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Abstract

The Network Data Delivery Service (NDDS) is a novel
network data-sharing system. The NDDS system builds

on the model of information producers (sources) and con-

sumers (sinks). Producers register a set of data instances

that they will produce, unaware of prospective consumers

and "produce" the data at their own discretion. Con-

sumers "subscribe" to updates of any data instances they

require without concern for who is producing them. The

routing protocol is connectionless and nearly "stateless";
all data producer and consumer information is dynam-

ically maintained. Thus network reconfigurations, node

failures, etc. are handled naturally.

This scheme is particularly effective for systems (such

as distributed control systems) where information is of a

repetitive nature. NDDS features the ability to handle

multiple producers, consumer update guarantees, notifi-

cations vs. polling for updates, dynamic binding of pro-

ducers and consumers, user-defined data types, and more.
NDDS is integrated into the ControlShell real-time frame-

work, and is being used in several robotics applications as

an effective means of information sharing between sensor

systems, robot controllers, planners, graphical user inter-

faces, simulators etc.

This paper describes the philosophies behind the NDDS

system, and details an example application of a dual-arm

robotic system capable of planning and executing complex

actions under control of an interactive user interface.

1 Introduction

Many control systems are naturally distributed. This is

due to the fact that often they are composed of several
physically distributed modules: sensors, command, con-

trol and monitoring modules. In order to achieve a com-
mon task, these modules need to share timely information.

Robotic systems are a prime example of such distributed
control systems.

These information sharing needs are common to many

other application environments such as databases, dis-

tributed computing, parallel computing, transaction sys-

tems, etc. However, distributed control applications have
some unique requirements and characteristics:

Data transactions in control applications are often

time-critical. To be useful for control purposes data

must get from its source to its destination with min-
imum delay.

There is often the need to synchronize computation

to the arrival of new data. For example the control

command may need to be updated only when new

sensor data arrives. A collision-avoidance plan may
need to be re-evaluated when a new obstacle is de-

tected, etc.

A significant portion of the data flow is repetitive in

nature. This is true of sensor readings, motor com-

mands etc. For this type of data, data loss is often not

critical: sending data is an idempotent operation and

new updates just replace old values. This property
suggests that considerable overhead can be avoided

by using a data transfer paradigm that exploits these
facts.

There are often multiple sources of (what may be
considered) the same data item. For example, a robot

command might be generated by a planner module

as well as a tele-operation module. In the same way
there can be many data consumers. A robot and a
simulator are both sinks of "command-data." The

network of data producers and consumers may not

be known in advance and may change dynamically.

Data requirements are ubiquitous and unpredictable.

It is often very difficult to know what data will be re-

quired by other modules. For instance, force-level

measurements--normally used only by a low-level
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controller--mayberequiredbyasophisticatedhigh-
leveltaskplannerin thefuture. Thearchitecture
shouldsupportthesetypesofdataflow.Thus,vital
datashouldbeaccessiblethroughoutthesystem.

Mostdataflowcanandshouldbeanonymous.Pro-
ducersofthesensorreadingscanusuallybeunaware
of whois readingthem. Consumersmaynotcare
wherethedatatheyusecamefrom. Sinceit is not
essential,hidingthis informationincreasesmodular-
ity byallowingthedatasourcesandsinksto change
transparently.

Theserequirementsaresufficientlyuniqueto deserve
specialtreatment.Toaddressall thisneedswehavede-
velopedtheNetwork Data Delivery Service (NDDS).

NDDS provides transparent network connectivity and

data ubiquity to a set of processes possibly running in

different machines. NDDS allows distributed processes to
share data and event information without concern for the

actual physical location and architecture of their peers 1.

NDDS allows its "clients" to share data in two ways: sub-

scriptions and one-time queries.

NDDS supports "subscriptions" as a fundamental

means of communication. In the application context de-

scribed, subscriptions have some fundamental advantages

over other information sharing models (such as client-

server or shared-memory). Subscriptions cut in half the

data latency over query/response type models and it al-
lows synchronization on the latest available information

as soon as it is produced.

NDDS supports multiple information sources (produc-

ers) and users (consumers). It provides clear semantics for

multiple-producer conflict resolution, provides support for

and guarantees multiple update rates (as specified by the

consumers), and uses decaying state at all levels to ensure

inherently robust communication.

NDDS is into the ControlShell real-time programming

framework [4, 7] and is being been used in several appli-
cations including the control of a two-armed robotic sys-

tem [6], an underwater vehicle [10], and a self contained,

two-armed space robot originally described in [9].

2 Relation to Other Research

There is a large body of literature covering information

sharing in distributed computer systems [1, 2]. More re-

cently new schemes have been developed to address the

specific needs of distributed control applications (see ci-

tations below).

1 NDDS is being used to communicate between Sun, HP and DEC

workstations as well as VME-based real-time processors running the

VxWorks operating system.

Several issues are relevant when comparing different

data-sharing approaches.

Abstraction presented to the user. How natural and
appropriate is it for the specific domain of distributed

robotic systems?

Robustness. Recovery from computer and communi-
cation failures.

Flexibility and Expandability. How easy is it to

add/replace component modules. Can it be done dy-

namically, while the system is in operation?

In the last few years, several distributed data-sharing

schemes have been developed to address many of the is-
sues raised in the introduction among these MBARI's

Data Manager [5], CMU's TCX [3], Rice University's

TelRIP [11] and Sparta's ARTSE [8] all offer network-
transparent connectivity across different platforms and

support subscriptions as means of communication where

multiple consumers can get updates from a single pro-

ducer. Of these, only the Data Manager, provides sup-

port for multiple (consumer-specified) update rates. And

only TeIRIP supports multiple producers of a single data
item. None of the above architectures combine the above

facilities with NDDS's fully-distributed, symmetrical im-

plementation (absence of privileged nodes) nor use a re-
startable handshake-free stateless protocol.

3 The NDDS

Model

Communication

The NDDS system builds on the model of information

producers (sources) and consumers (sinks).

Producers register a set of data instances that they

will produce, unaware of prospective consumers and "pro-
duce" the data at their own discretion. Consumers "sub-

scribe" to updates of any data instances they require

without concern for who is producing them. In this

sense the NDDS is a "subscription-based" model. The

use of subscriptions drastically reduces the overhead re-

quired by a client-server architecture; Occasional sub-

scription requests, at low bandwidth, replace numerous

high-bandwidth client requests. Latency is also reduced,

as the outgoing request message time is eliminated.

NDDS identifies data instances by a name (the NDDS

name). The scope of this name extends to all the tasks
sharing data through NDDS. Two instances with the same

NDDS name are viewed by NDDS as different updates of

the same data instance and are otherwise indistinguish-
able to the client. If two data instances must be distin-

guished by any NDDS client, they must be given a differ-
ent NDDS name.
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Function

NddsRegisterProducer

NddsProduce

NddsSampleProducer

NddsRegisterConsumer

NddsSubscribeTo

NddsReceiveUpdates

NddsQuerylnstance

Action

Register and specify producer

parameters

Add an instance produced by

the producer

Take a snap-shot of all the in-

stances produced by the pro-

ducer. For immediate produc-

ers also send updates to all

consumers.

Register and specify consumer

parameters

Add a subscription to a con-

sumer. Specify a call-back rou-

tine to be called on updates

Poll the consumer for updates.

Will result on call-back rou-

tines being called when appli-

cable. Required only of polled

consumers.

Issue a one-time query.

Table 1: Functional interface to produce, consume

and query data.

Producing data involves three phases: Registering (declar-

ing) a producer, declaring the instances the producer will

produce and sampling the producer. Receiving data up-

dates also involves three phases: Registering (declaring) a

consumer, declaring the instances that the consumer sub-

scribes to along which the action to be taken and lastly

receiving the updates. The last phase is only required for

polled consumers.

NDDS requires all data instances to be of a known type.

NDDS has some built in types (such as strings and arrays)

but most data flow consists of user-defined types. Creat-

ing a new NDDS type involves binding a new type-name

with the functions that will allow NDDS to manipulate

instances of that type.

NDDS treats producers and consumers symmetrically.

Each node maintains the information required to estab-

lish communications. Producers inform prospective con-

sumers of the data they produce. Consumers use this

information to either subscribe to data or issue one-time

queries. Table 1 lists the steps involved in becoming a

producer or consumer of data.

3.1 Producer Characteristics

A producer can be compared to a multi-channel Sample-

and-Hold. It is associated with a set of object instances

(similar to the signal channels) that get sampled syn-

chronously. Sampling a producer takes a sample of the

values of each data item the producer has associated with

it. The data is either immediately distributed (for imme-

diate producers) or saved for later distribution (delayed

producers).
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Figure 1: Multiple producer conflict resolution.

NDDS resolves the multiple-producer conflict by charac-

terizing each producer with two properties: the producer's

strength and its persistence. When a data update is re-

ceived for some object instance, it is accepted ff either

the producer's strength is greater (or equal) to that of the

producer of the last update for that instance or, the time

elapsed since the last update was received exceeds the per-

sistence of the producer of the last update. In essence the

strength is like a priority and the persistence is the duration

for which the priority is val/d.

A producer is characterized by three parameters: its

production rate, its strength and its persistence. The

strength and persistence parameters are used to resolve

multiple-producer conflicts. Their meaning is illustrated

in Figure 1. A producer's data is used while it is the

strongest source that hasn't exceeded its persistence.

Typically a producer that will generate data updates ev-

ery period of length T, will set its persistence to some

time Tp where Tp > T. Thus, while that producer is func-

tional, it will take precedence over any producers of less

strength. Should the producer stop distributing its data

(willingly or due to a failure), other producers will take

over after Tp elapses. This mechanism establishes an in-

herently robust, quasi-stateless communications channel

between the strongest producer of an instance and all the

consumers of that instance.

3.2 Consumer Characteristics

Consumers are notification based. They subscribe to

a set of instances (identified by their NDDS name) by

providing call-back functions for each instance they sub-
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Figure 2: Consumer notification rate.

The NDDS characterizes consumers requests for periodic
updates with two properties: the consumer's minimum sep-
aration time and its deadline. Once the consumer is called

with an update for an object instance, it is guaranteed not
to be notified again of the same instance for at least the
minimum separation time. The deadline is a the maximum
time the consumer is wilting to wait for a new update. Even
if new updates haven't art/red, the call-back routine will be
called when the dead//ne expires.
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Figure 3: One-Time Query Parameters.

A one-time query specifies two parameters: the wait time
and the deadline. A query will block for at least wait
time during which the data arriving from the producer with
higher strength is saved. At the end of the wait time the
query returns if any data has been received. Otherwise,
query remains blocked until either an update comes or the
deadline expires (whichever comes first).

scribe to. When a data update for a subscription arrives,

the call-back function of every consumer is called with the
data as a parameter.

Two consumer models are supported: immediate and

polled. An immediate consumer will be called back as soon

as the data update arrives. A polled consumer will not be

called back until it itself "polls" for updates. Consumers

are characterized by two parameters, the minimum sepa-

ration and the deadline (see figure 2). These parameters

are used to regulate consumer update rates. Consumers

are guaranteed updates no sooner than the minimum sep-

aration time and no later than the deadline. Typically

the minimum separation protects the consumer against

producers that are too fast whereas the deadline provides

a guaranteed call-back time that can be used to take ap-

propriate action (the expiration of the deadline typically

indicates lack of producers or communications failure).

3.3 One-Time Queries

A client task may issue one-time queries for specific

NDDS data instances• Queries are blocking calls. Aside

from specifying the name and type of the NDDS data

instance, a query contains two parameters: the wail and

deadline illustrated in figure 3. These parameters regulate

the tradeoff between returning as soon as data becomes

available and waiting for "better" data. The use of these

parameters make the latency of this call predictable, al-
lowing its use from real-time application code. Typically

the wait is set to be long enough to account for commu-
nication delays from all data producers to the consumer.

The deadline provides a guaranteed call-back time in case

no responses arrive. Setting a wait time to 0 causes the

first response to be accepted.

4 Implementation

NDDS is symmetrically distributed, that is, there are no

"special" or "privileged" nodes nor name servers. All

NDDS nodes are functionally identical and each node

maintains its own copy of the NDDS database and con-

tains the helper processes necessary to implement the
communication model described above.

NDDS uses UDP as a means of communication. Data

is encoded using XDR to allow communications between

computers with different data representations.

4.1 Architectural Overview

An NDDS node is composed of one or more NDDS client

processes (each with its respective NDDS Server Daemon)

a copy of the NDDS database and three daemon (helper)
processes that maintain the database and implement the
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Figure 4: Communication between NDDS nodes.

A NDDS node is composed of one or more NDDS clients and
three helper daemons that share a local copy o[ the NDDS
database. Each NDDS client has a private NDDS Server
Daemon that informs other NDDS nodes of the productions
and subscriptions of the client. The three helper daemons
are responsible for maintaining the NDDS database, send-
ing updates to remote subscribers, receiving updates and
servicing queries. There is one NDDS Forwarding Daemon
per Network host.

NDDS communication model described above. See fig-
ure 4.

The user task becomes an NDDS client by linking to

the NDDS library. Each NDDS client process spawns

a private NDDS Server Daemon process that will assist

in establishing the subscriptions and informing the peer

nodes of the user productions. There is at most one NDDS

node per address space so in operating systems that sup-

port shared memory threads (for example VxWorks), sev-

eral NDDS client processes may belong to the same node

(sharing the same copy of the NDDS database and helper

daemons2).

The following is a functional description of the different
daemons:

• NDDS Forwarding Daemon (NFD). There is one
NFD per network host. All the Request Receiver

Daemons running on the host register with the NFD.
Production notifications and subscription requests

2In operating systems that don't support shared memory

threads, such as Unix, the helper daemons are not independent tasks

but rather are installed as signal handlers.

received by the NFD daemon are immediately for-

warded to all the Request Receiver Daemon(s) run-

ning on the host.

NDDS Server Daemon (NSD). Each NDDS client

(user-task) spawns its private NSD. The NSD is re-

sponsible for periodically informing the all the other
NDDS nodes of both the subscription requests and

the productions of the NDDS client.

Request Receiver Daemon (RRD). There is one

RRD per NDDS node. The RRD is responsible

for maintaining the remote subscriptions and pro-

ductions in the NDDS database. Stale productions

and subscription requests are aged and eventually

dropped by the RRD. This daemon is also responsi-

ble for replying to one-time queries from other NDDS
nodes.

Update Sender Daemon (USD). There is one USD
per NDDS node. The USD is responsible for sending

the updates of locally produced data items to the
subscribers in other NDDS nodes. This daemon also

ensures that the the timing parameters requested by
the consumer are met.

Update Receiver Daemon (URD). There is one

URD per NDDS node. The URD is responsible for

receiving updates for the local subscriptions of the
nodes. The URD solves multiple-producer conflicts

and, in the case of immediate consumers, executes

the callback routine(s) installed for that data item.

The URD also ensures that the timing parameters

requested by the each consumer in the node are met.

4.2 Data Management Overview

The NDDS database is replicated and maintained on each

NDDS node by three helper daemons (the Request Re-
ceiver Daemon, Update Sender Daemon and Update Re-

ceiver Daemon). The database stores and cross references
producers and the data they produce, consumers and the

data they consume, remote productions, subscriptions re-

quested by both the NDDS clients in both the local and

remote NDDS nodes, etc.

Consistency between databases across different NDDS

nodes is not necessary and requires no special effort. Tem-

porary inconsistencies between databases may result on

subscription requests (or queries) not reaching all the pro-

ducers of a given data item and, as a consequence, dif-
ferent nodes may get data from different producers. A

similar situation may result from the data loss due to
communication failure. At worst this will be a transient

situation that arises only if there are multiple producers
of the same data.
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All information about remote NDDS nodes is aged and

is eventually erased unless it is refreshed. The NDDS
Server Daemon associated with each NDDS client is re-

sponsible for the periodic refreshment of the information
that concerns that NDDS client . This mechanism is in-

herently robust to remote node failures, communication

dropouts and network partitioning. Furthermore, it re-

quires no special recovery mechanisms.

5 Applications

This section describes how a distributed robotic applica-

tion exploits NDDS unique facilities to build a modular

expandable system that integrates planning into a two-

armed robotic workcell [6]. The system is composed of
four major components: user interface, planner, the dual-

arm robot control and sensor system, and an on-line simu-

lator. The graphical user interface provides high-level user

direction. The motion planner generates complete on-line

plans to carry out these directives, specifying both sin-

gle and dual-armed motion and manipulation. Combined

with the robot control and real-time vision, the system

is capable of performing object acquisition from a moving

conveyor belt as well as reacting to environmental changes
on-line.

Network Data Delivery Service

U_er4ntefface

Robot + Conlrellet

Ta_kPlanner Path Plannel

Figure 5: Application Example: Task-Level control
of a Two-Armed robot.

This example shows the main application modules. Each
module communicates using one or more of the three in-
terfaces: The World Model interface (WMif), the Robot
Interface (nil) and the Task Interface (Tif). These mod-
ules are physically distributed. All the interfaces are built

using the Network Data Delivery Service (NDDS). NDDS
plays the role of a bus providing the necessary module in-
terconnections.

The use of NDDS as the underlying communication

mechanism provides unique benefits to this application

without requiring any special programming.

• The different modules can be distributed across dif-

ferent computer systems (with different processor ar-
chitectures and operating systems) 3.

Several copies of the same module can be run con-
currently. For example, the graphical user interface
module can be run on several workstations. This al-

lows multiple users to monitor the system and per-

mits simultaneous interaction with the robot system.

The graphical simulator module can mascarade as the

real robot and allow independent testing of the re-

maining modules in the system. Any time the real

robot goes on-line, its productions override those of

the simulator 4 and all the remaining modules are now
connected to the real robot.

Should the planner be unable to generate adequate

plans for specific situations due to limitations or mal-

functions, a teleoperation module (under develop-

ment) can override planner commands and take con-
trol of the robot.

Future modules (such as the teleoperation-module

mentioned above) can be dynamically added to the
system even if it is already in operation or deployed 5.

6 Conclusions

This paper has presented NDDS, a unique data-sharing

scheme that allows programs distributed on a computer
network to share data and event information unaware of

the location of their peers. These facilities provide fun-

damental new capabilities to distibuted control systems

that use NDDS as the underlying communication mecha-
nism. This paper has also discussed an application that
uses NDDS to communicate between different modules

that integrate planning into a two-armed robotic work-
cell. Several other applications are cited in the paper.
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