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Abstract

There is an increasing demand for space robotic sys-
tems which can reduce the number of potentially haz-

ardous EVA's on manned space missions. In addition,

telerobotic maneuvers can easily become long and tire-

some for the operator. This paper describes a robotic

system which accepts motion and control commands

which can be generated autonomously.

The system developed has been designed to per-

form an autonomous grapple based on guidance con-

trol feedback provided by images from a single camera
mounted on the slave robot's end effector. The vision

system consists of three parts. The first part is signa-

ture based, trained on an arbitrary grapple interface

(i.e. no special targets are required for guidance); it
provides estimates for the 3D attitude of the interface

by interpolating sampled signature correlations. These

signatures are essentially the distribution of line ori-

entations obtained by radial integration of the Fourier
transform of a pre-processed edge image. The second

part estimates the range and bearing of the interface

based on the first and second moments of the prepro-

cessed edge image of the interface. And the third stage

of the algorithm verifies the results.

The robot path follows a linear translation trajectory

which is repeatedly adjusted for errors via the vision

system. The end effector's attitude is adjusted along

the trajectory such that the grapple interface always
remains in center view of the camera.

Introduction

Teleoperations are becoming increasingly important

in hazardous environments (e.g. chemical plants, nu-

clear power plants, space). Space systems applications,
such as space-based assembly and maintenance, auto-

matic rendezvous and docking, space exploration, and

satellite monitoring and tracking 1 are of particular in-

terest due to potentially long delay times between op-
erator and robot. For instance, it has been estimated

that robotic operations can take several times as long

as extra-vehicular activity (EVA) to perform similar

tasks 2,3. Long delay times and limited bandwidth re-

quire the robot to accept only high level commands

and to possess locally a certain degree of autonomy.

Object recognition and attitude determination of

objects are essential components for successful sen-
sor based teleoperational semi-autonomous robotic sys-

tems. This paper will cover camera based systems, due

to the relatively low cost of CCD cameras and their

wide use in remote robotic systems.

Current vision based robotic systems utilize visual

guidance targets. These targets must be placed on ob-

jects with which the robot is to interact 4. However,

when the objects are not readily accessible to humans,

which is the case when operating in a hostile environ-

ment such as space, the system restricts the class of
robotic interactions to those which are specifically iden-

tified and designed a priori.

The new vision system developed eliminates the need

for these guidance targets by allowing the object, or

part of the object (i.e. a grapple fixture), to become the

robot's visual guidance target. This is accomplished
by teaching the vision system the object by presenting

different views. This training could be done with a

physical object or by using a CAD model of the object.

The complete description of a particular target rel-

ative to the camera consists of six parameters: roll,

pitch, yaw, range, and two bearing parameters. All six

can be estimated, in principle, from a single camera

image and knowledge of the target's solid geometry.

We have developed a new technique for determin-

ing the three-dimensional roll, pitch, and yaw attitude

target parameters and the three translation parameters
assuming that the object is known and unoccluded.

Method

We restrict the class of images to those of machined

objects, which characteristically produce sharp edge

discontinuities. The edge discontinuities result from

the projection onto the image plane of the polytopes,

cylinders and conic sections comprising the object. Our

approach relies on these projected edges as the basic

features required to analyze and interpret the image
data.

Attitude Estimation

Tile technique for estimating the attitude relies on

extracting a signature of the object as viewed by the

camera, and then matching it against signatures of the

same object with known attitudes, generated off line
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from a model of that object. The attitude estimate is

obtained by interpolating among the signatures with
the highest matching scores. The overall procedure is

diagramed in Figures 1.
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Figure 1: Overall data flow diagram for the estimation
of the attitude parameters.

The algorithm computes as a signature the distri-

bution of edge segments in the image as a function of

orientation in the image plane. When an object un-

dergoes an attitude transformation, the distribution of
line orientations in the image plane changes; therefore,

the signature contains implicit information about the

object's attitude. On the other hand, the signature is

insensitive to the range and bearing of the object, as
these do not affect the distribution of line orientations

in the image. The signature matching procedure ap-

proximates the inverse map from line orientations to

object attitude.

The signature extraction computation involves three

steps. First, a binary line image is obtained from the

original picture (Fig. 2), reducing the effect of changes

in illumination of the target (Fig. 3). The prepro-
cessing requests identification of the object within the

field of view, and removal of clutter in the image. We

achieve this by an image segmentation strategy dis-
cussed in detail in the Appendix. The line image is

then mapped into the two-dimensional Fourier domain,

effectively collapsing range and bearing information,

while preserving information on the object's roll, pitch,

and yaw (Fig. 4). Lastly, a weighted sum of the magni-

tude in the Fourier image yields the distribution of line

segments as a function of orientation, which serves as
an attitude signature (see Gonzales and Wintz S for an

introductory discussion on the properties of the Fourier

Transform applied to image processing)(Fig. 5).

In particular, the Fourier transform provides an effi-
cient and robust means of extracting the signature. In

essence, any straight line in the image plane is mapped

by the Fourier transformation into a straight line pass-

ing through the origin of the transform domain, and

orthogonal to the original line. The distance from the

origin of the original line results in a complex phase
modulation of its transform. By linearity of the Fourier

mapping, an image consisting of several straight lines

is transformed into a superposition of lines emanat-

ing from the origin. Thus, a radial integration of the

Fourier transform's magnitude, about the origin of the
transform domain, yields the desired signature. To

compensate for the finite thickness and length of ac-

tual line segments in the image, the Fourier transform

is radially weighted, to deemphasize edge thickness.

The attitude parameters are found by performing a

cyclic cross-correlation of the target signature with the
library signatures and selecting the maximally corre-

lated match. The best signature picked reflects the ob-

ject pitch and yaw. The offset of that signature match

reflects the roll. Since signatures are 180 ° symmetri-

cal there is a 180 ° ambiguity in the roll measurement.

This ambiguity will be resolved in the match verifica-

tion process described in Section 2.3.

Position Estimation

The technique for estimating the range and the two

bearing parameters of the object relies on the center of

2 alonggravity xc, Yc, and the sum of the variances a o

2 and the y-axis ay2 of the object's edgethe x-axis _x

image:
2 2 2

_o = gx + Cy (1)

2 It canThe range of the object is determined using no.

be shown, that ao2 is invariant to rotation and transla-
tion of the image 6-s. Using a perspective projection,

and assuming that the size of the object is small com-

pared to the range, the distance of the object in the

actual image, z0, is given by,

f0 x are f x Zre f (2)
zo = fref x Cro

where _o is the square root of the variance of the actual

image, f0 is the focal length of the lens used, Crref is
the square root of the variance in the edge image of the

matching signature, fref is the focal length of the lens

used in generating the signature library, and Zre f is the
range of the object used during training.

By knowing the deviation of the center of gravity of

the actual edge image against the center of gravity of

the edge image of the matched library signature, the
two bearing components are determined by:

xl Xre f (3)
p = tan-1 To - tan-1 fref

Yl Yref (4)
¢ = tan-1 Too - tan-1 fref

where (xl, Yl) and (Xrel, Y_el) are the center of gravi-

ties of the actual edge image and the training edge im-

age respectively, p and ¢ are the values of the bearing

parameters along the y-axis and x-axis respectively.
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Figure 2: Synthetic image of the Micro Interface de- 
vice, a typical machined object. Figure 4: The weighted 2D FFT transform of the edge 

image of the Micro Interface Device. 
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Figure 5 :  The extracted signature, encoding the dis- 
tribution of line edge orientations in the original image 
of the Micro Interface device. Figure 3: The edge image for the Micro Interface de- 

vice. 
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Model Based Attitude Estimation and Verification

The six attitude parameters found in Sections 2.1

and 2.2 must be verified and the ambiguity of the

roll must be resolved. This is accomplished with the

help of a perspective projection (overlay) of a three-

dimensional model of the target (Figure 6) in a cross
correlation with the edge image of the object seen by

the camera• The overlay with the highest correlation

yields the best estimate of the attitude and position of

the target.

Pose of N-Best Matches

from Signature based

Attitude Estimation

Generation of
N Overlays

1
Cross-Correlation I

1
Pose Parameters

3-D Model

-4---- Edge Image

Figure 6: Data flow diagram for estimating the pose

of an object based on the projection of a three-

dimensional model of the target

The six pose parameters of the n-best matches from

the signature based algorithm in Section 2.1 were used
to generate n corresponding overlays. A typical overlay

is shown in Fig. 7. Those overlays were matched

The three-dimensional model of the object was de-

fined in terms of polygons where each polygon was de-

rived by its vertices. To each polygon a surface normal
was assigned to calculate the visibility of the polygon

for the current attitude of the object• The visibility

check was achieved by determining the sign of the dot

product between the normal vector and a vector ex-

tending from the the polygon to the view point. For
positive values the polygon was visible and for negative
values invisible.

To increase the robustness and precision of the cross

correlation we correlate the directions of the edges

with the direction of the overlay edges• By looking

at the directional image gradient we obtain not only

the strength of the edge but also its direction• The

Figure 7: Example of an overlay which was used in a

cross correlation to estimate the pose of a target (The
jagged edges are caused by the typ-setting process).

modified cross correlation can be stated as

iV= Nv

match(i,j) = _ _ (_i,_ (x,y) _o_ (i + x,j + y))
x=Oy=O

where (.) denotes the dot product between two vectors.

The vectors _im (x, y) and Ptov (x,y) are defined as
• . O](x,y) O](x,y) Tthe two-dlmenslonalvector [ ^ , _ ] from the

t O_ U_/ a

camera image and overlay image respectively. It has to

be noted that in Equation 5 we only have to perform

the cross correlation in the vicinity of the projection

of the object model because the signature based al-

gorithm gives reliable estimates of the position of the

target.

The combination of the signature based method

shown in Section 2.1 and the above approach based
on cross correlation allows us to overcome one of the

main disadvantages of the model based methods shown

in the literature 9-10 where a correspondence had to be

established between image features and model features

to solve for the attitude parameters. With the signa-
ture based algorithm we are able to prune down the

search tree of possible aspects of the model and reduce

the range of the cross correlation considerably.

Robot Control

The algorithm for moving the robot towards the tar-
get to perform a grapple is described below:

• Using a camera mounted on the end effector, esti-

mate the position and attitude of the target (i.e
the handle to be grappled) with respect to the
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camera.Wewill call this frame/:/where the term

frame refers to both attitude and position.

• We can define a frame, CFH, with respect to the

target, which is the desired final frame of the cam-

era for the approach. Now we can use our estimate
for the target to come up with an estimate for CF,

called G_F, with respect to the Camera frame C.
If C is within tolerable limits of CF then we are

at the final position and attitude and can grapple

the object.

• If we have not reached CF then we can calculate

our next desired camera position by using the fol-

lowing constraints on the next camera frame, de-

noted by N(C).

1. The origin of N(C), denoted by N(C)o =

N(Co), falls on the line CoCro.

2. N(C) should be at most a distance of dmax
from C.

3. The z-axis of N(C),^ denoted by N(C_)
should point towards H0.

4. N(C_) should be perpendicular to both
N(C_) (of course) and H v. In particular the
sign of the vector is defined by N(C_) =

It_ x N(Cz).

• We can calculate N(G) with respect to G from

N(C), since the relationship of the camera, frame
C to the end effector frame G is known. This

information can be put in the form of relative

(x, y, z, R, P, Y) moves.

• Command the robot to make the relative move

calculated above.

• Repeat the entire process.

Results

We have tested the algorithm on a set of synthetic

images of an interface device used in space system ap-

plications (Fig. 2). The Micro Interface device is used
in SSF robotic operations. A ray-tracer was used to

generate the synthetic images' aspect transformations

of the target with respect to the image plane. Although

the results presented in sections 3.1-3.4 were generated

with synthetic images, similar results have been ob-

tained for real camera images.

A 5 x 5 signature library was generated from syn-
thetic images to cover a square patch 10° on the side

in the pitch-yaw plane with an inter-signature sepa-
ration of 2.5 o in each direction. The center orienta-

tion was selected to correspond to a typical view of

the Micro Interface during a grasping operation. This

signature library was representative of more realistic

libraries covering a larger range of pitch and yaw pa-
rameter values.

Using this signature library, four tests were per-
formed:

1. Random roll, pitch and yaw attitude estimation.

2. Bearing and Range estimation.

3. Range invariance test of roll, pitch and yaw.

4. Bearing invariance test of roll, pitch and yaw.

For consistency with the ray-tracer program, the tar-

get's attitude in all four tests was represented using

three Euler angles, which measure attitude through a

set of three rotations about the z, x, and again z axes,
in the camera's frame of reference (the image plane

coincides with the xy-plane, and faces the negative z

axis). We denote these three rotation angles by a, /3,

and 7, respectively. The translation components, range

and bearing, of the image plane around the x-axis and
y-axis were denoted with z, ¢, and p respectively.

The tests provide evidence for the viability of the

approach to 3D attitude and position determination.
The procedure accurately estimates the position and

the three attitude parameters of the object. The al-

gorithm shows invariance to the range and bearing of

the target for the estimation of the 3D attitude. These
test results are described in the sections 3.1-3.4.

Roll, Pitch, and Yaw Estimation

A random set of 10 target images with three arbi-
trary Euler angles was used to test the algorithm's abil-

ity to correctly determine the target's attitude. The

exact and estimated Euler angles are shown in Table 1.

The average error in any one parameter is 0.6 °. The
maximum error occurred for the a parameter of Im-

age J, a difference of 2.7 °. For this image, the wrong

library signature was selected in the matching stage.

The difference in the 7 parameter partially compen-

sates for this error, reducing the combined c_+ 7 angu-

lar error for this image to only 1.2 °.

Bearing and Range Estimation

A set of 4 target images was used to test the accuracy

of the procedure for the bearing parameter and a set of

6 target images was used to test the accuracy for the

range. The exact and estimated parameters for range
and bearing are shown in Table 2 and Table 3. The

average error is 2.2cm for the range estimate and 0.1 °

for the estimate of the bearing.

Range Invariance

A set of 14 target images was used to test the al-

gorithms sensitivity to the target's variation in range.

The range of the target in the training images, used

to generate the signature library, was 30cm from the

image plane. The exact and estimated Euler angles are
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Table1: Attitudeestimationtestresults.

Im age
Exact Angles

(degrees)
a /_ 7

A 16.09 22.63 -8.55
B 15.24 20.46 2.63
C 18.39 23.27 7.69
D 18.40 22.08 -4.55
E 19.67 23.51 -1.27
F 16.92 24.55 5.33
G 17.60 23.81 -0.45
H 19.15 21.31 -5.24
I 15.17 20.24 -4.50
J 15.27 23.68 -2.81

Estimated Angles
(degrees)

16.57 22.15 -9.98

15.60 20.33 2.81

19.29 22.44 6.19

17.91 21.89 -3.65

20.57 23.11 -1.55

16.90 24.36 4.78

17.86 23.51 -0.14

17.95 21.38 -3.51

15.32 20.01 -4.22

12.50 24.74 -0.70

Table 2: Range estimation test results.

Image Range Estimated Range

(cm) (cm)
A

B

C

D

E

F

31

35

39

45

60

90

31.17

35.70

40.00

46.30

62.10

98.00

shown in Table 4, for various target ranges. Angles are

measured in degrees, range in centimeters.

The errors incurred are moderate, and degrade as

the range increases. The maximum error occurred for

the cr parameter of Image L, a difference of 5.0 °. For

this image, the wrong library signature was selected in

the matching stage. The difference in the 7 parame-

ter partially compensates for this error, reducing the

combined a + 7 angular error for this image to only
1.5 ° .

Table 4: Range invariance test results.

Range Exact Euler Angles

Image (em) (degrees)
a _ 7

* 30 17.500 22.500 0.000

Range Estimated Euler Angles

Image (cm) (degrees)

A

B

C

D

E
F

G
H

I

J

K

L

M

N

30

31

32

33

34
35

36

37

38

39

45

60

9O

150

17.553 22.342 0.000

17.455 22.199 0.000

17.514 22.193 0.000

17.463 22.116 0.000

17.467 21.989 0.000
17.436 21.827 0.000

17.468 21.533 0.000

17.492 21.529 0.141

17.412 21.257 0.141

17.521 21.351 0.000
18.068 20.050 0.140

22.500 17.500 -3.518

17.989 20.885 0.140
17.776 21.297 0.140

Table 3: Bearing estimation test results.

Image

A

B

C
D

Bearing

(degrees)
1 0
2 0

3 0

4 0

Estimated Bearing

(degrees)
1.00 0.02

2.00 0.05

3.07 0.13

4.14 0.18

Bearing Invariance

A set of 5 target images was used to test the algo-
rithm's sensitivity to the target's variation in bearing.

The bearing of the target in the training images used

to generate the signature library was 0° from the image
plane's normal. The exact and estimated Euler angles

are shown in Table 5, for various target bearings, away

from the image plane's normal, in the direction of the

positive y-axis. Both Euler angles and bearings are

measured in degrees.

The errors incurred are moderate, with a maximum

error in the fl parameter of Image E, a difference of only

0.40 . Bearings of more than 40 would have brought the

target partially outside the field of view of the camera,
and were not tested.
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Table 5: Bearing invariance test results.

Bearing Exact Euler Angles

Image (degrees) (degrees)

a B 7

* 0.0 17.500 22.500 0.000

Bearing Estimated Euler Angles

Image (degrees) (degrees)

A 0.0

B 1.0

C 2.0

D 3.0

E 4.0

17.553 22.342 0.000

17.435 22.510 0.000

17.472 22.549 0.000

17.385 22.735 0.000

17.337 22.939 0.000

Verification Method Results
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Figure 8: Matching random test points to best overlay

candidate (candidates are on a 5 degree spaced grid)

Figure 8 shows the overlay matching results. Each

random test point is marked with "+" and has a corre-

sponding (correspondence is indicated by a connecting

line) estimate denoted by "o". The estimates in this

example fall on a 5 ° x 5 ° grid. As seen by the figure,

all but one of the matches fell on the nearest grid point

(i.e. the estimates were within 5 degrees).

Conclusion

A procedure has been developed to determine the 3D
attitude and the position of machined objects without

the use of any special marks. Since there is no need for

marks, an existing implementation of the algorithm can

be quickly adapted to a different object, by supplying

a signature library for the new target. Moreover it is

not necessary to possess a physical model of the object

because it is possible to generate the signature library

with a ray-tracer program . In addition the signatures

require only 1K bytes of memory each. Thus for a typ-

ical signature library of 225 signatures, the signature
library is smaller than one 512 by 512 image.

The algorithm relies on standard image processing

routines (e.g. edge extraction, 2D Fourier Transforma-

tion), which are available in numerous image processing

libraries, and fast hardware implementations.

The 2D Fourier Transformation, which is the most

time consuming part of the procedure is readily paral-

lelized, so that a real time version of the algorithm can
be achieved by distributed hardware.

Although this method was developed under the as-

sumption that there is no clutter in the image and that

the target is of a known type, these constraints can be

lifted using additional initial scene analysis. For ex-

ample, the scene can be segmented using standard im-

age processing algorithms, and potential objects can

be compared to known objects via signature matching
and match verification.
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Appendix

In order to remove background clutter we use infor-

mation about the constraints of our scene with respect

to our target. This appendix discusses in detail the im-
age preprocessing techniques which we used in connec-

tion with the robotic grappling application discussed

in this paper.

Preprocessing the Raw Image

We start our processing given a single frame 256 gray

scale image, I. The image I is filtered three times

producing three more useful images. The first is a low
pass filtered version of the raw image, denoted by L

The next two filtered images are the x and y gradients

of the raw image, denoted as VxI and VuI respectively.
Two binary edge images are then constructed using the

above filtered images.

The first edge image is a thin edge image, E, found

by,

E= L (i+ 1/2) > _ (6)
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where">" is treatedaspixel-wisebinaryoutputop-
erator. Theaboveequationattemptsto enhancelo-
caledgeinformationbydividingthemagnitudeofthe
gradientof the rawimageby the averageneighbor-
hoodpixelintensity.Thussmallintensityvariationsin
darkregionscouldbeequivalentto largervariationsin
lighterregions11.

The second edge image is a thick edge image, E +,
defined as,

[ > "
(7)

The image E + is nearly identical to E except that

the threshold used is lower. Thus, E + contains more

white pixels (pixels which satisfy the binary condition).

Therefore, E C E + (i.e. every white pixel of E is

a white pixel in E+). Note that while E provides a
cleaner edge image, E + preserves the connectivity of

the edge image. This connectivity will be used below

to determine a processing region which rejects back-

ground clutter.

Rejecting Background Clutter

In the discussed application we are interested in find-

ing a handle which is mounted on a predominantly
lighter background. In addition we assume that the

handle structure will be larger than any unwanted clut-

ter on the same background. Thus, we look for the

largest edge structure in a dark region which is con-

tained in a lighter region. This region tells us which

information in E should be processed and which infor-
mation should be rejected. Next we must determine

what is light and what is dark as well as what is con-
sidered an edge structure.

Using the original raw image, I, we generate a his-

togram. This gray level histogram is then clustered into

three fuzzy classes, dark pixels, medium pixels, and light

pixels by using a fuzzy c-means clustering algorithm 12.

The light regions of the raw image are found us-

ing the mid-point between the dark and medium pixels

cluster centroids as a image threshold. This thresh-

olded image is then segmented into blobs based on

the pixels 8-connectivity 5J3. The connectivity analy-

ses only reports significant blobs (blobs which contain

a significant number of pixels). Out of all the signif-
icant blobs found, the algorithm picks the one with

the largest area (number of pixels) as the largest light

region.

Next, the raw image is thresholded by the mid-point
between the light and medium pixel cluster centroids.

This time, all pixels below the threshold are considered

logical 1 and all above are logical 0. This new binary

image is combined with E + using a logical pixel-wise

and. The resulting binary image contains edge struc-

ture in the clark regions of the raw image.

The edge structure is applied to the connectivity

analyses algorithm to find all significant connected edge

structures in dark regions of the raw image. The re-

sulting processing region is then determined to be the
largest edge structure in a dark region which is within

the largest light region. If no processing region is found,

then the largest edge structure in a dark region becomes

the processing region. And if there where no signifi-
cant edge structures in a dark region found a warning

message is issued and the entire image is used as a

processing region.
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