736

AlAA-94-1283-CP

AN ARCHITECTURE FOR REAL-TIME VISION PROCESSING

Chiun-Hong Chien

Intelligent Systems Department
Lockheed Engineering and Sciences Company
2400 NASA Road 1, Houston TX 77058
chien@superman.jsc.nasa.gov

Abstract

This paper proposes an architecture for real time vi-
sion processing on parallel processors with physically
distributed shared memory, and presents an initial
implementation of the architecture on i860-based
Mercury Computing Systems. Within the framework
of the architecture, each vision function (such as me-
dian filtering or contour extraction) is defined as a
task or a set of tasks. A collection of these tasks,
along with associated data, may be recursively divid-
ed into subtasks and processed by multiple proces-
sors through the coordination of a task queue server.

The task queue server resides in shared memory
accessible by all the processors. Each idle processor
subsequently fetches a task and associated data
from the task queue server for processing and posts
the result to the shared memory for later use. In this
way load balancing within the parallel processing sys-
tem can be achieved without a centralized controller,
as demonstrated by experimental results.

1. Introduction

It is well known that vision processing involves a tre-
mendous amount of computation. It is even more so
for real time vision processing such as vision guided
grasping of free-floating objects in space [1], in which
processing cannot be carried out in real time without
high processing power provided by paraliel comput-
ers such as Hypercubes [2] or i860-based Mercury
Computing Systems [3). Even with the availability of
powerful parallel computers, the real challenge is to
find the best strategies for mapping data and vision
tasks onto underlying parallel architectures.

Copyright ©1993 by the American Institute of Aeronautics and
Astronautics, Inc. No copyright is asserted in the United States
under Title 17, U.S. Code. The U.S. Govemment has a
royalty-free license to exercise all rights under the copyright
clamed herin for Governmental purposes. All other rights are
reserved by the copyright owner.

A great deal of effort has been directed toward ex-
ploring parallelism in pixel-level image processing by
taking advantage of its simplicity and data regularity
[4]. The success of parallel image processing, how-
ever, has not been extended to mid-level feature
processing or high-level image understanding. This
is due to:

1. simple data partitioning methods do not fit to the
mid-level and high-level vision processing, and

2. existing Ethernet-based network discourages dy-
namic data/task migration.

The advance of VLSI technology in the past decade
makes it possible to build tightly-coupled parallel
computers with powerful general-purpose micropro-
.cessors (such as i860s) interconnected by high
bandwidth crossbar switches. Furthermore, research
in physically distributed shared memory [5] has
reached a stage where the support of physically dis-
tributed shared memory model on commercial paral-
lel processing systems becomes a standard, rather
an exception. The availability of a powerful parallel
processing system with the support of the physically
distributed shared memory model has encouraged us
to study more powerful methods for data and task
partitioning, task allocation, task scheduling, and load
balancing, in mid-level feature processing and high-
level object recognition and pose estimation. The re-
sult of this effort is the design of our proposed archi-
tecture for real time vision processing.

The proposed vision architecture has evolved from a
vision architecture, known as PARADIGM [6], de-
signed and implemented on NECTAR (a fiber-optics
based high-speed network backplane for heteroge-
neous multi-computers) [7]. PARADIGM was de-
signed to provide mechanisms and primitives that not
only allow vision-related parallel programs to be de-
veloped with ease, but also maximize program con-
currency at both task-level and subtask-level. While
developing their programs, users need only focus ef-
forts on problem solving and task partitioning, without

a need to worry about the details of communication
and task scheduling. PARADIGM is a distributed
system with centralized control. It is composed of a
controller and a number of workers which communi-
cate through message passing.

However, with the support of physically distributed
shared memory, it deems unnecessary to have a
controller for task management (e.g. distribution and
scheduling), and it would be less efficient for workers
to "communicate" with each other through message
passing. Instead of a controller and several commu-
nication servers, a task queue server is used both for
"coordinating" task execution and for exchanging
information. A task queue server is actually a collec-
tion of various queues residing in a shared memory
buffer accessible by all the processors/workers.
Each idle worker subsequently fetches a task and as-
sociated data from the task-queue server for process-
ing and posts results to the shared memory buffer for
later use. In this way, the proposed architecture is
similar to the blackboard architecture employed in
Carnegie Mellon’s autonomous land vehicle, Naviab

(8.

To study the feasibility of using the proposed archi-
tecture for real time vision processing, the task queue
server has been implemented on an i860-based
MC860VS [2]. Parallel algorithms for median filtering
and contour extraction have also been designed and
implemented on the MC860VS. Timing statistics has
been collected and analyzed in order to measure the
overhead for task management and to refine the pro-
posed architecture.

The remainder of this paper is organized as follows.
Section 2 gives a brief description of the MC860VS.
Discussed in Section 3 are the criteria considered in
the design of the proposed architecture. Section 4
presents the design of, and functionality provided in
the proposed architecture, which is followed by ex-
perimental results from an initial implementation in
Section 5. Concluding remarks given in Section 6.

2. Mercury Computing Systems MC860

A MC860 is i860-based array processor (AP). A
MC860VS board contains four computing elements
interconnected by a six-port crossbar switch. Each
computing element consists of a 40 MHz i860 pro-
cessor, a high-performance data switch, a DMA
controller, up and to 16 MBytes DRAM (as shown in
Figure 1). The MC860 acts as a peripheral to a host
computer such as a Sparcstation or a 68040-based
vxWorks platform [3].

64-bit (160 MB/s)

Peripheral Bus
Connector

InterBoard Bus
Connector

1. Eighty (Sixty) megaflop of computational power
for single (double) precision operations.

2. One hundred and sixty megabytes per second
transfer rate to AP memory (through a high per-
formance data switch).

3. A 640 Mbytes/sec internal data transfer rate.

4. A 4 Kbytes instruction cache and an 8 Kbytes
data cache.

5. A shared memory interface between the host and
the MC860.

6. A DMA controller that allows for a memory to
memory transfer rate of 160 Mbytes/sec without
the involvement of the CPU.

The software supports for MC860s includes

1. An operating system (MC/OS) supports synchro-
nization features such as semaphores and sock-
ets, and others such as multi-tasking, various
types of interrupts, and mapping of external
memory, among others. It also supports a phys-
ically distributed shared memory model for ease
of parallel programming.

737

738

2. A Scientific Algorithm Library (SAL) and its ex-
tended version (ESAL) consist of hundreds of
micro-coded primitive functions designed to pro-
vide fast memory throughput (and processing
speed) by utilizing the data cache (via indirect or
direct access) as an extended registers.

3. A rich software development environment in
which the user can develop an application in ei-
ther of three ways as follows:
¢ The Application Accelerator (Transparent)

approach.

e The Subroutine Engine approach.

¢ The Multicomputer (Attached Processor)
approach.

The Transparent approach allows quick testing. The
Subroutine Engine approach is suitable for SIMD
types of parallel processing. The Multicomputer ap-
proach is feasible for MIMD types of parallel process-
ing, and is the approach used for the implementation
of our proposed architecture.

3. Design Consideration

This section describes criteria considered in the de-
sign of the proposed architecture. We first identify
the characteristics of different vision tasks. Vision
processing can be roughly divided into three levels:
low-level image processing, mid-level feature pro-
cessing, and high-level image understanding. Their
characteristics are as follows:

Low-level Image Processing:

Data items are pixels, which are uniformly distributed
in the image space. Operations include simple local
or neighborhood operations (e.g. thresholding, filter-
ing, and edge detection) performed on a large
amount of data. The inherent parallelism is fine-
grained at a pixel level.

Mid-level Feature Processing:

Data items are 2D features such as points, lines, and
regions of which the distribution in the image space
are not uniform. There are a medium number of data
items. Relations among data items are spatial rela-
tionships such as adjacency, overlapping and
containment. Operations on these data items include
unary operations for computing geometric properties,
and binary operations involving spatial relationships.
The potential parallelism is medium-grained at either
feature level or at a level of subsets of spatially adja-
cent features.

High-level Image Understanding:

Data items are natural or cuttural objects or subparts
of these objects, which are not uniformly distributed in
the image space. Operations include matching be-
tween objects (and their subparts) and possible
models. The number of data items in general is
small, but the number of possible models may be
large. The potential parallelism is at the task level or
at the level of subsets of the solution space.

As reported in the literature [4] parallel image pro-
cessing has been successfully applied to real sys-
tems such as Warp and Connection Machine. A few
systems (such as the CMU Navlab system [9]) have
also been developed by exploiting task-level
parallelism. However, some tasks are inherently
time-consuming and may become bottlenecks during
processing if only task-level parallelism is exploited.
This problem can be overcome by supporting both
task-level and sub-task level parallelism, in addition
to pixel-level parallelism, in our proposed vision
architecture. Moreover, the heterogeneous nature of
different tasks/subtasks and the variation in process-
ing time raise some crucial issues such as task
allocation/scheduling, data/task migration, and load
balancing, that are not encountered in low-level im-
age processing and scientific computing. The prob-
lem is further complicated by the need to handle
spatial features in vision processing (spatial-oriented
operations, in particular) due to the dimensionality of
spatial features, their complex data structures and
tangled topological relationships.

In the past, most parallel algorithms have been de-
signed for a single operation at a time. The underly-
ing assumption was that parallel algorithms for muiti-
ple operations could be obtained by pipelining those
for single operations. This argument might be true for
a sequence of local operations (such as low-level im-
age processing) where data distribution is more or
less similar for all the operations. However, the ar-
gument does not hold in general cases where data
distribution varies with individual operations. In these
cases, the overhead involved in data redistribution
must be taken into account, and therefore the best
algorithm for a single operation may no longer be the
best choice when it is used along with other
operations. In other words, an architecture for paral-
lel processing must allow us to optimize the perfor-
mance of a set of heterogeneous tasks as a whole,
rather than the performance of each individual
operation.

To maximize performance, many operations (i.e.
tasks in the context of the proposed architecture)
should be executed concurrently as long as no tem-
poral ordering (i.e. dependency) exists between
them. The task-level parallelism can be realized us-
ing a task-queue mechanism (implemented as a Task
Queue and a set of Subtask Queues in this work). In
the task-queue mechanism, a task queue and sub-
task queues are used to keep all the task, that are
subsequently assigned to (or fetched by) any idle pro-
cessor/worker. Task dependency can be handled by
a resource mechanism and will be discussed later.
To prevent potential bottleneck, any time-consuming
task must be divided into smaller tasks by either di-
viding the task into subtasks (task partitioning), or
dividing the data set into subsets (data partitioning),
or a combination of both. A mechanism for task par-
titioning not only allows a vision system to achieve
good load balance, but also makes it possible for us-
ers to design a complex parallel/distributed program
in a hierarchical modular fashion. That is, a program
can be recursively divided into modules, submodules,
and primitive operations.

A straightforward data partitioning method is to parti-
tion the data set into many subsets and distribute the
subsets to each processor using a task queue
mechanism. However, in the domain of vision and
spatial oriented processing, partitioning the data re-
gardless of their spatial relationship usually results in
the scattering of spatially adjacent data items among
the processors which increases the overhead in data
migration for tasks that involve operations on spatially
adjacent data items. The overhead may be reduced
by using shared memory, rather than message pass-
ing via sockets, for communication. There are other
issues involved in partitioning spatial-oriented data.
Readers are referred to [6] for a more detailed
discussion.

In summary, the proposed vision architecture should
be designed to:

1. support both task/subtask-level parallelism,
. use task/subtask queues for task management,

3. use a resource mechanism, along with multiple
subtask queues, for task scheduling,

4. hide the details of communication and task allo-
cation/scheduling from users,

5. employ shared memory for communication,

6. provide a mechanism for composing parallel vi-
sion programs.

n

A detailed description of the task queue server is giv-
en in the following section.

4. Task-Queue Server

The proposed real-time vision processing architec-
ture is similar to the black board architecture. A
physically distributed shared memory buffer
“accessible” by all the processors is used for storing
and fetching tasks (for execution). The block diagram
of the proposed vision architecture is shown in Figure
2. It consists of a master, a taskqueue server, and a
number of workers which communicate with the mas-
ter and with each other through a physically distribut-
ed shared memory buffer. The master has a set of
user defined functions for data/task partitioning, and
for post processing (such as merging of partial results
from workers). Each worker is facilitated with a set of
user defined functions for task execution.

The heart of the proposed architecture is a task-
queue server residing in the shared memory buffer. It
consists of a task queue, an internal task queue, a
number of subtask queues (one associated with each
worker/processor), and a reply queue. The task
queue stores a sequence of tasks to be executed.
These tasks may be recursively divided into subtasks
(based on functionality) and queued in the internal
task queue. For each task in the internal queue,
there is a corresponding task handler (in the module
operated by the master) responsible for partitioning
the task into a set of smaller subtasks (via data parti-
tioning). These subtasks are then “evenly” placed
into the subtask queues subject to certain con-
straints, such as the locality of data on which the
tasks will be executed or resource requirements. (e.g
I/O devices). The constraints are used to determine
the executors of the tasks. The reply queue is for
storing information regarding the completion of sub-
tasks.

In the following, we shall give more detailed descrip-
tion about important functionality provided by the
proposed architecture, including task partitioning,
task scheduling and allocation and communication.

Task Partitioning

The principal responsibility of each task handler is to
partition tasks. To maximize concurrency (and hence
performance), a time-consuming task should be par-
titioned into a number of smaller subtasks so that the
load of the task can be distributed equally over the
workers. There are two techniques to partition a task:
task partitioning and data partitioning.

With task partitioning, a task is partitioned into a num-
ber of smaller tasks which are usually of different

739

740

User-defined
Functions

Worker

Worker

Worker

Figure 2: The block digram of the proposed vision architecture

functionality and must be executed in a certain order.
For example, a task to extract occluding contours
from a noise image may be divided into subtasks for
noise reduction, segmentation and contour extraction.
The task for contour extraction may not be scheduled
until the other two are completed.

Instead of partitioning tasks by functionality, data par-
titioning divides the input data into subsets, which are
then processed by workers concurrently and
independently. For example, given an image, the

task of performing median filtering on the image can
be partitioned by dividing the image into subimages,
each of which is processed independently by a
worker.

To facilitate task and data partitioning, the proposed
architecture provides several primitives, including
Create_Task, Create_Subtask, and Broadcast Sub-
task. The function Create_Task creates a new task
that is placed in the Internal task queue, waiting to be
scheduled. The function Create_Subtask creates a

new subtask. A task in the internal task queue may
recursively call Create_Subtask to create a set of
subtasks, that are placed in one or more subtask
queues, waiting to be fetched by the associated work-
ers for processing A subtask can be specified as
either worker-dependent or worker-independent. If a
subtask is worker-dependent, it must be executed by
the specified worker. If it is worker-independent, it
can be executed by any worker, although the speci-
fied worker is preferred. A subtask can be marked as
worker-dependent, when other workers do not have
the resource (including data) needed for handling the
subtask.

The function Broadcast_Subtask allows a subtask to
be created and broadcast to all the workers. For ex-
ample, the task Task_Exit is broadcast to all the
workers at the end of processing for freeing resourc-
es (including memory, sockets, and semaphores).

Task Scheduling

As mentioned eatrlier, task allocation is carried out by
using multiple subtask queues to keep spatial locality,
and task scheduling is achieved by using a resource
mechanism and a Depend_On call. It is important for
a distributed system to detect when tasks need com-
peting resources and to schedule tasks to resolve
conflicts. In the proposed vision architecture, a re-
source can be associated with a physical entity (e.g.
a display device) or a virtual entity (e.g. data struc-
tures). Resources are created with a capacity and
tasks can be registered as using a number of
resources. A task can be executed only when it
needs no resource or the needed resources are
available.

By using the resource mechanism properly, synchro-
nization between tasks can often be realized. For
example, producer-consumer tasks can be coordinat-
ed using the resource mechanism in the following
manner. First, the information to be produced by the
producer task is registered as a resource of no
capacity. When the producer is finished, the capacity
of the resource is increased. Therefore, the consum-
er task, which is registered as needing the resource,
will not be scheduled until the producer task is done.

In addition to resource conflicts, there are also task
dependencies between different tasks. Task depen-
dency is handled by a function, Depend_On (with two
tasks as parameters), that constrains a task to be
scheduled only when the other task is finished. The
function Depend_On, together with the resource
mechanism, allow task-level synchronization to be

specified.

5. Experimental Resuits

The initial version of the proposed architecture has
been implemented on i860-based MC860VS with
eight i860 processors, each with 16M memory. Inthe
initial testing, the taskqueue server physically resides
on the 860 processor where the master is running.
Up to seven workers are running on the same num-
ber of i860 processor. The objectives of the initial
implementation and testing are as follows:
1. To learn more about the characteristics (i.e
strength and limitation) of i860-based MC860VS
in the context of real time vision processing.

2. To study the feasibility of using the proposed ar-
chitecture for real time vision processing.

3. To measure the overhead involved in using the
task queue server for parallel processing. The
amount of overhead will in turn be a guide line for
determining granularity of parallelism used for
real-time vision processing.

4. To study the efforts involved in composing paral-
lel programs for vision processing using functions
provided by the proposed architecture.

To achieve these objectives, paralliel algorithms for
several different types of vision operations have been
impiemented on the MC860VS including algorithms
for median filtering and for contour extraction. Timing
statistics for running these parallel algorithms on
MC860VS have been collected for analysis.

Median filtering is an pixel-level operation, and is eas-
ily parallelizable. A typical approach is to divide the
image (to be filtered) into N subimages. Each of the
N subimages, along with the median filtering opera-
tion forms a subtask to be processed by a worker. No
explicit merging operation is required when all the
subtasks are processed.

On the other hand, contour extraction involves con-
version of data structures. i.e. the conversion of a
pixel-level representation (image) into a feature or
features (contours). One of the approaches to paral-
lel contour extraction is to divide the image into a
number of subimages, and to extract a partial contour
from each subimage. Itis not a “regular” operation in
a sense that processing time on each subimage de-
pends on the complexity/shape of the contour in the
subimage. It is not a local operation, either, since an
explicit merging operation is required to merge the
partial contours extracted from the subimages to ob-
tain the complete contour(s).

741

742

Experiments for collecting timing statistics were re-
peated for different numbers of i860 processors
(from one to four), for different numbers of subtasks
(i.e. 1,2, 3,4, 6,8, 12, 16, and 24, respectively).

Figure 3 shows timing statistics on parallel median
filtering (on 256x256 images). For cases where only
a single i860 was used, processing time remains rel-
atively the same regardless of the number of
subtasks. It implies that the overhead for task man-
agement is negligible (when the granularity of paral-
lelism is in the order of tens of milli-seconds) if all the
subtasks are processed by a single processor. For
cases where two i860s were used, processing time
was unusually high (annotated as A2 in Figure 3)
when the median filtering operation was divided into
three subtasks. This was due to load imbalance.
That is, one i860 had one subtask to process while
the other had two. The same argument is applied to
unusually high processing time annotated as A3 and
A4 in Figure 3. It is interesting to point out that pro-
cessing time at C2 in the figure is slightly higher than
B2 and D2. This can be explained as follows. The
size of each image on which median filtering was per-
formed is 256x256. The numbers of subtasks asso-
ciated with B2 and D2 are 8 and 16, respectively.
That is, the image was partitioned into subimages of
the same size in each of the two cases. Load balance
was achieved in these cases. On the other hand, the
number of subtasks associated with C2 is 12 by
which 256 is not dividable. As a result, load balance
was more difficult to achieve since some subimages
had larger sizes than the others and took longer time
to process.

Load unbalance can also be observed at B3 and D3.
The numbers of subtasks in these two cases are 8
and 16, respectively, which are not dividable by 3, the
number of processors.

T
"l-,rm" -
° o V2-prom't w4
.3 Yo G-
“d-praoc’t -
.8
]
K] a.?
i
.6 :2
? R
i esf /o B2 c D2 s
£ + As}-~—+~——¢-’-—~"“ e
[K]
. B3 03
. gt o o
8.3 A
N
¥ s

..2

1a 15
Munhar of subtashks

Figure 3: Timing statistics of running parallel
median filtering on MC860VS

A different characteristic in timing statistics on parallel
contour extraction (as shown in Figure 4) can be
observed. For example, in the cases where only a
single i860 was used for contour extraction, process-
ing time increased with the number of subtasks. The
increase in processing time is not due to the over-
head in task management, but due to that in merging
the partial contours extracted by each subtask to ob-
tain the complete contour. The overhead is so sig-
nificant that not much speedup could be obtained by
increasing the number of processors beyond three.
For the cases where the number of processors is
three (or four), the processing time decreases, reach-
es a minimum, and then increases as the number of
subtasks increases. This is due to the fact that a
large number of subtasks (running on a relatively
small number of processors) will smooth out variation
in (and so decrease) processing time for extracting
partial contours, but increase time for the merging
operation.

Processing time (sec)

(XY i B -

[N L L 1 L

Figure 4: Timing statistics of running paralle
contour extraction on up to four MC860VS

To investigate the overhead due to task management
in a multi-processor environment, another experi-
ment was conducted to measure speedup factors by
running parallel median filtering on one to seven i860
processors. In this experiment, the number of sub-
tasks was set equal to the numbers of processors so
that load imbalance would not affect speedup
calculation. The results are shown in Figure 5. The
solid curve indicate the upper bound for speedup. In
an ideal case where there is absolutely no overhead
in task management and communication, the pro-
cessing speed is supposed to increase linearly with
the number of processors utilized for processing.
The dash curve shows actual speedup. It can be
seen that speedup is nearly linear when the number
of processors is less than four. The performance of
the system gradually degrade as the number of pro-
cessors increases. The degradation is probably due

to (1) contention among processors for accessing
various queues in the task queue server, and (2)
overhead in inter-board communication.

7 T T T ~T

Ypoocdup Factor
A}

1

L 1 1 2 I
1 2 3 4 5 6 ?
umbar of procemscrs

Figure 5: Speedup factors of runing parallel
median filtering on MC860VS

6. Concluding Remarks

The task queue server and parallel algorithms for two
vision operations have been designed and imple-
mented on an i860-based MC860VS. Timing statis-
tics has been collected to analyze the overhead for
task management (including queue-access control
and inter-board communication). For local opera-
tions which do not require merging operations, such
as median filtering, nearly linear speedup can be ob-
tained for a small number of processors and proces-
sor utilization (efficiency) gradually degrades as the
number of processors increase. For any global op-
eration which requires an additional operation to
merge partial results, such as contour extraction, it
may not be a good idea to divide the operation into a
large number of subtasks.

Based on experimental results from initial implemen-
tation, it is expected that the proposed vision archi-
tecture will provide a convenient mechanism for
composing efficient parallel and distributed programs
(vision programs in particular). However, it should be
pointed out that a good architecture is necessary but
not sufficient for achieving real-time vision processing.
For example, the first target application of the vision
architecture is vision guided grasping of free flying
objects in space by the ExtraVehicular Activity Helper
and Retriever (EVAHR) [1]. In order to assist real-
time grasping, EVAHR's vision module is required to
provide poses (i.e. the orientations and locations) of
to-be-grasped-objects to its armvhand controller at 10
Hz (i.e. 0.1 second per pose estimation) [10]. Median
fitering and contour extraction are part of prepro-
cessing before pose estimation can be performed.
Experimental results seem to indicate that it may take

more than 0.14 seconds to perform only median fil-
tering with 7 processors. This problem can be allevi-
ated by applying median filtering only to subimages
from which accurate information needs to be
extracted. In other words, real-time vision processing
cannot be achieved without efficient (sequential and
parallel) vision algorithms and a good parallel vision
architecture (along with powerful parallel processors).

References

[1] Grimm, K., Erickson, J., Anderson, G., Chien, C.
H., Hewgill, L., Littlefield, M. and Norsworthy, N.
"An experiment in vision-based autonomous
grasping within a reduced gravity environment,"
in Proc. SPIE Conf. on Cooperative Intelligent

Robotics in Space Ill, Nov. 1992, Boston, MA.

(2]
3]

(4]

(5]

(6]

(7]

(8]

(9]

Hypercube, Intel Corportation.

Training guide for the MC860 Attached Proces-
sor, Mercury Computing Systems.

Weems, Charles "The DARPA image under-
standing benchmark for parallel computers,"
Tech. Report 90-98, Dept. of Computer and infor.
Science, Univ. of Massachusetts, 1990.
Bershad, B. N. and Zekauskas, M, "Midway:
Shared memory parallel programming with entry
consistency for distributed memory multiproces-
sors," Tech. Report CMU-CS-91-170, School of
Computer Science, Carnegie Mellon Univ., 1991.
Chien, C. H, and Lin, L. J. "PARADIGM: an ar-
chitecture for distributed vision processing," in
Proc. of IEEE Conference on Pattern Recogni-
tion, June 16-21, Atlantic City, NJ., pp. 648-653.
Arnould, E., Bitz, F, Cooper, E., Kung, H. T,
Samson, R., and Steenkiste, P. "The design of
Nectar: A network backplane for heterogeneous
multicomputers," TR-CMU-CS-89-101, School of
Computer Science, Carnegie Mellon, Jan. 1989.
Shafer, S., Stentz, A. and Thorpe, C. “An archi-
tecture for sensor fusion in a mobile robot," Tech.
Report CMU-RI-TR-86-9, Robotics Institute, Car-
negie Mellon Univ., 1986.

Thorpe, C., Hebert, M., Kanade, T., and Shafer,
S. "Vision and navigation for the Carnegie-Melion
Navlab, /IEEE Transaction on Pattern Analysis
and Machine Intelligence, Vol. 10, 3, May 1988.

[10]Chien, C. H "Multi-view based pose estimation

from range images," in Proc. SPIE Conference
on Cooperative Intelligent Robotics in Space Il
November 1992, Boston, MA.

743

