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Abstract

The efficiency of an autonomous robot navigating in

indoor environments depends crucially on the ability of
the robot to exploit spatial relationships extracted from

perceptions of its environment. Smith, Self, and
Cheeseman 23 describes a formalism based on Kalman fil-

ter theory, where perceptions from different locations can

be combined to improve the accuracy of the robot pose

estimate. We argue that while accuracy is an important

property of perceptions of the robot state, a more impor-

tant property of perceptions of the environmental state are

their temporal and spatial range of applicability, which

will be referred to as perceptual relevance. This paper

introduces a relevance measure based on Jaynes maximum

entropy principle, measuring the relevance of a spatial

description of the robot environment. The conjunction of

accuracy and relevance is denoted information quality. A

formalism based on the information quality concept is

developed for the class of one-agent applications, for

which the formalization of the dependency between per-

ceptions and actions of a robot is straightforward.

1 Introduction

A robot can be viewed as a controller, the purpose of

which is to transform the current system state into a goal

state. After having executed the action sequence, the sys-

tem state should be closer to a goal state. If we by "world"

denote the conjunction of robot and system, this paper is

based upon that essentially three issues determine the per-

formance of the state transformation process: 1) The accu-

racy and relevance of the robot's perception of the world

state, 2) The robot's capability to find an action sequence

that forces the current model state into a desired goal state,

and 3) The precision of the transformation from abstract to

physical actions.

The behavior of the robot corresponds to what actions the

robot selects to execute in a particular situation. For sen-

sorless robots, behavioral information in the form of

action sequences are given a priori, and may not change

due to external events during operation. Although this is a

straightforward way to implement robot behavior, the

robot requires a well-defined working environment where

the properties of each object must be accurately specified.

In effect, all information is given to the robot a priori, and

a major problem is to maintain a configuration of the

working environment that is consistent with the specifica-
tion.

More flexibility is achieved if the robot is capable of

acquiring information about the true configuration of the

working environment during operation. Robots capable of

acquiring information during operation may be classified
as being either reactive 1'2 or deliberate. While reactive

behavior commonly is hard-wired into the robot, deliber-

ate behavior is exhibited by robots maintaining an explicit
world model.
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Fig. 1. Structure of a deliberate robot

Obviously, reactive robots are inherently autonomous,

while deliberately behaving robots may be anything from

autonomous to tele-operated. In the autonomous case the

explicit model is implemented in the robot software, while

in the tele-operated case the model exists in the mind of

the expert controlling the robot. Issues affecting the per-

formance of a deliberatively behaving robot will be

addressed in this paper. Throughout the paper, except

where explicitly stated, the only assumption being made
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concerningthedeliberatelybehavingrobotisthatit pos-
sessesanexplicitworldmodel.

....f,,1,,,.,, t,. describe th,_ s ......_.T-Fig.l, a ......... _ ._ ...v .-,,or .... of a delib-

erate robot is presented. By splitting the graph horizontally

at increasing heights, one gets the following sequence of

dichotomizations: environment/agent, hardware/software,

system/cognition. The figure also illustrates the cyclic pro-

cessing of perceive-reason-act which starts when a task

has been given.

A distinguishing feature among deliberate robots is the

degree of human interaction, spanning from autonomy to

tele-operation. For an autonomous robot the "reasoning"

module (see Fig.l) corresponds to a computer program

while for a tele-operated robot the it corresponds to the

human operator. Albeit having this difference, all deliber-

ate robots need high quality information in order to do

proper inference. By keeping the information quality

above some pre-defined level, the likelihood of erroneous

inference is kept sufficiently low. In this paper we will

develop means for preserving the information quality,

which are applicable to a large class of deliberate robots.

The formalism developed in this paper is based on an

assumption of a one-agent application. The formalism

might however be extended to cover many-agent applica-

tions as well. One distinguishing feature between one- and

many-agent applications is that while failure to execute a

plan in a one-agent application is caused either by poor

information or by poor control, for many-agent applica-

tions an additional cause of plan execution failure are

actions executed by other agents. Without doing any fur-

ther elaboration on the class of many-agent applications, it

suffices to notice that more powerful models must be

developed and that real-time constraints become crucial 16.

The robot uses the world model for interpreting the

present situation. Therefore, it is of great importance that

the model discrepancy is small. On the other hand, a too

detailed model suffers from high time and space complex-

ity. The difficulty to satisfy these somewhat contradictory

constraints is one reason why many deliberate robots are

either too slow or too error-prone. At the core of the prob-

lem are the issues of uncertainty and complexity. Typi-

cally, reducing the complexity of a model increases the

uncertainty and vice versa. However, by using application-

specific heuristics, it is possible to suppress world proper-

ties of minor importance, thereby simplifying the model.

In this way a model with both low discrepancy and moder-

ate complexity can be establish. For example, in the

mobile robot case, a 2D (global) map suffice for robot nav-

igation, while a 3D (local) map is needed for many object

manipulation tasks. By using this heuristics, a 2D/3D

composite model is created, with a fair trade-off between

complexity and discrepancy. The problems to represent

and reason under uncertainty have been addressed in sev-

eral papers 1°' 11, 12, 25. Although this is an important

research area, the work do normally not consider the prob-

lem of uncertainty and relevance maintenance, in particu-

lar not when the uncertainty and relevance varies in time

and space.

Having developed an appropriate model, the next question

is why and when the model should be updated with fresh

information? In order to answer the first question, we reca-

pitulate that the model should have limited space and time

complexity. This inevitably leads to an information loss.

Accordingly, situations may occur where ignorance of

some world property will result in robot malfunction,

although such situations may be very rare. Crucial for the

prevention of robot malfunction is to maintain a low

model discrepancy, since the next action to execute is

determined by the model interpretation. Obviously, the

penalty for having a model of low complexity is that it

must be updated frequently to keep the discrepancy low.

When to update the model depends on how low one want

to keep the likelihood of robot malfunction. While it is

obvious that a high model discrepancy increases the risk

of robot malfunction, it is very difficult to calculate the

probability of robot malfunction as a function of the model

discrepancy. The reason for this is that in order to calculate

the discrepancy the model state must be compared to the
world state, which contains an infinite number of ele-

ments. An approach to this problem is to introduce a

threshold value for each perception, representing the mini-

mum permitted information quality of the perception.

After each executed action during the execution of an

action sequence, the robot checks that each perception has

a quality exceeding the corresponding information quality

threshold. If this is not the case, a sensing action is exe-

cuted to increase the information quality of the percep-

tions. Otherwise, the next action in the sequence is
executed.

2 Model- world duality

The correspondence between the model and the real-world

is established through the following definition.

Definition 2-1 To find a solution to a real-world problem is

analogous to the abstract problem of finding a path, p, sat-

isfying the predicate Q(p), from an initial state to a goal

state in a model state space, S.
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Forinstance,Q(.)mightrepresentthepredicate"short-
est(.)","leastexpensive(.)",or "mostsafe(.)".

AlthoughDef. 2-1 is rather general, a straightforward

interpretation within the framework of this paper is possi-

ble. The problem space, S, corresponds to the space of

possible model states. The path, p, corresponds to a

sequence of actions, while Q(t) is interpreted as "Informa-

tion Quality high enough along the path".

Ideally, the abstract plan is in perfect agreement with the

solution to the real-world problem. In practice, though,

this is rarely the case and the robot must perform plan val-

idation iteratively during the execution. The efficiency in

the detection of plan failures and the subsequent re-plan-

ning is closely related to the performance of the robot, and

could accordingly be taken as a measure of the same.

Each cycle of processing in Fig.1 corresponds to the tran-

sition between two states in the problem space - ideally

towards a goal state.

This duality between the cyclic processing of the physical

system and the problem space transitions suggests the pos-

sibility to analyze plans in the problem space before exe-

cuting them on the physical system.

3 Concept_

One-a_ent aoolications

A large class of robotic applications are one-agent applica-

tions. In a one-agent application, it is assumed that all

changes to the system state are caused by the actions of the
sole agent. Consequently, for one-agent applications it is

straightforward to formalize the dependency between

actions and perceptions of an agent.

World

The world is composed of two entities, agent and environ-

ment. This is in accordance with the one-agent application

assumption. The agent may correspond to either an auton-

omous or a tele-operated robot.

Sensing

In order to gather information about the world, the agent
must use sensors. Sensors measure either the state of the

agent or the state of the environment. Sensing, c, maps the

world state to perceptions, which in turn can be mapped to

a more abstract perception, or be combined with previous

perceptions to give a more accurate perception.

Pcrcepti0n

Perceptions provide descriptions of details of the world.
To distinguish between perceptions with different proper-

ties, perceptual classes are introduced. Within each per-

ceptual class, perceptions are distinguished by their
creation time. Accordingly, a perception from perceptual

class i, created at time k will be denoted Pi,k- Perceptions

acquired by the agent up to time k, where k _ N, is repre-

sented by the perception vector Pk

Pk = (Pl, P2 ..... P,) (1)

where r is the number of perceptual classes and Pi corre-

sponds to a set of acquired perceptions of the i:th percep-

tual class, that is

Pi = {Pc, k-k,'Pc, k-k 2..... Pc, k-k} (2)

where 0<ke<...<k2<k l<k •

Perceptions are created either by using data from one or

more sensors or by combining previous perceptions into a

more abstract or more accurate perception. To create more

abstract perceptions, feature extraction algorithms are

applied, while to create more accurate perceptions spatio-

temporal dependencies among the previous perceptions

are exploited.

Action

The set of actions that the agent can execute is denoted A.

Actions, a i E A, are used for changing the world state.

Actions can be identified as being of either manipulatory,

navigational, or sensing type. Accordingly, three action

classes are introduced. Actions from the manipulatory

action class change the state of the manipulator, which in

some cases also changes the state of the environment.

Actions from the navigational action class correspond to

the movement of the agent to a new location. Sensing

actions correspond to the acquisition of information about
the world state.

Reasoning

Given perceptions of the world state, the agent performs

reasoning, p, to determine what action sequence to exe-
cute.
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Effectuating

The robot is using effectors to translate actions into

changes of the world state. Effectuating, _, therefore maps

actions to world state changes.

Functional description of an a_ent

In a one-agent application, it is possible to describe per-

ceptions as functions of actions or vice versa. This is illus-

trated in Fig.2.

[ P:P->(A) n I

I w I
Fig. 2. Functional description of an agent

Following is the interpretation of Fig.2: Perceptions, P, are

mapped by reasoning, p, to an appropriate action sequence

(A) n. The effectuating, e, maps each action to a new world

state, W. Sensing, _, maps the world state to perceptions,
P,.

Let C k denote k:th reasoning-effectuating-sensing cycle,
that is

Ck- _klek, n ... ek,2ek, _)pk n_= ffk£ 19k (3)

(3) has the following interpretation:

By reasoning, Pk, the robot decides to execute an action

sequence consisting of nk actions, which are send to the

effectuating, e. Thereafter the robot uses sensing, _k, to

acquire information about the resulting world state.

Accordingly, the k:th perception can be written as:

Pk = Ck (Pk- 1) = CkCk- 1"'" C1 (Po) (4)

In applications where the agent corresponds to an autono-

mous robot it is possible to describe the mapping (p)

explicitly by a mathematical function. Accordingly, it is

possible to, given a perception vector Pi and the mapping

p, determine what action sequence will be executed conse-

quently. This is possible since machine reasoning consists

of well-defined deterministic operations.

For applications where the agent corresponds to a tele-

operated robot (or where man/machine cooperative deci-

sion making 15 is used), the value of the mapping, p, corre-

sponds to the action sequence (partly) decided upon by the

human expert. Since it is hardly possible to establish a

deterministic model of the reasoning process involved, the

true mapping function, p, is (partly) unknown for tele-

operated robots.

However, in either case, the impact of an action on the

world state will be the same. This implies that the percep-

tions dependency on actions is invariant under different

reasoning approaches. Consequently, this suggests that the

same principles for maintaining the information quality

can be utilized for both agent types.

4 Information quality

Having introduced a set of perceptual classes, a measure

of the information quality of each perception is needed.

The measure should reflect both the accuracy and rele-

vance of a perception. External perceptions are commonly

maintained at three abstraction levels to reduce complex-

ity and enable inference. The lowest level contains numer-

ical, the second geometric, and the third symbolic
information respectively 3. Consequently, the information

quality measures at two distinct abstraction levels will dif-

fer. In this paper, we will consider only the two lowest

abstraction levels. Internal perceptions, describing the

state of the robot, are often of limited complexity. Hence,

only a numerical model is needed. For example, if ignor-

ing dynamical properties, the state of a mobile robot

equipped with a manipulator arm can be described by a 9-

dim. vector (3 dim. for describing the robot pose and 6

dim. for describing the position and orientation of the end
effector).

Accuracy

Perceptual accuracy is a static attribute that is determined

when the perception is created. It is static because no

future event can affect the accuracy of an already made

measurement. If perceptions are treated as vectors, one

common way to represent accuracy for numerical percep-

tions are by the corresponding covariance matrices. In this

way, Kalman filtering techniques can be utilized to gener-
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ateaccuratestateestimates.A classicalpaperonthisisthe
onebySmith,Self,andCheeseman23whichprovidesa
frameworkforhandlingrobotpositionaluncertainty,and
maybeextendedtoalsohandlerobotarmpositional
uncertainty.

Relevance

Besides being more or less accurate, a perception will also

be more or less relevant. For example, a temperature mea-

surement from one part of a building tells very little about
the temperatures in other parts of the building, although

the temperature was measured with high accuracy. Fur-

thermore, after some time that particular temperature mea-

surement tells very little about the current temperature

even in the position where it was obtained. These two facts

correspond to the limited spatial and temporal applicabil-

ity range of perceptions. Thirdly, assume that the agent

that did the previous temperature measurement decides to

open a window. Provided it is a temperature difference

between the inside and outside of the building, this action

will reduce the relevance of the previous measurement.

Thus, maniPUlatory actions executed by the agent is
another cause of variation in relevance.

While the first and third example illustrate the dependency

of the relevance on the executed navigational or manipula-

tory actions of the agent respectively, the second example

illustrates that the application is not an ideal one-agent

application. Since no real-world application is an ideal

one-agent application, a perception aging function, monot-

onously decreasing with time, must be used.

The presented examples describe relevance for a numeri-

cal perception. In Section 7 a relevance measure for geo-

metric perceptions, based on the maximum entropy

principle, will be described.

Information quality measure

Our approach assumes a bidirectional dependency

between perceptions and actions. This is an extension to

the approachby Erdmann 8, who assumes a unidirectional

perception/action dependency.

Section 3 introduced a description of the k:th perception as

the result after a reasoning-effectuating-sensing sequence

has been executed after an initial perception P0 has been
created.

The information quality of a perception vector Pk is

denoted QI(Pk). The evaluation of the information quality
is as

QI(Pk) = (ql(Pl),q2(P2) ..... qr(Pr)) (5)

where qi(Pi) is evaluated as

qi (Pl) = max {qi (Pi, k z) } (6)

where kx is iterated over all creation times of the percep-
tions in the i:th perceptual class.

Using (3) and (4), (5) can be rewritten as

i ( "l
QI(ek) = Q _o'ke pt.Pk_l) (7)

The index nk must be selected as to satisfy the condition

nk 1

is satisfied, where T is the information quality threshold

value. This condition means that executing nj+ I actions in
a sequence will result in an information quality value
below the threshold value. Since robot malfunction corre-

sponds to the failure to execute a particular action, the
threshold value must take into account that for some

actions an action failure is harmless while for irreversible

hazardous actions a successful action execution is essen-

tial. Thus, to permit the execution of an action, the infor-

mation quality of the perceptions must exceed its

corresponding threshold value, T.

Predictions

Knowledge about the statistical properties of the effectors

enables the prediction of the environmental state resulting

from an executed action. Furthermore, with information

about the statistical properties of the sensors, it is possible

to predict how the resulting environmental state should be

perceived if a new perception where obtained.

Given a perception and an action to execute, it is possible

to predict what should be perceived after the action has

been executed. The uncertainty in this prediction is deter-

mined by the statistical properties of the stochastic map-

ping. If this uncertainty is considered to be low enough, an

additional action may be executed, with a corresponding

new prediction. The uncertainty in this new prediction is

higher than for the previous prediction. This can be iter-

ated as long as the uncertainty in the prediction is low

enough. When, at last, the prediction will be too uncertain,

a new perception must be generated.

The agent can predict the true world state resulting after

each executed action by using knowledge about the most
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probableoutcomeof theaction.Theresultingprediction
oftheworldstateafternaactions(aftertimek)havebeen
executedisdenotedPk,a.Thus,

FIa

Pk, a = e P_k-1 (9)

The information quality of the prediction is denoted

QI(Pk, _), that is

QI (F'k,,) = QIIen'pt.Pk_ l) (s0)

where na must satisfy the condition

The evaluation of (11) is done in a way similar to (6).

5 Sensor planing

Both autonomous and tele-operated robots require a crite-

rion for when .to acquire new information. According to

the previous discussion this is necessary when the quality

of the information is so low that the reasoner is likely to
draw the wrong conclusions about the situation. This cor-

responds to some perception being too inaccurate or too

irrelevant. A sensor planning algorithm should keep track

of the resulting accuracy and relevance of the perceptions

as actions are executed, and enforce a sensing action if the
accuracy or relevance has become too low.

In sensor planning, an important difference between

autonomous and tele-operated robots is their type of rea-

soning (p). For autonomous robots, a well-defined map-

ping from perceptions to actions is used, while for tele-

operated robots, a human expert decides upon what action

to execute next. In effect, autonomous robots may use (8),

where the resulting information qualities are calculated

before the sequence is executed. For tele-operated robots,

the situation is different. Here, the sensor planning algo-

rithm has no knowledge about what action will be exe-

cuted next. Therefore, it must keep track of the infor-

mation quality values during operation and stop the robot

if the information quality has become too low. This

implies that (11) should be used instead.

6 Maximum entropy methods

The information theoretical entropy concept has been

applied in a variety of scientific disciplines. For a survey

of entropy optimization techniques, we refer to Kapur and
Kesavan I4. In robotics, Saridis 2°' 21, 22 and Valavanis 24

have described robot systems that use the concept of

entropy as a global performance measure. In their

approach, optimal robot behavior is achieved through the
minimization of the total system entropy. Sanderson 19

uses the entropy concept to describe the complexity of dif-

ferently shaped geometrical objects, measured in bits.

Finally, the thorough study of relations between informa-
tion theory and search theory conducted by Pierce 18 has

inspired the development of the relevance measure for the

case study described in Section 7.

7 Case Study - Sensor planning on a tele-operated
indoor intervention robot

This case study demonstrates how the previously intro-

duced concepts can be instantiated in a real-world applica-

tion for a mobile robot equipped with a manipulator arm.

The robot obtains information about the external state by

using laser and video cameras. Information about the

internal state is obtained through odometry and angle

counters on the joints on the manipulator arm. This robot

type is very general, but by constraining either the mobil-

ity or the manipulability capabilities, more restricted robot

types are obtained. In the case study, a representative set
of perception and action classes are introduced. Further-

more, to properly control the system, the robot must have

a system model with low discrepancy. Because of limited

computational power, the model must have as low com-

plexity as possible. In order to establish a compact but yet

useful model, it is important to exploit structure in the

robot operations. In the case study, a composite 2D/3D

model developed for the discussed robot type is elabo-
rated.

Robot operation

During operation, the state changing actions executed by

the robot can be classified as being either navigational or
manipulatory. Navigation corresponds to the movement of

the robot to a new location, while manipulation corre-

sponds to the reorientation of the manipulator arm (the

purpose of the manipulator arm is to change the state of

the environment). This suggests the introduction of the

two action classes A N and AM, denoting the navigational

and manipulatory action class respectively. When the

robot executes a sequence of navigational actions, it is said

to be in navigational mode. Similarly, when the robot exe-

cutes a sequence of manipulatory actions, it is said to be in

manipulatory mode.

Assuming a one-agent application, the world consists of

two entities, agent and environment respectively. The state

of the agent will be denoted the internal state while the
state of the environment will be referred to as the external
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state.Accordingly,measurementsoftheinternalstatewill
bereferredtoasgauging,reflectingthecontact-typeof
internalmeasurements,whilemeasurementsoftheexter-
nalstatewillbereferredtoassensing.

Thisgauging/sensingactionclassdivisionisnatural.First,
thedivisionconformstothetwo-moderobotoperation
sinceonlytheinternalstatechangeswheninnavigational
mode.Second,thecomplexityoftheinternalstatedescrip-
tionis muchlowerthanthecomplexityof theexternal
statedescription.Consequently,adivisionisnecessaryof
theexternalstatedescriptionintorepresentationsatdiffer-
entabstractionlevels.Asacomparison,it ispossibleto
establishabasicdescriptionoftheinternalstateusinga9-
dim.vector,whilesensordataof theexternalstatemay
wellcontain10,000datapoints.

Theintroducedfouractionclassesis listedin(12):

{As, A G, A N, AM} (12)

with the following respective interpretation:

• A s corresponds
external state.

• AG corresponds
internal state.

• A N corresponds

the global state.

• A M corresponds

change the local

to Sensing actions, which measure the

to Gauging actions, which measure the

to Navigational actions, which change

to Manipulatory actions, which
state.

pgrCeptual classes

Having introduced action classes in the previous section,

this section presents a step-wise partitioning of the world

description into a set of perceptual classes.

Perceptions describe different aspects of the world and

thus represents a world model. Typically, the data from

one or more sensor is refined and transformed into a per-

ception _a perception is similar to virtual sensor 4 and logic
sensor t" respectively). In turn, a perception may be used

to generate a more abstract perception, or be combined

with previous perceptions to generate a perception with

higher accuracy.

In the previous section, the two information acquiring

action classes A G and A s was introduced. The correspond-

ing perceptions resulting from information acquiring

actions from respective action class are denoted internal

and external perceptions respectively. As mentioned, the
mobile robot can be viewed as being in either a naviga-

tional or a manipulatory operation mode. This observation

suggests the partitioning of the perceptions into global vs.

local perceptions. Global perceptions are perceptions that

provide vital information when in navigational mode,

while local perceptions are perceptions that provide vital

information when in manipulatory mode. This leads to the

division of the perceptions into four perceptual classes

(Table 7-1).

Internal

External

Local

PI rL

PE, L

Global

PI_ G

PE, G

TABLE 7-1 Perceptual Classes

For the robot at hand, examples of perceptions belonging

to each perceptual class are suggested below:

• Pt, z: The pose of the robot arm

• P1, _ : The pose of the robot

• PE, L : The pose of a manipulable object

• Pe, c: The spatial description of the building

2D representations of the global perceptions PEG and PIG

suffice in most applications since the robot moves on

almost flat surfaces and detected obstacles may be

assumed to have infinite height. Having infinite height

implies that it suffice to describe their projections on the

2D plane. Thus, navigational actions are described within

a 2D model, where the pose description contains three

parameters (two for position and one for orientation).

General manipulatory actions involve manipulation of

objects arbitrarily oriented in 3D space. Since the range of

the robot arm is limited, a 3D model will be reasonable.

For each object that is to be manipulated, a 3D description
of its closest environment is used. The local 3D descrip-

tions are connected to the global (navigational) 2D model,

thus providing a composite 2D/3D model.

Smith, Self, and Cheeseman's formalism 23 may be applied

for estimating the internal state, consisting of the robot

pose (x, y, q)), where x, y describe the position and q0the
orientation of the robot, and of the position and orientation

of the robot arm (x, y, z, q_,0, V) , where x, y, z corre-

sponds to the position and ¢, 0, V corresponds to the ori-
entation of the end effector using euler angels. The

introduced information quality threshold value, T, will in
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thiscasecorrespondtoamatrixwheretheelementsshould
notbeexceededby thecorrespondingelementsin the
covariancematrixfor the9-dim.vectordescribingthe
compoundinternalstate.

Relevance

The relevance of a perception is affected by spatial and

temporal factors. While the former concerns the topology

of the environment, the latter provides means for compen-

sating for the one-agent assumption in applications actu-

ally containing several agents. Typically, the aging of the

perceptions is modelled by simply scaling the perceptions

with a monotonously decreasing weight function. The spa-

tial factors affecting the relevance of perceptions of the

global external state will be elaborated below, yielding a

relevance measure applicable to laser range data*,

although it may be modified to be used for sonar range
data instead.

An assumption being made is that the gathering of spatial
information is costly in time and resources. Therefore,

new spatial information should be acquired only when

absolutely necessary. To determine when this is the case, a

measure indicating the relevance of a perception is
needed.

Consider the situation in Fig.3. Spatial information

obtained from position pl will lack information about the

region N.E. of p2. The sector indicated in the figure will
accordingly be referred to as a hidden sector. The hidden

sector indicates that the spatial information from pl is not

as relevant for describing the environment of p2 as it is for

describing the environment of pl. If the only spatial infor-

mation available is the one from pl, it is impossible to tell

whether the spatial information not contained in pl is
important or not. Let R denote the statement "Relevant
information" and _R the statement "Not relevant informa-

tion" (e.g, in search operations, indications of the object

being searched for are considered relevant). Letting Pi(R)
denote the probability that scan direction i contains rele-

vant information, then Laplace's principle of insufficient

reason states that Pi(R) = pi(_'R) = 1/2 if no prior informa-
tion is available.

* Using range data from either laser or sonar is a common
way to build up maps of indoor environments 3' 5, 9

Fig. 3. Relevance of spatial information, hidden sector

Assume that the laser measures range in M consecutive

directions in a horizontal plane. Then M probability func-
tions are introduced. It is assumed that after a measure-

ment has been made, it is clear whether a particular
direction contains relevant information or not. Thus, after

a measurement Pl (R) e {0, 1} . For large M, the angle
resolution will be high enough to justify the assumption
that no new information will come out of an additional

measurement of a previously scanned region.

In the case of Fig.3 this implies that the only new informa-

tion coming out of a measurement from position p2 is

information about the region that is not described by the

measurement from pl. Assuming the angle between con-

secutive scan directions to be Acp and that the hidden sec-

tor has angle _, a scan from p2 will provide new

information from d = cqAcp directions. Letting p and

denote the ensemble of probability functions correspond-

ing to the measurements from p2 and pl respectively, then

the amount of new information obtainable from p2 given
the information from pl is

d

H (plY/) = -E E pi (j) log (Pi (J)) (13)
i=lJ

where j _ {R, _ } . Using the maximum entropy princi-

ple, the sum in (13) is equal to d. log2, which is the

amount of new information obtained if scanning from

position p2, or equivalently stated the amount of informa-

tion about p2:s environment not included in the spatial

description from pl. As is seen, the obtained information

is proportional to the width of the hidden sector.

The amount of information obtained from the initial scan

is M- log2. No later scan will give that much informa-

tion. This suggests that the information quality thresholds

for the external perceptions should belong to the interval

[0, M. log2 ].
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Inthegeneralcasetherearek hiddensectors,correspond-
ingtok sub-intervalsinthe interval 1,2 ..... M that provide

new information (see Fig.4).

• 0 •

Fig. 4. k hidden sectors

Extending (13) to cover k hidden sectors yields

k a_

H(pI_][) = -2 EE pi(']')lOg(pi(j)) (14)

h=li=I J

which, according to the maximum entropy assumption is

equal to

k

log2. E dh

h=l

(15)

Notice that if the laser range data is segmented by using
polyline segmentation 6, the hidden sectors can be calcu-

lated directly, since the information needed to calculate the
hidden sectors is information about the coordinates of the

endpoints of the line segments.

Information quality

As mentioned, there is a close connection between percep-

tions and actions in one-agent applications. This section

describes this dependency. Fig.5 captures the dependency

between the action and perception classes. The actions

positive/negative influence on the information qualities of

the perceptions are indicated by the "+" or "-" superscript.

Fig. 5. Perception/Action class dependency

In Fig.5, the dependency within a pair of perception/action

classes is bidirectional. The information qualities of the

perceptions are either increased or decreased depending on

what actions that have been executed. A similar depen-

dency is present in the opposite direction since the infor-

mation qualities of the perceptions must be sufficiently

high in order for the reasoner to perceive the situation cor-

rectly and select proper actions. In Fig.5, the perceptual

classes have the following interpretations:

• Internal global state (PIG) corresponds to the position

and orientation of the robot, and is measured by odom-

etry.

• Internal local state (PIE) corresponds to the position

and orientation of the end effector (robot hand), and is

measured by combining measures from angle counters

on the joints of the robot arm.

• External global state (PEG) corresponds to a line seg-

ment description of the robot environment. The

description is created by line segmentation 5 of laser

data, and is measured by a laser range finder.

• External local state (PEL) is measured by vision (TV

camera).

For navigation tasks, the operator uses the line segment

description of the robot environment, while for manipula-

tory tasks views from TV cameras are used. The percep-

tion/action dependency may then be illustrated by the

dependency graph in Fig.6, which emphasizes the two-

mode operation. The nodes in the leftmost column corre-

spond to sensors, the nodes in the middle column corre-

spond to perceptions, and the nodes in the rightmost

column correspond to actions.
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Fig. 6. Information quality dependency graph

Odometry (O) gauges the internal global state, the descrip-

tion of which is stored in PI,G. New measurements cannot
reduce the increasing positional uncertainty as the robot

moves, although Kalman filtering techniques can reduce

this problem. For this reason, the arrow from O to PI.G in
Fig.6 is unlabeled. Laser (L) senses the external global

state, the description of which is stored in PE,G- Acquiring

new laser data improves the relevance of PE.G, indicated

by a "+"-sign on the arrow between L and PE,G in Fig.6.
Angle counters (A) gauge the internal local state, the

description of which is stored in PI.L- Although new mea-

surements cannot reduce the uncertainty in PI,L, the uncer-
tainty will not increase monotonously as the uncertainty

corresponds to lashes in the joints. Vision (V) senses the

external local state, the description of which is stored in

PE,L.

In this application, the external local states corresponds to

local descriptions of particularly interesting regions in the

environment (e.g. regions containing manipulatable

objects). The relevance measure introduced in Section 4 is

intended for extemal local perceptions (which are 2D). A

similar measure for the external local perceptions (which

are 3D) may be developed based on the concept of hidden

cones although this is not described in this paper.

Navigational actions, AN, corresponds to the transport of

the robot to a new position in the environment. The accu-

racy of the internal global perception PI,G is decreased due
to accumulation of positional uncertainty. Also, the rele-

vance of the external global perception is decreased, in
accordance with the fact that the applicability of the exter-

nal global perception may decrease as the robot moves

away from the position at which the external global per-

ception was generated.

Manipulatory actions, A M, corresponds to the movement
of the manipulator arm, which may affect the accuracy of

the internal local perception and/or the relevance of the

external local perception.

Finally, as mentioned, the increased uncertainty in the esti-

mation in the robot position is impossible to eliminate by

solely using odometry. However, it is possible to combine

sensing and gauging actions *" _ ..... the _- fo_,,,a,;,,,,

quality of PI,G .7.

Platform evaloation

Having a method for maintaining the information quality

at an acceptable level, the problem arises what threshold

values to use. By solving a task, typical for the application

at hand, with distinct information quality threshold value

settings, the setting providing the best trade-off between

safety and speed should be used. To compare different

robot configurations (i.e., using different sensors and

effectors), the optimal parameter setting for each robot is

determined whereafter their optimal performances are

compared. If an information quality value of a perception

could be held close to zero without affecting the perfor-

mance, this suggests that the corresponding perception is

of little use in the application and might be omitted. By

assigning each action (a) a cost C(a), for example corre-

sponding to execution time, the cost to use a particular

platform is easily obtained by summing the cost of all

actions in the action sequence that was executed during
the mission. This value could then be combined with other

factors, such as cost of sensors, number of errors during

the mission etc., in a platform evaluation. Below, two plat-

forms are described, one open-loop (without sensors) and

one closed-loop (with sensors).

Open-loop robot platform

The mission cost (CM) for this system is expressed as

z_ {N,M} i

(16)

As is seen, no sensing actions are executed, which corre-

sponds to setting the information quality thresholds to

zero. This system is appropriate only in a highly structured
world.

Closed-lo0p robot platform

The mission cost in this case is expressed as

z_ {S,G,N,M} i

(17)

By repeating the solution of a task with different informa-

tion quality threshold values, a compromise between

safety and speed can be found. If a low information quality
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thresholdvalueprovidesfairlyhighsafety,thissuggests
thatthecorrespondingperceptionisoflittleuseandmay
beomitted.
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