
AIAA-94-1270-CP

656

DESIGNING THE NEXT GENERATION OF ROBOTIC CONTROLLERS

David G. Goldstein, Ph.D.

Computer Science Department

North Carolina Agricultural & Technical State University

Greensboro, NC

Abstract

This paper describes the scenario-based, object-
oriented approach used to specify the software

architecture of the next generation of robotic
controllers. We also discuss how we intend to

implement a version of the controller via a

multi-agent approach. We also describe our

real-time, fault-tolerant, cooperative reasoning
tools that we intend to use to facilitate

developing the implementation of the controller.
We also describe how we intend to interface

existing applications and controller components

to the tools so that they interact via objects

detailed in the controller specification.

Introduction

Problem

The manufacturing industry of the United States

has become increasingly less effective as other

nations pour money into research. To regain

world technological pre-eminance, the

Advanced Research Project Agency and the

National Center for Manufacturing Sciences

have launched a number of programs. One of
these, the Next Generation Controller program,

attempts to develop a standard for robotic

controllers for the post-1995 time frame. This

paper will discuss the approach taken during our

working for the program while staying within

ethical boundaries concerning this crucial

research program. The interested, authorized

reader can obtain the actual specification
document can be obtained from the National

Center for Manufacturing Sciences.
Most of the robotic controllers used in

America today reflect programming concepts

that are decades old. Change is required to

remain competitive. However, manufacturers

will not invest in equipment unless the return on

investment promises to far exceed any risks.

Therefore, the characteristics of any controller

proposed must satisfy two different general

goals: risk reduction and performance.
Robotic controllers must ensure several

key items to facilitate risk reduction. First,
current manufacturing practice must be

supported; manufacturers are loath to shut down

a working factory on a promise of efficiency.

Second, current equipment must be supported.

Finally, numerous existing applications and
utilities must be supported. While each of these

items will be discussed later in this paper, open

systems largely address these concerns.
Innovative robotic controllers must also

provide vast performance improvements for

acceptance, where "performance" encompasses

several aspects. Obviously, controllers almost

always have real-time deadlines to meet and so
should afford accurate results via efficient

computational processes. Controllers should

also afford previously unavailable capabilities,

better user-interfaces, and promises of more

efficient programming. Since product
acceptance eventually depends upon economics,

either flexibility (expanded product-line or

higher quality product) or lower life cycle cost

(through lower product development costs) must
be offered.

Loss of market share and un-

transferred technical innovations prompted the
programs adoption of both risk reduction and

increased performance. Current practice in the

robotic control industry has hardly changed in

decades (with the exception of a few, very well

financed areas). The programs goals attempted

to afford advanced features (such as art-to-part

manufacturing) while facilitating a smooth

transition from existing equipment and support

software to the next generation of machinery.

Program History

This paper will try to explain the approach that

was eventually, successfidly used in developing

a specification for the controller: scenario-based

object-oriented analysis. This approach will be

the central focus of the paper because traditional

approaches failed dismally in attempting to gain

enough support for developing a standard.

Another key aspect of developing the standard

was "cleaning the kitchen"; if too many cooks

don't make good broth, then using fewer cooks

might help. It did.

Copyright c 1994 by David G. Goldstein. Published by the American Institute
of Aeronautics and Astronautics, Inc. with Permission.

Organization of Paper
We first describe the scope of the controller's

specification to provide context for the rest of

the paper. We then describe the scenario-based

methodology and how it can be employed to

specify a controller. We then provide a

description of the contents of such a

specification. We finally analyze the
effectiveness of our approach and draw some

conclusions concerning the utility of the

specification and the effectiveness of the

proposed controller.

Scope of Controller Specification

Developing a national standard for robotic
controllers necessitates employing a wide brush;

painting a picture of robotic use and

manufacturing needs in the near future requires

comprehensive coverage of the domain while

affording a great deal of flexibility.

Comprehensive coverage is required to examine

manufacturing from the level of controlling

motors in actuators to analyzing throughput of

factory lines. We try to specify interfaces to

almost any type of information that a user of the

system might want to analyze or modify.
Comprehensive coverage is also

reflected in the very-varied concerns examined

by the specification. Physical elements, such as

sensors, effectors, payloads, conveyors, tools,

and users are considered. Abstract physical

elements, such as envelopes, schedules and

enterprise expectations should also be
considered. Abstract elements, such as those for

configuration, are by far the most difficult,

essential elements to include; different

implementations employ different strategies for

configuration, different kinds of elements

requiring configuration, and different

granularities of configuration. Given that the
controller should address needs as diverse as

composite baking, precision material removal,

and many-axis (> 100) assembly, facilitating

comprehensive coverage often required multiple,

combinable representations.

Comprehensive coverage also includes

covering current practice: in terms of specifying

interfaces to existing machinery, programming

techniques, and support software. Hence,

interfaces to facilitate interacting with programs

for solenoids and C++ programs were both

supported.

The controller specification also

reflected a great deal of flexibility.

Interoperability and plug-replaceability are
essential in new robotic architectures destined

for commercialization. Such flexibility is

facilitated by employing existing standards and

an open, published architecture. With respect to

this endeavor, the obvious standards to employ

were EXPRESS and the Product Data Exchange

Specification. _,3

The Product Data Exchange

Specification (PDES) attempts to provide a

standard mechanism for describing virtually any

object that might be manufactured as a product.

Hence, the numerous volumes of the

specification are appropriate for addressing a

variety of fields. The standard is hierarchical,

building upon very primitive concepts such as
Cartesian coordinates and measurement units to

eventually describe features such as pockets and
items such as resistors.

PDES was written in the specification

language EXPRESS. EXPRESS is an ISO

standard (but currently undergoing revision for

its next version). EXPRESS is well-suited for

describing object-oriented concepts (see Object-

Oriented Methodology), since it supports both

inheritance and abstract data t3_es.
Inheritance is the notion that items

described at a higher level in a hierarchy are

subsumed in the structure of objects placed

lower in a hierarchy (e.g., all mammals have

mammary glands). Abstract data types allow

new representations for new items (e.g., a car

can be represented as a data type and used in

representing a fleet of cars).

An example of EXPRESS code is

provided in Figure 1. The first entity (object

described) is a representation for a sine-wave.

Such a type of line should inherit the

characteristics of general Line's and is more
abstract than lines described as

Cartesian_sine_line and Spherical_sine_line.

A sinusoidal line has several attributes,

to describe the phase, amplitude and

compression factor of the wave. EXPRESS also

facilitates constraining the attributes of an

object. This example uses the functions

all in 0 to_2pi and periodic__phenomenon to

describe relationships among values of attributes

that must be present in valid objects.

The specification of the sine-wave is

used in the second entity to describe a series of

sinusoidal lines (such as might be generated by a

657

Fourier transform). The example allows for any

positive number of sine curves to be combined to
describe a Sine series line. The constraint

expressed here states that there must be an offset

for each curve specified.
Much of the work in the United States

with respect to both EXPRESS and PDES stems
from the National Institute for Standards and

Technologies (NIST). The ISO acceptance of
EXPRESS as a standard has prompted a large

number of tool vendors to also support

EXPRESS. Similarly, a great deal of funded

research employs PDES to encourage its

acceptance. NIST also has developed a public
domain toolkit for manipulating EXPRESS

models to facilitate working with PDES.

ENTITY Sine line

SUBTYPE OF (Line)

SUPERTYPE OF (ONEOF(Cartesian_sine_line, Spherical_sine_line)) ;

(*
An individual line described in terms of

Ampliture* sin(PeriodCompression*Angle+Phase)

*)
Compression_coefficient : REAL;

Phase : REAL;

Ampliture : REAL;
WHERE

all in 0 to_2pi(Profile_element.Phase);

periodic_phenomenon(Sine_line);

END_ENTITY;

ENTITY Sine_series_line;

(*
Represents a function as a summation of sines of the form:
f(w) = C l*sin(A lw+B 1) + C2*sin(A2w+B2) + C3*sin(A3w+B3) +

Offsets (tO, tl) are also provided so that relative calculations can be performed, as in

f(w) = C 1*sin(A 1(w-t0)+B 1) + C2*sin(A2(w-t0)+B2) ...

*)
Offset: LIST[1:#] OF REAL;

Component: LISTII:#] OF REAL;
WHERE

SIZEOF(Offset) = SIZEOF(Component);

END_ENTITY;

Figure 1: Sample EXPRESS Model

Obiect-Oriented Methodology

Our goal in developing the robotic controller

specification was to provide a set of standard

interfaces by which various applications and

equipment could communicate. We provided

this interface by describing the set of objects that

could be transmitted among applications and

support software. We also specified the

constraints placed upon these objects to ensure

their validity. We also described some minimal

performance requirements required of various

classes of applications when generating and

manipulating these standard objects.
The object-oriented methodology

employed and developed novel concepts in

Object-Oriented Analysis (OOA) and Design
(OOD). Because public domain tools support
automated translation of EXPRESS code into

C++ (arguably the most popular language
considered to be "object oriented"), Object-

Oriented Programming (OOP) is also supported.
OOA strives to discern the essential

objects for describing a domain. OOD attempts

to organize and describe these objects, their

behavior, and their interactions. We employed a

specific object-oriented technique, Scenario-

based Object-Oriented Analysis and Design, to
derive the controller architecture. These

techniques are particularly good at clearly

expressing concepts in a domain and at

providing an audit trail to the source of the

658

originalobject. To improve the clarity and

utility of the our work, we employed Computer-
Assisted Software Engineering (CASE) tools to

express the products of our analysis and design.

Terminology and Procedures

Object-Oriented Software Engineering is a

relatively new approach for developing software.

The approach treats instances of data types as

objects. The data types themselves are typically

called classes. Walt Disney's favorite car,

"Herbie", would be considered an object of the
class "car".

Classes have attributes describing

characteristics of objects. These attributes are

assigned values to reflect the characteristics of

particular objects. Hence, the color attribute of

the class "car" with respect to the object

"Herbie" might have the value "white".

Object-oriented techniques provide

numerous benefits, a description of which would

be beyond the scope of this paper. However,

two of these advantages previously mentioned

(abstract data types and inheritance) facilitate

developing hierarchies of objects.

The Composition Hierarchy pictured

in Figure 2 was described via EXPRESS LIST's

in Figure 1; composition hierarchies express

how multiple objects can be combined to

describe more complex objects. Machines are

excellent examples of composition hierarchies: a

complex machine including tools, spindles,

links, etc., can be succinctly expressed in a

composition hierarchy.

Sine_series_line [

I
Figure 2: Composition Hierarchy

The Generalization Hierarchy

expressed in Figure 3 was described via the

SUPERTYPE and SUBTYPE relationships as

part of the EXPRESS code in Figure 1.
Generalization Hierarchies facilitate less

abstract classes inheriting attributes from more

abstract classes. A clearer example might be

machines: Abbrassive_waterjet would be less

abstract than Material_removal_machine that

would be less abstract than Makingmachine,
which would be less abstract than Machine.

Abbrassive_waterjet's inherit attributed from
Material removal machine that inherit

attributes from Making_machines that inherit
from Machines.

I I I

IS,,a t,noI I ino_'iool...
,L,

I I

Figure 3: Generalization Hierarchy

Scenario-based Techniques

We employ scenarios to ascertain the various

objects, their behavior, and their interactions in

a given domain. Scenarios are timelines of

events with respect to one or more objects. One

can imagine a scenario as a movie depicting the

existence of an object at some level of

granularity.

Determining the level of granularity for

examining an object is essential and often non-

trivial. A machine can be described by its

shape, or the shapes of its components, or by the

shape of pieces of the components (such as

screws on a jig).

Granularity is complicated by the fact

that many aspects of an object might require

descriptions in different measurement units and

at multiple levels of abstraction. For example, if

a planning application is going to reason about
the behavior of a machine, it must know the

machines' capabilities. The planner must know
what the machine can do and with what

precision. To ascertain the interactions among

objects affecting the machine's precision, we

may have to examine both a more precise

granularity of composed objects (e.g.,

interactions of surfaces of the jig and tool) and a

more precise granularity of time (e.g.,

microseconds as opposed to seconds). Hence,

we use scenarios describing the same objects,

but encompassing different time granularities.

Scenario-based analysis is particularly

effective because it directly maps elements in the
domain to models in the interface. Scenario-

based analysis builds customer confidence

659

becausehe has a better conceptof the
mechanismsunderlyingany "blackboxes".
Scenario-basedanalysis also facilitates
traceability;becauseclassesoriginatefrom
particularscenarios,questionsthata customer
might havecan quicklyand efficientlybe
addressed.Wetendtoinvolvethecustomersas
much as possiblein the analysisphase,
hopefully obtaining the actual scenarios from

them via interviewing techniques.

Implementing a Controller

We hope to implement a version of the

specification using a multi-agent approach.

Recent literature in artificial intelligence

suggests that collections of simple agents are

much easier to control than large, monolithic

programs.

We intend to treat applications and
portions of the implemented controller as

intelligent agents (Figure 4). Many of these

agents, e.g., planners, will be represented as
knowledge-based applications. Other

applications, e.g., machine executives, will be

embedded in wrappers to communicate standard

objects from the specification.

Application

Network

Data

Objects

¢

Wrapper Object Translation [Objets
Communications

Application D

Figure 4: Controller Components as Agents

interfaces. DAIT supports forward-chaining

reasoning, procedural programming, functional

programming, object-oriented programming,

and deductive database queries. We expect to

implement both Fuzzy inferencing and

backward-chaining in the near future.

Conclusions

Object-oriented analysis and design provide an

attractive mechanism for examining the domain
of robotic control. Scenario-based software

engineering techniques can often be used to

achieve consensus among multiple customers
concerning requirements. The Next Generation

Controller program successfully used these

techniques in developing a specification for
standard robotic controllers in the U.S.

We hope to soon implement a version

of the controller by employing multi-agent

techniques. We will use internally developed

tools specifically designed for cooperative
knowledge-based processing in this endeavor.

By embedding existing software in wrappers
communicating objects found in the

specification, we will facilitate interoperability

and interchangeability of various components of
our controller.

The next generation of robotic

controllers must be innovative enough to support
avant-garde research concepts such as art-to-

part manufacturing. However, this specification
of these new controllers will also have to address

the needs of supporting current hardware and

software. We feel that the specification

adequately addresses these concerns. We also

hope to soon realize a controller demonstrating

interoperability and interchangeability of

components while offering a very high degree of

functionality.

Crucial to our implementation of a
controller will be the Distributed Artificial

Intelligence Toolkit (DAIT). 4,_ DAIT provides

distributed knowledge-based processing while

affording transparent processor fault-tolerance.

DAIT also includes predicates to facilitate real-

time control. DAIT is based-upon NASA's C

Language Integrated Production System. 6 DAIT

includes tools for metering, configuration,

interprocess communication, and user-

660

[I]

References

NATIONAL CENTER FOR

MANUFACTURING SCIENCES,

[21 INTERNATIONAL STANDARDS

ORGANIZATION, "Product Data

Exchange Specification First Working
DralP, ISO TC184/ SC4/WGI, Document

N284, 1988.

[31 SPIBY, P.: "EXPRESS Language Reference

Manual', Document Number NI4,

International Standards Organization,

April, 1991.

[41 GOLD STEIN, D.: 'The Distributed

Artificial Intelligence Toolkit', A1 Expert

(Miller-Freeman Publishing), San

Francisco, January 1994.

I51 GOLDSTEIN, D.: "A Fault-tolerant

Architecture for Distributed,

Heterogeneous_ Deductive Knowledge-based

Applications', Ph.D. Dissertation,

University of Texas at Arlington, Arlington,

USA, August 1992.

[6] GIARRANTANO, J.: 'CLIPS User's

Guide' (NASA/JSC), Houston, TX, 1991

Acknowledgments

Aspect of this work were inspired while under
contract on the Next Generation Controller

program. The author has continued to

investigate concepts presented here as part of
North Carolina Agricultural & Technical State

University's Manufacturing Initiative (internally

funded) and Generic Object-Orioented Software

Engineering laboratory (partially funded by the

Army and IBM).

661

