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Abstract

This paper discusses an application of the Genetic

Algorithm, a parallel and global search technique that

emulates natural genetic operations. Real application

problems often require optimization of a large number

of parameters with high precision. Since the existing

Genetic Algorithms do not represent the parameter sen-

sitivities, we have devised a novel scheme of Hierarchi-

cal Genetic Algorithm to solve complicated engineering

problems. Using this approach, the higher level GAs

propose promising search spaces, while the lower level

GAs search in more detail with additional parameter

sets. This decreases the complexity of search and uti-

lizes the computing resources efficiently. This scheme

has been used to design an autonomous control systems

for space-based resource processing plants.

1. Introduction

Applications of computer technology are expanding

from pure data processing to information and knowl-

edge processing which enables Computer-Aided Sys-

tem Design. Knowledge-based system applications are

characterized by symbolic processing, nondeterministic

computation, dynamic execution, high potential for par-

allel and distributed processing and knowledge manage-

ment. However, fundamental physical limits of current
technology have not been overcome for the more sophis-

ticated computation-intensive problems, such as predic-

tive modeling and forecasting, design automation, large

scale, simulation and artificial intelligence. The com-

bination of technology and economic factors make par-

allel and distributed computing systems attractive and

effective for a large variety of intelligent machine appli-
cations [9].

The emergence of massively parallel computers has

also fueled a growing interest in problem solving sys-

tems based on principles of evolution and heredity. One

class of such evolution strategies is Genetic Algorithms
[14]. The remarkable success demonstrated by Genetic

Algorithms (GA) in search, optimization and learning
has substantially increased interest in their potential

application to modeling, simulation and design of com-
[1, 61 eplex real world systems . Such applications includ

identification and calibration in model construction and

subsequent model-based control synthesis and policy

optimization. However, complex simulations typically

require large execution times to evaluate alternatives,

or in GA terms, to obtain fitness values for newly gen-

erated chromosomal individuals. Such lengthy simu-

lations present a major bottleneck to GA application

since tens, or even hundreds, of individuals may need

to be evaluated in every generation. Parallel processing

offers promise of reducing this bottleneck along two mu-

tually supporting avenues: 1) speeding up the simula-

tion needed to estimate fitnesses using distributed sim-

ulation methods [5l and 2) parallelizing the evaluation

and processing of fitness information. Both avenues are

under active investigation and indeed a computer archi-

tecture to support their integration has been suggested
[19].

Real application problems often require optimization

of a large number of parameters with high precision.

These parameters increase the complexity of the search

problem. In existing approaches, a chromosome rep-

resenting the parameters does not contain information
about their sensitivity, even though parameters influ-

ence the system performance to different degrees.

We have developed a novel scheme of a Hierarchi-

cal GA optimizer which executes multiple GA modules

to solve complicated problems. These GA modules are

constructed hierarchically and creation/deletion is per-

formed dynamically based on the performance of each
module.

Each GA module deals with a different degree of ab-
stracted models for evaluation and a different number

of parameters for optimization. High level GA modules

usually search for fewer parameters which are more sen-
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sitiveto the system performance. They are looking for

milestones of promising search region instead of accu-
rate solutions. The candidate individual selected from

the high level GA module represents a sub search space
and they are sent to the lower level GA modules for

more detail search. The lower level GA takes advan-

tage of the received information, and employs a greater

number of parameters for further optimization.
The solutions found at the lower level GA module

are reported back to the higher level GA module, if it is

better than the candidate individual from parent mod-

ule. This information is used to update the fitness of

the parent. As the purpose of high level GA module
is not to find actual solution, the models of this level

are not necessarily accurate. In order to speed up GA
search, the high level GA modules access less accurate
models which can reduce simulation-based fitness eval-

uation time. The basic concept is that of successive

approximation provided by a nested sequence of mod-
els [13].

2. Hierarchical Genetic Algorithms
for Complex Problems

A simulation model of such a complex architecture

is most naturally formulated as a variable structure
model [211. A Hierarchical GA is implemented on a self-

organizing variable structure, where creation/deletion

of modules are determined by their performance.

2.1 Brief Review of Asynchronous Genetic

Algorithm

The GA (genetic algorithm) is a probabilistic algo-

rithm which maintains a population of individuals, P(t)

= xx(t),..., zn(t) for iteration t. Each individual repre-

sents a potential solution to the problem at hand, and,

in any evolution program, is implemented as some (pos-

sibly complex) data structure S. Each solution zi(t) is

evaluated to give some measure of its fitness. Then

new population (iteration t + 1) is formed by selecting

the more fit individuals (select step). Some members

of new population undergo transformation (recombine

step) by means of "genetic" operators to form new so-

lutions. There are unary transformation mi (mutation
type), which create new individuals by a small change

in a single individual (m : S - S) and higher order trans-

formations cj (crossover type), which create new indi-

viduals by combining parts from several (two or more)

individuals [141. The control parameters for genetic op-

erators (probability of crossover and mutation) need to

be carefully selected to achieve acceptable performance

[151. After some number of generations the program

converges and is successful if the best individual repre-

sents the optimum solution.

We have developed concepts for parallel genetic al-

gorithms that are especially oriented to simulation-
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Figure 1: The Architecture for Asynchronous Genetic

Algorithm Simulation

evaluated individuals on high performance computers.

We have investigated a class of Asynchronous Genetic

Algorithms (AGAs) which does not need to be syn-

chronized by generations to create successive popula-

tions. In a multiprocessor architecture, individuals are

evaluated concurrently and a central agent updates the
genetic population continuously as the evaluation re-

suits become known. The motivation behind such asyn-

chronous updating is the recognition that not only may

simulation runs be time consuming, but their comple-

tion times may be highly variable. This variability is

quite common in performance measuring simulations 1

When such variability is significant, the barrier synchro-

nization imposed by conventional GAs can greatly im-

pede search progress since it requires that processing

cannot proceed to the next generation until the slowest

individual in the current population has completed its
evaluation [71. In contrast, the AGA allows new indi-

viduals to be tested as soon as both the information and

the computer resources are available to do so.

A concern immediately raised in the AGA paradigm

is that the blending of generations occasioned by such

asynchronized processing might adversely affect the re-

combination schemes underlying GA search. Certainly,

the supporting theory typically limits selection, mating,

crossover and other operations to members of the same
generation [6, 81. Fortunately, some results in the litera-

ture suggest that search time and search success are not
degraded, at least in application to typical test function
suites [41. We note that such artificial fitness functions

do not include time dependence that might appropri-

ately suggest the necessity for generational integrity.

As shown in figure 1, the processing elements (PE)

in the asynchronous genetic algorithm can be catego-

rized as : genetic population PE, evaluation PEs and
control PE. While the PGA executes serial GAs in the

1 It certainly occurs when runs are executed in conditional

mode where termination depends on pre-established criteria (e.g.,

a run may be terminated as soon as failure to achieve a prescribed

goal is obvious). However, run time variability may also arise

when runs span a fixed observation interval (on the model time

base). This may be due to the variability in workload encoun-

tered by the simulation engine or in the resources allocated to

the particular trial
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multiple processing elements with subpopulations, the

asynchronous genetic Mgorithm evaluates a single in-

dividual in a processing elements (evaluation PE) at
a time. The total population is always contained in

the genetic population PE which executes genetic op-

erations and updates the population. It also generates

new individuals whenever it receives request from the
control PE.

Message transfer between the genetic population PE

and the evaluation PE is controlled by the control PE :

it delivers evaluated individuals to the genetic popula-

tion PE and requests new individuals for the evaluation

PE. Thus the evaluation PEs keep evaluating individu-

als with which the genetic population PE continuously

updates the population.

2.2 Resolution Increasinl_ Scheme in the
Hierarchical Genetic Algorithm

A binary chromosome, a unique knowledge represen-

tation scheme of Genetic Algorithms, provides a way

of controlling the accuracy of parameters. The size of

the binary code determines the number of points to be

investigated. As more bits are employed, the search

points increase dramatically (exponentially). Therefore,

longer string size may provide accurate parameter val-

ues, but it also makes the GA to search through a large

number of points.

As shown in figure 2, same size of binary code can

increase accuracy as search space changes. At level 1,

the original search space is defined by MIN and MAX.

We employs 3 bits and there are 8 possible search points.

If a certain point (binary code) is selected, the distance

between its neighbors becomes a new sub search space.

Therefore the selected candidate individual at the high

level GA module has meaning as representation of its

neighbors (sub search space) rather than an actual value

itself. The same size of binary code is employed with

the new search space, which increases the accuracy of

the parameter value.

2.3 Expanding Search Parameters in the

Hierarchical Genetic Algorithm

The previous section explains how search accuracy is

controlled by the Hierarchical GA. If the search prob-

lems involve a large number of parameters, the GA takes

longer or directs to local minima. The Hierarchical GA

employs an expanding search parameter scheme. The
higher level starts to search for a small number of pa-

rameters. The result obtained at the higher level is sent

to the lower level GA, where extra parameters are in-

cluded to the received parameters. The lower level GA

takes advantage of the received information so that it

need not search all the parameters from the beginning.

The expanding parameter scheme in the Hierarchical
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Figure 2: Resolution Control Scheme in Hierarchical

Genetic Algorithms

GA also helps determine the optimal number of param-

eter sets. Complicated designing problems involve the

evaluation of a large number of parameters, where the

type of parameters as well as their appropriate values
are often unknown.

2.4 Execution of Multiple GA Modules
in Parallel

The selected individuals during the search operation
from the root AGA create lower level GA modules as

shown in figure 3. The time taken by the module for

checking its population and selecting a candidate in-

dividual may be either deterministic or nondeterminis-

tic. In this experiment, we choose a variable selection

interval scheme, in which the time intervals of subse-

quent checking become larger as the GA search con-

tinues. This strategy is based on a characteristic of GA

search, the fitness of population increases faster in early

search stages and saturates to a certain level. Smaller

checking intervals enables the GA to choose new candi-

dates before stagnation.
When a lower level AGA module selects an individual

as a candidate for the next level, it also reports fitness

to the parent AGA module. This feedback information

updates the fitness of parent individual. But the in-

dividual structure of the parent and child may not be

comparable to each other because they represent differ-

ent parameter sets or different search space. The popu-
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Figure 3: Creation and Execution of multiple AGA in

Self-Organizing Hierarchical GA

lation of child AGA searches through the space which is

suggested by a candidate individual from parent AGA.

The fitness of the lower level individual, if better, up-

dates the fitness of parent individual. If updated, the

fitness of parent no longer represents an actual fitness

of the binary code. But, since the fitness is increased by
a certain amount, its value can not be represented in its

environment. The individual now has a higher fitness

and has a greater probability of being selected for the
next evaluation.

Figure 4 shows the module components at each
level. Each module contains a controller which ex-

ecutes AGAs to solve a given problem and select

candidate individual(s) reported from AGAs. It cre-
ates/deletes lower level modules and communicates with

higher/lower level modules. This controller is the in-

telligent component of module and is implemented by

a rule-based expert system. The module is defined

as a class in an object-oriented programming environ-
ment (Chez-Scheme [3]) and the same module struc-

ture is created by higher level object. This module is

program-interfaced to an AGA procedure written in C.

The decision making component is implemented in a

symbolic processing language, while the numeric com-

putation procedure is written in C.

When the module receives a problem, it may expand

search parameters as well as increase resolution. With

any given problem, the controller first expands parame-
ters and sends them to the PARA-AGA for GA search.

The selected individuals at the PARA-AGA are sent to

HIGH-AGA to increase resolution by the scheme ex-

plained above. The fitness of the selected individual

at the PARA-AGA are also reported to the high level

HIGH-AGA to update the fitness of parent individual.
The candidate individuals for the next level are selected

at the HIGH-AGA where the selected individual is also

Figure 4: Module Components in the Self-Organizing
Hierarchical GA

reported to the PARA-AGA of same module.

3. Design of Control System using

Self-Organizing Hierarchical GA Environment

A working prototype of a plant for producing oxy-

gen from Martian atmosphere, is constructed at NASA-

UA Space Engineering Center [16]. The purpose is to

evaluate the best designs and operation parameters for
the Mars mission. Martian CO2-rich atmosphere is fil-

tered and compressed to a temperature and pressure

suitable for electrocatalysis in a Zirconia-based oxygen

cell. Design issues include the size of the inlet pipe,
power requirements of the compressor and design of the

oxygen cell including: cell configuration, material prop-

erties, electrical parameters such as operating voltage

and current density, electrode materials, and method of

application

In this experiment, we try design an optimal FLC to
control the temperature of the oxygen production sys-

tem. The basic idea of the fuzzy control centers around

the labeling process, in which the reading of a sensor is

translated into a label as done by human expert con-
trollers [12]. With expert supplied membership func-

tions for this labels, a reading of a sensor can be fnzzified

and defuzzified. It is important to note that the transi-

tion between labels are not abrupt and a given reading

might belong to several label region.

The fuzzification and defuzzification processing does

not need to be sequential. The input signal can be
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Figure 5: Fuzzy inference network and fuzzy sub-
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(ZE:Zero)(NS:Negative Small) (NL:Negative Large)

fuzzified/defuzzified simulatenously by matching mem-

bership functions. Therefore fuzzy control processing

can be adapted to a parallel neural network structure

where each neuron represents functions (fuzzy member-
ship) and links represent the weight of a fuzzy rule.

Figure 5(a) shows the structure of the Fuzzy Neural

Net Control System (FNC) and its fuzzy subspace (Fig-

ure 5(b)) [101. In this experiment, 5 input membership

functions are assigned to each input signal and 5 out-

put membership functions are used to compute fuzzy

output signal.

While an earlier Fuzzy Logic Controller [16, 20] was

implemented in rule-based form (if-then), the FNC em-

ploys a parallel inferencing network structure. Due

to the parallel fuzzification/defuzzification scheme, the

FNC can improve real-time performance of the control

system for practical application.

The performance of the FNC is determined by the

(FNC) _j _ I(MM_OO=n,M,_ I) I

Figure 6: GA optimization of the FNC module

O2Gas

Heater [ CO. CO2 Gas

_ CO2 Gas

Zirc_a Tubes

Figure 7: Oxygen Production System Cluster

input membership functions of layer 1 which fuzzify the

input signals and the output membership functions of

layer 4 which defuzzify normalized firing strengths. A

membership function is specified by number of param-
eters.

In order to find a high performance fuzzy member-

ship functions without the help of human expertise,

it is necessary to employ computer-aided optimization.

Since tuning the membership functions requires ad-

justing many parameters simultaneously, hill-climbing

search methods would suffer from the complexity of the

search space.

For this reason, a probabilistic optimization method

utilizing evolution strategies, such as Genetic Algorithm

(GA), was employed to find optimal membership func-

tions. Since optimizing multi-parameter problems takes

a long time, we developed new form of GA which is es-

pecially oriented to parallel computers that can satisfy

the real-time constraints of the system.

Figure 6 shows the interaction of the FNC, simula-

tion model and GA-optimizer. The FNC operates the

simulation model, such as heater/cluster model of the

Mars Oxygen Production System (OPS).

The OPS, shown as in figure 7, includes Zirconia

tubes located symmetrically inside a cylinder. A radia-

tion heater is wrapped around the outer surface. With

this configuration, the majority of heat transfer between

the outer surface and the oxygen gas inside the system

is due to radiation. Applying the one-dimensional heat

equation with lumped temperature distributions for the

surface and oxygen temperatures we obtained two frst

order differential equations as provided below. The Tp
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E3
Figure 8: Individual evaluation procedure:FNC opera-

tion with heater/duster thermal model

represents the pipe temperature and Tz is Zirconia tube

temperature. A variable SW is either 0 or 1 to control

the heat source (heater). The objective of the FNC is

to increase the temperature of the Zirconia tubes at a
constant rate until a goal temperature is reached [17].

dTPd,----2.75 X SW - 4.42 x 10-12(T_ - 7',4) - 8.65 x

10-4(Tp - 278.0)

dT.____d,= 4.42 X 10-12(T_ -- T:)

As shown in figure 5, there are two input signals to

the FNC e.g., temperature increase error rate (inputl)

and rate of its error rate (input2). Based on two inputs,

the FNC produces an output command which controls

on/off duty cycle of the heater element in the model. As

shown in figure 5, we employed 5 membership functions

for each input signal and 5 membership functions for

the output signal.

Figure 8 provides detailed procedures of the FNC in-

tegrated with the GA-optimizer. An individual of a GA

represents one trial set of fuzzy membership functions.

The GA optimizer sends a parameter assignment to the

FNC which determines its fuzzy membership functions.

The model is reset to its initial conditions (starting tem-

peratures). The operational specifications such as de-

sired temperature increase rate and goal temperature

are set inside the controller. The performance of a
trial individual fitness is measured as the sum of the

MSE (Mean Square Error) between actual temperature
increase rate and desired one and maximum absolute

value of error of temperature increase rate.

3.1 Design of the FNC for the Oxygen

Production System

Our primary objective is to design optimal fuzzy

membership functions that perform well with given op-

erational specifications while utilizing minimal human

expertise. The controller increases the temperature of
the cell at a constant rate.

3 MembershipFuncl_ns

- 0 ÷

._.

5 MembershipFunctions

- 0 ÷

Figure 9: Expanding Fuzzy Membership Functions

Designing an optimal FLC involves the investigation
of several alternatives, such as type of membership func-

tions and the number required. A single-level GA starts
to optimize the FLC based on the assumption that

a given FLC specification, such as type or number of

membership functions, is optimal. But real world ap-

plication problem is often too complicated to determine

the correct system specification.

Hierarchical GA solves this problem by changing its

structure according to the performance of each module

which employs a different number of fuzzy membership

functions and parameter resolution. Starting from a

small number of parameters, it expands search parame-

ters and their resolution as they create lower levels. The

lower levels take advantage of information found at the

upper level AGA module.

Figure 9 shows how search parameters are expanded
as Hierarchical GA creates lower level modules in the

example of designing a FLC. The upper level module

starts to design the FLC with a small number of mem-

bership functions. Designing a FLC with fewer mem-

bership functions is relatively easy compared to a large

number of membership functions. Even though the up-

per level need not find the best membership function, it

does provide some information to the lower level which

supports the design of an optimal FLC. Since the mem-

bership functions found at the upper level are optimized

based on constraints of a small number of parameters,

the lower level GA modules give small tolerances to the

received parameters. This is due to the effect of new pa-

rameters on the old parameters optimized earlier. Fig-

ure 9 illustrates how to expand membership functions,

the shade area of membership function represents its

tolerance.

As we increase the number of employed fuzzy mem-

bership functions, the fuzzy rule table must also be ex-

panded. Figure 10 shows ways of adding more slots to
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Figure 11: Tree of Various FLC Specifications

the fuzzy rule tables. Since the fuzzy rules are optimized
based on constraints of fewer membership functions (for
example, 3 input A,B, and 3 output membership func-
tions), the expanded fuzzy rules need to be optimized

with not only more slots but also some degree of toler-
ance of suggested rule parameters.

Figure 11 shows a tree of various specifications of the
FLC in which the Hierarchical GA searches through op-

timal design. Hierarchical GA first optimizes fuzzy rules
which are more sensitive to the FLC performance at the
root module. The small number of fuzzy membership

functions with small parameter variance were used in
order to maximize the sensitivity of fuzzy rules. The
fuzzy rules found at the root module are sent to lower
levels, where two different membership function types,
such as triangular and bell shape are employed. The

lower levels have wider search ranges in the parameters
and utilize the fuzzy rule information received from the
root. A greater number of fuzzy membership functions
are employed when the lower level GA modules are cre-
ated.

Figure 12 shows the simulation results that illustrate

how the Hierarchical GA investigates various FLC spec-
ifications to design an optimal controller. The fitness
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Figure 12: Simulation Results from Self-Organizing Hi-
erarchical GA to design optimal FLC

improvement of Hierarchical GA shows that when a
certain GA module is executed, the fitness increases

suddenly. The FLC specifications of the module pro-
vides the best performance among other FLC specifica-
tions. The population of each module represents differ-

ent species, because they expresses different number of
parameters and search spaces. When a certain species

(the correct one) is created, the performance of the Hi-
erarchical GA improves in a step like manner. The tem-

perature profile shown in the figure 12 is that of by the
suggested optimal FLC in the Hierarchical GA.

4. Conclusions

Real world application problems often require opti-
mization of a large number of parameters with high
precision. These parameters increase the complexity of

the search problem. In existing GA, a chromosome rep-
resenting the parameters does not contain information
about their sensitivity, even though they influence the
system performance to different degrees.

We have devised a novel scheme of Hierarchical Ge-

netic Algorithms in self-organizing variable structure
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environment for complex real world problems. The de- [7]

sign of a temperature control system for the oxygen pro-

duction plant was selected as an experiment. Since con-
ventional control schemes are limited their functional-

ity to relatively simple applications, Fuzzy Logic/Neural [8]
Net control methods are received more attention for the

sophisticated applications. The parameters embedded

in the controller need to be optimized for the required
control performance. [9]

In this paper, a Hierarchical GA investigates various

FLC specifications using variable structure simulation.

More sensitive parameters, such as fuzzy rules, are opti- [10]
mized before other parameters. Higher level GAs search

for candidate individuals that might contain the opti-

mum in a given search space. These candidates are sent

to the lower level to be investigated in greater detail. [11]

If better solutions are found at a lower level, they are

reported back to the higher level and incorporated into

its on-going GA search. The higher level GAs search

in a sparse space with fewer parameters that influence

the system performance significantly. In order to reduce [12]
GA search time, higher levels also utilize less accurate
models for which simulation-based evaluation time is
reduced.

The simulation exhibited interesting search behavior [13]

: when a good GA module is discovered, the perfor-

mance increases suddenly. This suggests that not only

has a good design been found, but that all other design
frameworks can be eliminated. [14]
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