus how bad the error would be if the
componentwerecompletelyignored. Supposethe componentis a point massm, at a
locationy relativeto thecenterof the instrument.Thenfrom(3), thedisturbinggradient
is

/(3yyT I3). (129)6r=r0 .
where

F0 = Gm/y 3 (130)

Next, from the discussion in Section 2.2, the roll error that would arise from ignoring this

disturbance would be

6¢ -- 6F13 F0 1113 (131)
3 For Foe

where Foe is the gravitational scalar of the earth, and

li = yi/y (132)

Similarly, the corresponding pitch error would be

60 = - ?]°/1/2 (133)
I'0e

Thus, if m is located exactly on any instrument axis, there is no error; but if it were 1

In out, and at equal angles to the 3 axes, then I i = 1/V_; and at 500 km altitude, 1 kg

would cause errors of 181 microrad in roll and pitch. Clearly, just about any spacecraft

design would contain components that cause unacceptable errors if ignored. Fortunately,

there are several measures available to the system designer for alleviating the problem.

By and large, for the spacecraft under consideration here, the spacecraft mass is fixed in

instrument coordinates, and thus causes a set of accelerometer biases that are indistin-

guishable from other instrument biases. Overall, these biases need to be determined by

some sort of in flight calibration system; but the possible design and performance of such

a system are Imt part of the present study.

Of present concern are spacecraft components that are free to move relative to the instru-

ment; e.g., solar panels, scan platforms, and articulated antennas. Other possibilities are

propellants or other liquids that are free to move about in tanks, and thermal distortions
of the structure. In most of these eases, some sort of modeling is possible. For instance,

the field of a solar panel can be computed from a model of its structure; this together with
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the output of its shaft angle encoder yields tile acceleration disturbance at tile location

of each accelerometer. While no such modeling is perfect, the bulk of each acceleration

disturbance call be removed ill this way.

4.2 Point Mass Displacement

To deal with self gravity ill some generality, suppose a mass m is at a location y in e s

(instrument coordinates). Then, the gradient tensor at tile origin, due to m, is given by

(129). Now SUl)pose that m is displaccd by a small vector @. The change SF in the

gradient can be worked out as

31"° [ySyT+6yyr+(I3--5yyT) yTSy] (134)_r = r(y + 6y) - r(y) = 7 y_

to 1st order in 6y.

The information on the roll angle is, from (10),

3F0_¢ = F13

Tiros, the apparent change in ¢, due to Sy is:

(135)

(11e3 -F 13el - 511131TE)r0/r0 -/r0/r0o (136)6_

in which 1 is again the direction cosine vector corresponding to y, and _ is a sort of strain

vector corresponding to 6y:
_. = 6y/y (137)

What are the worst combinations of I and E? Well l is a unit vector; but for the question

to make sense, it's also necessary to limit E. Probably the easiest way to do this is to

introduce a limiting isotropic strain e > O:

ET{; : _:2 (138)

One way to proceed is to assume that, temporarily, 1 is a given unit vector, and find the

values of _ obeying (138) that lead to extreme values of f. The variational Hamiltonian

(139)

(140)

(141)

for this formulation is:

7-I = 11(3 + 13el -- 511131Te -I- x(eT_- -- 2)

and the necessary conditions for a stationary f are:

c97t/0_ i = 13 -- 512113+ 2)_(1 = 0

O'H/O_2 = --5111213 4- 2Ae2 = 0
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andon substitutingtheseinto

(5111213_)2 =

0T-f�&3 = ll - 5qt23 + 2A,3 = 0

On using the 2nd condition to eliminate ,\ from the 1st and 3rd:

511/2,1 = (5/12- 1)_2

5/2/3, 3 = (5/3 2 --1)'2

(138):

['32
[25/2/2 (,2 I-I 2 ' ,2)_20/12/2_t_112+`2] 2

whose solutions are

leading to

e2 = -t-5111213' (512112 -I-l 2 + 132)-1/2 =-- -I-51l1213Q

(142)

(143}

(144)

(145)

(146)

/ rj \

,1: +,3_,5,_-1)Q (147)

= +ll (51_- I) Q (148)_3

Proceeding from these we can construct

lTe = +31113Q (149)

and with a little more algebra we get

f : :r-d/Q : :F,_/5t_l_+ l_+ t_ (150)

Evidently there are 2 opposite values of ¢ leading to opposite, but equally bad extremes

of f.

We can now ask what values of I yield the worst of the worst, given that E is so demonically

picked? Well, by inspection, it may be seen that the most painful choices are 12 = 0;

ll, 13 = -t-1/V_ independently; for all of which:

f = _3e/2 ;

and the worst angular distortions are:

= :£d (151)

3,P0 (152)
2Fo_
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The geometricalinterpretationis now straightforward. If either the yaw-pitch or the
pitch-yawcomponentsof I" aremeasuredto determine_b,thenthe worstplacesto put m

are in the roll plane, at equal distances from the axes, when the worst strain is radial, i.e.,.

toward or away from the origin.

Tim corresponding analysis of 60 is based on I'12, and clearly leads to the same worst cases

as for ¢, except that 12 and 13 are interchanged, and the worst problems are when m is in

the pitch plane. We may also conclude that no single 1 is worst for both 0 and ¢. Overall,

it appears reasonable to conclude that, for arbitrary locations and displacements, it would

appear prudent to assume variations of order

16¢1, 16Ol (153)

For example, if the nominal 500 km altitude is assumed, then Foe = 1.231 × 10 -8 s-2;

and if m = 10 kg, and is 1 m from tile gradiometer, then F0 = fi.673 > 10 -10 s-2; when a

0.1 m displacement yields field distortions of order 5.42 × l0 -5 rad. A scan platform on

a small satellite would be in this range; while loose propellant in a tank might be a few

times worse.

A simple application of these ideas is thermal expansion of the spacecraft structure. Sup-

pose the spacecraft is unevenly heated on one side, causing 100 kg of the overall mass

to be displaced radially from the instrument. If the structure is aluminum, with a co-

efficient of thermal expansion of 2.5 × 10-5/K; and the temperature variation is 20 K,

then c = 5 × 10 -4 . If the 100 kgis 0.5 m from thegradiometer, F0 = 5.34 × 10 -s s -2,

and the field distortions are about 2.17 × 10 -5 rad. If this level of error can't be safely

ignored, then a thermal model of the structure, supported by thermocouples, or simple

strain gauges, or both can be used to calculate corrections at each accelerometer.

Whenever (153) yields a result that is too large to be ignored, the designer may resort to

modeling. That is, if 6y is measured, the fidl nonlinear model of g(y) may be computed

at each accelerometer location, and used as a correction. A reduction of the error by a

factor of 10 - 100 should then be possible, depending on the accuracy of the model, and

of the measurement of 6y.

An issue that has been buried here is that the field distortions might have a different effect

in dynamic rather than static estimation, partly because the angles reappear in the plant

model, and because there are additional state variables to be estimated. It's arguable

that, since the only source of information on the angles comes from I', the field distortions

should be carried through to tim estimates of ¢ and 0 without much change; although

this says nothing about _p or w. The matter clearly needs testing by further analysis or

simulation.
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4.3 Rotating Dipole

For many spacecraft configurations, tile largest articulated mass will be a solar panel..If

the panel were modeled as a flat plate, rotatable about an axis lying in the plate, then

the field of the plate coukl be found by integrating (3) over the surface of the plate. This

field could then be evaluated at each accelerometer location, as a function of the rotation

angle. While these accelerations nfight be substantial, the designer might reasonably

hope that the variations in tire field with rotation would be smaller, especially if the

rotation axis passes through the center of the plate. As a practical matter, the analytic

expressions for the field components are pretty complicated; but a table of corrections for

each accelerometer and rotation angle would only amount to a few thousand numbers.

To get a handle on whether this modeling is necessary, the problem has been greatly

simplified. The gravitational effect of the plate has been modeled by condensing the plate

mass into a pair of point masses m, separated by a massless ro4,_lof length 2g, orthogonal

to, and centered on the rotation axis. Clearly, if g = 0 there is no variation. Suppose

the rod center is at a location rc = [u, v, w} T, relative to the center of the gradiometer.

Let the variable rotation angle be a. Finally, for definiteness, suppose the rotation axis is

parallel to pitch, i.e., e_. Then, the position vectors of the masses are:

r+ = I" + _'_, v + gs., _]r (154)

r_ = I,, - gc., ,, - gs., wlr (155)

and the magnitudes of these are

2 2a(uc_ vsa) g__+= _ + + + (1_6)

2_ =_-2 2g(,,c_ + .s_) + g2 (157)

The gradient tensor due to this mass dipole is the stun of 2 terms of the form (129). Thus,

the total distortion in 0 is:

F12 _ Gm[(u+gcc_)(v+gsc_) (u-gcc_)(v-gsc_)] (158)

and the corresponding total distortion in 4' is:

F13 Grow (u + aca u-_gca_ (159)_4'- 3ro_ - r0_ _ r_ + ,.__ }

While 60 and 54' possess analytic derivatives with respect to a, even Mathematica couldn't

solve for the stationary points analytically. However it was easy to plot both functions vs

a, and several cases were examined. The extreme values of the distortion were taken from

each run, and their difference computed. The results are given in Table 4 below. All the

dimensions are in meters, and the distortions are in microradians. In all cases m = 5 kg,

corresponding to a 10 kg solar panel. For other values of m, just apply tire appropriate
ratio to the table.
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Case U

l

1

0

1

1

(}.5

0.5

0

V

1

1

1

0

1

0.5

0.5

0

Table 4 -- Simplified solar panel model
W

1

0

1

1

0.5

0.5

0.5

1

g
0.5

0.5

0.5

0.5

0.5

0.3

0.5

0.5

60rain

24.9

62.7

-12.4

-12.4

48.0

171.9

49.1

-47.6

4_On3ax

35.4

196.4

12.4

12.4

108.5

278.1

177.2

47.6

A0

10.5

133.7

24.8

24.8

60.5

96.2

128.1

95.2

_¢rnin

26.2

0

-27.1

71.4

51.2

368.2

98

0

6¢max

49.2

0

27.1

98.9

161.1

881.9

1262

0

A¢

23.0

0

54.2

27.5

109.9

513.7

1164

0

Of course, in a real case, the full integration over the actual panel shape should be carried

out, and g at each aecelerometer, rather than F computed; but the table should give

a pretty good idea of tile size of the distortions to be expect_ed. As a general conclu-

sion, except in extreme cases such as 6 and 7, distortions on the order of 0.1 mrad are

to be expected; reducible by all order of magadtude or more by careful modeling. On

the other hand, the extreme cases tell us that a design that permits moving masses too

close to tile instrument can cause either unacceptal)le errors, or overly stringent modeling

requirements.

4.4 Loose Liquids

If the spacecraft design includes 1 or more tanks, partly full of liquid propellants or

cryogens, then migrations of the liquid can dominate the self gravity concerns. Lacking

any physical constraints other than the tank walls, an accurate model of the motion is

hard to imagine; and sensors that might locate the liquid aren't readily available. This

problem was faced during a JPL study of a Lunar Orbiter, that proposed to measure

gravity with a gradiometer; and employed a spare Mars Observer spacecraft, containing

some rather large propellant tanks. It was immediately recognized that the self gravity of

the propellant was a very serious concern.

Since the gradiometer was of the differencing aecelerometer type, the author suggested

that, with a few extra accelerometers, it might be possible to estimate the external gradient

and the location of the propellant simultaneously. The subsequent analysis led to [9], in

which it was shown that the separation is possible for a wide range of instrument designs.

The problem here is actually simpler, in that the external gradient is assumed known, but

the attitude is not. Ilere, the basic idea of [9] will be followed; but the problem will need
to be reformulated.

The liquid will be modeled as a spherical blob of known mass m, and at a location y

relative to the center of the instrument. If the liquid doesn't wet the tank walls, then
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m > 0. Otherwise, it plates out on the walls, leaving a spherical ullage space in an

otherwise full tank. Tile problem is the same, except that m < 0, and the instrument bias

will include a contribution from a coml)letely full tank. The estimation state would then-

include the unknown y, and the attitude angles appearing in the accelerometer model.

Actually, in the interest of linearization, we may suppose we have an estimate St of y, and

an error in the estimate:

5 = 5' - Y (160)

Prior to any measugements, we may take :9 as the center of the tank. In these terms, we

may take the estimation state as:

x = [_, 0, 61, 62, 63]T (161)

As this is a static analysis, only the static terms in the accelerometer model (44) will be

retained, plus the liquid disturbance:

zi = -I'eri l- wi -J- vi (162)

where Fe is the external gradient, and wi is the liquid disturbance field at ri. As before,

vi is the accelerometer measurement error; but here it's a sample error, rather than a

random process.

The 1st term comes from (10):

- r_ri = l'oe.[30ri2 - 3¢ri3 - 2ril, 30ril t- ri2, ri3 - 3¢ril] T (163)

Next, the disturbance at the ith accelerometer is

wi= Gm y - r________i (164)
lY - ril 3

On letting

this may be written as

hi _ _ - ri (165)

Wi = 6'm

and on expanding to 1st order in 6:

tq - 6

Ihi- 61a
(166)

wi = Vi [hi + 3(IT6)1,- 6] (167)

where

and

Fi = GmhSz 3 (168)

li _ hi�hi (169)
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All is now ready to construct the measurement partials matrix H. There is 1 row in H "

for each 1 axis accelerometer:

Hi(j) = Ozi/Ox (170.).

where j is the input axis number for the ith accelerometer. From the above relations, this

works out to:

Hi(2) = 3 O, I'oeril, I ililli2, Fi 122 , I i/i2 i3 (172)

Suppose the a priori knowledge of the angles is pretty crude; say a_ = ae = 0.1 rad. Also,

"somewhere in the tank" corresponds to around ay ---- .05 m in each axis, for an 0.3 m

diameter tank. Overall, this gives an a priori covariance of the error in :_ of

M= diag[.01, .01, .0025, .0025, .0025]

After a least squares analysis has been performed on tile measurements z, maximum

likelihood theory shows that the a posteriori covariance of the error ill _ is given by:

p-1 = M-1 -L HTR-1H (174}

where R is the covariauce of the measurement errors v. This is the information fi)rm

of a covariance update, in which the M term is the a priori information on the state x,

and the remaining term is the information contributed by the measurements. It should

be pointed out that maximum likelihood theory, on which this formula is based, requires

that the measurement errors v have (]aussian distributions, not generally the case. More-

over, Bryson weighting of P, as in the (lynamic estimation theory, would probably yiekl

lower angular errors, especially as the liquid location errors aren't intrinsically interesting.

Unfortunately, the theory for this has not yet 1)een worked out.

The theory of (171 - 174) has been incorporated in a computer program LIQ. It interae-

tively enters the satellite altitude, the location and input axis number of each accelerom-

eter, tim standard deviation of each accelerometer error, the location of the center of the

tank, and the mass of the free liquid blob. Since the accelerometer errors are independent,

R is diagonal, and made up of the variances of the measurement errors. The program

computes H and then P, and lists the angular and location standard deviations. In addi-

tion, if m were at y, and ignored, the angular errors would be given by (131) and (133).

Of course, these errors are independent of the measurement error. All these results are

given in the tables below.
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Of the manypossibleinstrumentconfigurations,3 werestudiedin somedetail. The 1st
of these,calledherethe full yawgradiometer,consistsof a pair of 3 axisaccelerometers,
mountedat 2 locationsalongthe spacecraftyawaxis. The separationwas0.5m for all.
casesstudied.Theresultsfor thisconfigurationmaybe foundin Table5. Somediscussion
is neededto makesenseof the results. Column1 givesthe casenumberfor eachrun
of LIQ, to identify it belowin the text. The parentheticalnumbersrefer to notesbelow
Table4, but usedin all tile tables.Column 2 contains accelerometer measurement error.

Column 3 is tile location vector of the center of the tank, in meters. Columns 4 and 5

are the post measurement standard deviations of the roll and pitch errors respectively, in

microradians. Columns 6 - 8 are also standard deviations, and show how well the liquid

blob has been located. Finally, Columns 9 and 10 are from (131) and (133) respectively,

and show the errors that would ensue if m were at.'the tank center, and no modeling were

performed. Except as noted, all runs assumed m = 100 kg, and an altitude of 500 km.

The 1st series of runs, Cases 101 - 107, is a sequence of increasing measurement noise.

They show that measurements better than 10 -z m/s 2 are needed to extract the angles

better than the a priori estimates; and better than 10 -9 m/s 2 if 1 mrad performance is

required. This is also the level at which locating m begins to become important, as shown

both from the consequence of ignoring m entirely (0.348 mrad), and by the location errors

beginning to drop below their a priori values.

It should be noted here that a value of 10 -9 m/s 2 in Column 2 doesn't mean that the

instruments must perform this well. If, say, the accelerometers deliver independent mea-

surements every second, then they could be averaged over the time needed for significant

motion of the blob. After disturbances have settled, this might be 100 sec in orbit, when

this performance could be delivered by instruments only capable of 10 -s m/s 2. Such

thinking suggests that a better job of removing this type of self gravity error might be

done by dynamic estimation, based on a fluid mechanics l)lant model; but the idea won't

be pursued here.

Next, Cases 108 and 109 varied the satellite altitude to 1000 and 300 km respectively,

compared to Case 104 at 500 kin. As might be expected, there is a more or less linear

variation in the recovered angles, and in the effect of ignoring m completely. On the

other hand, there was ahnost no effect on the recovery of the blob location; although the

measurement noise was not low enough to give significant improvement over the a priori

value.

Cases 110 - 112 reduced m to 10 kg, relative to Cases 102 - 104. The effect was exactly

an order of magnitude reduct.iml in the error from failing to model m at all, just as would

be expected. At the same time, tim h)cation error was seriously worsened, especially for

better measurements -- smaller masses are harder to find. As for the angle recoveries,

there was only a small (1%) improvement, and that only for the best measurement. Case

113 further reduced m to zero, relative to Case 103, with consistent results.
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Case 114 reduced tile tank center distance by half, relative to Case 103, and ill the same

direction. The error of neglect increased by a factor of 8, as should be pretty obvious.

Finding tile blob bec.omes a great deal easier, as would be expected; but, curiously, the.

angular errors worsen by only about 10% -- although tile disturbance is much worse, the

filter has an easier time removing it.

Finally, Cases 115 - 120 varied the tank center location relative to Case 104. In general,

the angular recoveries worsened by a few per cent, mainly because the tank locations

were all a bit closer to the instrument. Note that, in Cases 115 and 118 - 120, the

disturbance is ignorable, as predicted by (131) and (133), indicating that there are some

preferred tank locations. Aiterimtively, if tanks can't be put in these desireable locations,

the gradiometer orientation could t)e changed, although linearization of the angles would

then be more complicated.

Table 5 -- Full yaw gradiometer

Case #

()----note
101

102

103

104

105

106

107

o- v

nm/s 2
.005

.01

0.1

1

10

y 6¢

m /_rad
1 3.976

1 7.951

1 78.66

1 766.7

1 7638

1, 1, 1 60,814

1, 1, 1 99,159

1, 1,

1, 1,

1, 1,

1, 1,

108 (1)

109 (1)

110 (2)

111 (2)

112 (2)

113 (3)
114

115

116

117

118

119

120

1

1

.01

0.1

1

0.1

0.1

1

1

1

1

1

1

1, 1, 1

1, 1, 1

1, 1, 1

1, 1, 1

1, 1, 1

1, 1, 1

.5, .5, .5

0, 1, 1

1, 0, 1

1, 1, 0

1, 0, 0

0, 1, 0

0, 0, 1

946.7

701.7

7.866

76.68

766.1

76.61

87.08

767.3

772.3

767.5

814.8

 66.1
796.9

60

#rad
4.007

8.012

78.82

766.7

7638

60,814

99,159
946.7

701.6

7.882

76.67

766.1

76.61

87.85

767.3

767.5

769.0

814.8

796.9

766.1

_x

mm

2.204

4.393

32.22

49.6

5O

50

5O

49.6

49.6

32.22

49.6

5O

5O

5.228

49.48

48.34

48.31

26.29

47.12

47.12

6y

mm

1.747

3.488

28.6

49.49

49.99

5O

5O

49.49

49.49

28.6

49.49

49.99

5O

4.196

48.48

49.22

48.1

41.35

47.82

45.92

& I _¢ig,,
mm I#rad

2.148, 347.8

4.282 347.8

31.7 1347.8

49.58 347.8

50 347.8

50 347.8

50 347.8

49.58 429.4

49.58 318.3

31.7 34.78

49.58 34.78

50 34.78

5O 0

4.85 2782

48.51 0

47.94 958.4

49.22 0

41.35 0

45.92 0

38.24 0

347.8

347.8

347.8

347.8

347.8

347.8

347.8

429.4

318.3

34.78

34.78

34.78

0

2782

0

0

958.4

0

0

0

(1) Cases 108 and 109 are at 1000 and 300 km altitude, respectively.

(2) Cases 110 - 112, 208 have m = 10 kg.

(3) Cases 113, 209, 307 have m = 0.
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Tile 2nd configuration studied varies from tile 1st by moving the 2 accelerometers with

yaw input axes to the roll axis; the idea being that a 2 dimensional configuration might (1o

a better job of separating local effects than tim 1 dimensional full yaw gradiometer. The.

arrangement is now a cross, with 0.5 m arms. The results are given in Table 6.

Tile 1st series, Cases 201 - 2(}7, are a repeat of Cases 101 - 107. The performance is

minutely better in roll, and significantly better in pitch; although, curiously, the blob

location has slightly degraded. The reason is fairly clear from (10) -- the yaw input

axis accelerometers yield no angular information when separated only in yaw; but when

their separation is in roll they give pitch information. The possibility of putting these

accelerometers instead on the pitch axis wasn't studied; presumably, the benefit would

switch from l)itch to roll.

Case 208 is a repeat of Case 112, in which m -- l0 kg. As in Cases 201 - 207, the only

change is an improvement in pitch, i)resumably for the same,reason. Case 209 further

reduced m to zero, with no change in filter performance. The reason is evident -- the

error from neglecting 10 kg is already too small to make much difference. Case 210 repeate<l

Case 114, in which the distance y was halved relative to Cases 203 and 103. The results

followed the same basic trend: the improvement in location accuracy keeps the angular

recovery from getting much worse. Finally, Cases 211 - 216 repeat Cases 115 - 120, in

which various locations y were examined. There were no surprises; the location accuracies

were more or less the same, if a bit scrambled; and the improvement in pitch recovery was

again demonstrated in all 6 runs.
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Case #

0 =note
201

202

203

204

205

206

207

208 (2)

209 (3)
210

211

212

213

214

215

216

Table 6 -- Yaw

O'v y

nm/s 2 m

.005 I, 1, 1

.01 1, 1, i

0.1 1, 1, 1

1 1, 1, 1

10 1, 1, 1

100 1, 1, !

1000 1, 1, 1

1 1, 1, 1

1 1,1,1

0.1 .5, .5, .5

1 0, l, 1

1 1, 0, 1

1 O, 1, 1

1. 1,0,0

1 O, 1, 0

1 0,0, 1

gradiometer with yaw

,_¢

ttrad
3.97

7.938

78.59

766.7

7638

6o,814 I
99,159!
766.1

766.1

86.31

767.3

772.3

767.5

814.8

766.1

795.4

60

/_rad
2.912

5.823

56.82

542.6

5409

47,631

98,388
541.7

541.7

65.3

543.6

543.6

547.0

590.3

590.3

541.7

accelerometers

_x _Y i
lnm mm

2.433 1.765 '

4.844 3.523 l

33.63 28.72

49.62 49.49

50 50

50 50

50 50

50-- 49.99

• 50 50

8.001 4.425

49.22 48.55,

48.34 49.22

48.09 48.17

39.32 41.22

41.22 49.98

45.92 45.92

on roll axis

8z g¢ign

mm #rod
2.177 347.8

4.338 347.8

31.43 347.8

49.54 347.8

50 347.8

50 347.8

50 347.8

50 34.78

50 0

5.179 2782

48.59 0

48.42 958.4

49.22 0

41.35 0

45.92 0

39.32 0

347.8

347.8

347.8

347.8

347.8

347.8

347.8

34.78

0

2782

0

0

958.4

0

0

0

The 3rd, and last, configuration studie(I is called here tile triple cross. It's an extension of

the cross configuration for which dynamic estimation results were obtained above. There,

it consisted of 4 accelerometers with yaw input axes, arranged in a 0.5 m cross on the roll

and pitch axes. Here, a 3rd yaw axis arm is added, again with yaw input axes, and 0.5 m

separation, making a triple cross. The results are in 'Fable 7.

Cases 301 - 306 again repeated Cases 101 - 106. For accelerometer accuracy of l0 -9 m/s 2

or worse, there was essentially no difference, since location isn't improved, and the extra

accelerometers don't contribute angular information. For more sensitive accelerometers,

the location improvement was not as good as the full yaw gradiometer, and this in turn

worsened the angle recovery.

Case 307 is like Case 304, except that m --- 0. As in Case 209, the reduction in the

disturbance was too small to have much effect on the angles. Case 308, like Cases 210

and 114, halved y. Once again, tim dramatic improvement in location accuracy kept the

angles from getting much worse; and again the triple cross proved inferior to either of the

other configurations. Finally, Cases 309 - 311 mirrored Cases 118 - 120 and Cases 214 -

216, in which various instrument axis values of y were tried. The results showed a modest

scatter, with no obvious message beyond the observations above.
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Case

()=note
301

302

303

304

305

306

307 (3)
3O8

3O9

310

311

O'lb,

nII1/s 2

.005

.01

0.I

1

10

100

1

0.1

I

I

1

Table 7-

Y
m

I,I,1

i,I,1

I,i,1

I,i,I

I,I,1

i,I, 1

I,I, I

•5,.5,.5

1,O,0

0, 1, 0

0, 0, 1

Triple cross of yaw accelerometers

_¢

prad
7.491

12.8

79.37

766.7

7638

60,814
766.1

116.4

800.7

766. I

806.5

bO _x 6y

prad mm mm
7.491 7.633 16.56

12.8 14.76 25.75

79.37 47.57 38.06

766.7 49.97 I 49.4

7638 50 49.99

60,814 50 50
766.1 50 50

I

116.4 8.458- 11.47 I
800.7 )22.7 50

806.5 37.54 47.84

766.1 37.54 i 50

mm

16.56

25.75

38.06

49.4

49.99

50

5O

11.47

5O

5O

47.84

_¢'ign

prad
347.8

347.8

347.8

347.8

347.8

347.8

0

2782

0

0

0

347.8

347.8

347.8

347.8

347.8

347.8

0

2782

0

0

0

A Appendix: Polyhedron Formulas

Early in this study, the gradiometer was composed of accelerometers located at the vertices

of a regular polyhedron. Tetrahedra, cubes, and octahedra were to be considered, but

only the tetrahedron was actually tried. The program GRANNY, which enters all the

problem description data, then required that the user enter the instrument geometric

data, including the number of faces ,,, of the polyhedron (4, 6, or 8), and the instrument

size. The latter is given by either tim polyhedron edge length I, or the radius of its

circumscribed sphere ,', or the polyhedron volume v.

If r or v are entered, l is calculated by a set of formulas taken from Mathematica, and are

summarized in the following table:

-II 4 16 I 8
t/,-

These formulas are built into GRANNY.

As for the locations of the vertices, they are assumed centered on the origin according to

the following tables, where each column is a location vector:

Tetrahedron:

L ]l / 1 1 -1 -1
1 -1 -1 1

v/8 1 -I 1 -i
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Cube:
I 1

1 i

1 -I

1 1 -i -i -I -I

-I -I 1 1 -1 -1

1 -i 1 -i 1 -i

Octahedron:

l

v_

1 0 0 -1 0 0

0 0 1 0 0 -1

0 1 0 0 -1 0

When a central accelerometer is added, a zero colum_ is appended to the appropriate

matrix. If the instrument isn't at the center of mass of tile spacecraft, an offset vector is

added to each column of (this possibly augmented) matrix.

B Appendix: Averaged Measurement Noise

The instruments studied in this report are modeled as measuring the acceleration of their

case, plus random noise. In practice however, they generally average the analog output for

some length of time r, and deliver a digital result at the end of each interval. The feasibility

study considers only analog instruments, and thus takes v = 0. On the other hand, the

instrument manufacturers often characterize their devices as delivering "samples" (really

averages) every r seconds, or alternatively, at a sample rate of 1/r Itz. The noise associated

with these averages is then specified by a standard deviation a. This appendix deals with

relating this type of specification to the parameters of the assumed cubic power spectrum.

This situation was examined in [12], where it was found that for an arbitrary noise power

spectrum S(w), the variance of the averages is given by:

a2 2
_ 7rr2fO°°S(w)[1-c(rw)]?-_2 (175)

On assuming tile cubic spectrum (31) for the analog noise tile result can be put in the
forln:

a 2-- R(O)fs(7Wc) (176)

where:

f_(x) - x- 1 - _ _+ . (1 - an)--,,2 (177)

This integral may be evaluated analytically in terms of the sine integral function:

/,,(_) = 2-si(2._:)t _ + cx - (1 + s2_) (178)
X
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in which:

Y sz y3 y5Si(y) = --dz = y - _ + ..... (179)
z 3.3! 5.5!

Tile function looks ghastly for x << 1; but it actually behaves quite well:

x 2

fs(X) ----1 - --_ + O(x 4) (180)

This is the oversampling limit; i.e., if a time series is very frequently measured, but is long

enough to cover many cycles of the highest noise frequency, then R(0) is the variance of

the samples, and the distinction between sample and average disappears. Actually, this

limit holds for any S(w), as is readily seen from (175).

The other limit, x :>> 1 is also pretty clean:

Si(x) --, 7r/2 ; fs(x) "-+ 7r/x (181)

Overall, fs(x) is a monotonic decreasing function, whose behavior can be seen from the
table:

xll 0 10,fs(x) 1 0.99956

tf _-(x) 0.28422

0.2 I 0.50.99823 0.98901 0.9574

50.061632

0.84917

3

0.71822

5 20 100 200 500

0.50907 0.14958 .031116 .015633 .006271

When a was measured by the manufacturer, the repetition frequency 1/_- was probably

chosen about an order of magafitude below the break frequency wc/(27r). Adapting this

reasoning, we can pick:

<,.,<= 20_/_- (182)

so that "cwc : 20n -- 62.832 tad; and R(0) : .0492401a 2. This assumed structure has

been used to determine the measurement noise power spectrum in the study.

C Appendix: Cubic Noise Integral

I've not been able to find a direct analytic solution for the matrix integral @ in (90).

tlowever, suppose Z is subject to an eigensystem decomposition:

Z = EAE-; (183)

where A is a diagonal matrix of the eigenvalues Aj of Z, and E is a matrix whose columns

are the corresponding eigenvectors. This is always possible unless there are repeated eigen-

values, a quite unlikely case. Itowever, complex eigenvalues and vectors have frequently

occurred in the study. Now,

Z 1 = EA-1E -1 (184)
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and we have:

/7'I, = 1E (A + w2A-])-lS(oa)dwE -1
rr

Since the integrand is clearly diagonal, this becomes:

(I) = E(liag[¢j]E -1 ( s6)

where

.\j
CJ = -- J0 w 2

(187)

So we've traded in a real matrix integral for a set of scalar, but often complex integrals.

llere, we'll carry out this program for cubic noise..

The power spectrum in this case is (31), so for any given eigenvalue we have:

The 3 terms here may all be found in tables of indefinite integrals, when:

¢-R(0)A8wc4 [2WC(l_A,4wc2 _t 3,\_) tan_, (_)- 6wcw +w2 + A21n (w2-t-A2)]o_ (189)

That this expression holds for complex .\ is readily checked by differentiation. On evalu-

ating, this works out to:

¢- A ./'3 (190)

where

2 [( !) 1 ln(l+z2)] (191)Ya(z)-fi z+ tan -l(z)-2-

an even function of z. This looks very badly behaved near z = 0; but Mathematica

produced this Maclaurin expansion:

1- Zz 2+ a-z + +15 70 105 _-_z 1 1 zm (192)

At the other end, the properties of the arctangent show that, as r ---* oo, .fa(z) ---,

{_rsgn[_R(A)]}/z. The programs use the expansion for small z; otherwise, standard for-

nmlas for complex logarithms and arctangents are employed. Note that if A is complex,

its conjugate will also be present. Then, as ¢(A) is expressible as a power series in A,

¢(_) = ¢(A); i.e., the function of the conjugate is equal to the conjugate of the function.

This halves the arithmetic in such cases. All well and good; but the technique foundered

on the numerical problems in obtaining complex eigenvectors.
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D Appendix: Colored Noise Integral

Consider the scalar integral ' "

J_ 2Awe foo dw (193)
- J0 (_+ _2)(_2 +_)

where ,_ may be complex. If N(A) > 0, a contour integration along the real axis, and

closed by the upper infinite half circle leads to

,1 = (,\ t-wc) -1 (194)

while if _(,X) < O, a similar technique yields --

J = (A - we) -1 (195)

Iloth of these results have been checked by Mathematica. Finally, if R(A) = 0, the integral

is improl)er; but a limiting technique yields

j = ,\(_ _ ,\_)-1 (1.96)

Mathematica failed in this case, lint [13], 3.264-I provided verification.

Now, for colored noise

s(._) = 2_n(0)(_,2+ ._)-_ (197)
and the integral (90) becomes

)_ 2WcR(O) j_o°° (Z-{-w2Z-1) -1 dw (198)7r w 2 q- w2

Suppose the eigenvalue-eigenvector decomposition (183) is possible for Z. Then:

2wcR(0) E F- A+_A-1 -_( _
7/"

- 2wcl--_(O)Ediag A E -1

(.,2+ _2)(,,2+,4)
= R(0)E diag [J(A)IE -1 (199)

In general, this is a mess. But if Z < 0:

(I, = R(0)Ediag [(A-we) -1] E-I= R(0)E(A- wei)-lE-1 = R(O)(Z-wcI) -1 (200)

Similarly, if Z > 0, then

= R(0)(Z + o_J) -_ (201)

So, for any definite Z, the integration requires only a single matrix inversion, using real

arithmetic. However, if Z is indefinite, the solution (199) may not be an improvement over

direct numerical integration, that at least doesn't require complex arithmetic. Fortunately,

only Z < 0 can occur in the current filter theory.
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