
AIAA-94-1253-CP

AN OPEN ARCHITECTURE MOTION CONTROLLER

Lothar Rossol

Trellis Software & Controls, Inc.

Rochester Hills, Michigan

AIAA/NASA Conference on Intelligent Robots

In Field, Factory, Service, and Space
March 1994

Abstract

Commercial controllers for robots are typically

custom-designed with closed architectures on

proprietary hardware and software platforms.

However, the cost of open controllers that use

standard computer hardware and software

platforms is rapidly decreasing. It is now

practical to build an open controller for

sophisticated robot and general motion control

using off-the-shelf components. Such open

controller designs allow the user to standardize

on hardware platforms such as VME, and on

operating systems and user interfaces, such as

UNIX or Windows. This paper describes

Nomad, an open architecture motion controller.
Nomad consists of a set of software modules

designed to control robots, various specialty
machines, and machine tools. The base

operating system for Nomad is LynxOS, a

POSIX-compliant real-time UNIX system.

LynxOS, and hence Nomad, runs on a number

of hardware platforms, including PC-ATs,

VME-based PCs, Motorola and RISC

processors. Nomad provides for sensor-

controlled robotic motions, with user replaceable

kinematics. It is programmable in C, with full

UNIX compatibility, including X Windows and

MOTIF. Specialized programming interfaces

and languages have been added. Open

architecture controllers, as represented by

Nomad, will have a major impact on the robot

control industry.

Introduction

Typically, motion controllers for robots and

other machines have been developed based on

closed architectures and proprietary platforms.

The hardware, the operating system, and the

software were custom designed. The result was a

closed system that was inflexible and expensive

to develop and maintain. In addition, closed

architecture controllers could not take advantage

of the rapid improvements in cost and

performance driven by high volume markets

outside the motion control industry. Also,

standardization on common platforms by

customers and end users was impossible.

In the past, the advantages of such custom

architectures have been cost and performance.

However, the cost of off-the-shelf standard

computer hardware has dropped dramatically

and performance has increased substantially in

the recent past. The result of these rapid
advances is that it has now become feasible to

build sophisticated robot and general motion

controllers using off-the-shelf components.

These compare favorably in price and

performance to custom designs.

If standard real-time operating systems are also

used in their designs, then open architecture

controllers will automatically leverage future

advances in hardware, driven by R&D funding
in high volume consumer markets. That is, such

open designs will become more and more

attractive in price and performance over time.

In addition to attractive cost and performance,

open controller designs allow the customer to

standardize throughout his factory on platforms

such as VME, and on operating systems and
user interfaces, such as UNIX or Windows. This

is an attractive advantage not possible with the
various custom designs. Also, such controllers

can be tailored exactly to the requirements of the

customer's application and the machine being

controlled. This is expensive or impossible with
closed custom architectures.

Published in similar form in Proceedings, International Robots and Vision Automation Show and Conference, April 1993, Detroit, MI.

Copyright © 1993 by Trellis Software and Controls, Inc. Published by the American htstitute of Aeronautics and Astronautics, Inc.

with penuission.

551

WithNomad,Trellis Software & Controls, Inc.

is introducing open architecture software for
motion control. Nomad software modules can be

combined with standard off-the-shelf computer
hardware and software to build robot or other

motion controllers that are standardized and yet

tailorable exactly to specific applications and
machines.

Nomad Overview

Nomad was designed to be the foundation for

open architecture motion controllers for robots,

various specialty machines, and machine tools.

The base operating system for Nomad is

LynxOS, a POSIX-compliant real-time UNIX

system. LynxOS, and hence Nomad, runs on a

number of hardware platforms, including PC-
ATs, VME-based PCs, Motorola and RISC

processors. Nomad-based controllers will
automatically benefit from future advances in

functionality and pricing of these hardware

platforms.

A controller built with Nomad software modules

and off-the-shelf standard computer components

provides full power of sensor-controlled robotic

motions, with user replaceable kinematics. It is

programmable in C, with full UNIX

compatibility, including XWindows and

MOTIF. Specialized programming interfaces or

languages can also be added.

Nomad-based motion controllers can be

uniquely tailored to specific machines and

applications. Through the power of C, X

Windows, and MOTIF, tailored application

packages can be developed, resulting in

controllers that are very simple to use from the

end user's perspective. These application
packages can be menu-based or teach pendant

programmable or whatever is appropriate in
each instance. With application-specific

interfaces, the end user need not be faced with

having to learn the intricacies of an operating

system or a programming language.

Nomad Components

Nomad components include TMOS, a Cartesian

trajectory generator that provides the full power

of sensor-controlled motions and a variety of

industrial servo and I/O interfaces. The

trajectory generator allows for six degree-of-

freedom Cartesian position offsets in real time
and coordination with multiple auxiliary axes.

Kinematic solutions for different machine

configurations can be incorporated into TMOS.

The I/O control provides precise

synchronization of both discrete digital and

analog I/O with motion.

C-WORKS, the second component of Nomad,

provides the user environment for Nomad. It

consists of a C library for communicating with

TMOS, a system configuration tool for Nomad,
control panel functions, and a set of

demonstration programs.

A wide variety of optional Utilities represent the

third Nomad component. These utilities include

a graphical servo tuning tool, a graphical
machine simulator, a command line interface to

Nomad, teach pendant support, and others.

Nomad was designed to be open and modular.

This allows Trellis to provide additional
combinations of user environments with other

motion systems in the future. For example, other

user environments planned consist of a robot

language and an NC environment for Nomad.

The remainder of this paper will cover TMOS,

the Nomad trajectory generator.

TMOS Interface to Nomad

This section describes the High Level C Library

(HLCL) interface to TMOS. The HLCL provides

many conversion functions for various forms of

user data, performs integrity checks on user

supplied data, provides parameter schedules to

simplify motion programming, and hides
internal TMOS data structures from the C

program, minimizing the need for program

modifications with TMOS product
enhancements.

In addition to advanced motion commands, the
HLCL interface to TMOS contains a number of

unique features that allow programmers to
communicate position information in many

different formats, use "schedules" to reduce

complexity of simple applications, generate

552

complex trajectories with minimum effort,
program sensor-guided motions, generate off-
line paths, and provide user control of error
handling.

Connecting to TMOS

Figure 1 illustrates the interaction between a C
program using the HLCL and TMOS.

Some HLCL function calls work synchronously
with TMOS by sending it a message and waiting
for a response before returning to the user
program. Some functions, such as a request to
set a digital output, require no response and
return immediately after sending the message.
Finally, some functions, such as status requests,
interact with an information base that TMOS

updates.

Motions generally execute in parallel with the
user program. That is, HLCL calls that initiate

motion will return when the motion is queued.
When motions complete, a message is sent back
to the user process. A user definable callback
function is then used to process the completion.

Multiple user programs may login to TMOS.

Since the information described above is kept
within the space of each user process, each
process has its own context and will not

interfere with other programs that might use or
modify the same parameters.

Position Allocation and Data Types

Languages for motion control typically provide
one or more specific data types for position data
which can be declared and allocated within a

program. These types must then be supported in
communications with the outside world through
files or networks. The inevitable problem is one
of compatibility with off-line generated data or
with new and improved releases of software.

The HLCL for TMOS allocates position data
internally in an undocumented format called a
TMOSPos. HLCL calls can be used to convert

between a variety of user formats and a
TMOSPos. TMOS will then return a handle to
the TMOSPos for later use in motion and other

calls. The burden of storage and communication
of the user's data is left with the user.

For example, an Euler format for position data
can be declared and allocated in the user's C

program. He can store and retrieve such data
using files or the network. He would then call a
TMOS routine to convert that data to a
TMOSPos and return a handle to the user.

Later, the user's C program can issue a motion
call to TMOS using the handle.

In this way, issues of upward compatibility with
future versions of TMOS are avoided, and the
user is free to archive his data in whatever

format and precision he chooses. (That is, the
format of a TMOSPos is not intended to be

User Process

EnableMot
HLCL Function Call

Creates links

INN iiii "'--

TMOS Process

Other IHLCL Function Calls

User Defined

or Default

Callback Function

_r

[TMOS Ports I

Status Request

HLCL Function Calls

I ReceiveRequests

Library

Ic"enip°
::: ,i ,i ,iiiiiiii!iiii, ii!iiiiii ii, lliiii!iiiiiii!iii!iiiiili

and Error Responses J

Fig. 1 -- Connecting a user process to TMOS

553

secret, but merely to shelter programs from

changes in its structure with future

enhancements.)

In addition to several other pieces of data, a

TMOSPos keeps configuration information, so

that when such a position becomes the argument
of a machine motion, redundant solutions for the

position can be reconciled. HLCL calls that

return position information will also return

configuration information. The user may keep

this configuration information with the data or

choose to ignore it.

Schedules and Other Modal Parameters

Sophisticated motion control algorithms employ

many user or system definable parameters (as

many as 100). It is inconvenient for the user to

have to specify every parameter with each

motion request. This problem is typically solved

with modal parameters or system-wide

parameters.

In a multiprogramming environment for

multiple machines, we must further consider

whether a parameter is specific to a thread of

execution or whether it is specific to a particular

machine. For example, it is appropriate for each

separate program to keeps its own default value

of speed to be used with every motion request.
However, since the tool definition refers to a

current physical attribute of a machine, that

characteristic must be shared globally with all

programs.

A TMOS schedule includes the modal

parameters of speed, acceleration, motion type

(linear, joint, etc.), and motion termination type.

Other modal parameters used in TMOS include
a base frame of reference definition (called

Frame) and a tool frame of reference definition

(called Tool). These modal parameters are

defined inside the TMOS process itself rather
than in a schedule, because they are specific to a

particular machine rather than a thread of
execution. Tool and Frame are set with specific
HLCL function calls.

Coordinate Systems and Coordinate Frames

All Cartesian motions produced by TMOS are

defined for a specific Tool Center Point (defined

by a homogeneous Tool transformation) and are

defined with respect to a specific user definable

frame of reference (defined by a homogeneous

Frame transformation). Tool and Frame

transformations are kept modally within TMOS
for each machine under its control. That is, Tool

and Frame need to be set only once, and those
values will be used for each Cartesian motion of

the machine until the modal values are changed.

Changes in Toot and Frame take effect only at

the beginning of the next motion using Tool
and/or Frame.

Dynamic offsets to both transformations can

occur at any time during a motion that uses
DeltaTool and/or DeltaFrame. Changes to

either of these transformations will take place

immediately after the HLCL function calls that

change them.

Interpolation and Termination of Motions

TMOS trajectories are broken into two

categories, those that are terminated at a user

specified destination (called destination
terminated) and those that are unterminated

(called vector). Vector motions are terminated

by a succeeding motion or by an HLCL function
call. Vector motions are useful for user defined

sensor termination (also necessary for manual

motion implementation.)

For Cartesian motions, the trajectories are of the

Tool Center Point (TCP). In some systems, the

destination position is checked for teachability

of the tool center point before the motion is

attempted. However, for many machines with
nonlinear kinematics, this does not guarantee

reachability of all positions on the trajectory.

Therefore, TMOS does not check for

reachability of destinations. TMOS confines

itself to dynamic testing of reachability of each

position on the desired trajectory for both vector
and destination terminated motions. The test is

made one deceleration period ahead of the

machine's current position on the trajectory, so
that the machine can be stopped on the

trajectory just prior to the offending position.

554

The vector motions continue forever until

stopped by a joint limit or are canceled or
aborted. Many types of vector motion are
available in TMOS, including move-to-joint-
vector, move-to-world-vector, move-to-frame-
vector, move-to-tool-vector, and move-to-wrist-

joint-vector.

Destination-terminated motions are completed
when the destination position of the motion is
reached within the tolerance indicated by the

termination condition. Motion types include
joint-interpolated moves, straight line
interpolated moves of the tool center point
(TCP), circularly interpolated move of the TCP,

straight line interpolation of the major axes in
combination with joint interpolation of the wrist
axes, and other more complex motion types.

All the above motions can be dynamically offset
by various sensory inputs, such as visio_t

Termination Conditions

The terminating condition of a motion for any of
the above interpolation types determines how
closely the machine must come to its destination
before returning to the calling subroutine.
TMOS provides a number of termination
conditions, including:

Return motion complete when the machine
is within tolerance specified as Fine or as
Coarse in the TMOS configuration.

Return motion complete and start next
motion when interpolation of this motion is
complete (do not wait for servo tolerance).

Start next motion when this motion begins
deceleration. This provides the ability to
blend motions.

Initiate a new motion immediately when the
next motion instruction is received. This is
useful for vector motions in manual motion

pendant implementation and user defined
sensor applications.

Other more complex termination types
unique to TMOS, such as fillet termination
which permits continuous motion at

constant speed across motion segment
boundaries.

Real-time Trajectory Modification

TMOS permits real-time modification of
motions in progress. Routines are provided
which accept a TMOS position as an
incremental offset to either the part (Frame) or
the tool position. This feature can be used to
implement sensor-guided tracking for example.
The C program can read the sensor in a loop
and dynamically modify the motion in progress.

Arm Configurations

Since robots can generally reach a given
Cartesian position in more than one way,
Cartesian information alone is insufficient to

completely determine the joint angles needed for
a machine to reach that position. For example,
the PUMA robot can generally reach a position
with its wrist either above or below the elbow.

Some redundant manipulators can reach nearly
every position in an infinite number of ways.

The additional information needed to dictate

how a machine will reach a given position is
referred to as configuration information. Some
controllers use specific commands to specify the
configuration to be used in reaching a position.
TMOS assumes configuration is part of the data.
Therefore, all library routines that expect
Cartesian input data also provide a parameter
for configuration information.

For some simple machines, Cartesian positions
can only be achieved in one way. Also, it is
desirable to represent the positions of some

objects without regard to how a machine might
reach that object. Therefore, the Euler and
Transform types defined for user representation
of positions by the HLCL do not incorporate
configuration information inside the data.

Configuration data may be optionally added to
these data types when they are converted to
TMOS positions by the TMOS conversion
functions, or when they are converted to
machine joint angles.

555

S_eed Motion Commands and Continuous Motion

TMOS by default provides coordinated motion

of all axes of a machine on every motion. This

means that for each motion request TMOS will

coordinate the motion such that each joint of a

machine will begin and end its motion at the

same instant in time. The meaning of speed

therefore, must apply not to individual axes, but
to some entity which represents a combination

of the axes of a machine. In some cases, speed

applies to the tool center point with respect to

the Frame. In some cases it is not possible to

define a single point at which speed can be

measured (joint interpolated motion for
example) and speed is defined relative to some

maximum. In addition, for motions which

involve changes in both orientation and

translation of the tool, beth rotation and

translation speed constraints must be taken into
account.

TMOS considers up to three kinds of speed in
the coordination of a motion, depending on the

motion type:

Tool translation speed - the speed of

translation of the defined tool center point

relative to the specified Frame.

Tool rotation speed - the speed of rotation of

one or more angles of orientation, measured

in rotation units per second.

Axis speed - the speed of motion of an axis
(either rotation or translation), measured
relative to the maximum for that axis.

The HLCL is designed so that routines return as

soon as possible. In the case of motion requests,
the routines will return as soon as an "ID" can

be assigned to the motion. The calling program

can then continue processing other events and

handle motion completion as an asynchronous

event. If the programmer wishes to issue a series

of motion requests, which is often the case, he

must wait for previous motions to complete. A

library routine is provided, which permits the

caller to wait for the completion of a specific

motion, identified by the ID.

Of course, the programmer can also cause

continuous motion, by using a suitable

termination type, so that the machine will not
decelerate at the end of each motion and not

wait for the completion of the previous motion.

Continuous motion with the appropriate

termination type will cause succeeding motions

to be smoothly blended with previous ones.

Smooth blending of motions at constant speed

of the TCP is a unique option in TMOS.

Summary

TMOS, when combined with C-WORKS and

other utilities, forms Nomad, a foundation for

open architecture motion control for robots and
other machines. Nomad software runs in a

UNIX environment on off-the-shelf hardware, to

provide low cost and high functionality motion

control, standardized and yet amenable to

tailoring for highly specialized applications.

Speed Limits

TMOS imposes speed limits only on a joint

basis. That is, TMOS continuously monitors the

speed of all axes. If any axis exceeds its speed

limit as defined in the TMOS configuration file,
then all axes are scaled back to maintain

coordinated motion at the limiting joint speed.

No limit is imposed on Cartesian translation or

Cartesian orientation speed control.

TMOS also permits acceleration control on a
per-motion basis.

556

