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1.1

Abstract

We present a hard reM-time software architec-
ture which enables two kinds of safety within
a single system: tile safety of flexibility and
robustness, and the safety of guaranteed tim-
lug. The architecture combines a) online intelli-
gent synthesis of courses of action, with b) pre-
cise timing and very high speeds in the perfor-
mance of such autonlatically synthesized plans.

A fimdamental component is a negative feed-
back loop from available computing resources
t.o computational demands, which ensures both
that online decisions are feasibly performable,
and that the available computing resources are
used to best advantage. This feedback loop al-

lows the architecture to respond to degraded
seusor systems by scheduling alternative com-
putations without accidentally impairing the
thning of other tasks; allows to respond to de-
graded COluputers by scaling back system activ-
ities to lnaintain minimal standards of perfor-

mance, e.g. safety; and allows to dynamically
exploit excess computing power for improved
Imrformance.

q'he arclfitecture, though still subject, to limits
on l.he achievable robustness, can nevertheless
be expected to out-perform systems in which
conq_uter power is allocated off-line. We briefly
describe two robotic subsystems which can lint
be built safely without our architecture)

1 Motivation

Two Control System Problems

Some NASA a.pplications, such as the intelligent man-
ageuleut of hardware faults in Space Stations and space-

craft., and the use of intelligent mechauisnas (e.g. robots)
about the Space Station and on Mars, require both flex-
ibility and hard real-time execution. Two cases in point
are the intelligent control of "redundant" robots and the
dynamic reconfiguratioJl of perception processing, both
of which we are currently implementing.

1Copyright (_)1993 by Marcel Schoppers. Published by
the American Institute of Aeronautics and Astronautics Inc.
with permission.

With only 6 degrees of freedom a robot arm can
reach any posture iu exactly one way, and this sim-
plicity makes mathenaatical motion analysis easy. The

NASA/JSC robot called the Extra-Vehicular Activity
Helper/Retriever (EVAHR) has 20 degrees of freedom:
7 in each of the two arms, and 6 in the body. As a re._ult
there are an infinite number of ways for the EVAllI{ to
get. one hand to a particular posture. The extra (",'edu,-
dant") degrees of freedom greatly complicate tile motion
control problem. Our approach to the control of such a
"redundant" robot, takes dyl,amical limits in|.o account,
validates the robot's expected motion, and also allows
it to start moving immediately. This is accomplished as
follows.

(1) Our Artificial Intelligence (AI) software uses a ,luali-
tative kinelnatic model to choose a sequeuce of postures
for the robot to achieve [Jung and Badler, 1992]. This
sequence of postures deals with robotic "redundancy" in
roughly the way humans would: to reach under a b_,d,
one gets down on one's knees, rests on all fours, Iowt.rs
one's head, and stretches out one arm. Each interme-

diate posture is then treated as an attractive l,oteutial
field. The attractive fields, together with their r_'pulsiw'
counterparts (obstacles) drive motion dynamics in the
usual way (after [Khatib, 1986]) thus striving to avoid
collisions and ensuring that the motions are compable
with the robot's force and torque linfit.ations. A super-
real-time motion previewer then uses these I_ot.oul.ials to
preview the resulting motion before it. is performed, and
so verifies that the motion will avoid both collisions and

potential wells (local minima).

(2) For this scheme to work, there nmst be a ca.rPfid

synchronization between trajectory previewing and the
actual motion, lest the actual motion gel. into space that
has not been previewed, with poto,tially dangerous con-
sequences. Iudeed, for given motion speeds and acceler-
ations the previewer must be executed with a fr_,quc,Jcy
lying within a limited baud [Schoppers, 1993]: if the pre-
viewer is executed too frequently it. won't ha.w_ l.ium to
preview a fail-safe trajectory; if it. is executed too infre-
quently the robot, can acceh:rate ahead of it.

The preceding two paragraphs taken tog*q.l,.'r signal
trouble. Paragraph (1) says that we need an Artilicial In-
telligence (AI) program to decide, on-line, how the robot
shouh-I move, by choosing a sequence of postures. Para-
graph (2) says that motion-related computations must
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be carefully timed. These two requirements have been

incompatible for many years.
(3) Our second robotic subsystem provides a new degree
of system robustness and survivability for robotic vision.
We take advantage of the presence of several types of
vision sensors on the EVAHR robot by dynamically se-

lecting available sensors and perception algorithms, thus
improving the probability of system survival despite sen-
sor malfunctions.

(4) Robotic vision is part of the pipeline from sensor in-
put through state estimation to motion control. Since
data reaches the robot's effectors some time after the

data was first sensed, the control system must compen-
sate for the delay by predicting where things will be
when the intended actions are finally performed or com-

pleted. If ally part of the sensor-input-to-action-output
pipeline is mis-timed, the control system's predictions
will be wrong and damage may result.

Here too, the combined implications of paragraphs (3)

and (4) are problematic, but for a different reason. Per-
ception can be implemented without resorting to AI al-
gorithms; but because the computing time required to
interpret different sensors differs widely, dynamic recon-
figuration effectively makes the computing time of the
whole perception system unpredictable. Once again, the
conflict, between system flexibility and real-tilne execu-

tion is holding up an otherwise good idea.

1.2 The Core Problem

It, is a very difficult problem to implement systems that
are at once fle2rible in the sense of adaptivity and robust-
ness, and hard real-time in the sense of timely execution
of actions. _Ib show why this combinations of require-
meats is so difficult, thin subsection presents a caxeful

analysis of each requirement.
"Flexibility" in a machine is as apparent as its make-

up is subtle. The dark background against which flexi-
bility stands out in sharp relief is the problem of domain
complexity. We explain this with reference to automated

diagnosis. In principle, diagnosis could be done by com-
piling a large decision table that associated combinations
of synlptoms with faults. As the number of possible

faults and symptoms grows, however, the number of pos-
sible combinations of faults (and symptoms) grows astro-
nomically. The programmer is inevitably overwhehned
by the complexity of the domain, and so fails to antici-
pate some of the possibilities and to properly understand
others. The result is softwaxe that makes false assump-
tions and solnetimes behaves inappropriately. Flexibil-
it.y, then, stands out. as the ability to go on behaving
appropriately even when the nund)er of possible situa-
tions grows beyond the reach of human forethought.

The fimdamentM justification for Artificial hltelli-
geuce (AI) algorithlns is their flexibility as just defined.
Flexibility may be necessary for lnany reasons, includ-
tug: the environment may be unpredictable, or sub-
systems may malfunction, or the enviromnent may be
entirely predictable but very complex. In such cases,
AI algorithms can do on-line the problem solving that
could (in principle but not in practice) have been done

by a programmer off-line. Not only axe AI algorithms

more economicM in terms of programming effort, they
are also safer because the responses devised by the AI
software can take dynanfically occurring factors into ac-
count more thoroughly, and the resulting syst.em is likely

to generate appropriate behavior for a much wider vari-
ety of the possible situations.

We now turn to the requirelnent of real-flaw execu-
tion. "Hard real-time" execution is nece._sary wlwn_w_'r
hardware nmst be controlled safely, in general, a compu-
tat.ion is called "real-time" when the correctness or otlwr

value of a computation depends not only oil what data
or action the computation produces, but also on the time
at which that data or action is produced. For example,
there is a particular moment in time beyond which any
computing about collision avoidance is no longer usefld
because a collision is no longer avoidable. More often
than not, the timing of computations is a critical factor
in total system safety. The field of hard real-time com-
puting reseaxch is working on ways of guaranteeing that
the timing of computations is correct.

It would be nice if we could build systems that were
both safe on account of the flexibility built into them

with AI algorithms, and doubly safe because their com-
putations were guaranteed to be colnpleted on time with
the available computing power. But this conjunction is
a difficult, one. The pivotal problem was first clearly de-
scribed by [Paul et al, 1991] as follows:

The timiug of actions taken by a real-time sys-
tem must have low variance, so that the effects

of those actions on unfolding processes can be
predicted with sufficient accuracy. But illtolli-
gent software reserves the option of exte||ded
searching, which has very high variance.

Because AI algorithnas -- like people solving difficult
problems-- generally reach conclusions by making plau-
sible guesses that may turn out. to be wrong any num-
ber of times ("seaxching"), their total execution tiuw is
highly unpredictable. To make matters even worse, AI
software in control applications often dynamically varies

the tasks being carried out., thus dynamically changing
the structure of the computation. When there are n com-

putations a system could execute, there are 2" possible
subsets, each with its own execution time, so that again
the total system's computational load in highly variable.
Both sources of unpredictability make it. very difficult
to be sure that the total system can perlbrm in hard
real-time.

Thus it. was necessary, until recently, to choose be-

tween the safety provided by hard real-time performance,
and the safety provided by on-line automated ,lecisiou
lnaking. Systems such as intelligent robots or spac_ sta-
tions, which require both, were specifically beyond the
state of the art.

1.3 A General Solution

We have undertaken to provide both kinds of satiety si-
mnltaneously by means of a novel software architecture.
Our architecture, which has been worked out in detail

but not yet implemented, exploits a specific set. of hard-
real-time teclufiques that have become available only in
1992 and 1993.
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Previousattemptsby othersto integratehardreal-
timeperformanceandon-lineautomateddecisionmak-
ingwereof two kinds. One tried to force AI software
into a real-tinle mold by limiting on-line searching, thus
also eliminating most of the flexibility. The other al-
Iowe(I tile AI software to compute as long as it liked,
and tried to design the real-tinle part of the system to
kee I) the whole system out of trouble until (indefinitely
inuch later) the A1 software colnmunicated a decision to
the real-time subsystem. This allowed fexible behav-

ior until the real-time part of the system stumbled into
unfamiliar territory with the AI software still thinking
about the past.

Our approach is an elaboration of the CIRCA archi-
tecture [Musliner et al, 1993]. The AI software doesn't

merely send new parameters to a fixed real-time sub-
system, it. dynamically reprograms the whole real-time
subsystem, and simultaneously plans total system behav-
ior to ensure that the real-l.ime program will be able to

cope with the chosen fllture. This produces such inter-
esting phenonmna a,s robots slowing down to ensure that
their real-time programs will not be overloaded -- the

AI software now can shelter the real-time subsystem and
can also buy itself time to think. In short, our approach
imposes a negative feedback loop from excessive compu-
tational loads to less demanding system behavior. Fur-
ther, the real-time subsystem is no longer cast in stone
but can be made to adapt to its context, and to perform
procedures that were automatically constructed.

We were careful to design our software architecture
in an al>plication independent way, so that the solution

would be suitable for use in everything fi:om robots, to
space stations, to interplanetary spacecraft, to Lnnar

and planetary bases -- with a promise of enhanced safety
in all cases.

|laving resolved the central flexibility/real-time con-
flict., we intend to demonstrate the great value of our
software architecture by having it enable two novel ap-
plications, namely the dynalnical control of robots with

many degrees of freedom, and the dynamic reconfigura-
tion of a multi-sensor fusion subsystem. Our subsystem
for reconfigurable multi-sensor fusion will dynamically
choose whatever sensors and perception algorithms it
likes, and the robot's physical behavior will adjust to the
dynamically changing colnputing load. Our subsystem
for intelligent control of the motion dynamics of robots
with many degrees of freedom will be a large advance
on current robot control technology. It will rely on our
general software architecture for proper tilning of lnotion
previewing relative to actual motion, and for hard real-
time computing in the presence of AI posture planning
algorithms. Both of these applications are ilnpossible to
implelnent safely without our software architecture. In
enabling feedback from colnputing load to safe behavior,
our software architecture will automatically and dynain-
ically determine the maxilnum speed at which a robot
can safely move, even when some of the robot's comput-
ers and/or sensors are malfimctioning or disabled. As
a result our architecture will also support sensor pro-
cessing reconfiguration in a completely safe and general
way. Both modules will demonstrate the value of our

architecture for improved adaptiveness and survivability
of complex control systelns.

1.4 Our Approach Ill Perspective

The Artificial Intelligence (AI) commmfity has come to
address the requirements of real-time systems in three
ways [Durfee, 1990]. When building a system that nmst
act in real-tilne as well as reasoning, one can:

* Subject the AI component of the system to hard
deadlines (e.g. anytime algorithms). Under t.ime

pressure, this results ill truncation of intelligent
fimction.

• Allow the AI component to think fi'eely, make the
real-time subsystem responsiMe for total system
safety, and have the AI component re-I)aramet¢'rize
the real-time subsystem with whatever gut(lance the
AI subsystem can produce in l.ime. Iln<ler tim+" pres-
sure, this results in intelligent function being I<+ftfar
behind tile rush of events.

• Refuse to subject the AI component of the system

to hard deadlines, but let. the AI COml)onent. (ly-
natal(ally reprogram the real-time subsystem wilh
a program realizing a discrete-event control law/hat
preserves closed-loop stability u,ilh sufficient robust-
hess for the period of time in which the A I subsystem
is deciding what to do next.. This approach remains
functional even under t,ime pressure -- almosl, l)y
definition.

We regard the NASREM architecture [All)us el. al, 1987]
as elnbodying the first, approach, an(I the architectures of
Bonasso IBonasso, 1991; Bonasso and Slack, 1992] and

Gat [Gat, 1992] as embodying the secon(I. We favor
the third, in which we have imposed Colltrol-theoretic
criteria, upon the ideas of [Musliner et al, 1993]. The

resulting architecture has the following advanlag_-s:

1. the AI software can remain intelligent and Ih-xil)l,,;

2. the real-time snbsystenl need not I.)e programmed
(at system design time!) to be conH)etent against
all possible contingencies;

3. the AI software can reprogram the real-time sub-
system to prevent colnputing overloads before they
happen (e.g. with slower motion), thus pro-actively
buying itself time to think;

4. the program down-loaded into the real-time sub-
system can be as flexible as the AI sofl.ware can

lnake it (e.g. in a robotic a.l)plicatiotl Ihe maxi-
nnuu safe speed can now I)e a fimction of COml)U-
tational load, and so will be higher than the worst-

case limit nearly all the tilne, allowing substaldial
performallce gains);

5. the real-time subsystem can be a small Ol)_-rating
system, time-slicing tasks or I.hroads wilh wi,My
differing frequencies, in contrast to the many hie-
bile robot controllers in which all computations are
executed with the same frequency.
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2 Architecture for Flexible Real-time

Control

2.1 Description of Architecture

Figure 1 shows the architecture we have designed on tile
preceding foundations; this Figure will serve as a guide
for the ensuing discussion.
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Figure I: Architecture Diagram.

There is assumed to be a fixed control program which,
in our architecture, is split into two parts. One part,
usually called the control law or plan, is modified so
that its execution or interpretation affects only a simu-
lation model of the controlled system. The other part
determines where silnulation should begin and end, and
is called the "plan silnulator".

The basic idea. is that the plan simulator chooses a set.
of initial and goal states, simulates the plan or control
law over several possible futures, collects the real actions
apl)rOl>rial.e to the anticipated states of the controlled

system, and so dynamically constructs a small real-time
program, which it downloads to the real-time executive.
From then on, the real-time executive takes care of com-

nmnicating with the decoupler, sensor readers, and de-
vice controllers, in hard real-tinae. This mitigates time
pressure on the plan simulator, which can proceed with
the construction of a new real-time program. This sel:)a-

ration of timing concerns is indicated in the architecture
diagram by the dividing line between soft. real-time and
hard real-time.

Each new real-time program specifies: a set. of fiutc-
tions implementiug actions oil the centre]led system; a
set of functions which test. the estimated state of the cou-

trolled systeln; the conditions under which each action is
appropriate; and maxinmm allowed delays between sat-
isfied conditions and appropriate reactions.

In practice, each real-time i)l'ogram is a set of tasks or
threads 2 that can be rmL suspended, resumed, and so
forth, under control of the real-time executive. Threads
may be periodic, being executed cyclically and with a
definable frequency; or they may require execution only
sporadically (e.g. interrupts), in which case there may be
a maximum allowable delay between the time the thread
becomes relevant and the time it. is actually executed.

The real-time executive comes with a "schedulability

check" designed specifically for that real-time executive.
It. is used by the plan simulator to test whether each now
real-time program is indeed executable in hard real-time.
A successful schedulability check absohttely guarantees
that no thread will lniss any deadline specilied for it.
A failed schedulability check tells the plan simulator to

design a less demanding real-time prograIn, and if nec-
essary, to choose a less delnanding future.

The "actions" performed by the real-time executive do
not t.henaselves drive eff_ctors or sensors. Instead, they

send on/off signals and parameters to the etl'ectors' and
sensors' serve/driver loops, which ofl.en rmi on dedica.t_,d
lnicroprocessor chips.

Just as serve loops may take extended amounts of time
to reach a setpoint, task-specific AI modules may take
extended anaounts of time to make a decision..lust as

the real-time executive is controlling sensori-motor serve
loops by updating their parameters and turning them
on and off, it also turns task-specific AI modules on and
off according to the needs of the moment. That's why
Figure 1 shows a typical task-specific AI module b<low
the real-time executive, with the device controllers.

The real-time executive, plan simulator, serve loops,
and all AI computations are threads which operate in
parallel by default. The fraction of computing poxw_r

(CPU cycles per second) available to each thread is
carefully decided by the plan simulator and enforced by
the real-time executive. That is, the real-time program
constructed by the plan simulator may ilwlude actions
that adjust (even to 0) the frequency with which certain
threads are executed.

As a special case, the real-time program may set even
the plan simulator's execution frequency to 0. Even

though the real-time executive depends on the now-
stopped plan silnulator tbr updated real-time programs,
tiffs situation does not mean that the systelu is perma-
nently stuck with the existing real-time program, since
the existing real-time i)rogram is conditional, and will
have been designed so that new circumstances cause the
execution of actions that allow the i)lan sinHtlator Io r_,-
sume. (If the real-time executive's col)(.rol over A I nlod-
ules is reason for Figure I to show the latter below the

ZA thread is a. function (hal has il.s own piece of i)rogu'ava
stack, so that execution of the function can I)e SUSl)Ond+.d
and resumed illdependently of the execution of other similar
threads.
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former,perhapstheplansimulatorshouldalsobeshown
belowtile real-tinleexecutive.)

Executedas "background"threads,AI modulescan
takeaslongastheylike,andprovidetile systemwith
thefull powerofon-lineintelligeutreasoningwithouten-
dangeringtheoperationoft.ime-criticalsystemelements.
At. thesametime, theplansimulatorcanensure,by
properdesignof thereal-timeprogram,that suchAI
modulesarenot left.behindtherushof events:if the
decisionof anAI moduleiscrucialto futureactivities,
theplansimulatorcanprogramthereal-timeexecutive
to takeactionsthat delaytheon-comingfuture.Thisre-
semblestheideaof designinga "reactivesubsystem"to
ensuretotalsystemsafetywhiletheAI softwarethinks
(seeabove),with theimportantdifferencesthat in our
case(a) the"reactivesubsystem"is notfixedat system
designtime,and(b) theAI software'sthinkingmaybe
abortedandredirectedbynewevents.

2.2 Control Theoretic Requirements

In our architecture,

The automatically constructed real-time pro-
gram is a partial control law. The real-time ex-
ecutive, in its perfornlance of that control law,
flmctions as a controller.

The hardware devices being controlled will in general
have dynamical behavior. Ideally we would like the real-
time program to take care of all hard real-time processes,
so that the plan simulator itself does not have to worry
about real-tilne deadlines. To this end we qualify the
CIRCA approach with a stipulation that the real-time
program must drive the controlled system into a set of
goal states, and then must maintain the controlled sys-
tem within that set. of goal states for an indefinite pe-
riod of time. Such behavior on the part. of a controller is
known as "closed-loop stability." For the case of discrete-
event control systems, we define it as follows:

A discrete-event system is closed-loop stable,

with respect to a set of goal states, if the con-
troller is able to drive the controlled system so
that it actually reaches a goal state in finite
time, and then (in the absence of disturbances)
stays within the set of goal states indefinitely.

(Of course, along the way toward a goal state the real-
time program may also decide to do nothing for a while,
knowing that a device will do a desirable thing without
being forced to do so.) In stun, we require, as a key
property of our architecture, that

Each automatically synthesized real-time pro-
gram (discrete-event control law) must make
the controlled system closed-loop stable.

When the controlled devices are subject to distur-
bances (i.e. dynamics that are unpredictable) the dis-
turbances may throw tile system out of the set. of goal
states, and we expect the real-time program to drive the
controlled system back to a goal state. This too is a
familiar notion in control theory:

A control law is robust to the extent that it

can keep the controlled system closed-loop sta-

Figure 2: Controlling via Stable Subdomains.

ble despite the occurrence of disturbances and
unmodelled dynamics.

Thus we desire that our automatically synthesized real-
time program should be as robust as possible.

Figure 2 depicts the plan simulator's repeated revision
of the real-time program, along with the latter's effect
upon the controlled system. Tile closed-loop stability of
the controlled systetn is represented by the "attractor
states" into which the system eventually settles. The se-
quence of attractor states represents the plan simulator's
repeated selection of goals. The robustness of each real-
time program is represented by the fact that closed-loop

stability is achieved despite unpredictable meanderings.
The meanderings are rectangular rather than smooth, to
emphasize that the real-time program en<'odes a discrete-
event control law, not a continuous-va.rial>l+ control law.

In constructing a real-time program, the plan simula-
tor must choose goals and must anticil>ate enough I>OS-
sible filtures to achieve closed-loop stability a.,d rob,st-

ness. In practice, in discrete-event control applications,
finding a set of goal states that allow closed-loop sta-
bility is much easier than in contimlous-variabl+ control

applications. Cups can be made to stay on tables, doors
can be made to stay open, buildings can be made to
last, and so on. In AI the standard couuter-exa,nples
to such stabilities are "spontaneous process_=s" and the

actions of other agents, but remember that for our pro-
posed architecture to work, the real-time program need
only be closed-loop stable. This means that the d+wices
being controlled can act to prevent unwanted interfer-
ence. Thus the real-time program could prevent other
agents from closing doors it. wanted kept el>on, and so

forth. Under these conditions, discrete-event closed-loop
stability is not hard to find.

Achieving robustness is more difficult, especially for
discrete-event control applications. The problem is that
unpredictable or unmodelled disturbances may throw
the controlled system into so many different states that
it may be impossible to synthesize a real-time program
that can respond to all of them within the CPU and/or
memory resources provided l>y the real-time executive.
Consequently, making a discrete-event control law ro-
bust is a fine art.. The best. that can be done is to include

"important" disturbances within the domai,i model, and
further, to include into the model such information as
the likelihood, outcome, and severity of a possible dis-
turbance. The availability el' that information will allow
the plan simulator to decide on-line which disturbances

should be anticipated by the real-time control program
being constructed, in order to make that program as ro-
bust as possible within the availabh: resource limits.

The properties of closed-loop stability and robustness,

which must hold of the real-time program being down-
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loadedto thereal-timeexecutive,areshownin the ar-
chitecturediagram(page4) asbeingtheresponsibility
of theplansimulator.Therewehavereferredto "any-
resource"robustnessto indicatethat, onceclosed-loop
stabilityhasbeenbuilt into thereal-tinaeprogram,the
plansinmlatormayapplywhateverresourcesareleft
overtowardsimprovementsin robustness.

Thereremainstilequestionof whatshouldhappenif,
despitethe construction of a feasibly robust real-time
program, the controlled system makes a low probability
transition into a state for which the real-tilne program
has no response. A mmlber of solutions are possible. In

the CIRCA approach that problem was passed back to
the plan simulator. Since that solution makes system

stability dependent on the response speed of the plan
simulator, we distrust it. An alternative is to have the
plan simulator design the real-tilne program so as to an-
ticipate all device states that must be controlled within
some time horizon, or within hard deadlines; in this way
the plan simulator will have a lnilfinmm amount of time
with which to build a replacement reM-time program,
and will need to deal only with soft deadlines. This al-
ternative works only if the plan simulator's model of tile

domain dynamics is correct. Our proposed solution is
to have the real-time program include alternative sub-
progralns, along with instructions for their contingent
deployment. This solution can work if the real-time ex-
ecutive's execution-tilne resource is more constraining
than its memory space resource -- and that is likely.

2.3 Relation to 3-Level Architectures

The architectures of [Firby, 1989], [Bonasso, 1991;
Bonasso and Slack, 1992] and [Gat, 1992] specify three

"levels", namely

1. a "reactor" containing serve loops, safety reactions,
and behaviors;

2. a "sequencer" for deciding which specific activities
are needed both now and ill the near future;

3. a "deliberator" which contains AI software for plan-
ning, diagnosis, metalevel reasoning, and so forth.

These three levels resemble our hard real-time executive,

our soft. real-time plan simulator, and our non-real-time
AI modules, respectively. None of the cited authors took
timing seriously, however. In the reactors of their lnobile

robots, reaction threads for avoiding collisions run every
so often, but there is no guarantee whatever that collision
avoidance will always be performed in tilnely fashion.
Their l)rograms may work properly for very long times,
but ultimately it. is impossible even to know whether the
robots have ever endured worst-case logjams of threads

competing for execution time. Hence we have replaced
their reactors with our hard real-tilne executive, which

takes timing very seriously indeed.
A second iml)ortant difference is we have changed the

locus of control. In both [Firby, 1989] and [Bonasso
and Slack, 1992] control was hierarchical: the deliber-
ator was on top and in control, deciding what the se-
quencer should do, and tile sequencer decided what tile
reactor should do. This was changed by [Gat, 1992],

who put the sequencer in control and reduced the delib-
erator to conaput.ing task-specific parameters like motion
trajectories. The major reasons for this were that (1) re-
act.ion should not be kept waiting for d_'liberalion, n,d
(2) old deliberations may be irrelevant to now silualion.%
so the sequencer should get. to initiate and t_'rmimd.e de-
liberations. The locus of control changes again for our
architecture: we are moving it, all the way down into the
reactor (a.k.a. the real-time executive). The reasoning
for this is that the results to be computed depend on the
situation at the time; the amount of computing power to
devote to hard real-tilne, soft real-time, and backg|'omld
threads depends on what needs to be computed, and
hence on the situation at the time; but the situation can

change very rapidly, hence the allocations of computing
power and the threads being executed may also have to
change very rapidly; and so the changing allocations and
the initiation and termination of all threads (including
deliberations) must be handled by the real-time exec-
utive. ([Kaelbling and Rosenscheiu, 1990] also have a
fe,st reactive system determining which deliberations are
relevant and for how long.)

Third, our real-tilne executive is a real-time micro-

kernel running threads at nmltiple frequencies, not a. sin-
gle loop that performs a fixed list. of functions all at tl,,
same frequency.

3 Ilnplementation of the Real-time

Executive

Any real-time subsystem adopted as the basis of ot, r ar-

chitecture should provide the following mininmln capa-
bilities:

RI: insulating the processing time allocated to hard
real-time threads fi'om the cycle-stealing desires of
all other threads.

R2: testing, as part of program execution and witlmut
modifying the set of currently executing hard real-
tilne threads, whether a proposed new set. of hard
real-tinle threads is such that all its deadlines can

be met with tim available processing time.

R3: conditionally switching thread subsets on and off, so
that the real-tinae executive is etfectively executing
a conditional real-tilne program.

R4: allowing dynamic modification of the hard real-time

prograln (the set. of hard real-time throad._ and the
switching logic) while still meeting all deadlines be-
fore, after, and during the modification.

R5: ability to do R1-R4 when the set of hard real-lime
threads contains both cyclic (periodic) and sporadic
(aperiodic) threads.

These requirelnents can be met in a variety of ways.
The alternatives are

1. multiprocessor schedulers, which are the most pow-
erful but expensive in proportion;

2. earliest-deadline-first schedulers, which are tile most

user-friendly;

3. rate monotonic schedulers, which are the easiest to
build.
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Webelievethat ourarchitecturecouldbeimplemented
equallywelloil topof anyof theseoptions.However,
thebudgetaryconstraints on our work incline us away
fi'om multiprocessor schedulers (while yet we also be-
lieve that for such complex systems as space stations or
lunar bases, nmltil)rocessor schedulers are by far the best
choice). The best. fit with our work on the EVAHR robot
is an earliest-deadline-first scheduler, since such sched-
ulers facilitate dynamically changing thread frequencies

(for synchronizing computing with robotic motion) and
conditional schedules. Our intended implementation is
similar to that of [Ramamritham and Stankovic, 1984]

with the schedulability check of [Jeffay, 1992].

4 Discussion

4.1 Benefits of the Architecture

The final justification for our architecture consists of
three words: safety, generality, and economy. Safety:
l_ecause the timing of program execution is taken so se-

riously that even intermittent tinting problelns can not
survive, and because the architecture establishes a feed-
back loop from conlpnting load to graceful degradation
of task performance. Generality: because the system
can contain on-line intelligent reasoning, can enact the
results of such reasouing in hard real-tilne, can dynam-
ically replace the system's hard real-time reactions, and
can judiciously control its own use of computing power.
Economy: because a fixed amount of computing hard-
ware can be time-shared and ca.refillly allotted, tlere we
elaborate on just a few of these benefits; the complete
list. appears in [Schoppers, 1993].

• Spatial synchronization. The ability to dynanfically
modify the frequency of thread execution allows to

synchronize computing with motion through space.
With collision checks being lnade at regular dis-
tance intervals, slower motions require less calcula-
tion. Knowing such facts about itself, an intelligent
real-time system can reduce the speed of its lno-
tions for the sake of reducing the processing power
devoted to motion-related threads.

• Graceful degradation. The ability to scale back its
operations as necessary to eusure timeliness elimi-
nates the need to design to all imaginary worst case
scenario, because there is no longer a sharp perfor-
mance cliff that the system can fall off in unpre-
dictably disastrous ways.

• Reconfigura.bility. A survivable system lnust have
several ways of achieving the same result. When the
sensor normally used to deliver a given datum mal-
functions, another can be used. Since the computing
time required to interpret different sensors differs,
such result-compatible recolffiguration is only safe
in systems (like ours) that can plan their behavior
to match their planned COlnputing load.

4.2 Limits of Robustness

[)espite our concern for hard real-t.ime and for dylm.m-
ically achieved robustness, seine kinds of mishaps call

still happen (of course). If enough sensors nlalfunction,

a robot will be unable to see new dangers al)l)roaching, so
cannot be held responsible for avoiding them. Similarly
a robot may, for the sake of getting its job done, have
to place itself in situations that would be dangerous if
the robot's COlnputers suddenly died. In all other cases,
however, including robotic inal)ility to go on sensing ob-

jects it already knew about, as well as COml)vter failures,
our soft.ware will be aware of the potential mishaps and
will contilmously and intelligently redesign the robot's

behavior specifically to optilnize first the safety, then
the performance, of the robot in its surroundings.

4.3 When Is Hard Real-time Ilnportant?

The development of our architecture was driven primar-
ily by concern for hard real-time response despite the
presence of AI software. It is unclear to many people
why tinting should be taken so seriously. The most com-
mon objections are (1) Couldn't we hand-code a fixed
layer of real-time reactive behaviors that take care of
everything (e.g. collision avoidance) while tile AI soft-
ware is thinking, and (2) (',ouMn't we make sure that
the real-time software works, by lneans of a test-debug
cycle? Sometilnes yes, but also sometimes no.

Objection (1) is nsually raised by people who have
programmed wheeled mobile robots on earth. For such
robot.s there is a small repertoire of actions that can en-
sure robotic safety, e.g. slamming on the brakes or mov-
ing away from impending collisions. However, as soon as
either the robot or its euviromnent becomes more com-

plex, a fixed "reactive safety layer" no longer sufl]ces.

One example is the Adaptive Suspension Vehicle (ASV)
[Payton and Bihari, 1991], which was the size of a bus,

with six legs that were each 6 feel. high at the hip. Main-
tainiug stable balance while keeping the legs away t)'om
each other and while switching between gaits required
a super-real-time motion plmmer. For the A,qV, evel!

stopping was so complicated that no predetermined set
of "reactions" could have sufficed. Alternatively, more
complex environments also prevent a haml-writl.en saf_,l.y
layer, since such a layer must assume that its actions are
easily reversible and will not themselves lead to new dan-
gers. On orbit, however, a free-flying robot's action to
avoid a collision will move the robot into a new orl)it

from which it may be both time-consunfing and fuel-
consuming to return, and on which it. is still ilying at
approximately 20,000 lniles per hour. In general it is
not true that all robots call be kept safe forever with a
fixed set of hand-coded reactions.

Objection (2) cannot be sustained if a thread's misse(I
deadline can lead to loss of human life.. Since exl)erien('ed
programmers know better than to claim that they've
found "the last bug", and since concurrent software is
worse than most, the test-debug approach may well yiehl
life-threatening software [Stankovic, 1i188]. The rM(s

can be dilninished I)y applying existing hard real-tim_
schednling research. Objection (2) is also rel)utl(,d if a
system's worst-case computational h)ad is several t iuws

higher than the average load. For examl)le, setting a
robot's top allowable speed to avoid liming l)robh,ms
under a rare scenario will also limit the robot's i)erfor-
mance at. all other thnes. Our architecture allows to
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a.dapttherobot'stop speedto currentcomputational
loading.Heretoo it helpsto takehardreal-timeseri-
ously.
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