AIAA-94-1281-CP

A MULTITASKING BEHAVIORAL CONTROL SYSTEM
FOR THE
ROBOTIC ALL TERRAIN LUNAR EXPLORATION ROVER (RATLER)

P. Klarer*
Sandia National Laboratories
Albuquerque, New Mexico

Abstract

The design of a multitasking behavioral
control system for the Robotic Al Terrain
Lunar Exploration Rover (RATLER) is
described. The control system design
attempts to ameliorate some of the
problems noted by some researchers when
implementing subsumption or behavioral
control systems, particularly with regard to
multiple processor systems and real-time
operations. The architecture is designed to
allow both synchronous and asynchronous
operations between various behavior
modules by taking advantage of intertask
communications channels, and by
implementing each behavior module and
each interconnection node as a stand-alone
task. The potential advantages of this
approach over those previously described in
the field are discussed. An implementation
of the architecture is planned for a prototype
Robotic All Terrain Lunar Exploration Rover
(RATLER) currently under development,
and is briefly described.

Introduction

One of the more interesting problems in the
fields of robotics and artificial intelligence
research is the autonomous navigation and
control of ground venhicles. The capability
for a vehicle to autonomously perceive,
plan, and navigate through obstacle fields in
realistic conditions has potential application
in a wide variety of areas, from automated
warehouse delivery carts to planetary
exploration platforms. Since the advent of

modern digital computers the typical
approach to solving the autonomous
navigation problem has been through
Adtificial Intelligence (Al) techniques, where
a systematic procedure of perception,
modeling, planning, action and feedback
(see Figure 1) are applied in a manner
reminiscent of human being's problem
solving techniques' 2.

sensors

L feedback

task execution

actuators

Figure 1. Traditional Al Approach

(from Brooks, 1986)

The computational requirements for such
systems have proven to be significant, and
alternatives have been developed over the
past few years which employ techniques
that are less anthropomorphic, including
neural networks, fuzzy logic, and behavioral
control. Behavioral control was first
proposed by Brooks® as a simple and
extensible architecture that could provide
fully autonomous systems without the high

*Member of the Technical Staff, Advanced Vehicle Development Department, Robotic Vehicle Range

This work is sponsored by the Laboratory Directed Research and Development (LDRD) Program
at Sandia National Laboratories and the US Department of Energy.

Copyright ¢ 1993 by the American Institute of Aeronautics and Astronautics, Inc. All nghts reserved

718

computational requirements of the
traditional Al approach. The subsumption
approach is based on an entirely different
paradigm which is less 'sequential’ in nature
than traditional Al, and is more 'layered'
(see Figure 2).

—

[roason about behavior of objects

[plan changes to the world]
{ identify objects]
sensors___ ’ monitor changes] — 5 actuators
[build maps]
[explore }
[wander]
[avoid objects]

Figure 2. Subsumption Approach
(from Brooks, 1986}

Some observations by researchers who
have developed these behavioral or
'subsumption’ based systems have pointed
out pitfalls in the subsumption paradigm that
can make implementation problematic?.
The use of multiple processors that are
physically wired together to produce the
subsumption system resulted in a system
that was mechanically complex, required
custom designed hardware, and was
somewhat prone to failure. Although these
problems may be alleviated through the
miniaturization and consolidation of the
'macro-sized' multiprocessor system to a
'micro' or even 'nano' sized custom silicon
chip®, the basic weakness of these systems
is their inability to provide internal models or
representations of the environment. This
lack of 'state’ information makes interaction
with the system by a user somewhat like
attempting to converse with a very simple
lifeform. It must be stated that the
elimination of internal models or ‘state’
information was one of the objectives of the
subsumption architecture's proponents, in
that it is precisely this requirement for
accurate world models that drives the
traditional Al techniques' high computational
requirements, and the argument has been
made that an insect requires very little
'‘computation’ power to function

autonomously®. While it is true that insects
can function autonomously in a real world
environment, it is difficult to imagine a
technique that allows one to interactively
direct the behavior of an insect to suit one's
purpose, and that is after all, one of the
important criteria for robotic systems in the
service of humankind. One potential
approach that not only circumvents those
problems but may actually facilitate the
implementation of a subsumption
architecture is to employ a multitasking
framework as the basis for system design.
This approach employs conventional
computer processors to alleviate the
mechanical complexity issue, allows
software modules to operate independently
in real time much as the subsumption
architecture's 'behaviors' do, and provides
many intrinsic features that facilitate the
communication and interactions between
independent modules. In addition, a real-
time multitasking system allows the use of
traditional Al problem solving techniques in
concert with a subsumption architecture,
resulting in a hybrid system that takes
advantage of the benefits of both
approaches. The remainder of this paper is
devoted to describing how such a system
could be implemented, and discusses some
concepts for specific implementation on a
mobile robotic system under development
at Sandia National Laboratories' Robotic
Vehicle Range. It should be noted that
detailed explanations of the subsumption
approach are referenced at the end of this
paper, and are therefore not covered here,
however Dr. Brooks' notation is used herein
to describe the use of the subsumption
architecture's connections and features.

Generalized Hybrid System Description

Figure 3 illustrates a generalized hybrid
system architecture for robotic system
control, employing both a subsumption
system (surrounded by a dashed line), and a
conventional set of real-time input\output
tasks and associated data stores. Data
acquisition from the sensor suite is handled
by one or more specialized tasks, which
typically run at a fixed rate. The fixed,
regular rate of data sampling is an important
characteristic of real-time systems, in that
the application of some digital filtering or

post processing techniques often requires
that data from several disparate sensors be
acquired at fixed, repeatable intervals. One
of the major advantages of a real-time
multitasking system in this context is the
ability to add, modify or delete major
modules without affecting the timing
characteristics of the system as a whole, or
the iteration rate of other task modules in
the system. As shown in the figure, data
acquisition is completely independent of the
subsequent tasks in the system that make
use of it, as are the control output tasks.

B T U o

utput Signals to Hardware
s~ Output Task #3 r>

sensor _ﬁ - ‘@;kwA

r Input Data Store

/%-E, gent Task ”_i_]
Agent Task #2 1

ent Task #i*—{—g}*gont Task #

b 4

1N
N: o8

Figure 3. Multitasking Behavioral
System Architecture

By using a set of common data stores
between the 1/O tasks and the subsumption
control system, the architecture allows for
the addition of other 'high level' control or
'Al-like’ elements, as shown in Figure 4. For
example, interfacing a set of tasks which
perform perception and feature extraction,
the maintenance of a data-based world
model, and the planning of actions based on
the modei to the system is straightforward,
and only affects the system at two points.
The input data store must accommodate
any new sensors required for perception,
and the motion planner's output is hooked
into one of the subsumption system's
outputs via a new subsumption node. The
world model data store is entirely
independent of any other features of the

system, and is only interfaced to the new
tasks which require it.

= =

= menJ]

s~ Butput Task #1°

Output Signals to Hardware
> utput Task #2 >+

Output Signals to Hardware

> Dutput Task #
- =

Output Data Store :l

Figure 4. Hybrid System Architecture

The previous example is included only to
illustrate the method by which a
subsumption system can be integrated with
traditional Al approaches, and how a real-
time multitasking architecture facilitates this.
In an actual implementation, the addition of
traditionai Al techniques may be obviated if
the subsumption system is fully
implemented, resulting in a fully
autonomous system which is capable of
initiating motion, avoiding obstacles,
pursuing some goal directed behavior,
perception and\or reasoning about disparate
sensory input, and exploration of its
surrounding environment.

As noted in Brooks' description of the
subsumption architecture, communications
between each of the modules and the
method of interconnecting the various
modules through special nodes is the key to
implementation3. The built-in features of
most multitasking systems that allow
intertask communication and
synchronization provide the methods for
implementing a subsumption system such
that more than a single specific mechanism
may be used. The most common feature
available in multitasking systems s
message passing. Message passing
involves packaging data into a special data
structure specific to the operating system,
and tagging the data structure's 'destination’

719

720

variable (or pointer) so that the multitasking
kernel knows which task is the intended
recipient. The kernel is invoked with a
special call by the sender, and the message
arrives at the destination task at some time
in the future. In a real-time multitasking
system, the message 'delivery' time is
guaranteed to be no more than some
specific interval. For the purposes of a
subsumption system, the contents of the
message would be the pertinent data from
one module's 'output line' as described by
Brooks, which corresponds to an 'input' line
to either another module or to a
subsumption node. In either case, the
embodiment of behavioral modules and
nodes as separate tasks makes them
appear to be identical to the multitasking
kernel, and are treated in exactly the same
way by the system. Thus, message passing
provides an immediate interconnection tool
to create a subsumption system using tasks

to implement behavior modules and

connection nodes, and potentially allows
both synchronous and asynchronous
functionality, depending on the details of the

‘multitasking kernel's features.

An additional, complementary method for
performing intertask communications
involves the use of a user-defined data
structure located in global memory (or
accessed via a pointer) and a real-time
multitasking feature called an ‘event'.
Events are implemented in a variety of
ways across different kernels, but usually
involve a special bitfield or kernel variable
that is monitored by the kernel for changes.
Changes in the state of the event bitfield are
initiated by tasks that wish to record the fact
that something of importance has occurred,
and some other task needs to respond. The
kernel notes a change in the event bitfield at
some defined, minimum time after a task
changed the state of the bit, and responds
by triggering or 'kicking' the second task
which is hooked to the event bit. Although
somewhat clumsy when compared to
message passing, the use of real-time
'‘events' and an associated data structure
operates much faster than the passing of a
message. This is due to the fact that
message passing usually involves much
more in the way of data operations by the
kernel than the simple setting or clearing of
a single event. Either way, the intrinsic

-

features of a real-time multitasking system
provide the means by which synchronous
and asynchronous interactions between
independent tasks may be applied to
implementing a subsumption architecture.

Example Implementation for RATLER

In the previous section some generalized
descriptions of multitasking features were
used to illustrate how a subsumption system
could be implemented within such a
framework. In this section, an example
implementation for a specific mobile robot
system is described. The example is taken
from Brooks' description of a subsumption
system3, and has been modified to fit the
multitasking approach to implementation for
the Robotic All Terrain Lunar Exploration
Rover (RATLER)”. The RATLER Il vehicle
shown in Figure 5 is a four wheeled, skid
steered articulated chassis design, with the
body divided into right and left halves, two
wheels on each side. The halves are joined
together such that they may rotate along the
lateral axis to enhance the mobility and
stability of the platform. The RATLER is
intended for use as a teleoperated vehicle,
with semiautonomous navigation
capabilities selectable by a remote operator.
The RATLER will eventually carry a suite of
ingtriimanto L 72N narfarms micoinn_aonanifin
HISUUIITIIW w peliviin HioSIviiFopouuiiiv
tasks, and will also be fitted with a multi-
DOF manipulator arm. The primary mission
of the RATLER is planetary exploration, but
the platform may find terrestrial applications
as well.

Figure 5. RATLER Il Prototype

Although not yet implemented, some form
of proximity sensing will be required on the
vehicle to provide obstacle detection input
for the software control system. This will
most likely take the form of a series of
infrared or microwave range Sensors
arrayed around the vehicle's periphery,
which output a signal if an object is detected
within a preset minimum range limit or set
of range bins.

The subsumption architecture as originally
described by Brooks does not include any
provisions for a user to interact with the
system directly. Rather, the focus on
minimalism to achieve autonomy ignores
the possibility of teleoperation as a control
mode. For certain applications, i.e. the
exploration of a planetary surface too far
removed from a human teleoperator for
real-time remote control to be feasible, a
strictly autonomous operations mode makes
sense. However, there are many other
applications of robotic vehicles that would
benefit from a capability to teleoperate,
including both terrestrial and possibly lunar
surface missions3®. Two implementation
concepts for a subsumption system with a
teleoperation capability are briefly described
below. The first assumes teleoperation to
be the 'lowest' functional layer in the
subsumption architecture, whereas the
second concept assumes teleoperation to
operate at the ‘highest' level. Precisely
which of the two approaches, or some other
as yet undefined approach, is best will the
subject of future work.

Teleoperation as the 'lowest’ level:

As illustrated in Figure 6, the subsumption
system proposed for the RATLER is based
on the real-time muititasking approach
described previously. A set of dedicated
tasks perform data acquisition from a sensor
suite, and run at a fixed, periodic rate
between 10 and 100 Hz. The timing interval
is controlled by the multitasking kernel via
inherent timer interrupts, and is transparent
to the user. The sensor data is stored in a
common memory structure and is available
to the subsumption system's modules as
required. Each module accesses only the
data it needs in order to perform its function,
which is to operate as a finite state

machine. The data store is accessed via
pointers, and does not require any event
bits or message passing. Note that this
system differs from Brooks' original
description in one significant regard; that is,
the lowest functional element is a module
called 'teleoperate’. This is assumed to be
the lowest possible level of functionality,
considering a teleoperation system to be of
a lower order than a self guided or
autonomous system.

Ry

............. Mot
dtgttal sensor@mmf'"'ﬁatm"} lg::lm:rolng;sk)"

—’{ collide t—‘{forward

agent #d P

" (8
perat L)

Flgure 6. Teleoperatlon as 'lowest’ level

As the lowest level of functionality in the
subsumption system, teleoperation s
always active if commands from the user
(located at a remote control console) are
arriving and are being stored in the data
structure. If any of the 'higher' modules
illustrated in Figure 6 are active, their
outputs will subsume the teleoperator's
outputs in a manner identical to that
described for Brooks' subsumption
architecture. This simple change from the
original system description allows a direct
user interface for teleoperation, and does
not adversely affect the operation of the
overall subsumption design. The higher
subsumption modules may be switched 'on'
or 'off' by the user via a set of flags in the
data structure, so that the system can be
operated in either a straight teleoperation
mode, or in any combination of autonomous
modes, depending on which behaviors are
switched on and which are switched off.

721

722

Each behavior module is an independent
task which runs at a specific periodic rate,
typically between 10 and 100 Hz, and
communicates with other modules via either
the event bit method or message passing
method as previously described. The
subsumption nodes are designated as
circles with an 'S' in the figure, and are also
implemented as independent tasks which
run at fixed periodic rates. In order to
perform their function as subsumption
nodes, they must maintain an internal
record of the latest inputs from their
associated behaviors, and perform a finite
state machine transition based on their
simple set of internal rules. The result of
the machine state switch determines what
the node's output signal will be, and that is
sent via either a message or event bit signal
to the next behavior or node as illustrated
above. After the signals have passed
through the subsumption system and have
arrived at the output data store, placed
there via pointer access, a set of dedicated
output control tasks access the data
structure for setpoints and translate them
into output signals to the robot's hardware.
Functionally, this system is no different than
more conventional implementations of the
subsumption architecture, except it relies on
the inherent facilities of a real-time
multitasking kernel to perform the
communications required between modules
and nodes, and to control the real-time
preemptive triggering of those modules
according to a real-time clock.

Teleoperation as the 'highest' level:

In contrast to the concept previously
described for a teleoperation capability in a
subsumption system, the assumption of
teleoperation as occupying the ‘highest’
level in the subsumption system leads to a
very different implementation scheme. The
system shown in Figure 7 is the basic
multitasking subsumption architecture
described in earlier sections of this paper,
with the addition of a teleoperation module
outside the subsumption subsystem. The
teleoperation module receives its inputs
from a remote control station where a
human operator is located, whose
commands are in the form of motor\axis
setpoints in position, velocity, or torque.

Global commands in the form of a desired
vehicle heading or destination waypoint may
also be generated from the remote console.

— T
-~ RF.

R.F. Mod c
“~ Task

____________ ';r—aleoperatlon)__
o" w Task -
e -

\\ ~/‘—\
Left whisker | Parallel Data 10

T

“"Drive Motors
- Control Task

=t/ o Task
Right Whigke:
switch

~Analog Data ’/R_'IF'_\
Central Pivot |- 9f ~Communications
(SentbE™et: CORpRtEae —_Task

bt 4
Input Data Store<—<10

Output Data Store

uagent®#n. _._._. o o e

Figure 7. Teleoperation as 'highest’ level

The desired setpoints or global state
commands received by the teleoperation
task are used to generate a set of synthetic
alternate signal inputs from appropriate
sensors, which are then placed in the input
data store. They may simply be used to
modify real sensor data, or to replace the
real data altogether much in the same
fashion as the subsumption subsystem
operates on its data flows. The act of
teleoperating then becomes a matter of
'faking out' the subsumption system by
providing it input signals that will cause the
subsumption system to react in the desired
manner. A simple example would be to
cause the vehicle to move forward, the
generation of a synthetic obstacle signal
from one of the rearward facing obstacle
sensors by the teleoperate task should
cause the 'runaway' behavior to activate,
and the subsumption system would then
move the vehicle away from the offending
signal, in other words, forward. This
approach may have advantages over the
previously described 'approach, in that it
relies on the subsumption system to perform
all control outputs and is implemented
outside of the subsumption subsystem,
whereas the 'teleoperation is lowest' method
requires the teleoperation task to be an

Output Signals to Hardware

integrated part of the
architecture.

wn
=
o g
@

{:

m

3

tion

Summary

This paper has described an approach to
implementing the so-called 'subsumption’ or
'behavioral' control scheme for robotic
systems within the framework of a real-time
muititasking architecture. The potential
advantages of this system result from taking
advantage of timing and communication
features available with most multitasking
kernels. The proposed architecture also
allows for the construction of hybrid systems
which employ both subsumption and
traditional Al techniques, and easily
provides for a teleoperator's interface as
well. The proposed system is well suited to
operating on conventional general purpose
computing hardware, and should allow
development with existing software tools
designed for real-time multitasking systems.

Future Work

Although only two muititasking features
were described, event scheduling and
message passing, there are undoubtedly
other inherent multitasking system features
that may be employed to some advantage.
The benefits of employing teleoperation as
either the ‘highest’, 'lowest’ or some
intermediate level with- respect to the
subsumption system remains to be fully
evaluated. Pursuing those and other issues
will be part of future efforts by Sandia
National Laboratories in the development of
the RATLER control system software.

Acknowledgements

Special thanks go to P. Heerman, R. Byrne,
B. Pletta, and W. Amai for their assistance
in developing the ideas in this paper. Their
insights and unconventional approaches to
problem solving will hopefully help bring
these ideas to fruition in the future, as they
already have helped to bring the basic
concepts into communicable form. The
author also acknowledges the work of the
people of the Artificial Intelligence
Laboratory at MIT, without whose

groundbreaking efforts this paper would not
have been inspired.

References

1. CROWLEY, J. L., "Navigation for an
intelligent mobile robot.", IEEE Journal of
Robotics & Automation, vol. RA-1, no. 1,
March 1985.

2. MORAVEC, H. P., "The Stanford cart and
the CMU rover.", Proceedings, IEEE, vol
71, July 1983.

3. BROOKS, R. A, "A Robust Layered
Control System for a Mobile Robot.", IEEE
Journal of Robotics & Automation, vol. RA-
2, April 1986.

4. CONNELL, J. H., "Minimalist Mobile
Robotics, A Colony-style Architecture for an
Artificial Creature", Academic Press Inc.,
San Diego, CA, 1990.

5. BROOKS, R. A., "Micro-Brains for Micro-
Brawn; Autonomous Microbots",
Proceedings, IEEE Micro Robots and
Teleoperators Workshop, November 1987

6. BROOKS, R. A., "Engineering Approach
to Building Complete, Intelligent Beings",
SPIE Vol. 1002 on Intelligent Robots and
Computer Vision, 1988

7. PURVIS, J.,, and KLARER, P,
"R.A.T.L.E.R.: Robotic All Terrain Lunar
Exploration Rover,” Sixth Annual Space
Operations, Applications, and Research
Symposium, Johnson Space Center,
Houston, TX, 1992.

8. MEYER, C., "Goals and Requirements for
Scientific Lunar Rovers", Proceedings,
ASCE, SPACE 94: Conference on Robotics
for Challenging Environments, February
1994.

9. HOFFMAN, S.J. and WEAVER, D.B,,
"Results and Proceedings of the Lunar
Rover/Mobility Systems Workshop",
Exploration Programs Office document
#EXPO-T2-920003-EXPO, NASA Johnson
Space Center, Houston Tx, 1992

723

