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1 Introduction

This paper describes the Phase 3 effort on the design and verification of the Reliable Com-

puting Platform (RCP). The paper builds on the Phase 1 and Phase 2 efforts described in

[1] and [21.

The goal of the RCP project is to devise a fault-tolerant computer architecture that

adheres to a system-design philosophy called "Design For Validation." The basic tenets of

this design philosophy are summarized in the following four statements:

.

.

.

.

A system is designed such that complete and accurate models, which estimate critical

properties such as reliability and performance, can be constructed. All parameters of

the model that cannot be deduced from the logical design must be measured. All such

parameters must be measurable within a feasible amount of time.

The design process makes tradeoffs in favor of designs that minimize the number of

measurable parameters in order to reduce the validation cost. A design that has excep-

tional performance properties yet requires the measure.ment of hundreds of parameters

(say, by time-consuming fault-injection experiments) would be rejected over a less ca-

pable system that requires minimal experimentation.

The system is designed and verified using rigorous mathematical techniques, usually

referred to as a formal verification. It is assumed that the formal verification makes

the probability of system failure from design faults negligible, so the reliability model

does not include transitions representing design errors.

The reliability (or performance) model is shown to be accurate with respect to the

system implementation. This is accomplished analytically not experimentally.

Thus, a major objective of this approach is to minimize the amount of experimental

testing required and maximize the ability to reason mathematically about correctness of

the design. Although testing' cannot be eliminated from the design/validation process, the

primary basis of belief in the dependability of the system must come from analysis rather

than from testing.

1.1 Recovery From Transient Faults

There is a growing concern over the impact of high-intensity radiated fields (HIRF) and

electromagnetic interference (EMI) on digital electronics. The electromagnetic environment

is becoming increasingly hostile at the same time electronic device dimensions are being

reduced--making the devices even more vulnerable to upset phenomena. The use of com-

posite materials in aircraft will further increase susceptibility. Although an electromagnetic

event may be of short duration, its effect may be permanent. This could occur as a result of

permanent physical damage or merely the corruption of a memory state of an otherwise func-

tional processor. Transient faults are believed to be much more prevalent than permanent

faults (i.e., typical failure rate 10 times the permanent rate).



Severalapproachescan be used to recover the state of memory in a transiently affected

digital processor. The simplest technique is to rely on the reading of new inputs to replace

corrupted memory. Of course, this does not give 100% coverage over the space of potential

memory upsets, but it is much more effective than one might expect at first glance. Since

control-law implementations produce outputs as a function of periodic inputs and a rela-

tively small internal state, a large fraction of the memory upsets can be recovered in this

manner. This accounts for the fact that although many systems in service are not designed

to accommodate transient faults, they do exhibit some ability to tolerate such faults.

Another important technique is the use of a watchdog timer. Since a transient fault can

(and frequently does) affect the program counter (PC), a processor can end up executing in

an entirely inappropriate place--even in the data space. If this happens, then the previous

technique becomes totally inoperative. The only hope in this situation is to recognize that

the PC is corrupted. A watchdog timer is a countdown register that sets the PC to a

pre-determined "restart" location if the timer ever counts down all the way to 0. In a

non-transiently affected processor, the watchdog timer is periodically reset by the operating

system.

Once a fault has been detected by a watchdog timer, the entire system may be "rolled-

back" to a previous state by use of a checkpoint-- a previous dump of the dynamic memory

state to a secondary storage device of some kind. This technique has not been used very

often in flight control systems because of the unacceptable overhead of this type of operation.

A more appropriate technique is the use of majority-voting to replace the internal state of

a processor. It is important to note that this is done continuously rather than just after

a transient fault is detected. Of course, majority-voting can be expensive as well if the

dynamic state is not small.

1.2 Validation/Verification of Transient Fault Recovery

No matter what technique is• used its effectiveness must be measured and incorporated in

the reliability analysis. This.is much more important than one might first suspect. Since

a transient fault can potentially disable an otherwise good processor_ a worst-case analysis

must increase the processor failure rate to include the transient fault rate. Because this rate

can be 10 times larger than the nominal permanent fault rate, this can be devastating to the

reliability analysis, unless a credible estimate of the fraction of transient faults that disable

a processor can be obtained. In figure 1 the probability of system failure as a function of

the fraction of recoverable transients (R) is plotted for a 4MR system. The Markov model

of figure 2 was solved to obtain this plot. The horizontal transitions represent transient

fault arrivals. The vertical transitions represent permanent fault arrivals. These arrive at

rate AT and Ap respectively. The backwards arc represents the removal of the effects of a

transient fault by the operating system. This is accomplished by voting the internal state.

State 1 represents the initial fault free state of the system. There are only two transitions

from state 1 due to the arrival of either a transient or permanent fault. These transitions

carry the system into states 2 and 4, both of which are not system failure states. All of the

transitions except one from these states are a result of second failures, which lead to system

failure states. The transition from state 2 back to state 1 models the transient-recovery



10 -3

Pf 10-4

10-5 , , I J
0× 10 +°° 2x 10 -°1 4× 10 -°1 6x10 -°1 8× 10 -°1 10 °

R

Figure 1: Probability of System Failure As a Function of R

process. The transition from state 2 to state 4 models the situation where a processor that

is recovering from a transient fault experiences a permanent fault. The effect becomes even

more dramatic as the number of processors is increased, as shown in figure 3.

Approaches to the validation of computer systems susceptible to transient faults can be

categorized into two broad categories: empirical and analytic. Empirical approaches rely on

measuring the probability of successful recovery (R) and the recovery time (1/p) of the system

using fault-injection experiments. Analytic approaches seek to establish the transient-fault

immunity property (i.e. R = 1) of the system and calculate the value of p by mathematical

analysis. The empirical approach measures the probability of successful transient recovery

(i.e. R) and the distribution of recovery time using fault-injection experiments. The results

of the experiment are used to estimate the transient-fault recovery transition in the Markov

reliability model. The analytic approach relies on analysis to insure that R = 1. In other

words one must prove that the recovery technique always removes the effects of an arbitrary

transient within a bounded amount of time. In this approach, one does not rely on detection,

which is always imperfect anyway. Transient recovery is automatic, via continuous voting

and rewriting of state with voted values. The analysis must also be able to establish the

value of the upper bound on the time for transient recovery. In this way one is able to

calculate the value of p rather than measure it 1.

The analytic approach does not completely eliminate the need for measurements. Mea-

1To simplify the discussion, the reliability analysis process has been described in terms of a pure Markov

process. The actual distribution of recovery-time is more likely to be closer to a uniform distribution than an

exponential and thus a semi-Markov model would be used. The SURE program [3, 4] can be used to analyze
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suring (or estimating) the $'s (i.e. failure rates) in the reliability model is still necessary,but
time-consumingfault-injection experimentsare not. Furthermore, the reliability analysis
doesnot dependon an empirical model of how a transient fault upsetsa processor.

1.2.1 Advantages of Analytic Approach

The analytic approach has several clear advantages over the empirical approach. First,

confidence in the system does not rely primarily on end-to-end testing, which can never

establish the absence of some rare design flaw (yet more frequent than 10 -9 ) that can crash

the system. Second, the analytic approach minimizes the need for experimental analysis

of the effects of EMI or HIRF on a digital processor. The probability of occurrence of a

transient fault must be experimentally determined, but it is not necessary to obtain detailed

information about how a transient fault propagates errors in a digital processor. Third, the

role of experimentation is determined by the assumptions of the mathematical proof. The

testing of the system can be concentrated at the regions where the design proofs interface

with the physical implementation.

1.3 The Synergism Between Formal Verification and Reliability

Analysis

The analytic approach described above is in reality a synergism between formal verification

and reliability analysis. Formal methods prove formulas of the form

A-Pi:tEDICATE D NICE-PROPERTY

Reliability analysis calculates the probability

. Prob[ A-PREDICATE ]

Also, formal methods offers an approach to overcoming a serious dilemma for the reliabil-

ity analyst--how can I assure myself that the reliability model itself is a valid representation

of the implemented system? Although the present work does not establish a formal con-

nection between the RCP functional specifications and the Markov model, key assumptions

of the Markov model are formally verified. In particular, the absence of any direct tran-

sition from the fault-free state to a death state depends upon the fault-masking property

established in the RS to US proof. Also the simplification of the reliability model under

the assumption that R = 1, is justified by the formal verification that 100% of the errors

produced by a single transient fault are flushed by the system.

this more general class of reliability model. It requires the mean and standard deviation of the recovery

time. Under the assumption of a uniform distribution of recovery, these parameters can be derived from the

upper bound on the time of recovery.



1.4 Overview of Previous Work

A major goal of the RCP project is to develop an operating system that provides the ap-

plications software developer with a reliable mechanism for dispatching periodic tasks on a

fault-tolerant computing base, which appears to him as a single ultra-reliable processor.

The following design decisions have been made toward that end:

• the system is non-reconfigurable

• the system is frame-synchronous

• the scheduling is nominally static, non-preemptive

• internal voting is used to recover the state of a processor affected by a transient fault

Although scheduling is typically static, RCP would accommodate an implementation that

used limited forms of dynamic scheduling, provided all the axioms about task execution

are satisfied. A hierarchical decomposition of the reliable computing platform is shown in

figure 4.

[Uniprocessor System Model (US)]

[Fault-tolerant Replicated Synchronous Model (RS)[

I
[Fault-tolerant Distributed Synchronous Model (DS)]

I
[Fault-tolerant Distributed Asynchronous Model (DA)]

I
[Clock Sync Property]

I
[Minimal Voting DA (DA_minv)]

[ - [

[ClockSync Algorithm I [Local Executive Model (LE)]

I
[Hardware/Software Implementation]

Figure 4: Hierarchical Specification of the Reliable Computing Platform.

The top level of the hierarchy describes the operating system as a function that sequen-

tially invokes application tasks. This view of the operating system is called the Uniproces-

sor System layer (US). It is formalized as a state transition system and forms the basis

of the specification for the RCP. As in the Phase 1 report [1], this constitutes the top-level

specification of the functional system behavior defined in terms of an idealized, fault-free

computation mechanism. The specification is the correctness criterion to be met by all lower

level designs. The top level of the hierarchy describes the operating system as a function

that performs an arbitrary, application-specific computation.
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Level2 is called the Replicated Synchronous layer (RS). In this level an abstract view

of the system's fault-tolerance capability is specified. Fault tolerance is achieved by voting

results computed by the replicated processors operating on the same inputs. Interactive

consistency checks on sensor inputs and voting of actuator outputs require synchronization

of the replicated processors. The RS level describes the operating system as a synchronous

system, where each replicated processor executes the same application tasks. The existence of

a global time base, an interactive consistency mechanism, and a reliable voting mechanism

are assumed at this level. Processors are replicated and the state machine makes global

transitions as if all processors were perfectly synchronized. Interprocessor communication is

hidden and not explicitly modeled at this layer. Suitable mappings are provided to enable

proofs that the R$ layer satisfies the US layer specification. Fault tolerance is achieved using

exact-match voting on the results computed by the replicated processors operating on the

same inputs. Exact match voting depends on two additional system activities: (1) single

source input data must be sent to the redundant sites in a consistent manner to ensure that

each redundant processor uses exactly the same inputs during its computations, and (2)

the redundant processing sites must synchronize for the vote. Interactive consistency can

be achieved on sensor inputs by using Byzantine-resilient algorithms [5], which are probably

best implemented in custom hardware. To ensure absence of single-point failures, electrically

isolated processors cannot share a single clock. Thus, a fault-tolerant implementation of

the uniprocessor model must ultimately be an asynchronous distributed system. However,

the introduction of a fault-tolerant clock synchronization algorithm, at the DA layer of the

hierarchy, enables the upper level designs to be performed as if the system were synchronous.

Level 3 of the hierarchy, the Distributed Synchronous layer (DS), breaks a frame

into four sequential phases:

I compute ] br°adcastlv°te I sync I

clock clock
mterrupt mterrupt

Activity on the separate processors is still assumed to occur synchronously. Interprocessor

communication is accomplished using a simple mailbox scheme. Each processor has a mailbox

with bins to store incoming messages from each of the other processors of the system. It

also has an outgoing box that is used to broadcast data to all of the other processors in the

system. The DS machine must be shown to implement the R5 machine.

1. compute

• frame started by clock interrupt

• execute all tasks scheduled in current frame

• multiple frames constitute a cycle



2. broadcast

• broadcast outputs of task execution to other processors

• usually just a subset of the outputs are broadcast

3. vote

• vote broadcast data

• replace memory with voted values

4. sync

• execute sync algorithm

• wait for next clock interrupt

Each processor in the system executes the same set of application tasks every cycle. A

cycle consists of the minimum number of frames necessary to define a continuously repeating

task schedule. Each frame is frame_time units of time long. A frame is further decomposed

into 4 phases. These are the compute, broadcast, vote and sync phases. During the compute

phase, all of the applications tasks scheduled for this frame are executed. The results of all

tasks that are to be voted this frame are then loaded into the outgoing mailbox. During

the next phase, the broadcast phase, the system waits a sufficient amount of time to allow

all of the messages to be delivered. As mentioned above, this delay must be greater than

maxb + 6, where maxb is the maximum communication delay and _ is the maximum clock

skew. During the vote phase, each processor retrieves all of the replicated data from every

other processor and performs a voting operation. Typically, this operation is a majority vote

on each of the selected state elements. The processor then replaces its local memory with the

voted values. It is crucial that the vote phase is triggered by an interrupt and all of the vote

and state-update code be stored in Read-Only Memory (ROM). This will enable the system

to recover from a transient ewn when the program counter has been affected by a transient

fault. Furthermore, the use of ROM is necessary to ensure that the code itself is not affected

by a transient. 2 During the final phase, the sync phase, the clock synchronization algorithm

is executed. Although conceptually this can be performed in either software or hardware,

we intend to use a hardware implementation.

At the fourth level, Distributed Asynchronous layer (DA), the assumptions of the

synchronous model are discharged. A fault-tolerant clock synchronization algorithm [6] can

serve as a foundation for the implementation of the replicated system as a collection of

asynchronously operating processors. Dedicated hardware implementations of the clock syn-

chronization function are being pursued by other members of the NASA Langley staff [7, 8, 9].

Also, this layer relaxes the assumption of synchrony and allows each processor to run on its

2In the design specifications, these implementation details are not specified explicitly. However, it is clear
that to successfully implement the models and prove that the implementation performs as specified, such
implementation constructs will be needed.
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own independentclock. Clock time and real time are introduced into the modeling formal-
ism. The DA machinemust beshownto implement the D5 machineprovided an underlying
clocksynchronizationmechanismis in place.

The basicdesignstrategy is to usea fault-tolerant clocksynchronizationalgorithm asthe
foundation of the operating system. The synchronizationalgorithm providesa global time
basefor the system. Although the synchronizationis not perfect, it is possibleto develop
a reliable communicationsschemewhere the clocksof the system are skewedrelative to
eachother, albeit within a strict known upper bound. For all working clocksp and q, the

synchronization algorithm provides the following key property:

I%(T) - cq(T)l <

which asserts that the difference in real time for two clocks reading the same logical time is

bounded by 6, assuming that there is a sufficient number of nonfaulty clocks. This property

enables a simple communications protocol to be established whereby the receiver waits until

maxb + 6 after a pre-determined broadcast time before reading a message, where maxb is

the maximum communication delay.

Figure 5 depicts the generic hardware architecture assumed for implementing the repli-

cated system. Single-source sensor inputs are distributed by special purpose hardware ex-

ecuting a Byzantine agreement algorithm. Replicated actuator outputs are all delivered in

parallel to the actuators, where force-sum voting occurs. Interprocessor communication links

allow replicated processors to exchange and vote on the results of task computations. As

previously suggested, clock synchronization hardware may be added to the architecture as

well.

The basic concept of task execution is illustrated in figure 6.

Tasks receive inputs from the outputs of other tasks (illustrated by horizontal arrows)

or from sensors (shown by vertical arrows). The outputs of a task are not available to
other tasks until after termilaation of the task. There is therefore no use of an intertask

communication mechanism siach as the Ada rendezvous.

Task results are assigned to different cells within the state, as illustrated in figure 7.

The Clock Sync Property layer and Clock Sync Algorithm layer represent the recently

revised version of the Interactive Convergence clock synchronization theory developed by

SRI [10].

1.5 Availability of Specifications and Proofs

Both the DA_minv model and the LE model are specified formally and have been verified

using the EItDM verification system. All specifications and proofs described in this report are

available electronically via the Internet using anonymous FTP or World Wide Web (WWW)

access. Anonymous FTP access is available through the host airl6, larc.nasa.gov using

the path:

9
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Distribution Network
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Processor

Replicate
R
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Figure 5: Generic hardware architecture.

pub/f m/I arc/RCP- spec s

The specification files are provided in two formats: 1) a set of plain ASCII source files

bundled using the Unix tar utility, and 2) a single file in the "dump" format used by EHDM.

Each version is compressed using both gzip and Unix compress. The compressed files range

in size from 100 to 250 kilobytes.

WWW access to the FTP directory is provided through the NASA Langley Formal

Methods Program home page:

http ://shemesh. larc. nasa. gov/fm-top, html

or the specific page for the Formal Methods FTP directory:

file ://airl 6. larc. nasa. gov/pub/fm/larc

2 Formalizing the DA_minv and l£ Layers

The RS model introduced a very abstract view of the execution of application tasks on a

local processor. The D5 and DA models concentrated on the distributed processing issues of

the design and did not develop the task execution aspects of the system any further. In the

I_£ model, a more detailed specification of the activities on a local processor are presented.

In particular, three areas of activity are elaborated in detail:

10



• task dispatching and execution,

• minimal voting, and

• interprocessorcommunicationvia mailboxes.

Theseare presentedin sections3, 4, and 5, respectively.An intermediate model, DA_minv,
that simplified the construction of the LE model is used. Someof the refinementsoccur in
the DA_minvmodel and somein the LE model. For example, the concept of minimal voting

is addressed in considerable detail in the DA_minv model.

2.1 Overview of Task Execution and Voting

To understand the DA_minv and LE formalizations, a detailed presentation of the abstract

model of task execution used in the upper levels is necessary. We begin with a review of this

model. The abstract model was based upon the following functions:

succ : function[control_state--_ control_state]

f_ : function[Pstate --, control_state]

f,, : function[Pstate --_ Pstate]

ft : function[Pstate, cell -_ cell_state]

fc : function[inputs × Pstate -* Pstate]

f_ : function[Pstate _ MB]

f_ : function[Pstate, MBvec -_ Pstate]

f_ : function[Pstate -_ outputs]

recv : function[cell, control_state, nat --_ bool]

dep : function[cell, cell, control-state --* bool]

The meaning of each of these functions is summarized in table 1. These functions define

succ returns next control _tate

fk extracts control state

f, increments the frame counter

ft extracts cell (e.g. task state

fc executes tasks and updates Pstate

f_ selects and copies cells from memory into outgoing mailbox slot

f. votes mailbox values and overwrites cell states

f= denotes the selection of state variable values to be sent to the actuators

recv true iff cell c's state should have been recovered before the specified frame

dep true iff cell c's value in the next state depends on cell d's value in the current state

Table 1: RS abstract functions

task scheduling, mailbox usage and voting on a single processor. To maximize generality, a

minimal set of axiomatic properties of these functions was sought that would enable a proof

that RS D US.

11



succJx : AXIOM A(fn(ps)) = succ(fk(ps))

controLnc : AXIOM fk(f,(u, ps)) = fk(ps)

cells_nc : AXIOM ft(fn(PS), c) = ft(ps, c)

full_recovery : AXIOM H > recovery.period D recv(c, K, H)

initial_recovery : AXIOM recv(c, K, H) D H > 2

dep_recovery : AXIOM recv(c, succ(K),//+ 1) ^ dep(c, d, K) 3 recv(d, K, H)

components_equal : AXIOM A(X) = A(Y) ^ (V c: A(X,c) = A(Y,c)) D X = Y

control_recovered : AXIOM

maj_condition(A) A (Vp: member(p,A) D w(p)= fa(ps))

D w)) =/k(ps)

cell.recovered : AXIOM

maj_condition(A)

h (V p:member(p,A) D w(p)= f.(fc(u, ps)))

A fk(X) = K A fk(ps) = K A dep_agree(c, K,X, ps)

ft(f,,(f_(u,X),w),c)-'-ft(f_(u,ps),c)

vote_maj : AXIOM

maj_condition(A) A (V p :"member(p, A) D w(p)= fs(ps)) D fv(ps, w)= ps

In the LE model, interpretations are given for each of the functions listed in table 1 and

shown to satisfy these axioms.

The development of the LE model proceeded in two steps. The first step (i.e. OA_minv)

produced an elaboration of the functions fv, recv, dep, fk and ft. The next step (i.e. LE)

produced an elaboration of the functions fn, fc and succ. This is illustrated in figure 8. The

first set of interpretations (in Dh_minv) all deal with the voting processes of RCP. In the

RCP Phase 2 paper [2] three types of voting were discussed--continuous, cyclic and minimal.

In Appendix B of [2] interpretations of these functions were given for both the continuous

and cyclic voting methods of voting. The more efficient minimal-voting method has always

been the method-of-choice for RCP, but the mechanical proofs were incomplete and were

thus not included in [2]. However, the continuous and cyclic voting proofs were sufficient to

establish that the abstract axiomatic definitions of the R$ level were consistent.

Details about the completed mechazlical verification of the minimal voting approach can

be found in section 4. There the functions f,_, recv and dep are defined in terms of other

functions that are dependent upon the particular application.
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Frame 1 Frame 2

®

.®v

Frame 3 Frame 4

Figure 6: Task Execution

Frame 1 Task 1 cell[l] := fl(u, celI[7]);
Task 2 cell[2]:= f2(cell[l])

Frame 2 Task 3 cell[3]:= f3(u, cell[2]);
Task 4 cell[4]:= f4(cell[3])

Frame 3 Task 5 cell[5]:= fs(u);
Task 6 cell[6]:= f6(u, cell[4])

Frame 4 Task 7 cell[7]:= fT(cell[5],cen[6])

Figure 7: Assignment of Task Results to Cells

DA

DA_minv (interpretations for: fk, ft, fv, recv and dep)

LE (interpretations for: fn, fc, L and succ)

Figure 8: Two Step Refinement into LE Model
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2.2 Specification Method: EHDM Mappings

Unlike the higher levels of the hierarchy, the DA_minv and LE models were developed using

the Ehdm mappings capability.

2.2.1 Example

The basic idea of Ehdm mappings is the substitution of an uninterpreted TYPE or function

with an interpreted one. This is best explained by way of example. Consider

high : MODULE

THEORY

f : FUNCTION[nat _ nat]
x : VAR nat

fax: AXIOM f(z) > 0

T : TYPE

t :VAR T

g : FUNCTION[T _ nat]

g_ax : AXIOM g(t) > 0

END high

This specification has two uninterpreted functions f and g. Each function is constrained

by an axiom. Note that both the domain and the body of g are uninterpreted. This specifi-

cation may then be refined into the more detailed specification below, named low:

low : MODULE

THEORY

x : VAR nat

F: FUNCTION[nat --+ nat] = (A z: 100)

T_imp : TYPE = nat

y : VAR T_imp

G : FUNCTION[T_imp --* nat] = ()_ y : y + 1)

END low

The function f is refined into F and g is refined into G. The uninterpreted type T is

replaced with nat. The intended connection between module high and module low must be

made formal. This is done by the following Ehdm mapping module:

14



to_low : MODULE

MAPPING high ONTO low

f_F

T _ T_imp

g_G

END

A mapping module consists of a list of associations denoted by ----,. On the left side of

an ----,, an object from the high-level specification is given. The corresponding object in the

lower level specification is given on the right side of an ---4, When the mapping module is

typechecked, Ehdm generates a file containing a list of obligations that must be proved:

high_to_low : MODULE

USING low

EXPORTING ALL WITH low

THEORY

x : VAR nat

fax : OBLIGATION F(z) > 0

t : VAR T_imp

g_ax : OBLIGATION G(t) > 0

END high_to_low

In this example, discharging the obligations is simple.

2.2.2 RCP Specifics

In figure 9, the main modules associated with the DA_minv and LE models are given.

The horizontal arrows represent USINGs and the down arrows represent MAPPING

modules. The modules where the RS-level task-execution functions are mapped into are

given in table 2.

The list of all of the non-identical name associations in the mapping modules follows:

null_memory _ memO
cells _ cell_mem
MB _ MBbuf

null_memory _ memO
pred _ pred_cs

=[cell_state] _ CS_eq
=[control_state] _ cnst_eq
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rcp_defs . generic_FT . DA

to_imp to_both_v to DA minv

rcp_defs_imp ,_ gen_com = minimal_v DA_minv

to_hw to_gc_hw to_both_hw to_LE

rcp_defs_hw-_ gc_hw . minlmal_hw., LE

Figure 9: DA to DA_minv to LE Mapping Structure

function

SUCC

/k
/.
/,
/o
L
/,

recv

dep

DA_minv module

: gen_com

: gen_com

: gen_com

: minimal_v

: minimal_v

: minimal_v

: minimal_v

LE module

gc_hw

minimal_law

gc..hw

Table 2: The modules where the abstract task-execution functions are interpreted.

°.

2.3 The Model of Processor State

In RS, DS and DA, Pstate was uninterpreted. The details about how the execution of tasks

changed the state of a processor were left unspecified. The function "fc', which represents

the change that occurs as a result of executing all of the tasks, was left uninterpreted also.

The only changes to Pstate that were elaborated in some detail were those associated with

replacing the local state with voted values. This was accomplished by the function "f,,".

The next step in refining the RCP into a detailed design involved the elaboration of the

uninterpreted functions. This required a more detailed description of Pstate. In this section

we will describe the elaboration of the processor state Pstate first in the DA_minv level then

in the LE level.

At the DA_minv level, Pstate is interpreted as follows:

Pstate : TYPE = RECORD

control: control_state,

memry : memory
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END

The state of a processor is partitioned into two components: the control state and the

memory. The first component represents the state of the machine associated with the oper-

ating system; the second component represents the rest of the state. However, both fields of

this record are still uninterpreted types:

control_state : TYPE

memory : TYPE

At this level, it is assumed that the frame counter can be retrieved from the control_state

field via a function frame, and that the contents of cells can be retrieved from the memry

field via a function cells and replaced in memory via a function write_celh

frame : FUNCTION[control_state _ frame_cntr]
cells : FUNCTION[memory, cell -+ cell_state]
write_cell:FUNCTION[memory, cell, cell_state --, memory]

The semantics associated with the functions that operate on Pstate are captured in two

axioms:

cells.ax : AXIOM cs_length(cells(mem, cc)) = c_length(cc)

write_cell_ax : AXIOM cs_length(cs) = c_length(xx) D

cells(write_cell(mem, xx, cs), cc)
=IF cc =xx

THEN cs

ELSE cells(mere, cc) END

Note that the write_cell_ax only applies when csJength(cs) = c_length(xx). The reason for

this is that the contents of different cells can be different sizes. This prevents the rewriting

of a cell with a cell_state that has an inappropriate size.

At the DA_minv level of specification, the memory of the system is modeled as a collection

of cells. Thus, equality of memories is defined by the following axiom:

memory_equal : AXIOM (V c : cells(C, c) = cells(D,c)) D C = D

Note that there is other memory in the system that is not modeled here. Examples of

such memory include temporary storage and the program code, which is stored in ROM. The

specifications described in this section are located in module rcp_defs_Jmp. These details are

abstracted away in the upper levels through use of the Ehdm equality-mapping capability.

Equality over cell_states is mapped onto the following function at the LE level:

csl, cs2, cs3 : VAR cell_state

CS_eq : FUNCTION[cell_state, cell_state _ bool] =

(_ csl, cs2 :

csl.len = cs2.1en ^ (V x : x < csl.len ::) csl.blk(x) = cs2.blk(_)))
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EHDM requires that one demonstrate that this function is an equality relation. The following

obligations are generated by the Ehdm system:

cell_state_varl : VAR cell_state

cell_state_var2 : VAR cell_state

celJ_state_var3 : VAR cell_state

control_state_varl : VAR control_state

control_state_var2 : VAR control_state

control_state_var3 : VAR control_state

cell_state_reflexive : OBLIGATION

CS_eq (cell_state_var 1, cell_state_varl)

cell_state_symmetric : OBLIGATION

CS_eq (cell_state_var 1, cell_state_var2)

::) CS_eq(cell_state_var2, cell_state_varl)

cell_.state_transitive : OBLIGATION

CS_eq (cell_state_var 1, cell_state_vat2)

A CS_eq(cell_state_var2, cell_state_var3)

2) CS_eq(cell_state_varl, cell_state_var3)

control_state_reflexive : OBLIGATION

cnst_eq (control_state_var 1, control-state_varl)

control_state_symmetric : OBLIGATION

cnst_eq (cont rol_state_var 1, control_state_var2)

2) cnst_eq(control_state_var2, control_state_varl)

control_state_transitive : OBLIGATION

cnst_eq (cont rol_state_varl, control_state_var2)

A cnst_eq (control_state_vat2 (cont rol_state_var3)

D cnst_eq(control_state_varl, control_state_var3)

as well as some congruence properties not shown here.

In the LE model, both components of Pstate (i.e., control and mernry) are given detailed

interpretations. These interpretations are described in the next two subsections.

2.3.1 LE Model of Memory

In the LE model, the concept of memory is extended significantly beyond that of the upper

levels of the hierarchy. The type memory is defined as follows:

address :TYPE FROM nat WITH (An :n < mem_size)

memory :TYPE IS FUNCTION[address -+ wordn]
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Thus, in the LE model, memory is represented as a bounded array of words. The value of

mere_size is application or machine dependent. The type of wordn is still uninterpreted at

this level (cf. leaving the number of bits in the word unspecified.)

The type cell is the index for components of computation state and the type celLstate

is the information content of computation state components. At the LE level a celLstate

becomes a fixed-length block of memory as illustrated in figure 10.

cell 1

cell 2

cell 3

cell 4

cell 5

,cell 6

Figure 10: Memory Cells: blocks of words

Formally, a block of memory is represented as

mem_block_ty : TYPE =
RECORD

len : addr_len_ty,
blk : memory_ty

END

The len field indicates the maximum address in the block. All the values of the blk field

above len are irrelevant. The cell_state type is interpreted as a mem_block_ty:

cell_state : TYPE IS mem_block_ty

The uninterpreted function cell_map assigns memory locations to all cells in the system:

cell_map : FUNCTION[cell _ address_range]

The following three axioms constrain this function.

cell_map_length_ax : AXIOM length(cell_map(cc)) < MBmem_size

cells_for_all_ax : AXIOM (B cc: address_within(adr, cell_map(cc)))

cell_separation:AXIOM(cl # c2) D address_disjoint(cell_map(cl),cell_rnap(c2))
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The first axiom requires that the size of every cell is no larger tha_ the size of the mailbox.

The second axiom states that every memory location is covered by some cell. The third

axiom says that cells do not overlap in memory; address_disjoint is defined as

address_disjoint : FUNCTION[address_range_ty, address_range_ty --_ bool] -_

()_ ar, ar2 : at.low > ar2.high V ar2.1ow > ar.high)

In the upper level models, the function cells was used to extract a cell from memory. This

function is implemented in the LE model by a function named celLmem as follows:

cell_mem : FUNCTION[memory, cell _ cell_state] =

(A mere, cc :

cs0(cc) WITH

lien := length(cell_map(cc)), blk := mshift(mem, cell.map(cc).low)])

mshiff : FUNCTION[memory, address --_ memory] =

(A mem, low :

(,k n : IF n + low < mem.size THEN mem(n -t- low) ELSE word0 END IF))

The mapping produces the following obligation:

cells_ax : OBLIGATION cs_length(cell_mem(mem, cc)) = c_length(cc)

The functions cJength and csJength axe defined as follows:

c_length: FUNCTION[cell --* nat] -= (_ cc: length(cell.map(cc)))
cs : VAR cell_state

us_length : FUNCTION[cell_state ---* nat] - ()_ cs : cs.len)

The function write_cell is used to replace the contents of a cell in memory with a cell_state.

write_cell: FUNCTION[memory, cell, cell-state --* memory] =

(._mem, cc,CS :

(,_ adr :
IF address_within(adr, cell-map(cc)) ^ adr - cell_map(cc).low < CS.len
THEN CS.blk(adr - cell_map(cc).low)

ELSE mem(adr) END IF))

The function write_cell is slightly more general than the axiom at the DA_minv level requires.

It allows one to update a cell using a cell_state of a different size than the cell being updated.

Nevertheless, the constraining axiom at the upper level,

write_cell_ax : OBLIGATION

cs_length(cs) = c_length(xx)
::) cell_mem(write_cell(mem, xx, cs), cc)

= IF cc = xx

THEN cs

ELSE cell_mem(mem, cc) END

null_memory_ax : OBLIGATION cell_mem(mem0, cc) = cs0(cc)

is shown to be satisfied by this implementation.

The specifications in this subsection are located in the rcp_defs_hw.spec module.
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2.3.2 LE Model of control_state

The control state of the processor is defined as follows:

control_state : TYPE =

RECORD

frame : frame_cntr,

mmu : mmu_state,

superflag : boolean,
errorflag : boolean

END

The frame field indicates the current frame number, which is incremented by the operating

system modulo the number of frames per cycle. The mmu field contains the memory man-

agement registers. The superflag is a boolean flag that indicates whether the processor is

in supervisor mode. Certain instructions such as loading the memory management registers

can only be performed while in supervisor mode. Finally the errodlag field indicates whether

a malfunction has occurred.

In the upper-levels of RCP, the only component of control_state that is used is frame. The

other fields of control_state are abstracted away by mapping equality on control_states (i.e.

=[control_state]) onto a function cnst_eq, defined as follows:

cnst_eq : FUNCTION[control_state, control_state --_ bool] =

(_ cnl, cn2 : cnl.frame = cn2.frame)

Thus, equality of control states in the upper levels of the model only constrains the frame

fields to be equal.

3 Task Dispatching and Execution

Tasks are executed during the compute phase of a frame. Different sequences of tasks

can be executed during different frames. A schedule that consists of a 2-frame cycle (i.e.

schedule_length = 2) is illustrated in figure 11. The particular cell that stores the results of

cll [cl_ c13 _c21]c2_c2_ c24 _ cll ]c12[ c13

i 11 1 I
fr fr+l fr+2 fr+3

Figure 11: Structure of frames and subframes

the execution of a task during a particular frame and subframe is determined by the function

sched_celh
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sched_cell : FUNCTIONIframe-cntr, sub_frame -_ cell]

This function is uninterpreted in DA_minv and remains so in LE. The number of subframes

can vary from one frame to another; therefore, an additional function is specified that returns

the number of subframes in a given frame:

num_subframes : FUNCTION[frame_cntr _ nat]

For convenience, the inverse functions are also defined. Given a cell, two functions indi-

cate the frame and subframe that a particular cell (i.e. task) executes.

cell_frame : FUNCTION[cell --* frame_cntr]

cell_subframe : FUNCTION[cell _ sub_frame]

The relationship between these functions is given by an axiom:

sched_cell_ax : AXIOM

mm = cell_frame(c) h k = cell_subframe(c)

¢:_ sched_cell(mm, k) = c ^ k < num_subframes(mm)

3.1 DA_minv Refinements

In the upper four levels, the dispatching and execution of tasks were completely abstract.

The function fc:

fc : FUNCTION[inputs, Pstate --, Pstate]

defined the state change on iflon-faulty processors but was uninterpreted. At the DA_minv

level, we specify in more detail the steps involved in task execution. The function fc is

interpreted as follows:

fc : FUNCTION[inputs, Pstate _ Pstate] =

(A u, ps :
ps WITH

[(memry) := exec(u, ps, num_subframes(frame(ps.control))).memry])

where

exec : RECURSIVE FUNCTION[inputs, Pstate,sub_frame ---,

(A u, ps, k :
IF k = 0THEN ps

ELSEexec_task(u, exec(u, ps, k - 1), k - 1)

END)BY exec_meas

Pstate] =
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Each call to the uninterpreted function exec_task

exec_task : FUNCTION[inputs, Pstate, sub_frame --+ Pstate]

corresponds to the dispatching and execution of a single task.

axioms:
It is constrained by three

exec_task_ax : AXIOM

sched_cell(frame(ps.control),q) # c

cells(exec_task(u, ps, q).memry, c) = cells(ps.memry, c)

exec_task_ax_2 : AXIOM

frame(exec_task(u, ps, q).control) = frame(ps.control)

cell_input_constraint : AXIOM
X.control = Y.control

A sched_cell(frame(X.control), q) = c

A (V d : cellinput(d,c) D cells_match(X,r, d))

D cells_match(exec_task(u, X, q), exec_task(u, Y, q), c)

The first axiom requires that all of the cells other than the one assigned to the executing

task remain unchanged. 3 The second axiom states that the execution of a task cannot change

the current frame number. The third axiom states that the execution of the same task on

two different Pstates, X and Y, that have equivalent control_states and where all of the inputs

to the tasks are the same, will produce the same outputs.

Note that the specification says nothing about the values that are written into the cell

associated with the task, because it is dependent on the particular workload executing on

the RCP. Note also that nothing is said about the execution time of the individual tasks.

The DA specification merely l"equires that all of the tasks complete within the time allocated

for the compute phase of the" system.

Figure 12 shows the implementation tree for ft. The arrows represent the "calls" relation.

The module that a function is defined in is listed in square brackets. Functions that are still

uninterpreted in the LE module are underlined. The specifications in this subsection are

located in the gen_com module.

3.2 LF Refinements

At the DA_minv level the fc function is defined in terms of a recursive function exec. The

function exec invokes an uninterpreted function exec_task to execute a task. In the LE model

exec_task is defined as follows:

3In general this would not be the case for a task running on a faulty processor; however, this function is
only used in the state-transition relations where the condition healthy(p) > 0 is satisfied.
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f_c [gen_com]

exec [ge__com] num_su frames

exec tik

em

addr!ss_within

Figure 12: Function fc implementation tree

exec_task : FUNCTION[inputs, Pstate, sub_frame --_ Pstate] =

()_ u, PS, csf : LET tins := t_write.set(u, PS, c.g) IN

LET c := sched_cell((PS.cdntrol).frame, cs0 IN
LET Ioaded_PS := Ioad_mmu(set_super(PS),c) IN

write_em(tws, unset_super(Ioaded_PS), tws.num)

WITH [control := PS.control])

This function delineates the change to Pstate that accrues as a result of executing a task. A

task running on a working processor will write its outputs into the appropriate cell locations

in main memory. The set of memory locations that are altered by an executing task is

assumed to be finite and is modeled as a bounded list of records of TYPE mup, where

mup : TYPE = RECORD addr : address,
val : wordn

END

The field addr contains the address and val contains the new value to be written into that

address. The list is of TYPE muplist, where

mupseq : TYPE = FUNCTION[nat _ mup]

muplist : TYPE = RECORD num : nat, mups : mupseq END

The function t_write_set returns such a list (i.e. of type muplist) corresponding to the current

task's outputs.

24



t_write_set : FUNCTION[inputs, Pstate, sub_flame -* muplist]

Ioad_rnmu : FUNCTION[Pstate, cell -* Pstate] =

()_ PS, c: MMU(PS, word0, cell_map(c).low, cell_map(c).high, true, false))

It is expected that the muplist produced by redundant tasks executing on non-faulty proces-

sors would be identical and would only alter appropriate locations in memory. A recovering

task may attempt to write into an erroneous location. Consequently, t_write_set is a function

of the full Pstate and the current inputs and not merely the task name and its inputs. The

MMU prevents an attempt to write in an inappropriate location from actually occurring.

The function write_era is called by exec_task to update Pstate in accordance with the values

in muplist. This takes place after the memory management unit registers have been loaded

by the function Ioad_mmu. Implicit in this definition is the requirement that the registers are

loaded correctly even on a recovering processor (i.e. non-faulty but not necessarily contain-

ing a recovered memory). Clearly this operating system code must not rely on any dynamic

memory--the cell locations must be hard-coded into ROM.

The recursive function write_era is called by exec_task to write to memory using the

MMU. The function write_era updates Pstate with all of the values in the muplist produced

by t_write_set.

write_em : RECURSIVE FUNCTION[muplist, Pstate, nat --* Pstate] =

()_ ml, PS, i :
IFi=0THEN PS ELSE

write_em(ml, MMU(PS, ml.mups(i - Y).val, ml.mups(i - 1).addr, O, false, true), pred(i))

END IF)
BY we_meas

The mapping module from DA_minv to LE is of the form:

cebuf _ cebuf

cnbuf _ cnbuf

cell_frame -_ cell_frame

exec_ask _ exec_task

3.3 Specification of the MMU

In the LE model a set of outputs associated with a task's execution is written into specific

memory locations. The values produced by the task are not specified: only the locations

of the addresses that are written by a task are considered. As mentioned in the earlier

RCP papers, a major consideration is the prevention of a working, but not fully recovered,

processor from writing into a memory region not assigned to it. Thus, in the LE model

a memory-management unit (MMU) is specified that sits between the processor and the

memory.
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In this section, the abstract specification of a MMU is presented. The MMU unit contains

registers that control which portions of memory can be written into. The registers are of

type mmu_state.

address_range : TYPE FROM addrs WITH (A aa : aa.high
mmu_state : TYPE IS address_range

aa.low)

The MMU is defined as follows:

MM U : FUNCTION[Pstate, wordn, address,address, bool, bool --_ Pstate] =

(A PS, w, a, b, setflag, RWflag :
IF setflag THEN MMU_set(P$, a, b) ELSE

IF RWflag THEN MMU_write(PS, w,a) ELSE PS END IF)

This function callsMMU_set to loaxlthe MMU registersand MMU_write to write memory:

MMU_set : FUNCTION[Pstate, address,address _ Pstate]=

(A PS, a, b :

IF (PS.control).supedlag THEN
IF a < b THEN

PS WITH

[control := PS.control WITH
[mmu := mmu_st_0 WITH [low := a, high := b]]]

ELSE

PS WITH [control := PS.control WITH [errorflag := true]]
END IF

ELSE PS WITH [control := PS.control WITH [errorflag := true]]

END IF)

M M U_write : FUNCTIO1N[Pstate, wordn, address --_ Pstate] -

(A PS, w, a :

IF address_within(a, (PS.control).mmu)

THEN PS WITH [memry :- PS.memry WITH [a:= w]]
ELSE PS END IF)

The processor can only load the MMU registers while in supervisor mode.

3.4 Verifications Associated With fc-Related Refinements

Since the function exec_task was constrained by three axioms at the DA_rninv level, the

mappings to the LE implementation generated three obl!gations:
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exec_task_ax: OBLIGATION

sched_cell(Frame(ps.control),q) _ c

CS_eq( cell_mem(exec_task(u, ps, q).memry, c), cell.rnem(ps.memry, c))

exec_task_ax_2 : OBLIGATION

Frame(exec_task(u, ps, q).control) -- Frame(ps.control)

cell_input_constraint : OBLIGATION

cnst_eq(X.control, Y.control)

A sched_cell(frame(X.control), q) = c

A (V d : cell_input(d, c) ::) cells_rnatch(X, Y, d))

::) cells_rnatch(exec_task(u, X, q), exec_task(u, Y, q), c)

Note that the obligations differ from the axioms in the upper level by the replacement of

the equalities between cell_states and control_states with their mapped equivalence relations,

CS_eq and cnst_eq, respectively.

3.4.1 Proof of exec_task_ax

The proof of this obligation establishes that any cell c that is not the one associated with

the currently executing task (i.e. sched_cell(Frame(ps.control),q)), will not be altered by the

execution of the task. This is verified by proving the following lemma using induction on

nn.

Is_et : FUNCTION[inputs, sub_frame, cell, address, muplist, nat --* bool]

(A u, csf, c, adr, tws, nn :

(V ps: LET cc := sched_cell((ps.control).frame, csf)
IN

address_within (adr, cel.l'_map(c))

A nn _< tws.num A (ps.control).mmu = cell_map(cc) A cc _ c

write_em(tws, ps, nn).memry(adr ) = ps.mernry(adr)))

Is_et_lem : LEMMA Is_et(u, csf, c, adr, tws, nn)

Proof of Is_etAem: We first establish a lemma:

etll : LEMMA

cc -- sched_cell((ps.control).frarne, csf) A (ps.control).mmu = cell_map(cc)

A address_within(adr, cell_map(c)) A nn ___ tws.nurn Acc _ c

::) write_ern(tws, ps, nn).rnnernry(adr)=

(IF nn _< 0 THEN ps ELSE

write_em(tws, (LET tmnl := tws.mups(pred(nn)) IN

IF address_within(tmnl.addr, (ps.control).mmu) THEN

ps WITH[rnernry := ps.rnernry WITH

[(tmnl.addr) := trnnl.val]]
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ELSE ps END IF),

pred(nn))

END IF).memr_adr)

from the definition of write_em, MMU and MMU_write. The base case of the induction (i.e.

nn = O) follows directly from this lemma. The induction step is:

Is_et_lem_s : LEMMA

Is_et(u, csf, c, adr, tws, nn) D Is_et(u, cd, c, adr, tws, nn + 1)

The first step is to establish:

ets2 : LEMMA

cc = sched_cell((ps.control).frame, csf)

A (ps.control).mmu = cell_map(cc)

A nn +1 _< tws.num
Acc # c

A address_within(adr, cell_map(c))

A Is_et(u, csf, c, adr, tws, nn)

A address_within(tws.mups(nn).addr, (ps.control).mmu)

D ps.memry(adr)=

(ps WITH

[memry := ps.memry WITH

[(tws.mups(nn).addr)

:= tws.mups(nn). #al]] ).memry(adr )

This is a direct result of the fact that cells do not overlap:

cell_separation : AXIOM

(Cl # c2) D address_disjo_nt(cell_map(cl), cell_map(c2))

where

address_disjoint : FUNCTION[address_range_ty, address_range_ty _ bool]
=

(_ ar, ar2 : ar.low > ar2.high V ar2.1ow > ar.high)

We next let ps2 represent

(ps WITH

[memry := ps.memry WITH

[(tws.mups(nn).addr)

:= tws.mups(nn).val]])

in lemma ets2 and use Is_et with ps substituted with ps2. This yields ets3:
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ets3 : LEMMA

cc = sched_cell((ps.control).frame, csf) A (ps.control).mmu = cell_map(cc)
Ann + 1 < tws.num A cc _ cA address_within(adr, cell_map(c))

A Js_et(u, csf, c, adr, tws, nn)
A address_within(tws.mups(nn).addr, (ps.control).mmu)

A ps2 =

(ps WITH

[memry := ps.memry WITH

[(tws.mups(nn).addr)
:= tws.mups(nn).val]])

(write_em(tws, ps2, nn)).memry(adr) = ps.memry(adr)

Then from lemma ets3 and lemma etll with nn + 1 substituted for nn, we have:

ets6 : LEMMA

cc = sched_cell((ps.control).frame, csf)

A (ps.control).mmu = cell_map(cc)
A nn +1 _< tws.num

Acc _ c
A address_within(adr, cell_map(c))

A Is_et(u, csf',c, adr, tws, nn)

_3 write_em(tws, ps, nn + 1).memry(adr) = ps.memry(adr)

The induction step follows from ets6 and the definition of Is_et.

Q.E.D.

3.4.2 Proof of exec_task_ax_2

The proof of the exec_task_a__2 obligation follows directly from the definition of exec_task.

3.4.3 Proof of cell_input_constraint

The proof of cell_input_constraint:

cell_input_constraint : OBLIGATION

cnst_eq(X.control, Y.control) A sched_cell(frame(X.control), q) = c

A (V d: cell_input(d,c) D cells_match( X, Y, d) )

ce,s_match(exec_task( ,X, q), exec_task( ,Y,q),c)

involves a significant amount of rewriting and the use of the following lemma about the

function write_era:

29



write_em_prop : LEMMA
n < tws.num

D write_em(tws, XX, n).mernry(addr)

= LET im := srnallest_adr_n(tws, addr, nn) IN

IF match_exists_n(tws, addr, n) ^ address_within(addr, (XX.control).mrnu)

THEN tws.mups(im).val

ELSE XX.mernry(addr) END IF

The proof of write_em is accomplished by induction on n. This proof is very tedious and will

not be discussed here; it is fully elaborated in the specifications.

After rewriting cell_input_constraint with the definitions of cells_match, exec_task, CS_eq

and cnst_eq, it becomes:

cic2 : LEMMA cnst_eq(X.control, Y.control)
A sched_cell(frame(X.control),q) = c

^ (V d : cell_input(d, c) D cells_match(X, Y, d))

D CS_eq(cell_mem(write_em(t_write-set(u, X, q),
unset_super(Ioad_rnmu(set_super(X), sched_cell((X.control).frame, q))),

t_write_set(u, X, q).num).memry, e),

cell_mem(write_em(t_write_set (u, Y, q),
unset_super(Ioad_mmu(set_super(Y), sched_cell((Y.control).frame, q))),

t_write.set(u, Y, q).num).rnemry, e))

Rewriting this formula with d.efinitions of cell_mem, CS_eq, mshift, used_cells_eq and using

lemmas CS_eq_need:

CS_eq_need : LEMMA

xx < cell_mem(write_em(t_write-set(u, X, q),
unset_uper(Ioad_mmu( set_super(X ), sched_cell((X.control).frame, q))),

t_write_set(u, X, q).num).memry, c).len

D xx < cell_map(c).high - cell_map(c).low + 1
A xx + cell_map(c).low < mem_size

we have:

cic4D : LEMMA cnst_eq(X.control, Y.control)

A sched_cell(frame(X.control),q) = c
^ used_cells_eq(X, Y, c) A n < c/ength(c) ^ n + cell_map(c).low < mem_size

D write_em(t_write_set(u, X, q), unset_super(Ioad_mmu(set_super(x), c)),

t_write_set(u, X, q).num).memry(n + cell_map(c).low)
= write_em(t_write_set(u, Y, q), unset_super(Ioad_mmu(set _super(Y), c)),

t_write_set(u, Y, q).num).memry(n 4- cell_map(c).low)

Rewriting with cnst_eq and using axiom t_write_set_ax_l and lemma cic4F:
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cic4F : LEMMA

XX = unset_super(Ioad_mmu(set_super(X),c))

D cell_map(c).high = ((XX.control).mmu).high

^ cell_rnap(c).low = ((XX.control).mmu).low

we have

cic4E : LEMMA

cnst_eq(X.control, Y.control)

^ sched_cell(frame(X.control),q) = c

A used_cells_eq(X, Y, c)

^ tws = t_write_set(u, X, q)

A n < cJength(c)

A cell_map(c).high = ((XX.control).mmu).high

^ cell_map(c).low = ((XX.control).mmu).low

A cell_map(c).high = ((YY.control).mmu).high
A cell_map(c).low = ((YY.control).mmu).low A n + cell_map(c).low < mere.size

:) write_em(tws, XX, tws.num).memry(n + cell_rnap(c).low)

= write_em(tws, YY, tws.num).memry(n + cell_map(c).low)

This lemma is proved using axiom t_write_set_ax_l again, the definition of cnst_eq and lemma

cic_W1 twice, i.e., cic_W1 and cic_Wl{XX _ YY, X _ Y}. Lemma cic_W1 is proved using

the definition of match_exists_n, axiom t_write_set_ax_2 and a key property about write_era,

write_era_prop mentioned above.

Q.E.D.

4 Minimal Voting

The DA_minv layer of the RCP architecture is positioned immediately below the DA layer

in the overall RCP specification hierarchy. DA_minv specifications maintain the same basic

structure as the DA layer. What is new at this level is a formalization of the minimal voting

scheme that offers a method of axiomatizing a set of general voting patterns, spanning the full

spectrum of possible degrees of voting frequency. Although highly frequent voting patterns,

such as the continuous voting and cyclic voting patterns discussed in our Phase 2 report [2],

could be expressed as instances of minimal voting, we anticipate that the greatest value from

this work will result when it is used to achieve minimal voting literally, with a corresponding

reduction in voting overhead.

It is worth noting that the DA_minv formalism could have been incorporated into the

RS layer of RCP. Originally, the voting scheme was intended to be quite arbitrary and

needed only to satisfy certain constraints. Later we decided to incorporate the minimal

voting concept as a voting scheme instance, still quite general, that could serve as the basis

for further refinement. Its appearance at this point in the hierarchy is the result of a choice

that could have been made differently. Note also that an informal proof the minimal voting

results were presented in our Phase 1 report [1].
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Mappings from the DA layer to the DA_minv layer have been constructed to map the

module generic_FT onto the module minimal_v. This section presents the minimM voting

formalization and proofs of the mapping's obligations.

4.1 Application Task Requirements

To formalize the conditions under which the minimal voting scheme achieves transient recov-

ery, it is necessary to introduce some preliminary definitions about task graphs and execution

schedules. At the base of this formalization is a set of uninterpreted functions and a set of

axioms that constrain these functions. Any application to be hosted on an RCP implemen-

tation must interpret these functions in such a way as to satisfy the axioms. If the axioms

hold, then the transient recovery properties shown about RCP will hold as well.

The uninterpreted functions pertaining to application tasks are the following:

I. cell_frame

2. cell_subfra me

3. sched_cell

4. num_subframes

5. cell_input

6. v_sched

Two axioms constrain these functions:

1. sched_cell_ax

2. full_recovery_condition

These functions and axioms are described below. There are several additional axioms

introduced in the formalization whose purpose is to constrain the implementation of task

execution in RCP. These additional constraints are shown to hold in the LE layer of RCP.

4.1.1 Scheduling Concepts

Four functions are used to describe the position of task cells within an execution schedule.

The frame and subframe for a particular cell are given by cell_frame and celLsubframe, while

sched_cell provides the inverse mapping, and num_subframes gives the number of subframes

contained within a designated frame, because this number may vary from frame to frame.

cell_frame : FUNCTION[cell --* frame_cntr]

cell_.subframe : FUNCTION[cell --* sub_frame]

sched_cell : FUNCTION[frame_cntr, sub_frame -, cell]

num_subframes : FUNCTION[frame_cntr --, nat]
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A task schedule can use arbitrary definitions for these functions provided they satisfy a

well-formedness condition:

sched_cell_ax : AXIOM

mm = cell_frame(c) ^ k = cell__ubframe(c)

_, sched_cell(mm, k) = c A k < num_subframes(mm)

This axiom expresses the functional inverse relationship and imposes the bound on the

number of valid subframes for a frame.

Next, we need to characterize the data flow dependencies of tasks embedded within a

schedule. The uninterpreted function cell_input(c, d) holds when the output produced by the

task executing at cell c is used as an input by the task executing at cell d.

cell_input:FUNCTION[cell, cell ---, bool]

A cell may have inputs from zero or more other cells within the schedule. A cell may have

an input from itself, in which case the value referenced is from the task's prior execution,

i.e., the task's output from schedule/ength frames ago. Clearly, cell_input can be used to

define a data flow graph G that captures input-output relationships of the application tasks.

Figure 6 on page 13 shows an example of such a graph.

Recall that the RCP architecture divides a frame into four sequential phases: compute,

broadcast, vote, and sync. A consequence of this scheme is that all of the tasks scheduled

for execution during a frame will execute (and produce their output) before the output of

any task scheduled for voting "is used in a vote operation. A further consequence is that if

cell c provides its output to cell d, and c is scheduled to execute before d within the same

frame, and c is voted in this frame, then the value d uses as input is not a recently voted

value because c's output is not voted until the vote phase of its frame. This feature of RCP

was designed to minimize the need for synchronization and make the implementation of

voting more practical. A drawback, however, is the introduction of a few complications in

the formalization of the recovery process.

Thus, we find it necessary to derive a new function based on the cell_input concept. While

cell_input captures the data flow relation irrespective of frame boundaries within a schedule,

we need an additional predicate induced by cell_input that indicates when a more specialized

set of conditions holds. The predicate cell_input_frame(c,d) holds when the value provided

by c is generated in a different frame from d's execution frame, and either c's value flows

directly to d or flows indirectly to d through computation by cells that precede d in its frame.

This allows us to express the cell recovery conditions in terms of indirect data flows that

cross frame boundaries and hence will have been acted upon by vote operations in previous

frames. In effect, cell_input_frame defines a modified task graph in which the data flows are

prescribed by this new predicate rather than by cell_input.

To formalize this notion, we first define the predicate different_frame(c, d), which is true

when c's last value was produced in a frame prior to the one in which d would be executing.
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Figure 13: Task graph induced by cell_input_frame (G*).

different_frame : FUNCTION[cell, cell -* bool] =

(A e, d :
cell_frame(c) # cell_frame(d) V cell_subframe(e) >_ cell_subframe(d))

Note that this concept of "different frame" is not the same as having different scheduled

frames. RCP uses the convention that if c and d are scheduled to execute in the same frame,

with c having a later subframe than d, a data flow from c to d uses the value from from

c's prior execution, i.e., c's output from schedule_length frames ago in time. It is this latter

notion of difference that is captured by different_frame.

To express cell_input_frame'we enlist the help of a recursive function that computes the

transitive closure of the cell_input relation from the target cell back through the cells of all

earlier subframes, retaining only those cells that satisfy different_frame. It is this transitive

closure that captures the indirect data flows.

cell_input_star : RECURSIVE

FUNCTION[cell, cell,sub_flame ---+bool]=

(A e, d, q :

(different_flame(c, d) h cell.input(e, d))

V (3e:

cell_input(e, d)

^ cell_frame(e) = cell_frame(d)

^ cell_subframe(e) < q

A cell_input_star(c,e, cell_subframe(e))))

BY (A c, d, q : q)

Evaluating cell_input_star with a suitable starting value for the recursion is our means of

defining cell_input_frame, the data flow relation used to characterize the full recovery condi-

tion.

cell_input_frame : FUNCTION[ceil, cell _ bool] =

(A c, d : cell_input_star(c, d, cell_subframe(d)))
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In the following presentation, we refer to the task graph induced by the cell_input_frame

relation as G*. As an example, refer back to figure 6, where the data flows in this figure

would be given by an instance of cell_input. The corresponding graph defined by the derived

predicate cell_input_frame is shown in figure 13. Notice how the only edges in the graph are

ones that cross frame boundaries.

The final uninterpreted function needed to characterize an application concerns the

scheduling of voting.

v_sched :FUNCTION[frame_cntr, cell _ bool]

The predicate v_sched(fr, c) is true when cell c is scheduled to have its value voted at the

end of frame ft. This allows a (different) subset of the cell values to be voted each frame. It

is necessary to meet certain conditions in the assignments of a voting schedule to ensure that

full recovery of the cell states can be achieved in a bounded number of frames. A precise

statement of these recovery conditions requires the introduction of several new definitions,

which we choose to express in graph-theoretic terms.

4.1.2 Task Graph Concepts

Cell recovery is expressed as a property of the task data flow graph G" augmented with

schedules for computation and voting. Paths through the graph are the basic unit of expres-

sion. A path is simply a sequence of cells, which we represent in EHDM as a mapping from

natural numbers to cells.

path_type : TYPE = FUNCTION[nat _ cell]

Although this can be used to represent infinite paths, we will be concerned only with finite

paths. A path of length L can be represented by the restriction of a path_type mapping to

its first L elements, that is, mapping from the values 0 to L - 1. Hence, when we need to

restrict consideration to finite paths, we use a path value and a separate length value to

denote this restriction.

For this formal treatment, only paths over G* are of interest. Moreover, we only will have

occasion to refer to paths that terminate in a particular cell c. An arbitrary path from G*

ending in cell c is identified by the following predicate.

input_path : FUNCTION[path_type, nat, cell --+ bool] =

()_ path, len, c :
(len >0 D c=path(len -1))

A (V q : 0 < q A q < len D cell_input_frame(path(q - 1), path(q))))

The definition also admits zero-length paths, but any path of nonzero length must end in c.

Several definitions about paths are needed to construct proofs pertaining to cell recovery,

although they are not needed in the statement of the full recovery condition itself. One such

definition concerns a more specialized kind of path needed to reason about when the terminal
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cell c can be assured of having a recovered value under certain conditions. The predicate

cell_rec_path(path, len, c, fr, H) holds iff a path of length len ending at cell c contains a

progression of cells that must have been recovered in order for c to be recovered in frame

fr, assuming the processor has been healthy for H consecutive frames (last transient fault

disappeared more than H frames earlier). This function is defined recursively by working

backward through G*, taking into account all ceils that contribute directly and indirectly to

computing the task output at cell c.

cell_rec_path:RECURSIVE

FUNCTION[path_type, nat,cell,frame_cntr,nat _ bool]=

(A path, len, c, fr, H :
IFH=0THENlen =0 ELSE

IF v_sched(prev_fr(fr), c)
THEN len = 0

ELSE

IF cell_frame(c) = prev_fr(fr)
THEN

len > 0

^ path(len - 1) = c

A

((3d:

cell_input_frame(d, c)

A cell_rec_path(path, len - 1, d, prev_fr(fr), H - 1))

V ((V e : -, cell_input_frame(e,c)) ^ len = 1))
ELSE cell_rec_patb(path, len, c, prev_fr(fr), H - 1) END

END

END)

BY (A path, [en,c, fr, H : H)

For a given cell c, many paths are possible that satisfy cell_rec_path. None, however, may

contain successive cells d and e where d's output is voted before it is used by e. Only

paths that represent chains of data flow through G* unbroken by vote sites are admitted by

cell_rec_path. Whenever a cell takes multiple inputs, branching exists to create the possibility

of multiple recovery paths. The cell at the beginning of a recovery path must either have no

inputs or take all its inputs from cells with voted outputs. In all cases, there must be enough

time to follow the indicated path, i.e., H must be large enough to allow all the nonfaulty

frames needed for recovery.

To illustrate the concept of recovery paths, we refer to figure 13 again. Suppose the

output of T2 is voted at the end of frame 1. Then two recovery paths for T7 are possible:

< Ts, T'I > and < T4, Ts, T7 >.

Since multiple recovery paths may emanate backward from a target cell, it is natural to

consider sets of recovery paths. In our case, it will suffice to define the set of path lengths

corresponding to all recovery paths for a cell c. We use path_len_set(c, fr, H) to define the

set of lengths for all paths needed to recover cell c in frame fr after H healthy frames have

transpired.
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path_len_set : FUNCTION[ceil, frame_cntr, nat _ finite_set[nat]] =
(_ c, fr, H --_ finite_set[nat]:

(_ len: (3 path: cell_rec_path(path, len, c, fr, H))))

Finally, we note the definition for a cyclic path, which is simply a path in which a cell

appears more than once.

cyclic_path : FUNCTION[path_type, nat -+ bool] =

(_ path, len :duplicates(path, len))

4.1.3 Full Recovery Condition

With the preceding concepts about task graphs in hand, we may now introduce the full

recovery condition and its supporting definitions. First we define a pair of simple operations

for doing modular arithmetic on frame counter values. Functions rood_plus and rood_minus

perform addition and subtraction modulo the constant schedule_length.

mod_plus : FUNCTION[frame_cntr, frame_cntr _ frame_cntr] =

(,_ ram, II _ frame_cntr :

IF mm + II > schedule_length

THEN mm+ II - schedule_length

ELSE mm + II END)

rood_minus : FUNCTION[frame_cntr, frame_cntr --_ frame_cntr] =
()_ mm, II _ frame_cntr ;

IF mm > II THEN mm - II ELSE schedule_length - II + mm END)

The function mod_minus is used, in turn, to define the notion of when one frame is

"between" two others. If we envision the frame counter values 0 to schedule_length-1 forming

a circular progression of values', with 0 following schedule_length- 1 in "wrap-around" fashion,

then the values between two points a and b carve out an arc of the circle. Any point within

that arc will be between a and b. The points in the complementary arc lie between b and a.

If the distance along the arc from a to a point p is less than the distance from a to b, then

p lies between a and b.

between_frames : FUNCTION[frame_cntr, frame_cntr, frame_cntr _ bool] =

()_ a, fr, b: mod_minus(fr, a) < mod_minus(b, a))

The predicate between_frames is actually a half-open test; fr may equal a but not b.

Now it is possible to express when the output of a task at a given cell is voted in a way

that is useful to the receiving task. Specifically, if the output of cell d is scheduled to be

voted after it is computed and before it is consumed by cell c, then we know c will be using
a recovered value for d.
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output_voted : FUNCTION[ceil, cell, frame_cntr -+ bool] =

(A d, c, fr :

v_sched(fr, d)
A

(between_frames(cell_frame(d), fr, cell_frame(c))
v cell_frame(d) - cell_frame(c)))

This predicate allows for the special case where d and c are scheduled for execution in the

same frame. Since we are only concerned with paths through G*, where there are no edges

from one cell to a later one within the same frame, we conclude that it suffices to vote

d during any frame. This follows because the value for c must come from schedule_length

frames in the past.

The main criterion needed to ensure full recovery of all cell states is that for each cyclic

path in the graph G', there must exist at least one valid vote site, that is, a pair of adjacent

cells in the path satisfying the output_voted predicate. The predicate cycles_voted expresses

this requirement for all paths and all pairs of path indices k and I delimiting a cyclic subpath.

For each such subpath there must exist an interior cell with its output properly voted.

cycles_voted : FUNCTION[path_type, nat _ bool] =

(A path, len:
(V k, l:

k< IA l<len A path(k)=path(1)

3 (:lq, fr:
k _< q A q < l A output_voted(path(q), path(q Jr 1), fr))))

Note that this definition implies that where there are no cyclic paths in G*, there is no need

for any voting whatsoever.

Our final statement of the full recovery condition is the following axiom.

full_recovery_condition : AIXIOM

input_path(path, len, c) _ cycles_voted(path, len)

For all cells c and every path of G* ending at cell c, the cycles on that path must be "voted,"

that is, contain at least one vote site.

As an illustration of this condition, consider again the example graph G* depicted in

figure 13. There is only one cycle in this graph, consisting of the cells for tasks T2, T4, T6,

and Tr. Voting any one of those cells in the frame in which it is scheduled for computation

will suffice to meet the full recovery condition. Since each one has its output consumed in

the immediately following frame, it is not possible to vote the cells in any other frames and

still satisfy output_voted. Notice how it would be useless to vote the output of either T1 or

T3 since they lie on no cycles in G*, even though they axe part of the cycle from the original

graph G in figure 6.
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4.1.4 Time to Recovery

To carry out the proofs for the minimal voting scheme it is necessary to characterize the

maximum time needed to recover a cell, where time is measured in number of frames. Our

basic mechanism for doing this is a recursive function that traverses paths through the graph

G* in reverse order, much the same as was done with the function cdl_rec_path. Since this

function must be well-defined even if the full recovery condition fails to hold, we need a

starting value to supply for the recursive argument H that exceeds the maximum number of

frames that could possibly be required if full recovery is assured. This allows the recursion

to terminate even when the full_recovery_condition is not met.

The constant max_rec_frames serves this purpose. Its value was chosen to exceed the

maximum possible number of frames needed to recover a cell.

max_tee_frames : nat = schedule_length • (num_cells -_ 1) + 1

The rationale for the value chosen is that hum_cells is the maximum length of an acyclic

path through the graph G* and schedule_length is the maximum number of frames that can

transpire for any edge of the graph. Therefore, their product is the maximum time, in frames,

of an acyclic path. Add to that another schedule_length frames to account for the maximum

latency between when a cell is scheduled for execution and an arbitrary frame. The result

is a conservative upper bound on the time to recover a cell when the full_recovery_condition

holds.

The recursive function used to count frames to recovery is called N F_cell_rec. Its formal-

ization is somewhat unusual due to a need to take the maximum over a set of values collected

from recursive calls of the function. An intermediate function called rec_set is provided to

aid this process. Note that rec_set is a higher-order function; it takes a functional argument

of the following type.

cell_nat_fn:TYPE = FUNCTION[cell--, nat]

With f a function of this.type,rec_set(f,c) returns a set of nats constructed as follows.

The value a isa member of'theset iffthere existsanother celld providing input to c and

a = f(d).

rec_set : FUNCTION[cell_nat_fn, cell --_ finite_set[nat]] =

(A cnfn,c --_ finite_set[nat] :

(_a:

(3 d: cell_input_frame(d,c) A a = cnfn(d)) A a < max_rec_frames))

The additional conjunct a < max_rec_frames is used to ensure the resulting set is finite.

Thus, rec_set yields a method of applying f to all cells that send inputs to c and collecting

the results of these applications into a set. In practice, the actual argument for f will be a

A-expression based on recursive calls to N F_cell_rec.

Now NF_cdl_rec(c, fr, H) can be defined using the intermediate function rec_set. If c was

voted in the previous frame, the recovery time is one frame. Otherwise, determine whether

c was due to execute in the previous frame. If so, return one plus the maximum recovery

time computed for recursive calls over all input-producing cells d. If c did not execute last

frame, simply evaluate the function recursively for the same cell c and add one frame.
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NF_cell_rec : RECURSIVE FUNCTION[ceil, frame_cntr, nat --_ nat] =

(_ c, fr, H :
IF H = 0 THEN 0 ELSE

IF v_sched(prev_fr(fr), c)
THEN 1

ELSE

IF cell_frame(c) = prev_fr(fr)
THEN

max(rec_set(()_ d : NF_cell_rec(d, prev_fr(fr), H - 1)), c)) -I- 1

ELSE NF_cell_rec(c, prev_fr(fr),H- 1)+ 1 END
END

END)

BY (_ c, fr, H :H)

This definition assumes that fr is the current frame and we wish to be able to use a recovered

value for c at the beginning of that frame, hence the use of tests on the previous frame.

Given this function, what remains is to collect all values together and take their maxi-

mum. Accordingly, the constant all_tec.set is defined to be the set of all nats that correspond

to a recovery time for some cell and some frame. Taking the maximum over this set yields

the greatest time required to recover any cell from any point in the schedule.

all_rec_set : finite_set[nat] =

()_ a: (3 c, fr: a = NF_cell_rec(c, fr, max_rec_frames)))

recovery_period : nat = 2 -b max(all_rec_set)

The recovery period is defined to be two frames larger than all_rec_set to account for the one

frame needed to vote the control state (frame counter) before any recovery actions can be

relied upon and the off-by-one effect caused by counting the current frame.

4.2 DA_minv Definitions

The RS layer of RCP was shown to achieve transient fault recovery by assuming a generic

set of functions describing recovery concepts and a set of axioms governing task behavior.

These functions and axioms are found in the EHDM module generic_FT. In the DA_minv layer,

these functions have been elaborated, although only partially in some cases, and proofs are

provided for the axioms. The functions in question are f,, f_, recv, and dep.

To model the selection of a subset of cell states for broadcast and voting, the uninterpreted

function fo was introduced. Although its full interpretation appears at the LE layer of

RCP, it is further axiomatized in the DA_minv layer in terms that relate the various state

components in use at this level. In essence, f, relates the values returned by cebuf, which

extracts elements from a mailbox, to the current values of corresponding cell states. There

is also a control state component accessed via cnbuf. While fo remains uninterpreted in

DA_minv, the following axioms are provided to further its elaboration.
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f_s : FUNCTION[Pstate --* MB]

f..s_ax :AXIOM

IF v_sched(frame(ps.control), cc)

THEN cebuf(f_s(ps), cc)= cells(ps.memry, cc)

ELSE cebuf(f..s(ps),cc)= cs0(cc)END

f_s_control_ax : AXIOM cnbuf(f_s(ps)): ps.control

Only cells scheduled to be voted in the current frame have their cell states mapped into

the mailbox value produced by f_. Unvoted cells are assigned a default cell state value if

accessed using cebuf.

Turning to the voting effects function, f. is likewise uninterpreted in DA_minv and further

constrained by an axiom. To specify precisely the voted cell states, we provide a support

function that recursively applies a function to each mailbox slot and cell state, and accumu-

lates the result. The function cel]_app]y applies its functional argument for each voted cell,

in order, to the cumulative memory state it computes.

cell_apply : RECURSIVE

FUNCTION[celI_fn, control_state, memory, nat -* memory] =

(A cfn, K,C,k:
IF k = 0 V k > num_cells THEN C ELSE

IF v_sched(frame(K),k- l)
THEN

write_cell(cell_apply(_cfn, K, C, k - 1), k - 1, cfn(k - 1))

ELSE cell_apply(cfn, K, C, k - 1) END

END)

BY (A cfn,K,C,k: k)

Only when a vote is scheduled for a given cell is the cell function applied and the memory

overwritten. Otherwise, the existing value for that cell state is retained.

An axiom for f_ specifies the proper resulting value for a vote operation. The control

state portion is voted in every frame. The cell states are selectively voted and overwritten

according to the process specified in the celLappIy function.

f_v : FUNCTION[Pstate, MBvec -* Pstate]

f_v_ax : AXIOM

f_v(ps, w).control : k_maj(w)

A f_v(ps, w).memry
= cell_apply((A c : t_maj(w, c)), ps.control, ps.memry, num_cells)

If no cells are scheduled for voting in a certain frame, all the cell states will be unchanged

by f_. However, the control state value will always be voted (and potentially changed).

For every application-specific transient fault recovery scheme to be used with RCP, we

must be able to determine when individual state components have been recovered. This
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condition is expressedin terms of the current control state and the number of nonfaulty

frames since the last transient fault. The uninterpreted function recv was introduced in

module generic_F:T for this purpose. A recursive definition is now provided.

The predicate recv(c, K, H) is true iff cell c's state should have been recovered when in

control state K with healthy frame count H. We use a healthy count of one to indicate that

the current frame is nonfaulty, but the previous frame was faulty. This means that H - 1

healthy frames have occurred prior to the current one.

recv : RECURSIVE FUNCTION[ceil, control_state, nat --+ bool] =

()_ c, K, H :
IFH< 2THENfalse ELSE

m

v_sched(frame(pred (K)), c)

V IF cell_frame(c) = frame(pred(K))

THEN (V d: cell_input_frame(d,c) ::) recv(d, pred(K), H - 1))

ELSE recv(c, pred(K), H- 1) END

END)

BY (Ac, K,H:H)

Cell c should be considered recovered if one of three conditions holds:

1. c was voted in the previous frame.

2. c was computed in the previous frame and all inputs to c in G* were recovered in that
frame.

3. c was not computed in the previous frame and was considered recovered in that frame.

As before, we test against the previous frame because we would like recv to describe the

situation at the beginning of the current frame.

The predicate dep(c, d, K) indicates that cell c's value in the next state depends on cell

d's value in the current state, when in control state K. This notion of dependency is different

from the notion of computational dependency; it determines which cells need to be recovered

in the current frame on the recovering processor for cell c's value to be considered recovered

at the end of the current frame.

dep : FUNCTION[ceil, cell, control_state --, bool] =

()_ c,d,K :

-_ v_sched(frame(K), c)

^ IF cell_frame(c) = frame(K)

THEN cell_input_frame(d, c)

ELSE c = d END)

If cell c is voted during K, or its computation takes only sensor inputs, there is no dependency.

If c is not computed during K, c depends only on its own previous value. Otherwise, c

depends on one or more cells for its new value, namely, those cells connected by an edge in

(]*.

Two utility functions are used in the subsequent presentation that we describe here.

First, cells_match states the simple condition that all cell components of the memories of two

Pstate values are equal. Second, depJgree specifies a similar condition, that the subset of

cells that c depends on all match for two Pstate values.
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cells_match : FUNCTION[Pstate, Pstate, cell _ bool] =

(_ X,Y,c: cells(X.memry, c) = cells(Y.memry, c))

dep_agree : FUNCTION[ceil, control_state, Pstate, Pstate _ bool] =

(,_ c,K,X,Y :(V d:dep(c,d,K) _ f_t(X,d)=f_t(Y,d)))

One final axiom we need to describe concerns a constraint on the cell_input function

and its relationship to the task execution function exec_task. The axiom cell_input_constraint

requires that for two Pstate values X and Y, and a cell c, the result of executing c against

both X and Y produces the same cell state provided all cell states used as input by c likewise

match in X and Y.

cell_input_constraint : AXIOM
X.control = Y.control

A sched_cell(frame(X.control), q) = c

^ (V d: cell_input(d,c) 2 cells_match( X, Y, d) )

D cells_match(exec_task(u, X, q), exec_task(u, Y, q), c)

A similar property based on the derived function cell_input_frame and applicable to the graph

G* has been asserted as the temma cell_input_frameJem and proved using the axiom above.

4.3 DA_minv Proof Obligations

The proof obligations generated by mapping the DA layer onto the DA_minv layer stem from

the axioms of the generic_FT "module. By proving these obligations we establish that the

minimal voting scheme embodied in the EHDM specifications discussed thus far achieves full

recovery from transient faults within recovery_period frames. We will present an overview of

some of these proofs in the following sections.

recovery_period_ax : oBLiGATION recovery_period _> 2

succ_ax : OBLIGATION f_k(f_n(ps)) = succ(f_k(ps))

control_nc : OBLIGATION f_k(f_c(u, ps)) = f_k(ps)

cells_nc : OBLIGATION f_t(f_n(ps), c) = f_t(ps, c)

full_recovery : OBLIGATION H > recovery_period _ recv(c, K, H)

initial_recovery : OBLIGATION recv(c,K, H) _ H > 2

dep_recovery : OBLIGATION

recv(c, succ(K),H + 1) A dep(c,d,K) D recv(d,K, It)

components_equal: OBLIGATION

f_k(X) = f_k(Y) A (V c: f_t(X, c) = f_t(Y,c)) 3 X = Y

43



control_recovered : OBLIGATION

maj_condition(A) A (V p: member(p,A)

=) f_k(f_v(Y, w)) = f_k(ps)

D w(p) = f_s(ps))

cell_recovered : OBLIGATION

maj_condition(A)

A (V p: member(p,A) D w(p) = f_s(f_c(u, ps)))

A f_k(X)= K A f_k(ps)= K A dep_agree(c, K, X, ps)

D f_t(f_v(f_c(u,X),w),c) = f_t(f_c(u, ps),c)

vote_maj : OBLIGATION

maj_condition(A) ^ (V p: member(p,A) D
:) f_v(ps, w) = ps

w(p) = f_s(ps))

4.4 Top-Level EHDM Proof for DA_minv

We show below the EHDM proof statements for the obligations presented in the previous

section. Most of the proofs are simple, requiring only the invocation of function definitions

and a few minor lemmas. Two of the proofs require more substantial effort. The proof of

cell_recovered is of moderate complexity and requires several lemmas for support. This proof

will be outlined in the next section. The proof of full_recovery, encapsulated here via the

lemma full_rec, is very complex and requires the formulation and proof of a large collection

of supporting lemmas. This proof will be outlined in the next section as well.

p_recovery_period_ax : PROVE recovery_period_ax FROM recovery_period_min

p_succ_ax : PROVE succ_ax FROM Ln

p_control_nc : PROVE control_nc FROM f_c

p_cells_nc: PROVE cells_nc FROM f_n

p_components_equal : PROVE components_equal {c _ c@pl}
FROM

memory_equal {C _- X.memry, D <-- Y.memry},

Pstate_extensionality {Pstate_rl ,- X, Pstate_r2 _-- Y}

p_full_recovery : PROVE full_recovery FROM full_rec

p_initial_recovery : PROVE initial_recovery FROM recv

p_dep_recovery : PROVE dep_recovery

FROM recv {K +- succ(K),H _-- H_c + 1}, dep, pred_succ_ax

p_control_recovered : PROVE control_recovered {p _- p@pl}
FROM

k_maj_ax {K _ ps.control}, f_v_ax {ps *---Y,w *- w}, f_s_control_ax
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p_cell_recovered : PROVE cell_recovered {p ,- p_pl}
FROM

t_maj_ax {cs *-- cebuf(f_s(f_c(u, ps)),c)},
cell_input_framelem {Y *- ps},
cells_match {Y *-- ps, c _ d_p2},

cells_match {X _ f_c(u,X),Y _- f_c(u, ps)},

f_v_components {ps _- f_c(u,X)},
dep_agree{Y ,---ps,d ,---d_p2},

dep_agree{Y _ ps,d _ c},

dep {d*- d@p2},

dep {d _ c),

f_s_ax{ps *---f_c(u,ps),cc *--c},

f_c_uncomputed_cells {X _ ps},

f_c_uncom puted_celIs,

f_c{ps ,- X),
f_c

p_vote_maj: PROVE vote_maj{p _ p@p4}

FROM

components_equal{X ,--f_v(ps,w),Y ,--ps},

k_maj_ax {K ,- ps.control},

t_maj_ax{cs *---cells(ps.memry,c@pl),c _ c@pl},

w_condition,
w_condition {p _ p@p2},

w_condition {p *-- p_p3},

f_s_ax {cc _-- c@pl},
f_s_control_ax,
f_v_components {c *-- c@pl}

4.5 Proof Summaries

We now focus our attention on summaries of two lines of proof. One is a proof of the

obligation cell_recovered and the other a proof of the obligation full_recovery.

4.5.1 Proof of cell_recovered

The cell_recovered obligation states conditions under which task computation and voting will

produce correct values for cell states at the end of the current frame, given that appropriate

cells had correct values at the beginning of the frame. In this caze, being recovered means

that cell states agree with a majority consensus of the processors.

cell_recovered : OBLIGATION

maj_condition(A)

A (V p: member(p,a) D w(p) = f_s(f_c(u, ps)))

A f_k(X) = K A f_k(ps) = K A dep_agree(c, K, X, ps)

D f_t(f_v(f_c(u, X), w), c) = f_t(f_c(u, ps), c)
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Proving this obligation is a matter of accounting for the effects of the task computation

function fc and the voting function f,. Applying the definitions of various functions in the

formula and invoking the following lemma about fv produces two cases to consider based on

whether c is scheduled for voting in the current frame.

f_v_components : LEMMA

f_k(f_v(ps, w)) = k_maj(w)

h f_t(f_v(ps, w), c)

= IF v_sched(frame(ps.control), c)
THEN t_maj(w, c) ELSE cells(ps.memry, c) END

A second case split is involved based on whether c is scheduled for execution in the current

frame. If cell_frame(c) = frarne(X.control), we apply the following lemma

cell_input_frameJem : LEMMA
X.control = Y.control

A cell_frame(c) = frame(X.control)

A (V d: cell_input_frame(d, c) D cells_match(X, Y, d))

cells_match(f_c(=,X), Y),c)

to deduce when cells should match after computation. If cell_frame(c) :_ frame(X.control),

we apply a different lemma,

f_c_uncomputed_cells : LEMMA

cell_frame(c) _ frame(X.control)
cells((f_c(u, X)).memry, c) = cells(X.memry, c)

to deduce that c's cell state has not changed.

The proof, including the case splitting mentioned above, is carried out with a single EHDM

proof directive. Proving the lemmas themselves is straightforward. Only cell_input_framelem

requires moderate effort. This lemma is proved by complete induction on subframe number,

working from c's subframe back toward the beginning of the frame. Several supporting

lemmas are used in the proof of cell_input_frameAem.

4.5.2 Proof of full_recovery

The property called full_recovery formalizes the essence of RCP's transient fault recovery

mechanism. Its proof is the heart of the minimal voting proof.

full_recovery : OBLIGATION H >_ recovery_period D recv(c, K, H)

This formula states that if given enough time after experiencing a transient fault, eventually

a processor should recover all elements of its cell state by voting state information it has

exchanged with other processors. This formula is based on properties of the schedule and task

graph only; it does not deal with actual state value changes. Other portions of the generic_FT

obligations, such as cell_recovered, are responsible for those effects. "Enough time" in this
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case is expressed by the constant recovery_period, which is the maximum number of frames

required to recover an arbitrary cell from an arbitrary starting point within the schedule.

Recovery of a cell is formalized through the function recv, which was discussed in section 4.2.

We begin by giving a very brief proof sketch for the full_recovery property. First note

that it suffices to show recv(c, K, recovery_period), from which recv(c,K, H) will follow for

larger values of H. The constant recovery_period is defined in terms of the maximum

value of NF_cell_rec(c, fr, max_rec_frames) for any c and ft. NF_cell_rec effectively traces

paths backwards through G* until a vote site or a node with no inputs is reached. The

full_recovery_condition ensures that every cycle of G" is cut by a vote site, thereby forcing

each path traced by NF_cell_rec to be acyclic. The maximum number of frames taken by the

longest possible acyclic path in G" can be determined and is used to bound the path length

and hence the value returned by NF_cell_rec. This, in turn, ensures that recovery_period is a

bound on the worst case recovery time.

Now we turn to a more detailed presentation of the full_recovery proof. A lemma full_rec

was provided that has the same formula as full_recovery, so our goal is to prove full_rec.

full_rec : LEMMA H >_ recovery_period D recv(c, K, H)

This lemma is readily proved by induction on H by appealing to the lemma:

full_rec_rp : LEMMA recv(c, K, recovery_period)

Thus, once full recovery has been achieved it remains in effect as long as the processor

remains nonfaulty.

The proof of full_rec_rp is obtained by invoking the lemma

N F_cell_rec_recv: LEMMA

NF_cell_rec(c, frame(K), k)

D recv(c, K, H + 2)

<_ HA H<kA k_< max_rec_frames

with substitutions H = max(all_rec_set) and k = max_rec_frames. Noting that recovery_period --

max(all_rec_set) + 2, we are left to establish:

NF_cell_rec(c, frame(K), max_rec_frames)

max(all_rec_set) < max_rec_frames

< max(all_rec_set) A (1)

The first conjunct of formula 1 follows by the definition of all_rec_set given in section 4.1.4.

The second conjunct can be obtained by first noting that for some d and K _,

NF_cell_rec(c', frame(K'), max_rec_frames) = max(all_rec_set) (2)

and then invoking the lemma

NF_cell_rec_bound_2 : LEMMA

NF_cell_rec(c, fr, max_rec_frames) < max_rec_frames
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NF_cell_rec_bound_2

NF_ceU_rec_bound_l

(induction)

bound_NF_ceU_rec

(induction)

max_path_fen_bound

ceU_rec_path_exists path_len_bound

[minor lemmas]_

ceU_rec_path_acyclic long_path_cyclic

full_recovery_condition

( om)

cell_rec_input_path

(induction)

path_outputs.not_voted

(induction) _

[minor lemma_]

Figure t4: Proof tree for N F_cell_rec_bound_2.

pigeonhole_duplicates

(separate proof)

with substitutions c = c' and fr = frame(K').

At this point, the proof of full_rec has been broken into two main branches based on

the lemmas N F_cell_rec_recv _nd N F_cell_rec_bound_2. In the first branch, N F_cell_rec_recv is

proved by induction on H with the aid of several minor lemmas and the following property
of N F_cell_rec:

bound_NF_cell_rec : LE, MMA NF_cell_rec(c, fr, H) < H

This lemma asserts that the count returned by N F_cell_rec may not exceed H because that is

the point at which the recursion will "bottom out." If the count equals H, then recovery has

not been achieved in the number of frames allotted. Conversely, when the count is less than

H, we know that all the recovery paths have terminated before running out of nonfaulty

frames. Induction on H is the technique used to prove bound_NF_cell_rec.

The other main branch of the full_rec proof focuses on establishing the strict inequality

N F_cell_rec_bound_2. This process requires many steps. Figure 14 shows the overall proof tree

and the principal lemmas needed to carry out the proof. Several minor lemmas used along

the way are not shown in the diagram. In addition, some lemmas require proof by induction,

which we usually factor into several smaller steps by formulating a few intermediate lemmas

that follow a stylized approach to induction proofs.
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Since the condition NF_cell_rec(c, fr, H) < H implies that cell c will be recovered within

H frames, the lemma NF_cell_rec_bound_2 states that all cells will be recovered within time

max_rec_frames. This is shown by appealing to the lemma NF_cell_rec_bound_l,

N F_cell_rec_bound_l : LEMMA

H < max_rec_frames

D NF_cell_rec(c, fr, H)

__ max(path_len_set(c, fr, H)), schedule_length + schedule_length

and the lemma max_path_len_bound,

max_path_len_bound : LEMMA max(path_len_set(c, fr, H)) __ num_cells

with the substitution H = max_rec_frarnes. Recalling the value of constant max_rec_frames

as schedule_length • (num_cells + 1) + 1, it follows from the two bounds that

N F_cell_rec(c, fr, max_rec_frames) < max_rec_frames (3)

and this completes the proof of N F_cell_rec_bound_2.

The proof of NF_cell_rec_bound_l is a straightforward application of induction with the

help of several low-level lemmas. Since the proof involves a fair amount of arithmetic rea-

soning, a few lemmas were formulated to deal with the presence of the multiplication op-

erator. This helped overcome the limitations of the EItDM decision procedures. On the

right-hand side of figure 14, the lemma max_path_len_bound follows directly from the defini-

tion of path_len_set and another bounding lemma:

path_len_bound : LEMMA

cell_rec_path(path, len, c, fr, H) D len < num_cells

Now we have reduced theloverall proof to establishing that a recovery path is no longer

than the number of cells in a schedule. This can be deduced easily from the acyclic property

of recovery paths,

cell_rec_path_acyclic : LEMMA

cell_rec_path(path, len, c, fr, H) D -1 cyclic_path(path, len)

and the contrapositive of the following sufficient condition for the presence of a cyclic path:

long_path_cyclic :LEMMA len > num_cells :3 cyclic_path(path, len)

Thus, we once again have a two-way branch in our main proof. The acyclic property of

recovery paths, cell_rec_path_acyclic, is proved by first applying a lemma about path types,

cell_rec_input_path : LEMMA

cell_rec_path(path, len,c, fr, H) D input_path(path, len, c)
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to deduce:

cell_rec_path(path, len,c, fr, H) A input_path(path, len,c)

D -_ cyclic_path(path, len)

(4)

Now invoking the full_recovery_condition from section 4.1.3 leaves us with:

cell_rec_path(path, len,c, fr, H) A cycles_voted(path, len)
::) -_ cyclic_path(path, len)

(5)

Another forward chaining step using the following absence of voting property for recovery

paths,

path_outputs_not_voted : LEMMA

cell_rec_path(path, len, c, fr, H)

D (Vq, if:
0 < q A q < len D -_ output_voted(path(q - 1), path(q), fir))

results in the formula:

cell_rec_path(path, len,c, fr, H) A cycles_voted(path, len) A

(V q, if:
0 < q A q < len D -- output_voted(path(q - 1), path(q), fir))

::) -_ cyclic_path(path, len)

(6)

Formula 6 now follows from thd definitions involved because if none of the outputs along the

path is voted, and all cyclic paths must have voted outputs, then the path cannot be cyclic.

This completes the proof of cell_rec_path_acyclic.

Finally, the remaining branch of the main proof is concerned with showing that the

sufficient condition for cyclic .paths, long_path_cyclic, is true. Intuitively, it seems that if a

path is longer than the number of distinct cells, duplicates must exist. Nevertheless, the

formal proof of such a statement involves a moderate amount of effort to carry out. In our

case, the bulk of the work has been encapsulated in the form of a general theory for the

Pigeonhole Principle, described in more detail in the next section. This principle states that

if we have n objects drawn from a set having k distinct elements, where n > k, then there

must exist duplicates among the n objects. Proving long_path_cyclic is now a simple matter

of applying this principle,

pigeonhole_duplicates : LEMMA
len > q h bounded_elements(nlist, len,q) ::) duplicates(nlist, len)

with substitutions nlist = path, len = len, and q = num_cells. Employing the definition

of bounded_elements (presented in section 4.6) and the definition of cyclic_path (presented in

section 4.1.2) completes the proof of long_path_cyclic.

We have described the overall proof of the full_recovery obligation in moderate detail.

Complete details are found in the EItDM modules for the DA_minv layer.
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4.6 Pigeonhole Principle

The proof of full_recovery relies on a formal statement of the pigeonhole principle. We present

below an excerpt from the EHDM module nat_pigeonholes that captures the essential parts

of this formalization. This module expresses its properties in terms of a finite list of natural

numbers. Arguments to the functions take the form of a nat_list, which is a mapping from

hats to hats, and a length.

A function duplicates expresses the condition of a nat_list having at least one duplicate

element. The predicate bounded_elements allows one to state that all elements of the list are

less than some bounding number.

duplicates : FUNCTION[nat_list, nat ---* bool] =

(,_ nlist, len: (q k,l: k < l ^ l < len ^ nlist(k) = nlist(/)))

bounded_elements : FUNCTION[nat_list, nat, nat _ bool] =

()_ nlist, len, Imax: (V q : q < len D nlist(q) < Imax))

The number of occurrences of a particular number in a list is counted by the function

occurrences. The predicate bounded_occurrences states the condition that the occurrence

count for each possible value in a list is no greater than a specified bound.

occurrences : RECURSIVE FUNCTION[nat_list, nat, nat _ nat] =

($ nlist, len, a :
IF len = 0

THEN 0

ELSIF a = nlist(len - 1) THEN occurrences(nlist, ten - 1,a) + 1

ELSE occurrences(nlist, len - 1,a) END)

BY ()_ nlist, len, a :len)

bounded_occurrences : F_NCTION[nat_list, nat, nat _ bool] =

(A nlist, len, b: (V a: occurrences(nlist, len, a) < b))

Three lemmas involving these functions are shown below. The first version of the pigeon-

hole principle is expressed in terms of simple duplicates, i.e., the occurrence bound is one.

This is the version used in the proof of the full_recovery obligation. A generalized version of

the principle is provided as well.

pigeonhole_duplicates : LEMMA
len > q A bounded_elements(nlist, len,q) 2) duplicates(nlist, len)

pigeonhole_general : LEMMA

len > k * q A bounded_elements(nlist, len,q)

D --, bounded_occurrences(nlist, len,k)

dup_bnd_occ : LEMMA

duplicates(nlist, len) ¢_ -_ bounded_occurrences(nlist, len, 1)
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4.7 Primary Lemmas

The primary lemmas used to prove the DA_minv obligations are collected and displayed

below. There are a number of other lemmas used in the proofs not shown here, but these are

lower-level lemmas or formulas introduced merely to break up induction proofs into several

manageable cases. All those lemmas cited in the foregoing presentation are included in this

section. All lemmas shown have been proved within EHDM.

cell_apply_element : LEMMA

cells(cell_apply(cfn, K, C, num_cells), c)

= IF v_sched(frame(K),c)

THEN cfn(c) ELSE cells(C,c) END

f_v_components : LEMMA

f_k(f_v(ps, w)) = k_maj(w)
A f_t(f_v(ps, w),c)

= IF v_sched(frame(ps.control), c)
THEN t_maj(w, c) ELSE cells(ps.memry, c) END

f_c_uncomputed_cells : LEMMA

cell_frame(c) _- frame(X.control)
D cells((f_c(u, X)).memry, c) = cells(X.memry, c)

exec_element-2 : LEMMA LET K := ps.control, k := cell_subframe(c)

IN

q _< num_subframes(frame(K))

D cells(exec(u, ps,q).memry, c)
= IF k < q A cell_frame(c) = frame(K)

THEN cells(exec_task(u, exec(u, ps, k), k).memry, c)

ELSE ceUs(ps.memry, c) END

cell_input_frameJem : LEMMA
X.control = Y.control

A cell_frame(c) = frame(X.control)
^ (V d : cell_input_frame(d,c) D cells_match(X, Y, d))

D cells_match(f_c(u,X), f_c(u,Y),c)

NF_cell_rec_equiv : LEMMA

v_ ched(prev_fr(fr),c) ^ cell_frame(c)= prev_fr(fr)
D NF_cell_rec(c, fr, k-t- 1)

= 1 -t- max(N F_rec_set(N F_cell_rec, c, prev_fr(fr), k))

full_rec : LEMMA H _> recovery_period :) recv(c, K, H)

full_rec_rp : LEMMA recv(c, K, recovery.period)
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bound_NF_cell_rec :LEMMA NF_cell_rec(c, fr, H) < R

bound_cell_rec_path :LEMMA cell_rec_path(path, len,c, fr, R) D len < H

NF_cell_rec_nonzero : LEMMA k > 0 D NF_cell_rec(c, fr, k) > 0

N F_rec_set_nonempty : LEMMA

cell_input_frame(d,c) A k <_ max_rec_frames

D -_ empty(N F_rec.set(N F_cell_rec,c, fr, k))

NF_cell_rec_recv: LEMMA

NF_cell_rec(c, frame(K),k) < H A H < k ^ k < max_rec_frames
2) recv(c, K, H + 2)

long_path_cyclic : LEMMA len > num_cells D cyclic_path(path, len)

cell_rec_input_path : LEMMA

cell_rec_path(path, len,c, fr,//) 2) input_path(path, len, c)

cell_rec_path_acyclic : LEMMA

cell_rec_path(path, len,c, fr, H) 2) -_ cyclic_path(path, len)

N F_cell_rec_bound_l : LEMMA
H < max_rec_frames

D NF_cell_rec(c, fr, H)
< max(path_len_set(c_ fr, R))* schedule_length + schedule_length

N F_cell_rec_bound_2 : LEMMA

N F_cell_rec(c, fr, max_rec_frames) < max_rec_frames

path_len_bound : LEMMA
cell_rec_path(path, len, e, fr, H) D len < num_cells

cell_rec_path_exists : LEMMA

(3 path, len : cell_rec_path(path, len, c, fr, H))

max_path_len_bound : LEMMA max(path_len_set(c, fr, H)) _<

path_outputs_not_voted : LEMMA

cell_rec:path(path, len, c, fr, H)
D (Vq, if:

0 < q A q < len D -_ output_voted(path(q- 1), path(q), if))

path_cells_not_voted : LEMMA
len > 0 A cell_rec_path(path, len,c, fr, H)

2) (Vff:
(between_frames(cell_frame(c), T'T,fr) V fr = cell_frame(c))

2) -_ v_sched(ff, c))

num_cells
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last_cell_not_voted : LEMMA

len > 1 A cell_rec_path(path, len,c, fr, H)

(V ff: -, output_voted(path(len - 2), path(len - 1), fir))

last_cell_condition : LEMMA

len > 0 A cell_rec_path(path, len,c, fr, H)

c = path(len - 1) A ((3 d: cell_input_frarne(d,c)) V len = 1)

next_cell_condition : LEMMA

cell_rec_path(path, len, c, fr, H)

(V e: cell_rec_path(path WITH [(len):= e], len,c, fr, H))

input_path_zero : LEMMA input_path(path, 0, c)

input_path_one : LEMMA c = path(0) _ input_path(path, 1,c)

input_path_ext : LEMMA

input_path(path, len,d) A cell_input_frame(d,c) A c = path(len)

input_path(path, len + 1,c)

5 Interprocessor Mailbox System

The functionality of the interprocessor mailbox system was first elaborated in the DS level.

The basic idea is illustrated in figure 15. In a four processor system, for example, there

P3
P1

P2

P4

Figure 15: Structure of Mailboxes in a four-processor system

are three incoming slots and one outgoing slot each of type M B. The collection is of type
MBvec.
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MB : TYPE

M Bvec : TYPE = ARRAY[processors --_ M B]

Each of these slots contain some subset of the cells of memory (i.e. since only a small portion

of memory is exchanged and voted during each frame). Two uninterpreted functions, cebuf,

cnbuf are defined at the DA_minv level to return the "control state" and the contents of the

mailbox slot (i.e. MB) associated with a specific cell:

cebuf: FUNCTION[MB, cell ---, cell_state]

cnbuf:FUNCTION[MB --* control_state]

These functions are not implemented at the DA_minv level but are constrained by the

following three axioms:

cebuf_ax : AXIOM cs_length(cebuf(mb, cc)) = c_length(cc)

f_s_ax : AXIOM

IF v_sched(frame(ps.control), cc)

THEN cebuf(f,(ps), cc)- cells(ps.memry, cc)
ELSE cebuf(f,(ps), cc) = csO(cc) END

f_s_control_ax : AXIOM cnbuf(f,(ps)) = ps.control

The function f_ is used by the state-transition relation to transfer data from main memory

to the outgoing mailbox slot. This function f_ is defined as

L : FUNCTION[Pstate --* MB]

and is uninterpreted at thelDA_minv level. It is refined in the LE level in terms of four

functions as shown in figure 16. The implementation of f, is described in the next subsection.

Figure 16: Function f, Implementation Tree
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5.1 LE Mailbox

The two upper-level functions, cebuf, cnbuf that return the "control state" and the contents

of the mailbox slot (i.e. MB of type MBbui) associated with a specific cell are mapped onto

functions cebuf and cnbuf in the LE Model. These functions, and the type M Bbuf are defined

as follows:

MBbuf : TYPE = RECORD cntrl : control_state, mem : MBmemory END

cebuf : FUNCTION[MBbuf, cell --_ cell_state] =

(A MB, cc : LET fr := (MB.cntrl).frame IN
IF vJched(fr, cc) THEN M Bcell(MB.mem, cc, fr) ELSE csO(cc) END)

cnbuf : FUNCTION[IdBbuf --* control_state] = (A MB : MB.cntrl)

The function cebuf simply copies the contents of a particular cell in a mailbox slot to a

cell_state buffer. This is specified using a higher-order shift function M Bshift:

MBshift : FUNCTION[MBmemory, MBaddress --* memory] =

(A MBmem, Low :
(Ann:IF nn +Low < MBmem_size

THEN MBmem(nn + Low)

ELSE wordO END IF))

M Bcell : FUNCTION[M B_nemory, cell, frame_cntr -+ cell_state] =

(A MBmem, cc, fr :
cs0(cc) WITH

[len := length(MBmap(cc, fr)),
blk := M Bshift(M Bmem, M Bmap(cc, fr).low)])

The location of cells in the mailbox is determined by the function MB_map:

MBmap : FUNCTION[ceIl,frame-cntr --* MBaddress_range]

The function fo is used by the state-transition relation to transfer data from main memory

to the outgoing mailbox slot. This function f0 is defined as follows:

f_s:FUNCTION[Pstate --*MBbuf] =

(A PS : MBbuf_0 WITH [cntrl := PS.control,
mem := f_s_mem(PS)])

where
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f_s_mem: FUNCTION[Pstate --, MBmemory] =

(A PS :LET fr := (PS.control).frame IN

(A adr: IF (cell_of_MB(adr, fr) < no_cell) THEN

IF v_sched(fr, cell_of_M B(adr, fr)) THEN

PS.mernry(cell_rnap(cell_of_M B(adr, fr)).low + adr - M Brnap(cell_of_M B(adr, fr), fr).low)
ELSE wordO

END IF

ELSE word0

END IF))

The function cell_of_M B returns the cell in which a given address is contained. This function

is defined axiomatically using address_within:

cell_of_M B_ax : AXIOM

IF v_sched(fr, cc) A address_within(adr, MBmap(cc, fr))

THEN cell_of_MB(adr, fr) -- cc
ELSE

cell_of_MB(adr, fr) = no_cell END

cell_of_M B_ax_2 : AXIOM

cell_of_MB(adr, fr) = cc A cc < no_cell

D v_sched(fr, cc) A address_within(adr, MBmap(cc, fr))

The following lemma is easier to use and understand than the definition of the function

fs:

f_s_lem : LEMMA

offset <_ length(cell_map(cc)) - 1 A v_sched((PS.control).frame, cc)
D f..s(PS).rnem(MBmap(cc,(PS.control).frame).low + offset)

= PS.mernry(cell_map(cc).low + offset)

This lemma shows the results of copying a cell from main memory to the mailbox with

fs, and is illustrated in figure 17.

5.2 Verifications Associated With fs-Related Refinements

The key properties of f, were specified axiomatically in the DA_minv level specification by

two axioms. These become proof obligations in the LE level:

f..s_ax : OBLIGATION

IF v_sched(Frame(ps.control), cc)
THEN cebuf(f_s(ps), cc)= cell_mem(ps.rnemry, cc)

ELSE cebuf(f_s(ps), cc)= cs0(cc)
END

f_s_control_ax : OBLIGATION cnbuf(f_s(ps)) = ps.control
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PS.memry

cellcc,

cell_map(cc).low

.__] + offset

cellcc

MBmap(cc,fr).low

___J+ offset

Figure 17: The result of copying a cell from main memory to the mailbox using f,
.

5.2.1 Proof of f_s_control_ax

This result follows trivially from the definition of ]'8.

5.2.2 Proof of f_s_ax

The first step is to establish:

LEM1 :LEMMA

v_sched(frame(ps.control), cc) A x < length(cell_map(cc))- 1

D cebuf(f_s(ps), cc).blk(z)

= f_s(ps).mem(MBmap(cc, (ps.control).frame).low + z)

This follows from the definition of cebuf, MBcell, MBshift and four axioms:

map_ax, MBrnap_high_ax and f_s_control_ax. The next step is to prove LEM2:

M B_size_az,
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LEM2 : LEMMA

x _< length(cell_map(cc)) - 1
D cell_mem(ps.memry, cc).blk(x) = ps.memry(x + cell_map(cc).low)

from the definitions of cell_mem and mshiff and axioms MB_size_az and cell_map_high_ax.

Using a key lemma about fs, f_s_lem and LEM1 and LEM2 with x substituted by xx, we

have:

LEM3 : LEMMA

v_sched(frame(ps.control), cc) A xx _< length(cell_map(cc))- 1

D cebuf(f_s(ps), cc).blk(xx)= cell_mem(ps.memry, cc).blk(xx)

Two more simple lemmas are easily established from the definitions cebuf and MBcell and

axioms f_s_control_ax and map_ax:

LEM4 : LEMMA

-_ v_sched(frame(ps.control), cc) D cebuf(f_s(ps), cc) = csO(cc)

LEM5 : LEMMA

v_sched (frame(ps.control), cc)

D cebuf(f_s(ps), cc).len = length(cell_map(cc))

The last required lemma is LEM6:

LEM6 : LEMMA

IF v_sched(frame(ps.control), cc)

THEN cebuf(f_s(ps), cc).len = cell_mem(ps.memry, cc).len
ELSE cebuf(f_s(ps), cc).len = csO(cc).len

The obligation f_s_ax follows from LEM3, LEM4, LEM5 and LEM6 using the cell_state exten-

sionality axiom CS_extensionality.

6 Implementation of fk, ft and Other Functions

At the Dh_minv level the fk, ft and fn functions are fully interpreted:

fk :FUNCTION[Pstate ---, control_state] -- ()_ ps:ps.control)

ft :FUNCTION[Pstate, cell _ cell_state] =

(A ps, c: cells(ps.memry, c))

fn :FUNCTION[Pstate ---* Pstate] =

(A ps: ps WITH [(control):= succ(ps.control)])
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The function fk extracts the control state from Pstate. The function ft is implemented via

the cells function and the function f,_ increments the frame counter.

The succ function is defined axiomatically as follows:

succ : FUNCTION[control_state --* control_state]

succ_cntr_ax : AXIOM fram_succ(K)) = next_fr(fram_K))

The function fa is still uninterpreted at the LF level:

fa :FUNCTION[Pstate -* outputs]

In the upper levels of the hierarchy as well as in the LE model details of the I/O interface

have not been elaborated. The inputs and outputs of the system are uninterpreted domains:

inputs : TYPE

outputs : TYPE

7 A Simple Model to Demonstrate Consistency of the
Axioms

To demonstrate that the axioms introduced in the LE level are consistent, we created a

version of this level in which "the important constants and functions left undefined in the

original IF model were given values. Figure 18 shows the memory configuration and the

task schedule chosen for the simple model.

Table 3 shows the values given to the previously unspecified constants in order to realize

the desired configuration and. structure. Although the values assigned are not realistic (for

example, mem._ize = 2), they suffice for demonstrating consistency of the axioms.

Module Constant Value

rcp_defs_i nrep 6

rcp_defs_i2 schedule_length 2

num_cells 2

memory_defs mem.size 2

MBmemory_defs MBmem_size 1

Table 3: Values Assigned to Constants
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Figure 18: Memory and Task Schedule Layout

7.1 Function Definitions

In addition to giving values to the above mentioned constants, we also gave definitions to

important functions. In module rcp_defs_hw.spec, the following definition for cell_map was

given:

cell_map : FUNCTION[cell _ address_range] = (A cc :

IF (cc = 0) -

THEN (REC low :- 0, high := 0) :address_range

ELSE (REC low := i, high := i):address_range

END IF)

In rnailbox_hw, MBmap was defined as follows:

MBmap :FUNCTION[ceil, frame_cntr --. MBaddress_range] = (Acc, fr :

(REC low := 0, high := 0) : MBaddress_range)

The following definitions were given in cell_funs:

cell_frame : FUNCTION[cell _ frame_cntr] = (A c :

IF (c= 0) THEN 0 : frame_cntr ELSE 1 : frame_cntr END IF)
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cell_subframe : FUNCTION[cell --* sub_frame] = ()_ c : 0 : sub_frame)

sched_cell : FUNCTION[frame_cntr, sub_frame --_ cell] = ()_ fr, sf":

IF(fr -0) THEN 0:cell ELSE l : cell END IF)

num_subframes : FUNCTION[frame_cntr --* nat] = ()_ fr : 1)

Cell_of_MB was defined as follows in minimal_hw.spec:

cell_of_MB : FUNCTION[MBaddress, frame_cntr --, nat] = (_ adr, fr :

IF (adv" = O) ^ (fr = O)
THEN 0

ELSIF (adr =0) A (fr =1)

THEN 1

ELSE no_cell

END IF)

Finally, the following definition for v_sched was given in module path_funs.spec :

v_sched : FUNCTION[frame_cntr, cell --. bool] = (_ fr, c :

IF ((fr =0) ^ (c=0)) V ((fr =1) ^ (c=1))
THEN true ELSE false

END IF)

7.2 Inconsistencies Discovered

This exercise revealed three i_consistencies in the LE axioms. As originally written, neither

sched_cell_ax nor cell_of_M B_ax nor M Bcell_separation was satisfiable.

The original sched_cell_ax was as follows:

sched_cell_ax : AXIOM

mm = cell_frame(c) ^ k = cell_subframe(c) ¢_ sched_cell(mm, k) = e

As written, this axiom does not take into account the fact that the returned value of

sched_cell(rnra, k) is meaningful only when k is a valid subframe of mm. Thus the axiom

should be, and now is, written in the following way:

sched_cell_ax : AXIOM

mm = cell_frame(c) A k = cell_subframe(c) ¢_
sched_cell(mm, k) = c A k < num-subframes(mm)
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The original cell_of_MB_ax was as follows:

cell_of_MB_ax : AXIOM

IF v_sched(fr, cc) ^ address_within(adr, MBmap(cc, fr))

THEN cell_of_MB(adr, fr) = cc

ELSE cell_of_MB(adr, fr) = no_cell
END

The "ELSE" part of this axiom is simply false; for any valid adr and fr, cell_of_MB(adr, fr)

will return a valid cell, not no_cell. All that we can say about the value that will be returned

is that it will not be equal to cc. Fortunately, this is all that we need to know, and the axiom

can be rewritten in the following way:

cell_of_M B_ax : AXIOM

IF v_sched(fr, cc) A address_within(adr, MBmap(cc, fr))
THEN cell_of_MB(adr, fr) = cc

ELSE cell_of_MB(adr, fr) _ cc
END

The original M Bcell_separation was as follows:

M Bcell_separation : AXIOM

(Cl # c2) D address_disjoint(MBmap(cz, fr), MBmap(c2, fr))

This axiom does not take into account the fact that we care about the addresses being

disjoint only if both of the cells in question are scheduled in the current frame. Thus, the

axiom was changed to be:

M Bcell_separation : AXIOM

(Cl # c2) A v_sched(fr, cl) A v_sched(fr, c2) 2)
address_disjoint(MBmap(cl, fr), MBmap(c2, fr))

In addition to these 3 inconsistent axioms, an unneeded axiom was discovered, namely

num_.subframes_ax, which was given as follows:

num_subframes_ax : AXIOM

fr = cell_frame(c) D cell_subframe(c) < num_subframes(fr)
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8 Conclusion

In this paper we present the third phase of the development of the Reliable Computing

Platform (RCP). This effort has resulted in two additional layers in the formal specification

hierarchy, bringing the total to six (excluding the clock synchronization hierarchy it is built

upon). These specifications introduce a more detailed elaboration of the behavior of the

RCP in three main areas:

• task dispatching and execution,

• minimal voting, and

• interprocessor communication via mailboxes.

Each of these refinements was developed using the EHDM mapping facility, which automat-

ically generates the required proof obligations. Each of these proof obligations has been

satisfied. In addition, many of the axioms have been shown to be consistent by mapping

them onto a concrete (albeit unrealistic) instance. This paper presents an overview of the

more interesting and important proofs.

Phase 3 does not represent a complete implementation of the RCP. Much work remains to

carry this detailed design down into a fully operational implementation. However, the design

is sufficiently mature for the implementation of a meaningful simulator. The simulator is

currently under development in the Scheme programming language. One part of the system

remains as a high-level design rather than a detailed design: the interactive consistency

mechanism. There are many possible algorithms available that could be exploited, but so

far, no choice has been made for the RCP.

The RCP represents one of the largest and most complex proofs performed using EHDM.

The total collection of EHDM specifications and proof directives is 13559 lines long (excluding

blank lines and most comments). Executing the entire set of proofs requires over 4 hours of

computation time on a Spar_ 10 with 64 Mbytes of memory.
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A Obligations Generated by EHDM Mappings

In earlier sections we have discussed the most important obligations and proofs. For com-

pleteness we list all of the obligations produced by Ehdm mapping statements:

A.1 Module generic_FT_to_minimal_v

ps, X, Y : VAR Pstate

p, i,j : VAR processors
u : VAR inputs
w : VAR MBvec

A, B : VAR set[processors]

c, d, e : VAR cell
K : VAR control_state

H : VAR nat

recovery_period_ax : OBLIGATION recovery_period > 2

succ_ax : OBLIGATION f_k(f_n(ps)) = succ(f_k(ps))

control_nc : OBLIGATION f_k(f_c(u, ps)) = f_k(ps)

cells_nc : OBLIGATION f_t(f_n(ps), c) = f_t(ps, c)

full_recovery : OBLIGATION H >_ recovery_period D recv(c, K, H)

initial_recovery : OBLIGATION recv(c, K, H) ::3 H > 2

dep_recovery : OBLIGATION

recv(c, succ(K),H + 1) h dep(c,d,K) D recv(d,K,H)

components_equal : OBLIGA:TION

f_k(X)=f_k(Y) A (Vc:f_t(X,c)=f_t(Y,c)) _ X=Y

control_recovered : OBLIGATION

maj_condition(A) A (V p: member(p,A) D w(p) = f_s(ps)) D f_k(f_v(Y,w)) = f_k(ps)

cell_recovered : OBLIGATION

maj_condition(A)

^ (V p: member(p,A) ::) w(p) = f_s(f_c(u, ps)))
^ f_k(X)= K ^ f_k(ps)= K ^ dep_agree(c,K,X, ps)

D f_t(f_v(f_c(u,X),w),c): f_t(f_c(u, ps),c)

vote_maj : OBLIGATION

maj_condition(A) h (Vp:member(p,A) _ w(p)=f_s(ps))_ f_v(ps, w)=ps
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A.2 Module DA_to_DA_minv

s,t, da : VAR DAstate

u : VAR inputs

i, p, q, qq : VAR processors

T : VAR number

X, Y : VAR number

D :VAR number

broadcast_duration : OBLIGATION

(1 - Rho) * abs(duration(broadcast) - 2 * v, duration(compute) - v * duration(broadcast)) -

> rnax_comm_delay

broadcast_duration2 : OBLIGATION

duration(broadcast) - 2 • v, duration(compute) - v * duration(broadcast) > 0

all_durations : OBLIGATION

(1 + _,) • duration(compute) + (1 + v) * duration(broadcast) < frame_time

pos_durations : OBLIGATION

0 < (1 - tJ)* duration(compute)

A 0 < (1 - v), duration(broadcast)

A 0 < (1 - v)* duration(vote) A 0 _< (1 - v) * duration(sync)

A.3 Module rcp_defs_imp_to_hw

k : VAR nat

mem : VAR memory

cc, xx : VAR cell

cs : VAR cell_state

cells_ax : OBLIGATION cs_iength(cell_rnem(mem, cc))= c_length(cc)

write_cell_ax : OBLIGATION

cs_length(cs) = c_length(xx)

D CS_eq(cell_mem(write_cell(mem, xx, cs), cc),

IF cc = xx THEN cs ELSE cell_mere(mere, cc) END)

null_memory_ax : OBLIGATION CS_eq(cell_mem(mem0, cc), cs0(cc))

mb : VAR M Bbuf

cebuf_ax : OBLIGATION cs_length(cebuf(mb, cc))= c_length(cc)

cell_state_varl, cell_state_vat2, cell_state_vat3 : VAR cell_state

control_state_varl, control_state_var2, control_state_var3 : VAR control_state

cell_state_reflexive : OBLIGATION CS_eq(cell_state_varl, cell_state_varl)
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cell_state_symmetric : OBLIGATION

CS_eq(cell_state_varl, cell_state_var2):3 CS_eq(cellJtate_var2, cellJtate_varl)

cell_state_transitive : OBLIGATION

CS_eq(cell_state_varl, cellJtate_var2) A C5_eq(cell_state_var2, cell_state_var3)

CS_eq(cell_state_varl, cellJtate_var3)

control_state_reflexive:OBLIGATION cnst_eq(control_state_varl, control_state_varl)

control_state_symmetric : OBLIGATION
cnst_eq(control_state_varl, control_state_var2) D cnst_eq(control_state_var2, control_state_varl)

control_state_transitive : OBLIGATION

cnst_eq(control_state_varl, controlJtate_var2)
A cnst_eq(control_state_var2, control_state_var3)

cnst_eq(control_state_var 1, control_state_var3)

flame_congruence : OBLIGATION

cnst_eq(cont rol_state_varl, control_state_var2)
frame(control_state_varl) = frame(control_state_var2)

cs_length_congruence : OBLIGATION

CS..eq(cs, cell_state_varl) :3 cs_length(cs) = cs_length(cell.state_varl)

write_cell_congruence : OBLIGATION

CS_eq(cs, cell_state_varl) _ write_cell(mem, cc, cs)= write_cell(mem, cc, cell_state_varl)

A.4 Module gen_com_to_hw

p, i,j : VAR processors

k, l, q : VAR sub_frame

u : VAR inputs

A :VAR set[processors]

c, d, e : VAR cell

C, D : VAR memory
w :VAR MBvec

h : VAR MBmatrix

us, ps, X, Y : VAR Pstate
cs : VAR celLstate

fr : VAR frame_cntr

K, L : VAR control_state

memory_equal : OBLIGATION

(V c : CS_eq(cell_mem(C, c), cell_mem(D, c)))

exec_task_ax : OBLIGATION

sched_cell(ffame(ps.control),q) p c

D C=D

68



CS_eq(cell_mem(exec_task(u, ps,q).memry, c), cell_mem(ps.memry, c))

exec_task_ax_2: OBLIGATION

cnst_eq(exec_task(u, ps, q).control, ps.control)

A.5 Module frame_funs_to_gc_hw

K : VAR control_state

succ_cntr_ax : OBLIGATION frame(succ_cs(K)) = next_fr(frame(K))

pred_cntr_ax : OBLIGATION frame(pred_cs(K)) = prev_fr(frame(K))

pred_succ_ax: OBLIGATION cnst_eq(pred_cs(succ_cs(K)), K)

succ_congruence : OBLIGATION

cnst_eq(K, control_state_varl)

::) cnst_eq(succ_cs(K), succ_cs(control_state_var1))

pred_congruence : OBLIGATION
cnst_eq(K, control_state_vat1)

:) cnst_eq(pred_cs(K), pred_cs(control_state_varl))

A.6 Module minimal_v_to_minimal_hw

k,I:VAR nat

c, d : VAR cell

H : VAR nat

C, D : VAR memory

ps, X, Y : VAR Pstate
w :VAR M Bvec

K, L : VAR control_state
cc : VAR cell

q, sf : VAR sub_frame
cfn : VAR cell_fn

cell_apply_MAP_EQ : OBLIGATION

(IF k=0 V k> num_cells THEN C
ELSE

IF v_sched(frame(K), k- 1)

THEN write_cell(cell_apply(cfn, K, C,k - 1), k - 1, cfn(k - 1))

ELSE cell_apply(cfn, K, C, h - 1) END
END

=IF k=0 V k>num_cells THEN C
ELSE

IF v_sched(frame(K), k- 1)
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THEN write_cell(cell_apply(cfn, K, C, k - 1), k - 1, cfn(k - 1))

ELSE cell_apply(cfn, K, C,k- 1) END
END)

f_s_ax : OBLIGATION

IF v_sched(frame_ps.control), cc)

THEN C5_eq(cebuf(f_s(ps), cc), cell_mem(ps.memry, cc))

ELSE CS_eq(cebuf(f-s(ps), cc), c$0(cc)) END

f_s_control_ax : OBLIGATION cnst_eq(cnbuf(f_s(ps)), ps.control)

f_v_ax : OBLIGATION

cnst_eq(Cv(ps, w).control, k_maj(w))

A f_v(ps, w).memry

= cell_apply((_ c : t_maj(w, c)), ps.control, ps.memry, num_cells)

cell_input_constraint : OBLIGATION

cnst_eq(X.control, Y.control)

A sched_cell(frame(X.control),q) = c

A (V d:cell_input(d,c) D cells_match(X,Y,d))

D cells_rnatch(exec_task(u, X, q), exec_task(u, Y, q), c)

A.7 Module maj_funs_to_minimal_hw

A :VAR set[processors]
c : VAR cell

w :VAR MBvec

cs : VAR cell_state

K : VAR control_state

p : VAR processors

k_maj_ax : OBLIGATION

(3 A: maj_condition(A) A (V p: member(p,A)

cnst_eq(k_maj(w), K)

cnst_eq(cnbuf(w(p)), K)))

t_maj_ax : OBLIGATION

(3A:
maj_condition(A) ^ (V p : member(p, A)

CS_eq(t_maj(w, c), cs)

D CS_eq(cebuf(w(p),c), cs)))

t_majJen_ax : OBLIGATION cs_length(t_maj(w, c)) = c_length(c)

A.8 Module DA_minv_to_LE

s,t, da : VAR DAstate

u : VAR inputs
i, p, q, qq : VAR processors
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T :VAR number

X, Y : VAR number

D : VAR number

broadcast_duration : OBLIGATION

(1 - Rho) * abs(duration(broaclcast) - 2 * v • duration(compute) - v • duration(broadcast)) -

_> max_comm_delay

broadcast_duration2 : OBLIGATION

duration(broadcast) - 2 • v • duration(compute) - v • duration(broadcast)

> 0

all_durations : OBLIGATION

(1 -t- v) * duration(compute) + (1 + v) • duration(broadcast) < frame-time

pos_durations : OBLIGATION

0 _( (1 - v)* duration(compute)

^ 0 _< (1 - v), duration(broadcast)

A 0 _ (1 - v)* duration(vote) A 0 < (1 - v) * duration.(sync)

A.9 Module maxf_to_maxf_model

S : VAR finite_set[nat]

a, b : VAR nat

max_ax : OBLIGATION

(member(a,S) D max(S) >_-a)

A IF empty(S)

THEN max(S) = 0

ELSE

(3 b: member(b,S) A b = max(S)) END

A.10 Module maj_hw_to_maj_hw_model

A :VAR set[processors]

c : VAR cell

w :VAR MBVEC

cs : VAR cell_state

K : VAR control_state

p : VAR processors

k_maj_ax : OBLIGATION

(3 A: maj_condition(A) A (V p: member(p,A) D

D cnst_eq(k_maj(w), K)

cnst_eq(cnbuf(w(p) ), K)))

t_maj_ax : OBLIGATION

(3A:

maj_condition(A) A (V p: member(p, A)

D CS_eq(t_maj(w,e), cs)

D CS_eq(cebuf(w(p),c), cs)))
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t_majlen_ax :OBLIGATION cs_length(t_maj(w, c)) = c.length(c)

A.11 Module RS_majority_to_RS_maj_model

k : VAR nat

9 : VAR processors
us : VAR Pstate

rs : VAR RSstate

A : VAR set[processors]
maj_exists : FUNCTION[RSstate --_ boolean] =

(_ rs:

(3A, us:
maj_condition(A) A (V p: member(p,A) D (rs(p)).proc-state = us)))

maj_ax : OBLIGATION

(3 A: maj_condition(A) ^ (W p: member(p, A)

D maj(rs) = us

D (rs(p)).procJtate = us))

A.12 Module algorithm_mapalgorithm

T, To, TI,X, II : VAR number

i : VAR period

9, q, r : VAR proc

rr, ii, qq, nn :VAR nat

8 : VAR proc_set
n:proc - nrep

Ao : OBLIGATION skew(p,fl, T_sup(0),0) < delta0

A2 : OBLIGATION

nonfaulty(p,i) ^ nonfaulty(q,i) ^ S1C(p,q,i) A S2(p,i) A S2(q,i)

abs(Delta2(q,p,i)) <_ S

^ (3To:

in_S_interval(To,i)
^ abs(rt(9, i, To + Delta2(q, 9, i)) - rt(q, i, To)) < eps)

A2_aux : OBLIGATION Delta2(p,p, i) = 0

Co : OBLIGATION ngood(i) > 0

C2 : OBLIGATION S >_ E

C3 : OBLIGATION E >_ A

C4:OBLIGATION A > 6+eps +half(p),S
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Cs : OBLIGATION _ >_ deltaO + p* R

C6 : OBLIGATION

6 > 2 * (eps -t-p * S) -t-2 * nfaulty(i) * A/ngood(i)

+ n * p * R/ngood(i)

+p,A
+ n * p * _/ngood(i)

C6_opt : OBLIGATION

>_ 2 * (eps + p * S) * (ngood(i) - 1)/ngood(i)

+ 2 * nfaulty(i) * A/ngood(i)

+ n * p* R/ngood(i)

+ p, A, (ngood(i) - 1)/ngood(i)

+ n * p * _/ngood(i)
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B EHDM Status Reports: M-x amps, mpcs, amos

The following reports were generated by EHDM after completion of the specification and

proof activities. Included are the following reports:

1. Module Proof Chain Status (mpcs)

2. All Module Proof Status (amps)

3. All Module Obligation Status (amos)

Refer to the EHDM user documentation for detailed explanations of the report formats. Note

that to conserve space some portions of these reports have been deleted so that only the more

useful items of information are presented. The complete status reports can be obtained from

the FTP directory cited in section 1.5.

B.1 Module Proof Chain Status (mpcs)

Excerpts of this report have been reproduced below with the "terse proof chains" moved to

the end.

SUMMARY

The proof chain is complete

All TCCs and module assumptions have been proved

The axioms and assump¢ions at the base are:

cardinali_y!card_ax

cardinaliCy!card_emp_y

cardinality!card_subset

ce11_funs!sched_ce11_ax

frame_funs!pred_cntr_ax

frame_funs!pred_succ_ax

functionsl!extensionalityl

LE!a11_duratione

LE!broadcast_duration2

mailbox_hw!map_ax

mailbox_hw!MBce11_separation

mailbox_hw!XBmap_high_ax

mailbox_hw!MB_size_ax

maxf_model!ubound_ax

memory_generic!addrs_ty_extensionali_y

naturalnumbers!nat_invariant

noetherian!general_induction

nuabers!mult_pos

path_funs!full_recovery_condition

phaee_defs!distinct_phases
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phase_defs!member_plmses

rcp_defs_hw!cells_for_all_az

rcp_defs_hw!cell_map_len_h_az

rcp_defs_hw!cell_separation

rcp_defs_hw!control_state_extensionality

recursive_maj!card_add

to_minimal_hw_prf_2!t_write_set_ax_1

to_minimal_hw_prf_2!__write_set_ax_2

Total: 28

The definitions and type-constraints are:

absolutes!abs

• . .

US!N_us

Total: 195

The formulae used are:

absolutes!abs

,oo

US!N_us

Total: 1059

The completed proofs are:

absolutes!abs_div2_proof

o,.

to_minimal_hw_prf_2!p_CS_eq_need

Total: 781

Terse proof chains for module everything

ES_majority!maj_ax

is shoen to be a consistent

to_RS_maj_model

axiom by mapplng

generic_FT!vote_maj

is shown to be a consistent

to_minimal_v

axiom by mapping

maxf!max_ax

is shown to be a consistent

to_maxf_model

axiom by mapping

rcp_defs_imp!cells_ax

is shoen to be a consistent

to_he

axiom by mapping

maj_funs!t_maj_len_ax

is shown to be a consistent

to_minimal_he

axiom by mapping

maj_he!k_maj_ax
is shoen to be a conslstent axiom by mapping

module

module

module

module

module

module
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to_maj_he_model

maj_hw!t_maj_ax

is shown to be a consistent axiom by mapping module

to_maj_he_model

gen_com!sesory_equal

is shoen to be a consisten_ axiom by mapping module

to_gc_hw

rcp_defs_iJp!Psta_e_extensionali_y
is shown to be a consistent axiom by mapping module

to_hw

minimal_v!f_v_ax

_s shown to be a consistent axiom by mapping module

to_minimal_hw

minimal_v!f_s_control_ax

is shown to be a consistent axiom by mapping module

to_minimal_hw

minimal_v!cell_inpu__constraint

is shown to be a consistent axiom by mapping module

£o_minimal_hw

gen_com!exec__ask_ax_2

• s shown to be a consistent

to_gc_he

axiom by mapping module

gen_com!exec_task_ax

• s shoen to be a consistent

to_gc_hw

axiom by mapping module

rcp_defs_imp!write_cell_ax

is shown to be a consistent

to_hw

axiom by mapping module

minimal_v!f_s_ax

is shown to be a consistent

to_minimal_hw

axiom by mapping module

generic_FT!componen_s_equal

• s shown to be a consistent

to_minimal_v

axiom by mapping module

generic_FT!full_recovery

is shown to be a consistent

to_minimal_v

axiom by mapping module

generic_FT!recovery_period_ax

is shown to be a consistent axiom by mapping module

to_mini4aal_v
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generic_FT!control_recovered

is shown to be a consistent axiom by mapp%ng

to_minimal_v

nodule

generlc_FT!succ_ax

is shown to be a consistent axiom by mapping

to_minimal_v

nodule

generlc_FT!cell_recovered

Is shown to be a consistent axiom by mapplng

to_minimal_v

nodule

generic_FT!dep_recovery

• s shown to be a consistent

to_minimal_v

axiom by mappxng nodule

generxc_FT!initial_recovery

• s shown to be a consistent

to_minimal_v

axiom by mapping nodule

generic_FT!control_n¢

is shown to be a consistent

to_minimal_v

axiom by mapping nodule

8eneric_FT!cells_nc

is shown to be a consistent

to_minimal_v

axiom by mapping module

algorithm!CO

is shown to be a consistent

mapalgorithm

axiom by mapplng nodule

algorithm!C3
Is shown to be a consisten_

mapalgorithm

axiom by mappmng module

time!C1

_s _hown to be a consistent

maptime

axiom by mapping module

algorithm!C2

Is shown to be a conslstent

mapalgori_hm

axiom by mapping module

DA!pos_durations

is shown to be a consistent

to_DA_minv

axiom by mapping module

DA_minv!broadcast_duration

is shown to be a consistent axiom by mapping module

to_LE
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algorithm ! AO

xs shown to be a consistent axiom by mapping module

mapalgorithm

algorithm ! C8
is shown to be a consistent axiom by mapping module

mapalgorithm

algorithm!A2

is shown to be a consistent axiom by mapping module

mapalgorithm

algorithm!C4

is shown to be

mapalgorithm

a consistent axiom by mapping module

algorithm!A2_aux

is shown to be

mapalgorithm

a consistent axiom by mapping module

algorithm!C6_opt
is shown to be

mapalgorithm

a consistent axiom by mapping module

B.2 All Module Proof Status (amps)

This report is reproduced in its entirety.

Proof status for modules on using chain of module everything

Proof summary for module words

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module defined_types

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module nat_types

p_upto_TCCl ............................................ PROVED

p_upfrom_TCC1 .......................................... PROVED

p_below_TCC1 ............................................ PROVED

p_above_TCCl ........................................... PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 2 seconds.

Proof summary for module interp_rcp

p_processors_TCC1 ...................................... PROVED

Totals: 1 proofs, 1 attempted, 1 succeeded, 0 seconds.

Proof summary for module numeric_types

p_posnum_TCCl .......................................... PROVED

p_nonnegnum_TCC1 ....................................... PROVED

p_fraction_TCCl ........................................ PROVED

1 seconds

0 seconds

1 seconds

0 seconds

0 seconds

0 seconds

1 seconds

0 seconds
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Totals: 3 proofs, 3 attempted, 3 succeeded, I seconds.

Proof eu=mary for module arithmetics

quotient_poe_proof ..................................... PROVED

muir_men_proof ......................................... PROVED

div_mon_proof .......................................... PROVED

div_mult_proof ......................................... PROVED

muir_poe_air_proof ..................................... PROVED

mult_mon2_proof ........................................ PROVED

div_mon2_proof ......................................... PROVED

Totals: 7 proofs, 7 attempted, 7 succeeded, 4 seconds.

Proof summary for module noetherian

mod_proof .............................................. PROVED

Totals: 1 proofs, I attempted, 1 succeeded, 2 seconds.

Proof summary for module natprops

dill_zero_proof ........................................ PROVED

pred_diff_proof ........................................ PROVED

diffl_proof ............................................ PROVED

dill_dill_proof ........................................ PROVED

dill_plus_proof ........................................ PROVED

diff_ineq_proof ........................................ PROVED

Totals: 6 proofs, 6 attempted, 6 succeeded, 12 seconds.

Proof summary for module phase_defs

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module sets -

p_extensionality ....................................... PROVED

Totals: 1 proofs, 1 attempted, 1 succeeded, 1 seconds.

Proof summary for module rcp_dsfs_i

processors_TCCl_PR00F .................................. PROVED

Totals: 1 proofs, 1 attempted, 1 succeeded, 0 seconds.

Proof summary for module memory_generic

p_address_ty_TCC1 ...................................... PROVED

p_address_range_ty_TCC1 ................................ PROVED

p_addr_len_ty_TCC1 ..................................... PROVED

p_test ................................................. PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 6 seconds.

Proof summary for module finite_sets

finite_set_TTC1 ........................................ PROVED

Totals: 1 proofs, 1 attempted, 1 succeeded, 2 seconds.

Proof summary for module rcp_defs_i2

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module nat_inductions

discharge .............................................. PROVED

nat_induction .......................................... PROVED

0 seconds

1 seconds

0 seconds

1 seconds

0 seconds

1 seconds

! seconds

2 seconds

1 seconds

2 seconds

2 seconds

4 seconds

1 seconds

2 seconds

1 seconds

0 seconds

0 seconds

1 seconds

0 seconds

5 seconds

2 seconds

0 seconds

1 seconds

79



nat_complete ........................................... PROVRD

reachability ........................................... PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 3 seconds.

Proof summary for module bounded_induction

p_upto_induction ....................................... PROVED

p_well_founded ......................................... PROVED

p_reachability ......................................... PROVED

Totals: 3 proofs, 3 attenpted, 3 succeeded, 4 seconds.

Proof summary for module maprcp

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module absolutes

abe_times_proof ........................................ PROVED

abs_recip_TCCl_pr ...................................... PROVED

abs_recip_proof ........................................ PROVED

abs_div_proof .......................................... PROVED

abs_proofO ............................................. PROVED

abe_proof1 ............................................. PROVED

abe_proof2 ..... _ ....................................... PROVED

abs_proof2b ............................................. PROVED

abs_proof2c ............................................ PROVED

abe_proofS ............................................. PROVED

abe_proof4 ............................................. PP_VED

abe_proof5 ............................................. PROVED

abe_proof6 ............................................. PROVED

abe_proof7 ............................................. PROVED

abe_proof8 ................. , ........................... PROVED

poe_abe_proof .......................................... PROVED

abs_div2_proof ......................................... PROVED

rearrangel_proof ....................................... PROVED

rearrange2_proof ....................................... PROVED

rearrange_proof ........................................ PROVED

rearrange_eli_proof ....... _ ............................ P_VED

p_abs_leq ................. "............................. PROVED

Totals: 22 proofs, 22 attempted, 22 succeeded, 27 seconds.

Proof smmary for module natinduction

discharge .............................................. PROVED

ind_proof .............................................. PROVED

ind_m_proof ............................................ PROVED

mod_m_proof ............................................ PROVED

mod_induction_proof .................................... PROVED

inductionl_proof ....................................... P_OVED

mod_inductionl_proof ................................... PROVED

induction2_proof ....................................... PROVED

Totals: 8 proofs, 8 attempted, 8 succeeded, 28 seconds.

Proof smmary for module cardinality

empty_prop_proof ....................................... PROVED

subset_union_proof ..................................... PROVED

twice_proof ............................................ PROVED

1 seconds

1 seconds

3 seconds

1 seconds

0 seconds

6 seconds

0 seconds

4 seconds

1 seconds

0 seconds

0 seconds

4 seconds

1 seconds

0 seconds

1 seconds

2 seconds

0 seconds

0 seconds

0 seconds

4 seconds

0 seconds

1 seconds

0 seconds

1 seconds

1 seconds

0 seconds

1 seconds

0 seconds

1 seconds

2 seconds

8 seconds

3 seconds

1 seconds

7 seconds

S seconds

0 seconds

2 seconds

1 seconds
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card_proof ............................................. PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 4 seconds.

Proof summary for module rcp_defs

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module maxf_model

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module MBmemory_defs

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module memory_defs

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module nat_piseonholes

bbn_ext ................................................ PROVED

bnd_occ_sum ............................................ PROVED

no_occ ................................................. PEOVED

no occ_2 ............................................... PROVED

one_occ ................................................ PROV_

all_occ_all_base ....................................... PR0_-J)

all_occ_all_ind_base ................................... PROVED

all_occ_all_ind,ind_1 .................................. PROVED

all_occ_all_ind_ind_2 .................................. PROVED

all_occ_all_ind ........................................ PROVED

all_oct_all ............................................ PROVED

one_occ_exists_l ....................................... PROVED

one_occ_exists_2 ........... _ ........................... PROVED

dup_bnd_occ_l_ind ...................................... PROVED

dup_bnd_occ_l .......................................... PROVED

dup_bnd_occ_2_ind ...................................... PROVED

dup_bnd_occ_2 .......................................... PROVED

dup_bnd_occ ............................................ PROVED

pigeonhole_general ........ ": ............................ PROVED

pigeonhols_duplicates ..... "............................. PROVED

Totals: 20 proofs, 20 attempted, 20 succeeded, 285 seconds.

Proof summary for module maxf

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for

Totals: 0 proofs,

Proof summary for

Totals: 0 proofs,

module cell_fu_s

0 attempted, 0 succeeded, 0 seconds.

module rcp_defs_imp

0 attempted, 0 succeeded, 0 seconds.

Proof summary for module rcp_defs_i_maprcp

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module interptime

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.
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Proof summary for module sigaaprops

sc_batis_proof ...................... ................... PROVED

so_step_proof .......................................... PROVED

s c_proof ............................................... PROVED

sm_bas is_proof ......................................... PROVED

am_at sp_proof .......................................... PROVED

sin_proof ............................................... PROVED

rood_sigma_muir_proof ................................ . .. PROVED

s s_bas is_proof ......................................... PROVED

at_step_proof .......................................... PROVED

st_proof ............................................... PROVED

s lb_proof .............................................. PROVED

s 1 s_proof .............................................. PROVED

sigma 1_proof ........................................... PROVED

srb_proof .............................................. PROVED

srp_proof .............................................. PROVED

s igma_rsv_proof ........................................ PROVED

split_basis_proof ...................................... PROVED

split_step_proof ....................................... PROVED

split_proof ............................................ PROVED

sa_bas is_proof ......................................... PROVED

sa_step_proof .......................................... PROVED

sa_proof ............................................... PROVED

bounded_proof .......................................... PROVED

sb_bas it_proof ......................................... PROVED

alt_s igma_bound_one_st ep_proof ......................... PROVED

s igma_ spl it _proof ...................................... PROVED

alt_sb_step_proof ...................................... PROVED

sb_st ep_proof .............. : ........................... PROVED

sb_proof ............................................... PROVED

s igma_bound_proof ...................................... PROVED

Totals: 30 proofs, 30 attempted, 30 succeeded, 106 seconds.

Proof summary for module time

posR_proof ................ _ ............................ PROVED

posS_proof ............................................. PROVED

SinR_proof ............................................. PROVED

T_next_proof ........................................... PROVED

Ti_proof ............................................... PROVED

inRS_proof ............................................. PROVED

Ti_in_S_proof .......................................... PROVED

in_S_proof ............................................. PROVED

Totals: 8 proofs, 8 attempted, 8 succeeded, 6 seconds.

Proof summazy for module proc_sets

p_nat_nit .............................................. PROVED

p_card_fullset ......................................... PROVED

discharge_finite ....................................... PROVED

Totals: 3 proofs, 3 attempted, 3 succeeded, 2 seconds.

Proof summary for module to_maxf_model

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.
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Proof summary for module rcp_defs_hw

p_csO_TCC1 ............................................. PROVED

p_urite_cell_TCC1 ...................................... PROVED

p_cell_map_high_ax ..................................... PKOVED

p_ cell_map_len_ch_l en .................................. PKOVED

p_cell_map_los_lem ..................................... PROVED

Totals: 5 proofs, 8 attempted, 5 succeeded, 5 seconds.

Proof summary for module cell_inductions

reachability ........................................... PROVED

cell_nat_induction ..................................... PROVED

c3_well_founded ........................................ PROVED

cell_nat_induction_2 ................................... PROVED

n3_well_founded ........................................ PROVED

path_cell_nat_induction ................................ PROVED

nS_gell_founded ........................................ PROVED

Totals: 7 proofs, 7 attempted, 7 succeeded, 36 seconds.

Proof summary for module path_funs

rec_set_TCC1 ........................................... PROVED

NF_rec_set_TCC1 ........................................ PROVED

path_len_set_TCC1 ...................................... PROVED

all_rec_set_TCC1 ....................................... PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 17 seconds.

Proof summary for module maj_funs

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module to_imp

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module interpclocks

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module map_'ime

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module proc_induction

p_processors_induction ................................. PROVED

p_gell_founded ......................................... PROVED

p_reachability ......................................... PROVED

proc_plus_TCCl_PEOOF ................................... PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 8 seconds.

Proof summary for module sums

counter_converse0_proof ................................ PROVED

counter_converse_i_proof ............................... PROVED

counter_converse_proof ................................. PROVED

partsums0_proof ........................................ PROVED

partsums_i_proof ....................................... PROVED

partsum_proof .......................................... PROVED

part_lem_proof ......................................... PROVED

part_partsums_proof .................................... PROVED
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part_count_proof ....................................... PKOVKD

sun_countO_proof ....................................... PROVED

sum_count_ind_proof .................................... PROVED

sum_count_proof .... .' .................................... PROVED

count er_boundO_proof ........... . ....................... PROVED

int ermediat e_proof ..................................... PROVED

count er_bound_ i_proof ..................... ............. PROVED

count er_bound_proof .................................... PROVED

mean_lemma_proof ....................................... PROVED

split_sum_proof ............. . : ......................... PROVED

split_mean_proof ....................................... PROVED

sum_bound_meal_proof ..................................... PROVED

sum_boundO_proof ....................................... PROVED

sum_bound_proof,. ........... ,.. ......................... PROVED

mean_bound_proof ....................................... PROVED

mean_const,proof ............ ........................... PROVED

sum_muir_proof ......................... ................ PROVED

mean_muir_proof ........................................ PROVED

mean_sum_proof ......................................... PROVED

mean_cliff_proof ........................................ PROVED

abe_sum_proof .......................................... PROVED

abs_mean_proof ......................................... PROVED

rearrange_sub_proof .................................... PROVED

rearrange_sum_proof .................................... PROVED

p_sigma_restrict_O ..................................... PROVED

p_sigma_restrict_s ..................................... PKOVED

p_si_a_restrict ....................................... PROVED

p_sig_restrict ......................................... PROVED

p_sum_restrict ............. : ........................... PROVED

p_sum_restrict_eq ...................................... PROVED

p_mean_restrict_eq ..................................... PROVED

Totals: 39 proofs, 39 attempted, 39 succeeded, 242 seconds.

Proof summary for module clocks

rho_pos_proof ............. _ ............................ PROVED

rho_small_proof ........................................ PROVED

diminish_proof ......................................... PROVED

monoproof .............................................. PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 5 seconds.

Proof summary for module generic_FT

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module maxf_to_maxf_model

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module ,-,u_def

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof sugary for module recursive_maj

card_singleton ......................................... PROVED

nrep_fullset ........................................... PROVED

union_plus_one ......................................... PROVED
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inters ect ion_plus_one .................................. PRDVED

cf en_bas • .............................................. PROVED

cf en_ind ............................................... PKOVED

card_fullset_eq_nrep ................................... PROVED

maj_cond_unique ........................................ PROVED

rml_bas • ............................................... PROVED

:r_l_ ind ................................................ PROVED

rec_maj _lena .......................................... PROVED

maj _card_lena ......................................... PROVED

rec_maj_cond ........................................... PP.0VED

rec_maj _cond_2 ......................................... PROVED

rec_maj_cond_3 ......................................... PROVED

zp_bas • ................................................ PKOVED

zp_ ind ................................................. PROVED

zpred_preserved ........................................ PROVED

Totals: 18 proofs, 18 attempted, 18 succeeded, 94 seconds.

Proof summary for module mailbox_hw

p_RBcelI_TCC1 .......................................... PROVED

p_RBmap_low_lem ........................................ PROVED

p_MBmap_lem ............................................ PROVED

p_MBmap_lem_2 .......................................... PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 6 seconds.

Proof summary for module frame_funs

p_succ_le_plus ......................................... PROVED

p_mod_minus_zero._ ..................................... PROVED

p_mod_minus.plus ....................................... PROVED

Totals: 3 proofs, 3 attempted; 3 succeeded, 22 seconds.

Proof summary for module rcp_defs_to_imp

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module interpalgoritha

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module time_maptime

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module mapclocks

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module algorithm

p_gbl_O .... :........................................... PROVED

p_gbl_s ................................................ PROVED

p_gbl .................................................. PROVED

p_gbl .................................................. PROVED

good_bad_proof ......................................... PROVED

SIC_self_proof ......................................... PROVED

C6_TCCI_PROOF .......................................... PROVED

pos_terms .............................................. PROVED

COa_proof .............................................. PROVED

Al_proof ............................................... PROVED
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C2andS_proof ........................................... PROVgD

npos_proof ............................................. PROVED

clock_proof ............................................ PROVED

V2bar_prop_proof ....................................... PROVED

S lC_lew-a_proof ........................................ PROVED

Theorem_2_proof ........................................ PROVED

Totals: 16 proofs, 16 attempted, 16 succeeded, 206 seconds.

Proof summary for module DS

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module US

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof sumnary for module ES

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module maj_hw_model

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof smmary for module maxf_to_maxf_model_px-f

beloe_empty_eq ......................................... PROVED

below_empty_nl ......................................... PROVED

below_empty_n2 ......................................... PROVED

rmax_bound ............................................. PROVED

max_ax_base ............................................ PROVED

max_ax_ind_l ........................................... PROVED

max_ax_ind_2_a ......................................... PROVED

max_ax_ind_2_b ............. _ ........................... PROVED

max_ax_ind_2 ........................................... PROVED

max_ax_ind ............................................. PROVED

max_ax ................................................. PROVED

Totals: 11 proofs, 11 attempted, 11 succeeded, 244 seconds.

Proof summary for module maj_he

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module gc_hw

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module RS_maj_model

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module to_he

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module gen_com

p_exe_base ............................................. PROVED

p_exec_ctrl_base ....................................... PROVED

p_exec_ctrl_±nd ........................................ PROVED

p_exec_ctrl ............................................ PROVED

p_LEM2_O ............................................... PROVED

p_LEM2_s ............................................... PROVED
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p_LEM2 ................................................. PROVED

p_exe_ind_l ............................................ PROVED

p_exe_ind_2 ............................................ PROVED

p_exec_element ......................................... PROVED

Totals: 10 proofs, 10 attempted, 10 succeeded, 32 seconds.

Proof summary for module clocks_mapclocks

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module mapalgorith_

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module juggle_opt

mul__div_proof ......................................... PROVED

step1_proof ............................................ PROVED

step2_proof ............................................ PROVED

final .................................................. PROVED

rearrange_delta_opt_TCCl_proof ......................... PROVED

Totals: 8 proofs, 6 attempted, 5 succeeded, 20 seconds.

Proof summary for module clockprops

i2R_proof .............................................. PROVED

upper_bound_proof ...................................... PROVED

basis_proof ....'........................................ PROVED

small_shift_proof ...................................... PROVED

ind_proof .............................................. PROVED

adj_pos_proof .......................................... PROVED

lower_bound_proof ...................................... PROVED

lower_bound2_proof ......... _ ........................... PROVED

gc_proof ............................................... PROVED

bounds_proof ........................................... PROVED

rmproof ................................................ PROVED

full_part_sum_proof .................................... PROVED

Totals: 12 proofs, 12 attempted, 12 succeeded, 26 seconds.

Proof summary for module DS:to_RS

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module Re_majority

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module to_maj_hw_model

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module minimal_he

p_f_s_mem_TCCl ......................................... PROVED

p_f_s_lem_TCC1 ......................................... PROVED

p_f_s_lem_TCC2 ......................................... PROVED

p_cell_fn_TCC1 ......................................... PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 10 seconds.

Proof summary for module gc_hw_prf

p_small_lem ............................................ PROVED
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p_hide_sm_lom_O.. ...................................... PROVED

p_hide_sm_lem_s ........................................ PROVED

p_hide_sm_lem .......................................... PROVED

p_small_eq_lem.. ....................................... PROVED

p_me_lem_O ............................................. PROVED

p_me_lem_s la ........................................... PROVED

p_im_slb ............................................... PROVED

p_me_lem_s Ib ........................................... PROVED

p_me_lem_s I ............................................ PROVED

p_me_lem_s2 ............................................ PROVED

p_me_lem_s ............................................. PROVED

p_me_l em ............................................... PKOVED

p_match_exists_lem ..................................... PROVED

p_match_existm_lem2a ................................... PROVED

p_mat oh_ ex ist s_l em2b ................................... PROVED

p_mat ch_exist s_lem3 .................................... PROVED

p_smallest_ndr_lem ..................................... PROVED

p_me14a ................................................ PROVED

p_match_exist s_lom4 .................................... PROVED

p_grit e_ em_prop_n_O .................................... PROVED

p_wep! ................................................. PROVED

p_wep2b ................................................ PROVED

p_wep2 ................................................. PROVED

p_wep4_a ............................................... PROVED

p_wep4_b ............................................... PROVED

p_wep4 ................................................. PRO' ED

p_wep_s 1 ............................................... PP,.OVED

p_wep_s2 ............................................... PROVED

p_uep_s3 ................... , ........................... PROVED

p_wepns_lem ............................................ PROVED

p_rrite_a_prop_n_s .................................... PROVED

p_wr i_ e_ em_prop_n ...................................... PROVED

p_urite_em_prop ........................................ PROVED

p_urite_em_lem ......................................... PROVED

Totals: 35 proofs, 35 attempted, 35 succeeded, 410 seconds.

Proof summary for module to_gc_hw

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module to_RS_maj_model

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module rcp_defs_imp_to_hw

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module minimal_v

p_cell_fn_TCC1 ......................................... PROVED

p_f_v_ax_TCCl .......................................... PKOVED

Totals: 2 proofs, 2 attempted, 2 succeeded, 1 seconds.

Proof summary for module DS_leemas

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.
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Proof summary for module algorithm_mapalgorithm

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module lemma5

rearrauge2_proof ....................................... PROVED

lemmaSproof ............................................ PROVED

Totals: 2 proofs, 2 attempted, 2 succeeded, 3 seconds.

Proof summary for module 1emma2

lemma2_proof ........................................... PROVED

lemma2a_proof .......................................... PROVED

lemma2b_proof .......................................... PROVED

lemma2c_proof .......................................... PROVED

lemma2d_proof .......................................... PROVED

lemma2e_proof .......................................... PROVED

Totals: 6 proofs, 6 attempted, 6 succeeded, 28 seconds.

Proof summary for module RS_to_US

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module maj_hw_to_maj_hw_model

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module minimal_hw_prf2

p_Fsl .................................................. PROVED

p_Fsl_TCC1 ............................................. PROVED

p_Fs2 .................................................. PROVED

p_Fs2_TCCI ............................................. PROVED

p_Fs3_TCCI ................. :........................... PROVED

p_Fs3_TCC2 ............................................. PROVED

p_Fs3 .................................................. PROVED

p_f_s_lem .............................................. PROVED

p_f_s_lem_cntrl ........................................ PROVED

Totals: 9 proofs, 9 attempted, 9 succeeded, 20 seconds.

Proof summary for module min_mal_hw_prf

p_fc_lem_a_O ........................................... PROVED

p_fc_lem_a_s ........................................... PROVED

p_well_founded ......................................... PROVED

p_fc_lem_a ............................................. PROVED

p_fc_lem_b_O ........................................... PROVED

p_fc_lem_b_s ........................................... PROVED

p_fc_lem_b ............................................. PROVED

p_cell_of_MB_lem ....................................... PROVED

p_cell_of_MB_lem~2 ..................................... PROVED

p_cell_of_MB_map_lem_TCC1 .............................. PROVED

p_cell_of_MB_map_lem ................................... PROVED

p_p_ce11_of_MB_map_lem_TCC2 ............................ PROVED

p_p_cell_of_MB_map_lem_TCC3 ............................ PROVED

Totals: 13 proofs, 13 attempted, 13 succeeded, 325 seconds.

Proof summary for module frame_funs_to_gc_hw

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.
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Proof summary for modulo to_einimal_hg

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module__eajority_to_KS_maj_model

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for nodule rcp_defs_i_p_to_hg_prf

p_cells_ax ............................................. PKOVED

p_caseO ................................................ PKOVED

p_cO ................................................... PROVED

p_cOb_TCC1 ............................................. PKOVED

p_cOb .................................................. PKOVED

p_cI_TCCI .............................................. PROVED

p_cl ................................................... PROVED

p_c2_TCC1 .............................................. PEOV_

p_c2 ................................................... PKOVED

p_p_c2_TCC2 ............................................ PKOVED

p_c3_TCC1 .............................................. PROVED

p_c3 ................................................... PKOVED

p_c4 ................................................... PROVED

p_casel ................................................ PKOVED

p_c7_TCC1 .............................................. PKOVED

p_c7 ................................................... PROVED

p_c8 ................................................... PROVED

p_case2 ................................................ PROVED

p_Casel ................................................ PE0VED

p_Case2 ................................................ PROVED

p_erite_cell_ax ............ , ........................... PKOVED

p_nmO .................................................. PKOVED

p_nml ............. ..................................... PROVED

p_nm2 .................................................. PK0VED

p_na3 .................................................. PROVED

p_null_memory_ax ....................................... PROVED

p_cebuf_ax ................ _ ............................ PROVED

p_cell_state_reflexive .... "............................. PROVED

p_cel1_state_symmetric ................................. PROVED

p_cell_state_transitive ................................ PROVED

p_cs_length_congruence ................................. PROVED

p_grite_cel1_congruence ................................ PROVED

p_control_state_reflexive .............................. PROVED

p_control_state_symmetr$c .............................. PROVED

p_control_state_transitive ............................. PROVED

p_frame_congruence ..................................... PROVED

Totals: 36 proofs, 36 attempted, 36 succeeded, 272 seconds.

Proof summary for nodule min_al_v_leegnas

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for nodule to_mSnimal_v

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module DS_map_proof

1

2

1

1

12

2

3

3

62

2

3

62

2

5

2

4

3

31

4

6

3

1

3

3

1

5

3

0

1

2

0

37

0

1

1

0

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

9O



p_map_l ................................................ PROVED

p_map_2 ................................................ PROVED

p_map_3 ................................................ PROVED

p_map_4 ................................................ PROVED

p_map_8 ................................................ PROVED

p_map_? ................................................ PROVED

Totals: 6 proofs, 6 attempted, 6 succeeded, 24 seconds.

Proof summary for module DS_support_proof

p_support_l ............................................ PROVED

p_support_4 ............................................ PROVED

p_support_5 ............................................ PROVED

p_support_6 ............................................ PROVED

p_support_7 ............................................ PROVED

p_support_8 ............................................ PROVED

p_support_9 ............................................ PROVED

p_support_lO ........................................... PROVED

p_support_ll ........................................... PROVED

p_support_12 ........................................... PROVED

p_support_14 ........................................... PROVED

p_support_15 ........................................... PROVED

Totals: 12 proofs, 12 attempted, 12 succeeded, 22 seconds.

Proof summary for module DS_lemmas_prf

p_fr_com_i ............................................. PROVED

p_fr_com_2 ............................................. PROVED

p_fc_A ................................................. PROVED

p_fc_B ................................................. PROVED

p_fc_A_la .................. ,........................... PROVED

p_fc_A_lb .............................................. PROVED

p_fc_A_Ic .............................................. PROVED

p_fc_A_Id .............................................. PROVED

p_fc_A_le .............................................. PROVED

p_fc_A_if .............................................. PROVED

p_fc_A_2a ................. _ ............................ PROVED

p_fc_Z_2b ................. "............................. PROVED

p_f c_A_2c .............................................. PROVED

p_f c_A_2d .............................................. PROVED

p_fc_A_3a .............................................. PROVED

p_fc_A_3b .............................................. PROVED

p_fc_A_3c .............................................. PROVED

p_fc_A_3d .............................................. PROVED

Totals: 18 proofs, 18 attempted, 18 succeeded, 145 seconds.

Proof summary for module RS_lemmas

p_initial_working ...................................... PROVED

p_initial_maj_coud ..................................... PROVED

p_initial_maj .......................................... PROVED

p_.orking_set_healthy .................................. PROVED

p_consensus_prop ....................................... PROVED

p_maj_sent ............................................. PROVED

p_rec_maj_exists ....................................... PROVED

p_rec_maj_f_c .......................................... PROVED
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Totals: 8 proofs, 8 attempted, 8 succeeded, 36 seconds.

Proof summary for module map_proofs

AO ..................................................... PROVED

Corr_zero_basis_proof .................................. PROVED

Corr_zero_ind,proof .................................... PROVED

Corr_zero_proof ........................................ PROVED

rt_is_T_proof .......................................... PROVED

goodclocks_prof ........................................ PROVED

all_nonfaulty_proof .................................... PROVED

count_basis_proof ...................................... PROVED

count_ind_proof ........................................ PROVED

count_proof ............................................ PROVED

all_good_proof ......................................... PROVED

none_faulty_proof ...................................... PROVED

A2 ..................................................... PROVED

A2_aux ................................................. PROVED

CO ..................................................... PROVF..D

C1 ..................................................... PEOVED

C2 ..................................................... PROVED

C3 ..................................................... PROVED

C4 ..................................................... PEOVSD

C5 ..................................................... PEOVED

C6 ..................................................... P_OVF..D

C6_TCC1 ................................................ PROVED

CS_opt ................................................. PROVED

Totals: 23 proofs, 23 attempted, 23 succeeded, 296 seconds.

Proof summary for module lemaa3

leema3_proof ........................................... PROVED

Totals: 1 proofs, 1 attempted, 1 succeeded, 6 seconds.

Proof summary for module lemaal

lemma1_proof ........................................... PROVED

Totals: 1 proofs, 1 attempted, 1 succeeded, 6 seconds.

Proof summary for module lema6

subl_proof ............................................. PROVED

sub_A_proof ............................................ PEOVED

sub2_proof ............................................. PROVED

lemma6_proof ........................................... PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 13 seconds.

Proof summary for module maj_hw_to_maj_he_model_prf

eq_reflexive_k ......................................... PROVED

eq_symmetric_k ......................................... PROVED

eq_transitivs_k ........................................ PROVED

eq_reflexSve_t ......................................... PROVED

eq_symmetric_t ......................................... PROVED

eq_transitive_t ........................................ PROVED

k_maj_ax ............................................... PROVED

t_ma3_ax ............................................... PROVED

t_maj_len_ax ........................................... PROVED
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Totals: 9 proofs, 9 attempted, 9 succeeded, 134 seconds.

Proof summary for module frame_funs_to_gc_hw_prf

p_succ_cntr_ax ......................................... PROVED

p_pred_cn_r_ax ......................................... PROVED

p_psl .................................................. PROVED

p_pred_succ_ax ......................................... PROVED

p_succ_congruencs ...................................... PROVED

p_pred_congruence ...................................... PROVED

Totals: 6 proofs, 6 attempted, 6 succeeded, 9 seconds.

Proof summary for module gen_com_to_gc_hw

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof smmary for module RS_majority_to_RS_maj_model_prf

eq_reflexive ........................................... PROVED

eq_symmetric ........................................... PROVED

eq_transitive .......................................... PROVED

maj_ax ................................................. PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 16 seconds.

Proof summary for module generic_FT_to_minimal_v

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module DS_to_RS_prf

p_frame_commutes ....................................... PROVED

p_initial_maps ......................................... PROVED

Totals: 2 proofs, 2 attempted, 2 succeeded, 3 seconds.

Proof summary for module RS_invariants

p_base_state_ind ....................................... PROVED

p_ind_state_ind ........................................ PROVED

p_state_±nduction ...................................... PROVED

p_maj_working_inv_11 ................................... PROVED

p_maj_working_inv_12 ...... _ ............................ PROVED

p_maj_working_inv ......... "............................. PROVED

p_state_rec_inv_ll ..................................... PROVED

p_state_rec_inv_12 ..................................... PROVED

p_state_rsc_inv_13 ..................................... PROVED

p_state_rec_inv_14 ..................................... PROVED

p_s_ate_rec_inv_18 ..................................... PROVED

p_state_rec_inv ........................................ PROVED

Totals: 12 proofs, 12 attempted, 12 succeeded, 44 seconds.

Proof summary for module lemma4

rearrange2_proof ....................................... PROVED

rearrange3_proof ....................................... PROVED

sublemmal_proof ........................................ PROVED

lemma2x_proof .......................................... PROVED

lemma4_proof ........................................... PROVED

Totals: 5 proofs, 5 attempted, 5 succeeded, 12 seconds.

Proof summary for module minimal_v_to_minimal_hw
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Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module gen_com_to_gc_he_prf

p_mem_eq_LgMl_TCC1 ..................................... PROVED

p_mem_eq_LEMl_TCC2 ..................................... PROVED

p_mem_eq_LEgl .......................................... PROVED

p_p_mem_eq_LEMl_TCC3 ................................... PROVED

p_mem_eq_LEg3 .......................................... PROVED

p_mem_eq_LEM4 .......................................... PROVED

p_memory_equal ......................................... PROVED

p_etll ................................................. PROVED

p_e¢12 ................................................. PROVED

p_Is_et_lem_O .......................................... PROVED

p_etsl ................................................. PROVED

p_ets2 ................................................. PROVgD

p_ets3 ................................................. PROVED

p_ets4 ................................................. PROVED

p_ets5 ................................................. PROVED

p_ets6 ................................................. PROVED

p_Is_et_lem_s .......................................... PROVED

p_Is_et_lem ............................................ PROVED

p_etO .................................................. PROVED

p_etl .................................................. PROVED

p_et2 .................................................. PROVED

p_et3 .................................................. PROVED

p_exec_task_ax ......................................... PROVED

p_exec_task_ax_2 ....................................... PR0VED

Totals: 24 proofs, 24 attempted, 24 succeeded, 131 seconds.

Proof summary for module maj_funs_to_mSn_al_hw

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module minimal_v_prf_4

ponv_base .............................................. PROVED

ponv_ind_l ................ "_ ............................ PROVED

ponv_ind_2 ............................................. PROVED

ponv_ind_3 ............................................. PROVED

ponv_ind ............................................... PROVED

path_outputs_not.vo_ed ................................. PROVED

pcnv_base .............................................. PROVED

pcnv_ind_l ............................................. PROVED

pcnv_ind_2 ............................................. PROVED

pcnv_ind_3 ............................................. PROVED

pcnv_ind... ............................................ PROVED

path_cells_not_voted ................................... PROVED

lcnv_base .............................................. PROVED

lcnv_ind_l ............................................. PROVED

lcnv_ind_2 ............................................. PROVED

lcnv_ind_3 ............................................. PROVED

lcnv_ind ............................................... PROVED

last_cell_not_voted .................................... PROVED

lcc_base ............................................... PROVED

lcc_ind_l .............................................. PROVED
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lcc_ind_2 .............................................. PROVED

lcc_ind_3 .............................................. PROVED

lcc_ind ................................................ PROVED

last_cell_condi_ion .................................... PROVED

ncc_base ............................................... PROVED

ncc_ind_1 .............................................. PROVED

ncc_ind_2 .............................................. PROVED

ncc_ind_3 .............................................. PROVED

ncc_ind ................................................ PR0VED

next_cell_condition .................................... PROVED

between_frames_self .................................... PROVED

between_frames_prey .................................... PROVED

between_frames_prey_2 .................................. PROVED

between_frames_prey_3 .................................. PROVED

between_fraaes_prev_4 .................................. PROVED

prey_between_frames .................................... PROVED

inpu¢_paCh_ons ......................................... PROVED

input_path_zero ........................................ PR0VED

input_pach_ex¢ ......................................... PROVED

mod_minus_prev ......................................... PROVED

mod_minus_prev_max ..................................... PROVED

mod_minus_nonzero ...................................... PROVED

prev_fr_dis¢inct ....................................... PROVED

To_als: 43 proofs, 43 attempted, 43 succeeded, 648 seconds.

Proof summary for module minimal_v_prf_3

long_paCh_cyclic ....................................... PROVED

cell_rec_pach_acyclic .................................. PROVED

path_len_bound ............. -............................ PROVED

_F_cell_rec_bound_2 .................................... PROVED

max_paCh_len_bound ..................................... PROVED

crpe_ind_1 ............................................. PROVED

crpe_ind_2_1 ........................................... PROVED

crpe_ind_2_2 ........................................... PROVED

crpe_ind_2 ............... :_ ............................ PROVED

crpe_ind_3. " .PROVED

crpe_ind ............................................... PROVED

cell_rec_path_exists ................................... PROVED

crip_base .............................................. PRDVED

crip_ind_l ............................................. PROVED

crip_ind_2 ............................................. PROVED

crip_ind ............................................... PROVED

cell_rec_input_paCh .................................... PROVED

crbl_base.. ............................................ PROVED

crbl_lem_2 ............................................. PROVED

crbl_ind_l ............................................. PROVED

crbl_lem_8 ............................................. PROVED

crbl_lem_4 ............................................. PROVED

crbl_lem_5 ............................................. PROVED

crbl_lem_7 ............................................. PROVED

crbl_lem_6 ............................................. PROVED

crbl_ind_2_l ........................................... PROVED

crbl_ind_2_2 ........................................... PROVED
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crbl_ind_2 ............................................. PROVED

crbl_lem_3 ............................................. PROVED

crbl_ ind_3 ............................................. PROVED

crb1_ind ............................................... PROVED

crb 1_i em_ 1 ............................................. PROVED

IF_ceil_rec_bound_ I .................................... PROVED

TotaXs: 33 proofs, 33 attempted, 33 succeeded, 361 seconds.

Proof summary for module minimal_v_prf_2

bncr_base .............................................. PROVED

bncr_ind_l ............................................. PROVED

bncr_ind_2 ............................................. PROVED

bncr_ind_3 ............................................. PROVED

bncr_ind ............................................... PROVED

bound_NF_cell_rec ...................................... PROVED

bcrp_bas • .............................................. PROVED

bcrp_ ind_ I ............................................. PROVED

bcrp_ ind_2 ............................................. PROVED

bcrp_ind_3 ............................................. PROVED

bcrp_ind ............................................... PROVED

bound_cell_rec_path .................................... P_OVED

fu11_r s c_bas • .......................................... PROVED

fu11_rec_ind ........................................... PROVED

fu11_rec ............................................... PROVED

full_rec_rp ............................................ PROVED

nf_crn_base ............................................ PROVED

nf_crn_ind ............................................. PROVED

NF_ce11_rec_nonzero .................................... PROVED

nf_v_sched .................. - ........................... PROVED

NF_rec_set_nonempty .................................... PROVED

IF_ce11_rec_exists ..................................... PROVED

nf_crr_base ............................................ PROVED

nf_crr_ind_1 ........................................... PROVED

nf_crr_ind_2 ........................................... PROVED

nf_crr_ind_3 .............. :'. ........................... PROVED

nf_crr_ind ............................................. PROVED

NF_ce11_rec_recv ....................................... PROVED

nLrf_nat_hack ........................................... PROVED

max_rec_frames_nonzero ................................. PEOVED

max_a11_rec_set_nonzero ................................ PROVED

recovery_period_sin .................................... PROVED

Totals: 32 proofs, 32 attempted, 32 succeeded, 327 seconds.

Proof sugary for module RS_to_US_prf

p_frame_coamutes ....................................... PROVED

p_initia1_mnps ......................................... PROVED

To_als: 2 proofs, 2 attempted, 2 succeeded, 3 seconds.

Proof sugary for module leama4_opt

lema4_self_proof ...................................... PROVED

lemma4_others_proof .................................... PROVED

Totals: 2 proofs, 2 a_tempted, 2 succeeded, 28 seconds.
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Proof summary for module summations_alt

p_11aO ................................................. PROVED

p_11al ................................................. PROVED

p_lla .................................................. PROVED

p_llbO ................................................. PROVED

p_llbl ................................................. PROVED

p_llb .................................................. PROVED

11_proof ............................................... PROVED

p_12pl ................................................. PROVED

p_12p4 ................................................. PROVED

p_12p3 ................................................. PROVED

p_12p .................................................. PROV_

12_proof ............................................... PROVED

bound_faulty_proof ..................................... PROVF_

13posproof ............................................. PROVED

13_proof ............................................... PROVED

S2_pqr_proof ........................................... PROV_

bound_nonfaulty_proof .................................. PROVF_

14_proof ............................................... PROV_

14aproof ............................................... PROVED

18_proof ............................................... PROVED

culm_proof ............................................. PROVED

Totals: 21 proofs, 21 attempted, 21 succeeded, 1068 seconds.

Proof summary for module to_minimal_he_prf_2

p_c_c_W1 ............................................... PROVED

p_c_c4E ................................................ PROVED

p_cic4F ................................................ PROVED

p_cic4D .................... _........................... PROVED

p_cic4C ................................................ PROVED

p_cic4B_TCCI ........................................... PROVED

p_clc4B ................................................ PROVED

p_CS_eq_need .......................................... .PROVED

p_cic2 ................................................. PROVED

Totals: 9 proofs, 9 attempted, 9 succeeded, 52 seconds.

Proof summary for module maj_funs_to_minimal_hs_prf

p_k_maj_ax ............................................. PROVED

p_t_maj_ax ............................................. PROVED

p_t_maj_len_ax ......................................... PROVED

Totals: 3 proofs, 3 attempted, 3 succeeded, 7 seconds.

Proof summary for module minimal_v_prf

p_recovery_period_ax ................................... PROVED

p_succ_ax .............................................. PROVED

p_control_nc ........................................... PROVED

p_cells_nc ............................................. PROVED

p_components_equal ..................................... PROVED

p_full_recovery ........................................ PROVED

p_initial_recovery ..................................... PROVED

p_dep_recovery ......................................... PROVED

p_control_recovered .................................... PROVED

p_cell_recovered ....................................... PROVED
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p_vote_maj ............................................. PROVED

p_cae_base ............................................. PROVED

p_cae_ind_t ............................................ PROVE3)

p_cae_ind_2 ............................................ PROVED

p_cell_apply_elemen_ ................................... PROVED

p_f_v_components ....................................... PROVED

p_p_f_v_components_TCC1 ................................ PROVED

p_f_c_uncomputed_cells ................................. PROVED

p_exec_element_2 ....................................... PROVED

p_exec_cells_match ..................................... PROVED

p_cil_ind_ll ........................................... PROVED

p_cil_ind_12 ........................................... PROVED

p_cil_ind_13 ........................................... PROVED

p_cil_ind .............................................. PROVED

p_f_c_cells_mnZch ...................................... PROVED

p_cell_inpu__frame_lem ................................. PROVED

rec_set_equal_l ........................................ P_OVED

rec_set_equal_2 ........................................ PROVED

rec_set_equal .......................................... PROVED

MF_cell_rec_equiv ...................................... PROVED

Totals: 30 proofs, 30 attempted, 30 succeeded, 211 secondi.

Proof summary for module summations_opt

only_2_basis_proof ..................................... PROVED

proc_index_prop_proof .................................. PROVED

only_2_ind_proof ....................................... PROVED

only_2_gen_proof ....................................... PROVED

only_2_proof ........................................... PROVED

bound_nonfaulty_self_proof._ ........................... PROVED

p_14se2 ................................................ PROVED

14self_proof ........................................... PROVED

except_2_proof ......................................... PROVED

bound_nonfaulty_others_proof ........................... PROVED

p_14otl ................................................ PROVED

14others_proof ............ : ............................ PROVED

helper_proof .............. ' ............................. PROVED

14all_proof ............................................ PROVED

14a_opt_proof .......................................... PROVED

15_opt_proof ........................................... PROVED

culmination_opt_proof .................................. PROVED

Totals: 17 proofs, 17 attempted, 17 succeeded, 705 seconds.

Proof summary for module minimal_v_to_min_na1_hw_prf

p_cell_input_constraint ................................ PROVED

p_f_s_control_ax ....................................... PROVED

p_LEMI_TCC1 ............................................ PROVED

p_LEMI_TCC2 ............................................ PROVED

p_LEM1 ................................................. PROVED

p_LEM2_TCC1 ............................................ PROVED

p_LEM2_TCC2 ............................................ PROVED

p_LEM2 ................................................. PROVED

p_LEM3 ................................................. PROVED

p_LEMS_TCC1 ............................................ PROVED
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p_LEM4 ................................................. PROVED

p_LEM5 ................................................. PROVED

p_LEN6 ................................................. PROVED

p_f_s_ax ............................................... PROVED

p_cell_fn_TCC1 ......................................... PROVED

p_f_v_TCC 1 ............................................. PROVED

p cell_apply_MAP_gQ .................................... PROVED

p_f_v_ax ............................................... PROVED

p_f_v_ax_TCC 1 .......................................... PROVED

Totals: 19 proofs, 19 attempted, 19 succeeded, 83 seconds.

Proof summary for module main_opt

basis_proof ............................................ PROVED

skew_SIC_proof ......................................... PROVED

ind_proof .............................................. PROVED

Theorem_l_opt_proof .................................... PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 17 seconds.

Proof summary for module clk_interface

p_sync_thm ............................................. PROVED

Totals: I proofs, I attempted, 1 succeeded, 2 seconds.

Proof summary for module LE

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module DA_minv

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module clkpz-op

p_nfc_a ................................................ PROVED

p_nfc_lem .............................................. PROVED

p_ft2 .................................................. PROVED

p_ft3 .................................................. PROVED

p_ft4 .................................................. PROVED

p_ft5 ..................... _ ............................ PROVED

p_ft6 ....... .............. "............................. PROVED

p_ft7 .................................................. PROVED

p_ft8 .................................................. PROVED

p_ftSa ................................................. PROVED

p_ft9 .................................................. PROVED

p_ftlO ................................................. PROVED

p_ftll ................................................. PROVED

p_ftl2 ................................................. PROVED

pGOAL ..... _ ........................................... PROVED

Totals: 15 proofs, 15 attempted, 15 succeeded, 38 seconds.

Proof summary for module DA

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module to_LE

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module to_DA_minv
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Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module D£_to_DS

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof sumnary for module DA_minv_to_LE

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module DA_to_DA_minv

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module DA_support

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module DA_leBas

Totals: 0 proofs, 0 attempted, 0 succeeded, 0 seconds.

Proof summary for module DA_minv_to_LE_prf

p_broadcast_duration ................................... PROVED

p_broadcast_duration2 .................................. PROVED

p_all_durations ........................................ PROVED

p_pos_durations ........................................ PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 2 seconds.

Proof summary for module DA_to_DA_minv_prf

p_broadcast_duration ................................... PROVED

p_broadcast_duration2 .................................. PROVED

p_all_durations ........................................ PROVED

p_pos_durations ............ : ........................... PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 3 seconds.

Proof summary for module DA_broadcast_prf

p_brl .................................................. PROVED

p_brla ................................................. PROVED

p_br2. "" .PROVED

p_br3_aa ............................................... PROVED

p_br3 .................................................. PROVED

p_br4 .................................................. PROVED

p_br5 .................................................. PROVED

p_br6 .................................................. PROVED

p_br7 .................................................. PROVED

p_br8 .................................................. PROVED

p_br9 .................................................. PROVED

p_rtpOa .... _ ........................................... PROVED

p_rtpO ................................................. PROVED

p_rtpl ................................................. PROVED

p_rtp2 ................................................. PROVED

p_rtp3 ................................................. PROVED

p_rtp4a ................................................ PROVED

p_rtp4b ................................................ PROVED

p_rtp4 ................................................. PROVED

p_rtp5 ................................................. PROVED

p_rtp6 ................................................. PROVED
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p_rtp7 ................................................. PROVED

p_com_broadcast_8 ...................................... PROVED

p_br_int ............................................... PROVED

p_intO ................................................. PROVED

p_intla ................................................ PROVED

p_intl ................................................. PROVED

p_int2a ................................................ PROVED

p_int2 ................................................. PROVED

p_±nt3 ................................................. PROVED

p_int4 ................................................. PROVED

p_int5 ................................................. PROVED

Totals: 32 proofs, 32 attempted, 32 succeeded, 187 seconds.

Proof summary for module DA_support_prf

p_support_l ............................................ PROVED

p_support_4 ............................................ PROVED

p_support_5 ............................................ PROVED

p_support_14 ........................................... PROVED

p s118_base ............................................ PROVED

p_s115_ind ............................................. PROVED

p_support_18 ........................................... PROVED

p_support_16 ........................................... PROVED

p_map_! ................................................ PROVED

p_map_2 ................................................ PROVED

p_map_3 ................................................ PROVED

p_map_4 ................................................ PROVED

p_map_7 ................................................ PROVED

p_base_state_ind ....................................... PROVED

p_ind_state_ind ............ _ ........................... PROVED

p_stateinduction ...................................... PROVED

p_enough_inv_ll ........................................ PROVED

p_enough_inv_12 ........................................ PROVED

p_enough_inv ........................................... PROVED

p_nfclk_inv_ll ......................................... PROVED

p_nfclk_inv_12 ............ : ............................ PROVED

p_nfclk_inv ............... '............................. PROVED

p_lclock_inv_12b ....................................... PROVED

p_lclock_inv_12c ....................................... PROVED

p_lclock_inv_ll ........................................ PROVED

p_lclock_inv_12 ........................................ PROVED

p_lclock_inv_13 ........................................ PROVED

p_lclock_inv_14 ........................................ PROVED

p_lclock_inv ........................................... PROVED

p-clkval_inv_11 ........................................ PROVED

p_clkval_inv_12 ........................................ PROVED

p_clkval_inv ........................................... PROVED

p_rtll ................................................. PROVED

p_da_rt_lem ............................................ PROVED

p_cum_delta_inv_ll ..................................... PROVED

p_cdi_12a .............................................. PROVED

p_cum_delta_invl2 ..................................... PROVED

p_cum_delta_inv_14 ..................................... PROVED

p_cum_delta_inv ........................................ PROVED
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Totals: 39 proofs, 39 attempted, 39 succeeded, 205 seconds.

Proof summary for module DA_l_maas_prf

p_phase_com_compute .................................... PROVED

p_phue_com_lxl ........................................ PROVED

p_phase_com_lx2 ........................................ PROVED

p_phase_com_lx4 ........................................ PROVED

p_phase_com_ix7 .................. ...................... PROVED

p_phass_com_broadcast .................................. PROVED

p_com_broadcast_1 ...................................... PROVED

p_com_broadcast_2 ...................................... PROVED

p_com_broadcast_3 ...................................... PROVED

p_com_broadcast_4 ...................................... PROVED

p_sarliest_later_time .................................. PROVED

p_elt_u ................................................ PROVED

p_ELT .................................................. PROVED

p_phase_com_vote ....................................... PROVED

p_com_vote_l ........................................... PROVED

p_com_vote_2 ........................................... PROVED

p_com_vots_3 ........................................... PROVED

p_com_vote_4 ........................................... PROVED

p_phase_com_sync ....................................... PROVED

p_com_sync_l ........................................... PROVED

p_com_sync_2 ........................................... PROVED

p_com_sync_3 ........................................... PROVED

p_com_sync_4 ........................................... PROVED

Totals: 23 proofs, 23 attempted, 23 succeeded, 61 seconds.

Proof summary for module le_to_

p_dummy ................................................ PROVED

Totals: 1 proofs, 1 attempted, 1 succeeded, 17 seconds.

Proof summary for module DA_to_DS_prf

p_phase_conutes ....................................... PROVED

p_initia1_maps ............ :'. ........................... PROVED

Totals: 2 proofs, 2 attemptea, 2 succeeded, 3 seconds.

Proof summary for module top

p_RS_frame_commutes .................................... PROVED

p_RS_initial_maps ...................................... PROVED

p_DS_frame_co.mutes .................................... PROVED

p_VS_initia1_maps ...................................... PROVED

p_VA_phase_colmutes .................................... PROVED

p_VA_initial_maps ...................................... PROVED

p_dummy ................................................ PROVED

Totals: 7 proofs, 7 attempted, 7 succeeded, 6 seconds.

Proof su.mary for module everything

p_dumb ................................................. PROVED

Totals: I proofs, 1 attempted, 1 succeeded, 0 seconds.

Grand Totals: 889 proofs, 889 attempted, 889 succeeded, 7422 seconds.
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B.3 All Module Obligation Status (amos)

This report was reproduced by deleting entries for modules having no obligations.

Obligation proof status for modules on using chain of module everything

Obligation proof summary for module nat_types

upto_TCC1 .............................................. proved

upfrom_TCC1 ............................................ proved

below_TCCl ............................................. proved

above_TCCl ............................................. proved

Totals: 4 obligations, 4 proved, 0 unproved.

Obligation proof summary for module interp_rcp

processors_TCCl ........................................ proved

Totals: I obligations, I proved, 0 unproved.

Obligation proof summary for module numeric_types

posnum_TCC1 ............................................ proved

nonnegnum_TCC1 ......................................... proved

fraction_TCCl .......................................... proved

Totals: 3 obligations, 3 proved, 0 unproved.

Obligation proof summary for module rcp_defs_i

processors_TCC1 ........................................ proved

Totals: I obligations, I proved, 0 unproved.

Obligation proof summary for module memory_generic

address_ty_TCCl ........... _ ............................ proved

address_range_ty_TCCl ..... •............................. proved

addr_len_ty_TCCl ....................................... proved

Totals: 3 obligations, 3 proved, 0 unproved.

Obligation proof summary for module finite_sets

finite_set_TCC1 ........................................ proved

Totals: I obligations, I proved, 0 unproved.

Obligation proof summary for module absolutes

abs_recip_TCCl ......................................... proved

Totals: I obligations, I proved, 0 unproved.

Obligation proof summary for module rcp_defs_hw

csO_TCCl ............................................... proved

write_cell_TCCl ........................................ proved
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Totals: 2 obligations, 2 proved, 0 unproved.

Obligation proof summary for module path_funs

rec_set_TCCl ........................................... proved

IF_rec_set_TCCl ........................................ proved

path_len_set_TCC1 ...................................... proved

all_rec_set_TCC1 ....................................... proved

Totals: 4 obligations, 4 proved, 0 unproved.

Obligation proof summary for module proc_induction

proc_plus_TCC1 ......................................... proved

Totals: 1 obligations, 1 proved, 0 unproved.

Obligation proof summary for module maxf_to_maxf_model

max_ax ................................................. proved

Totals: 1 obligations, 1 proved, 0 unproved.

Obligation proof summary for module recursive_maj

eq_reflexive ........................................... proved

eq_symmetric ........................................... proved

eq_transitive .............. _ ........................... proved

Totals: 3 obligations, 3 proved, 0 unproved.

Obligation proof summary for module mailbox_hw

MBcelI_TCC1 ............................................ proved

Totals: I obligations, I proved, 0 unproved.

Obligation proof summary for module time_maptime

CI ..................................................... proved

Totals: I obligations, I proved, 0 unproved.

Obligation PrOOf summary for module algorithm

C6_TCCI ................................................ proved

Totals: I obligations, I proved, 0 unproved.

Obligation proof summary for module juggle_opt

rearrange_delta_opt_TCC1 ............................... proved

Totals: 1 obligations, I proved, 0 unproved.
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Obligation proof summary for module minimal_hw

cell_of_MB_map_lem_TCCl ................................ proved

f_s_mem_TCC1 ........................................... proved

f_s_lem_TCC1 ........................................... proved

f_s_lem_TCC2 ........................................... proved

cell_fn_TCCl ........................................... proved

f_v_TCCl ............................................... proved

Totals: 6 obligations, 6 proved, 0 unproved.

Obligation proof summuy for module rcp_defs_imp_to_hw

cells_ax ............................................... proved

writs_cell_ax .......................................... proved

null_memory_ax ......................................... proved

cebuf_ax ............................................... proved

cell_state_reflexive ................................... proved

cell_state_symmetric ................................... proved

cell_state_transitive .................................. proved

control_state_reflexive ................................ proved

control_state_symmetric ................................ proved

control_state_transitive ............................... proved

frame_congruence ....................................... proved

¢s_length_congruence ................................... proved

writs_cell_congruence .................................. proved

Totals: 13 obligations, 13 proved, 0 unproved.

Obligation proof summary for module minimal_v

cell_fn_TCC1 ........................................... proved

f_v_ax_TCC1 ............................................ proved

Totals: 2 obligations, 2 proved, 0 unproved.

Obligation proof summary for module algoritlua_mapalgoritlua

AO ..................................................... proved

A2 ..................................................... proved

A2_aux ................................................. proved

CO ..................................................... proved

C2 ..................................................... proved

C3 ..................................................... proved

C4 ..................................................... proved

C5 ..................................................... proved

C6 ..................................................... proved

C6_TCC1 ................................................ proved

C6_opt ................................................. proved

Totals: II obligations, Ii proved, 0 unproved.

° ° °

Obligation proof summary for module maj_hw_to_maj_hw_model
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k_maj _u ............................................... proved

t_maj _ax ............................................... proved

t_maj_len_ax ........................................... proved

Totals: 3 obligations, 3 proved, 0 unproved.

Obligation proof summary for module minimal_hw_prf2

FsI_TCCI ............................................... proved

Fs2_TCCI ............................................... proved

Fs3_TCCI ............................................... proved

Fs3_TCC2 ............................................... proved

Totals: 4 obligations, 4 proved, 0 unproved.

Obligation proof summary for module minimal_hw_prf

p_cell_of_MB_map_lem_TCC2 .............................. proved

p_¢all_of_MB_map_lem_TCC3 .............................. proved

Totals: 2 obligations, 2 proved, 0 unproved.

Obligation proof summary for module frame_funs_to_gc_hw

succ_cntr_ax ........................................... proved

pred_cntr_ax ........................................... proved

pred_succ_ax ........................................... proved

suet_congruence ........................................ proved

pred_congruence ........................................ proved

Totals: 5 obligations, 5 proved, 0 unproved.

Obligation proof summary for module RS_majority_to_RS_maj_model

maj_ax ...................... - ........................... proved

Totals: 1 obligations, 1 proved, 0 unproved.

Obligation proof summary for module rcp_defs_imp_to_hw_prf

¢Ob_TCC1 ............................................... proved

¢I_TCCI ................................................ proved

c2_TCCl ................... _ ........................... proved

p_c2_TCC2 ................. : ............................ proved

¢3_TCCI ................................................ proved

c7_TCCI ................................................ proved

Totals: 6 obligations, 6 proved, 0 unproved.

Obligation proof summary for module gen_com_to_gc_he

memory_equal ................. .......................... proved

exec_task_ax ........................................... proved

exec_task_ax_2 ......................................... proved

Totals: 3 obligations, 3 proved, 0 unproved.

Obligation proof summary for module generic_FT_to_minimal_v

recovery_period_ax ..................................... proved

succ_ax ................................................ proved
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control_nc ............................................. proved

cells_nc ....................................... _ ....... proved

full_recovery .......................................... proved

initial_recovery ....................................... proved

dep_recovery ........................................... proved

components_equal ......................... _............... proved

control_recovered ...................................... proved

cell_recovered ............. ;.., .......................... proved

vote_maj ............................................... proved

Totals: 11 obligations, 11 proved, 0 unproved.

Obligation proof summary for module minimal_v_to_minimal_hw

cell_apply_NAP_EO ...................................... proved

f_s_ax ................................................. proved

f_s_control_ax ......................................... proved

f_v_ax ................................................. proved

f_v_ax_TCC1 ............................................ proved

cell_input_constraint .................................. proved

Totals: 6 obligations, 6 proved, 0 unproved.

Obligation proof summary for module gen_com_to_gc_hw_prf

mem_eq_LEN1_TCC1 ....................................... proved

mem_eq_LENl_TCC2 ....................................... proved

p_mem_eq_LENl_TCC3 ..................................... proved

Totals: 3 obligations, 3 proved, 0 unproved.

Obligation proof summary for module maj_funs_to_minimal_hw

k_maj_ax ............................................... proved

%_maj_ax ............................................... proved

t_maj_len_ax ........................................... proved

Totals: 3 obligations, 3 proved, 0 unproved.

Obligation proof summary for module to_minimal_he_prf_2

cic4B_TCCl ............................................. proved

Totals: I obligations, i proved, 0 unproved.

Obligation proof summary for module minimal_v_prf

p_f_v_components_TCC1 .................................. proved

Totals: I obligations, I proved, 0 unproved.

Obligationproof summary for module minimal_v_to_minimal_he_prf

LENI_TCCI .............................................. proved

LENI_TCC2 .............................................. proved

LEN2_TCCI .............................................. proved

LEN2_TCC2 .............................................. proved
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LEN3_TCC 1 .............................................. proved

Totals: 5 obligations, 5 proved, 0 unproved.

Obligation proof suamary for module DA_minv_¢o_LB

broadcast_duration .................... ................. proved

broadcast_duration2 .................................... proved

all_durations .......................................... proved

pos_durations .......................................... proved

Totals: 4 obligations, 4 proved, 0 unproved.

Obligation proof summary for module Dl_to_Dl_minv

broadcast_duration ................................... ,.proved

broadcast_duration2 ................................... .proved

all_durations .......................................... proved

pos_duratione .......................................... proved

Totals: 4 obligations, 4 proved, 0 unproved.

Grand Totals: 123 obligations, 123 proved, 0 unproved.
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