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Abstract---A robotic planning and control system
based on the subsumption architecture is de-
scribed. The subsumption planner extends the

purely reactive subsumption architecture by ex-
tending the sensor space (from which the behavior
modules are triggered) into a virtual future, and

augmenting the behavior module with a cause-ef-
fect predictor triggered by the same sensory situa-

tion as the reactor. Virtual sensor space is used by
the planner as a scratchpad to visualize alternate
plans. The predictor contains a partial world
model relevant to its particular behavioral
expertise. The collective network of predictors op-
erates in parallel with the reactive network form-
ing a recurrent network which generates plans as
a hierarchy. Details of a plan segment are gener-
ated only when its execution is imminent according
to the principle of least commitment. An imple-
mentation of subsumption using object oriented
design is proposed. The behavior of the subsump-
tion planner is demonstrated in a simple maze
navigation example. The subsumption planner is
expected to improve the robot's performance by
reducing feedback delays and unnecessary de-
tours. It provides a framework for general behav-
ioral planning in real-world robots of the sub-
sumption style.

1. Introductign

Reactive robotic control systems, such as the sub-
sumption architecture, have enjoyed popularity
among the research community for the last few

years. Robots built according to these principles
are very successful at performing tasks in unstruc-
tured, real-world environments. However, reactive
systems tend to behave in a pre-programmed, rote
manner. Selecting alternate courses of action based
on previous experience or reasoning (i.e., delibera-
tive behavior) must be designed into the behavior
itself rather than being an emergent property of the
network interconnectivity. Recent work has recog-
nized a need to incorporate deliberative planning
capabilities in real-world systems.

Planning is essentially the ability to look ahead

and predict outcomes of actions (or inactions), and
to make decisions based on that knowledge. A plan
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is a sequence of decisions to be made in the future.
These decisions assume a particular expected se-
quence of slates. Anticipation of future states gives

the planning robot advantages in efficiency (via
the ability to avoid known dead ends), in flexibility
(replanning on the fly), and in reaction speed
(eliminating most of the delay inherent to reactive
feedback-only systems). Autonomy in the real
world demands predictive and deliberative behav-
ior in addition to a reactive component.

The subsumption planner uses a parallel dis-
tributed computational paradigm based on the sub-
sumption architecture for the control of real-world-
capable robots. This approach is derived from a
number of various disciplines including ethology,
the theory of animats, and computational neuro-
science. Plans are represented as trajectories in a
time-extended virtual sensor state space. Slates
along this trajectory represent the future as the
robot expects it to appear, in terms of its own
senses. Virtual sensor state space is used as a plan-
ning tool to visualize the robot's anticipated effect
on its environment.

Decision sequences are generated by the planner

based on the environmental situation expected at
the time the robot must commit to the decision by
acting on it. Between these decision points, the

robot performs in a pre-programmed manner, lim-
iting its reactions to avoiding obstacles, stalls, and
danger. A rudimentary, domain-specific partial
world model contains enough information to ex-
trapolate the end results of rote behavior between

decision points, and thus to predict the sensed situ-
ation at the next decision point.

By constructing plans with little detail as long as
they are far in the future and filling in details only
as their execution becomes imminent (the principle
of least commitment), failed plans can be dis-
carded without much resource cost. Rough plans
are represented as indefinite trajectories between a
few well-defined waypoints in the state space.
These waypoints are the expectations generated by
the predictors. Initially, they are spread far apart in

time---the plan is coarsely resolved. Rough plan-
ning consumes few resources. As the first plan seg-
ment comes closer to fruition, details are added
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just in time for execution. These multi-resolution
plans are built from ,,,heoutside in.

Planners need a world model to evaluate alterna-
tives. One objective of the subsumption planner is
to distribute the world model in a plausible way
across the entire decision-making system. Each be-
havior module contains a discrete piece of exper-
tise. These expert agents contain not only action
generation routines, but also cause-effect predic-
tors. The planner is implemented as a network
structure which parallels the behavior module net-
work of the subsumption architecture.

Implementation of subsumption as an object-ori-
ented design simplifies the implementation of a
software simulation, as well as providing organiza-
tional and developmental flexibility. The subsump-
tion network structure lends itself to the use of dis-
tributed hierarchical encapsulating objects. In ad-
dition, the hierarchy enables prioritization of active
behaviors to occur before the generation of actual
motor outputs. This simplifies the prediction
mechanism.

2. Related Work

As the shortcomings of monolithic, centralized
robotic controllers and planners became obvious,
new distributed architectures were proposed. These
were rooted in a variety of different nontraditional
disciplines, including ethology, biology, neuro-
science, physics, psychology, and sociology. A
strongly ethological and intuitively elegant ap-
proach is espoused by Albus 1. Marvin Minsky, a
pioneer in artificial intelligence, theorizes about
the nature of information processing in the human
mind, speculating that thought is composed of the
collective actions of a society of individual, sub-
intelligent agents acting cooperatively 2. The new
architectures share many features with object-ori-
ented paradigms. Schema theory 3, in particular,
models intelligent systems from the perspective of
brain theccy as hierarchical networks of nested ob-
ject-like schemas. Schema theory and object-ori-
ented design are both rooted fmnly in distributed
artificial intelligence.

Sensor and motor information (indeed, any type of
information at all) can be described in terms of dy-
namic high- or infinite-dimensional state spaces a.
A trajectory through this state space represents the
time evolution of information or concepts. This
generic framework has been developed into a de-
scription of physical and mental behavior, which
can describe many diverse information processing
techniques and knowledge representations.

The subsumption architecture developed by
Brooks at MIT 5,6, 7 introduced a new perspoetive
on building robots for the real-world, often called
creatures or animals. Connell s further develops the
subsumption technique, describing an autonomous
robot whose job it is to find and collect soda cans
in a lab and deposit them in a receptacle. This
robot has served as a testbed for an in-depth study
of subsumption and its numerous advantages over
earlier methods for controlling real-world robotsg.
The major achievement of the subsumption archi-
tecture is to demonstrate how to combine many
isolated pieces of robot control into a single,
working real-world machine operating under a sin-
gle, coherent,and consistent architecture.

Earlier robots were effective only in toy worlds:
well-defined environments, such as in manufactur-
ing, where repetitive movements could be guaran-
teed to be successful. These applications do not re-
quire much sensory ability. The robots built by
Brooks react in real-time to changes in the envi-
ronment. They rely on a rich suite of sensors to
provide information about the environment on
which to act. The actions themselves are generated
by a network of behavioral modules whose outputs
are mediated by a hardwired arbitration network.of
gating nodes. This network gives certain higher-
level behavioral modules responsibility for, and
control over, the outputs from lower-level mod-
ules.

In addition to performance advantages due to di-
rect implementation on parallel hardware, the sub-
sumption architecture provides all the benefits of a
distributed system, including scalability, graceful
degradation, robusmess, simpler elements, and bi-
ological plausibility. Much of the intelligence of
the system emerges from, and is embodied in, the
network connectivity.

The lack of an explicit world model was originally
seen as an advantage of subsumption. Using the
real world as its own model solved the problems of
keeping the model up to date and deciding what
was important to include, as well as what form of
representation to use. However, without a world
model, a system or organism cannot anticipate the
effect of an action until that effect is actually
sensed (giving rise to feedback delays). This can
lead to poor reaction time and potentially life-
threatening slowness.

The purpose of a world model is twofold: It keeps
track of the state of the world, and it describes
cause-effect relationships due to actions (i.e., mov-
ing an object) or inactions (allowing an object to
fall). These are data structures and processes re-
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spectively. The cause-effect relations may be due
to laws of physics, to the robot's own actions, or to
the actions of another agent, in order of increasing
difficulty of prediction. In the subsumption archi-
tecture, these cause-effect relations are implicitly
designed into the behavior modules. For example,
termination conditions assume a cause-effect rela-
tionship due to physical laws. The result of ac-
tively moving an object from x to y is that the ob-
ject eventually exists at y. The fact that the object
is at y can either be represented internally in a
world model, or, in the subsumption model, sensed
again only when necessary.

Recently, several modifications and extensions to
the subsumption architecture have been proposed.
These address limitations or inefficiencies of sub-
sumption such as the lack of a world model, or its
lack of learning ability.

Mataric 1° extends subsumption by implementing
knowledge representation as a map (a kind of
world model) for navigation by integrating an in-
ternal landmark-based map representation built as
behavior modules. Behavior modules are used here
to represent as well as act. In this case, each
module represents a landmark. The building blocks
of the subsumption architecture remain fundamen-
tally the same; Mataric describes a new usage of
them.

Dorigo and Schnepf n propose a learning technique
for behavior-based robots in which new behaviors

are created and added to the robot's repertoire us-
ing a genetic algorithm. The behavior-based archi-
tecture is based on ethological theories developed
over the last eighty years 12. They note that behav-
iors have been constructed which are well tailored

to specific tasks, but no conceptual model exists
for relating behaviors to each other. Learning is
achieved by evaluating new behaviors and includ-
ing them if they perform well. The resulting sys-
tem is a synthesis of behavioral and genetics-based
paradigms for intelligent real-world behavior.

Learning by progressive modification of a reper-
toire of reactive behaviors is described by Lyons 13,
using a process-algebra language. The concept of a
planner as a separate subsystem which interacts
with a reactor is presented. The plan is contained
in the reactor as a set of processes. The reactor
adds and deletes processes, tuning the reactor to
perform the task more robustly over time. The
planner has a repertoire of plan elements and the
knowledge of how to fix shortcomings in the
reactors overall behavior. It provides the system
with a global perspective on task execution which
is lacking in the purely reactive system.

Traditional planning systems constructed plans
off-line, often in a separate centralized planning
subsystem. Planners were seen as logical engines
which generated a complete, detailed plan as a re-
sult of a search through a tree of possible action se-
quences14. 15. These plans worked best in a toy
world. Distributed planning systems were eventu-
ally developed as a consequence of the focus on
distributed artificial intelligence in the late 1980's.
One of these was the Distributed Vehicle
Monitoring Testbed 16,17,Is which distributed par-
tial plans among independent agents. In this
scheme, plans were subdivided spntiAIly.

In the past, planning has been studied in iso_tion.
It is now becoming widely accepted that the pre-
dictive, deliberative planning component is neces-
sary to complement the reactive behavior-based
system. These two systems must be highly inte-
grated, yet distributed across the network.
Planning, in a sense, represents the antithesis of re-
ality-based reactive systems. A planner must imag-
ine nonexistent realities and visualize and evaluate
alternative future actions in that virtual reality.

3. Architecture

Reactive robot controllers implement a feedback
loop for all activity (Fig. la). Feedforward loops
(Fig. lb) are more responsive and exhibit
smoother, more desirable control, provided the
model is accurate. The feedforward control tech-

nique has been used to mimic the smooth, pre-
cisely controlled behavior of the human arm by a
robot arm using highly non-linear air-bladder
"muscles" 19,2o,21.The feedforward loop relies on
an internal model of physical cause and effect to
predict and generate appropriate actions in real
time, before their effect can be sensed. The
Kawato-Katayama arm trajectory generators, im-
plemented as neural networks, act as continuous-
time predictive models the physics of arm behav-
ior.
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Fig. la. Feedbackonly reactive system
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Fig. lb. Feedforwardreactive/predictivesystem

The subsumptionplanner addsto traditional sub-
sumptionthe ability to predict the effect of robot
actions.The action-generation expertise is collo-
cated with the knowledge of cause-effect relation-
ships in the behavior module associated with that
domain. This cause-effect knowledge is encapsu-
lated in a predictor which anticipates the expected
state resulting from performing the behavior. The
expectations are representedasstate vectors in the
virtual sensor state space representing future
states--the collection of these statestogetherde-
fine a trajectoryrepresentinga future courseof ac-
Lion.

Subsumption networks are often seen in which in-
formation flows in one direction from input to
output. There are no recurrent links in this type of
network. The lack of recurrent links allows only
simple reactive behavior to be produced, preclud-
ing complex dynamic behavior. In the same way,
non-recurrent neural networks such as the back

propagation network do not contain any recurrent
information flow. Non-recurrent networks are not
dynamical systems, and therefore they cannot ex-
hibit chaotic or even oscillatory time-varying be-
havior. This severely limits the behavioral com-
plexity and sophistication of these networks
(although they are more easily understood).
Similarly, in the subsumption architecture, any
complex processing occurs within the behavior
modules, rather than between them. (Some special-
ized subsumption networks have been designed
with recurrent links; those for the control of walk-
ing, for example.)

The subsumption planner allows for three general
forms of information flow. The sensor subsystem

contains an afferent abstracting flow, and the mo-
tor subsystem contains a de-abstracting efferent
flow. The subsystem between these two, compris-
ing the decision making mechanism, is constructed
as a network which allows a great number of in-
formation flows in both forward and backward di-

rections. The forward flows are essentially identi-
cal to those of the conventional subsumption archi-
tecture and represent reactive behavior such as
tracking or avoidance. The backward flows create
loops in the information flow; these recurrent
flows generate the visualization of future actions
and planning. These recurrent flows are model
generated predictions which are fed forward (i.e.,
in the same direction as information in the real
world---from effectors to sensors) toward the sen-
sory subsystem and treated as imaginary, virtual
sensory situations. The key point is that the inter-
nal modeled information flow mimics the outside
world's physical cause-effect information flow.
Multiple iterations of this loop propagate predic-
tions farther into the future, although any modeling
errors will accumulate. These sensory situations
are ordered in time and represent plans for future
behavior.

In the traditional subsumption architecture, the re-
sponsibility for reacting to the environment is de-
composed and delegated to a number of reactive
behavior modules. A behavior module can be seen
as an agent which is an expert in one discretedo-
main of behavior. These modules in turn may have
hardwired managerial control over an entire net-
work of subordinate behavior modules. The con-
trol is manifested as subsumption, whereby the
manager commandeers control over the robot
whenever it wants. The manager handles special
situations only; the common situations are ignored
by the manager and handled by its subordinates. If
the specific triggering situation for the manager
does not exist, some subordinate, more generalized
behavior probably has been triggered by a less
specific sensory situation. At the lowest level, a
behavior may be continuously triggered by default;
in effect, it is triggered by any sensory situation.

4. Extensions to SubsumDtlon

In order to implement the subsumption planner,
four extensions to the traditional subsumption ar-
chitecture are needed:

• Sensor and motor space abstraction

• Virtual future sensor space

• Cause-effect predictors: augmentation of
behavior modules
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• Hierarchical organization: object-oriented
implementation of arbitration

Sensor and motor space abstractions extend the
real-world interface (input/output) information
spaces, allowing for more sophisticated, abstract
triggering and action-generating mechanisms for
the behavior modules. Virtual future sensor space
provides a seratchpad for construction of plans.
Cause-effect predictors are associated with the be-
havior modules and generate the plans themselves
as trajectories in the virtual sensor space. The hier-
archical organization is an alternate object-oriented
implementation of the subsumption architecture.

4.1 Sensor and Motor Space Ab_tr'd_lon

Sensor space is a very-high-dimensionality repre-
sentation of the information entering the robot
from its external sensors. After processing and
combining raw sensor data, abstract sensor data
containing composite information in a more easily
assimilated form, or a form with higher informa-
tion density, can be created. These abstractions
have been called "logical sensors "22. They are
generated through the fusion of raw sensor data.
Examples in robot vision include edge detectors,
novelty detectors, motion detectors, or highly ab-
stract sensors such as face recognizers. Cross-
modal abstractions sense location or orientation
using a number of sensor sources to reduce uncer-
tainty. A logical sensor might determine location
by combining information gleaned from a number
of raw sensors, such as sonar, visual clues, radio
landmarks, etc.

In the original subsumption architecture, behaviors
are triggered directly from raw sensor inputs. The
entire extended sensor space including raw sensor
data and abstract, derived sensor data, is available
to trigger the subsumption planner's behavior
modules. Any particular behavior module is sensi-
tive only to a small localized subset of this sensor
space, similar in some measure, for example a
small visual patch. The sensitivity of a behavior
module is also localized in level of abstraction---a

simple, low-level behavior may trigger on contact
with a single touch sensor; a more abstract, higher-
level managerial behavior on recognition of a
complex object such as a familiar face.

The abstract sensors are derived from the raw sen-
sors; the raw sensor space by itself is complete.
The abstract sensor space extension is a conceptual
device to provide behavior modules with a com-
mon pool of sensed information from which to
trigger. A behavior module, rather than triggering
on a complex pattern which could potentially be

multi-sourced and multi-modal (as well as uncer-
tain and noisy) in raw sensory space, may trigger
on a simple abstract pattern, or even a single
highly processed attribute in abstract space.

These high dimensional spaces are conceptual
constructs. Obviously, to implement them faith-
fully following the theory is extremely wasteful
and probably impossible. The implementation cam
be drastically optimized while still following the-
ory. For example, to conserve resources, the ab-
straction of raw sensors and data fusion should
only be performed by request.

Complex motor actions generated by the motor
subsystem are also abstracted into motor pattern
generators (called "central pattern generators" by
neuroscientists). Locomotion is a repetitive ab-
stract motor pattern which is comprised of a num-
ber of individual motor actions. The relatively
complex repetitive pattern of actions are generated
by a single manager behavior which directs sim-
pler, lower-level behaviors to generate the rudi-
mentary component actions. Variations of Iocomo-
lion, such as speed, gait, direction, can be supplied
to the abstract locomotion behavior as parameters.

4.2 Virtual Future Sensor Space

Sensor space, extended in dimensionality by the
incorporation of abstract sensor dimensions, is
also extended orthogonally to represent a time di-
mension_the extension of the sensed environment
into the future. This extension will be used to pro-
vide a working scratchpad for plan generation.

This extension provides a conceptual framework
for the construction of plans. A plan is a visualiza-
tion of a sequence of events. The most complete,
natural, and efficient way (for that matter, the only
possible way) to represent a visualization is in
terms of the same modality in which it will actu-
ally be sensed. Since the extended sensor space
contains all possible sensory situations, the visual-
ization of "how it will appear to the senses" is also
contained. The difference between real-time sen-
sory situations and virtual sensory situations is in
completeness (everything need not be repre-
sented), resolution (irrelevant details may be
omitted), and uncertainty (multiple possible values
or fuzziness).

The plans generated by the predictors are repre-
sented as a sequence of nodes or waypoints, rela-
tively fh-mly located in state space, at distinct fu-
ture times, connected by indefinite links. As the
plans mature or become more imminent (the plans
are also refined by the predictors), they become
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moref'Lrmin location,and intermediate waypoints
emerge.

Multiple alternative plans are tagged with plan
quality measures. The plans are evaluated by the
predictor. When a choice of plan is necessary (i.e.,
when a complete replan is necessary, or upon em-
barking on a new task), the highest quality plan is
selected. The robot will then begin executing this
plan.

4,_ C..ilu_m-Effect Predictors

Predictors are agents associated with behavior
modules. The original subsumption style action-
generating behavior module, which we now call a
reactor, is triggered by a sensory situation in the
current sensor subspace. By augmenting the behav-
ior module with a predictive mechanism, called the
predictor, the effect of the reactor on the environ-
ment can be predicted. The predictor is triggered
by the same sensory situation as the reactor in the
current or any future sensory subspace. The predic-
tor then generates a trajectory from the trigger
point to the future point representing the predicted
resultant effect of performing the behavior.

Predictors are not required for low-level, reflexive,
or protective behaviors such as obstacle avoidance
or tracking. These behaviors avoid anomalous
states, such as being stuck in a corner; they guaran-
tee that the robot remains in a nominal space.
Higher level behaviors can expect that the anoma-
lous states will be avoided. The lowest level be-
haviors are purely reactive. This reliance on low-
level behavioral guarantees make the prediction
job of the higher level behaviors easier. In general,
predictors are necessary only for manager behav-
iors.

The predictor is insensitive to its trigger source---
whether it is actually being sensed at the present
moment, or if the sensory situation is an imaginary
construction of some previously triggered predic-
tor. The idea is to visualize a sequence of events
using exactly the same sensory computational
pathway as would be stimulated during the actual
performance of the sequence. The differences are
that: 1) the actual raw sensor transducers are not
stimulated, 2) conceptually, the behaviors are dis-
placed along the time dimension of the sensor
space, and 3) the reactors do not generate motor
commands. The same mechanisms used for reac-

tive behavior (the trigger mechanisms and the arbi-
tration of actions) are used for planning.

Obviously, the prediction is defined only in the
subspace in which the reactor may potentially have
a repeatable, predictable effect---a reactor which

closes the robot's gripper will, in general, have no
predictable, correlatable effect on sensed ambient
light intensity.

As in schema theory, a subsumption planner pre-
dictor is a black box. The internal mechanism of
the predictor is not important to the functioning of
the entire distributed system; only the externally
observable functional behavior (i.e., its role in the
architecture) must be well def'med. The implemen-
tation may use a procedural algorithm, a neural
network, specialized hardware, or any other tech-
nique to perform its function.

4.4 Hierarchical Oroanlzatlon

While planning, no outputs should be generated
from the activity of the behavior modules. The re-
actor does not generate output ff the trigger is in
the virtual sensor space. However, since the sub-
sumption architecture's arbitration network (the
collection of output wires along with their connec-
tors) are connected to reactors which generate out-
puts whenever they are triggered, it is difficult to
determine the actual controlling behavior module
without actually generating motor outputs to send
through the network. This would require some sort
of action gating mechanism at the output of the ar-
bitration network to inhibit the passage of motor
commands. The result of the arbitration needs to
t-rodits way back to the predictor also.

The connectivity of the subsumption network de-
fines its global behavior. Behavioral modules
which are triggered upon sensing special environ-
mental situations subsume lower level behaviors
(if the subsuming behavior was not triggered by a
special case of the subsumed behavior, the sub-
sumed behavior would not be triggered in the first
place, and the subsumption relationship would be
inappropriate, i.e., in a properly designed network
the subsumed behavior should already be triggered
and operating when the subsuming behavior takes
over). In a sense, the manager behavior comman-
deers control of the entire system because it be-
lieves it is best suited (in the eyes of the designer)
to deal with the problem at hand.

The triggering of a module does not automatically
cause the robot to perform the actions generated by
this module. Several behavior modules may be
triggered by the same sensory state. The actions
must be mediated by the subsumption or arbitra-
tion network. This network determines which be-
havior may assume control of the entire system at
any one time. In general, behaviors which are trig-
gered by a small,r, more exclusive region within
the sensory space will be regarded as more appro-
priate than more generic behaviors. The result is
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that behaviors which trigger upon special situa-
tions, or exceptions to the general rule, will have
priority over other behaviors. These more sophisti-
cated, specialized manager behaviors "subsume"
lower-level, cr simpler behaviors.

In order to retain "ownership" of the motor com-
mands by the generating behavior, an alternative is
to perform the arbitration before the commands are
output by the reactors. By doing this, the behavior
module knows that it has been selected (on the ba-
sis of either real or virtual senses) as the controller
of the entire system, and the predictor can act ac-
cordingly. If the trigger source is the virtual sensor
space, the arbitration still occurs,and the result is
known locally to the behavior module.

The subsumption architecture triggers all eligible
(even inappropriate) behavior modules to generate
actions in parallel. By giving each module some
awareness of its own place in the control hierar-
chy, and some visibility into the activity of behav-
iors which may override its own eligibility, the
number of efigible, active modules may be reduced
to those which may actually control the robot.
(Note that several subsumption networks may con-
trol a robot, so that several different behavior
modules may be generating actions at the same
time for different subsystems). This type of hierar-
chical selection lends itself to the use of schema
theory and object-oriented software techniques.

The arbitration network composed of suppression,
inhibition, and default nodes in the subsumption
architecture functions similarly to the schema as-
semblage construct in schema theory. A schema
assemblage is a collection of (possibly intercon-
nected) schemas and is itself regarded as yet an-
other schema. The component schemas are defini-
tions rather than instantiations, so that multiple in-
clusions in different schemas are realizable. This
self-similar hierarchical structure lends itself to ob-
ject-oriented software construction techniques.
Object classes are built from less specific classes
as specializations of those classes in the same way
that subsuming behaviors are triggered by special
cases of the triggering stimuli of subsumed behav-
iers.

The partial world model relevant to a subset of be-
havioral modules is contained in the module which
manages that subset. This is the highest-level
module contained in that subset. For example, a
behavior called go.to(elevator) which goes to the
elevator in a building given the current location
must direct lower level behaviors to orchestrate a

sequence of behaviors (i.e., make managerial deci-
sions) which are triggered at intersections, such as
turn(left), turn(right), and turn(straight). The

go-to behavior contains the necessary world
knowledge to get to a known landmark, in this case
the elevator. The managed behavior (turn) con-
talns no world knowledge of that nature. Its world
knowledge is only that which it needs to know to
perform a turn successfully.

5, Maze Navlaatlon

Navigation through a maze provides a clear and
simple example of the generation and execution of
plans. In this case, the successful path through the
maze is directly representable as a path through
state space, the relevant state in this ease being lo-
cation. A navigation plan is a predetermined se-
quence describing the choices made at each deci-
sion point, i.e., at forks in the road or intersections.
This can be represented as a traversal of a decision
tree (Fig. 2).

start

I follow-corridor

/_urn(right)

/ _llow-corridor

I _ll turn(left)

follow-corridor/ I \

turn(straight)

,\follow-corridor

/

Fig. 2. Maze navigationdecisiontree

Upon encountering a decision point, such as an
intersection, the subsumption architecture relies on
a preprogramme.d, rote strategy tOselect one of the
alternatives. This arbitrary tie-breaker rule may be
"always head south", or "follow the left wall".
These can be successful strategies for maze navi-
gation, but they are rarely optimum.

The best plans are based on previous experience.
Searches for optimal paths through state space
have been studied extensively in artificial intelli-
gence. These require a cost criterion as well as a
guide to choices available, i.e., a map. A map sim-
ply represents the accumulated experience of the
raapmaker. Heuristics may be used (i.e., stay on
the main path, or go straight, until you have a good
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reason not to) in the absence of specific map
knowledge.

This search for an optimum path creates a plan
based on the expectations of the planner. If the
domain has changed, or the map is incorrect, the
planner must generate a new plan. The new plan,
in order to be optimal, may require some back-
tracking, or it may start from the current state23.
The subsumption planner replans, without explicit
backtracking, from the moment it senses a discrep-
ancy between expectation and reality. The plan
generated may include as its fwst segment a back-
track; however, from the point of view of the new
plan, it is not backtracking, but rather generating a
new complete plan from the current state.

The current location and orientation of the robot is

represented as a point in (abstract) state space.
Subspaces representing the sensors and their ab-
stractions which are used to determine location,
orientation, obstacles, and other properties impor-
tant to navigation and travel, will contain the trig-
gels for these behaviors. A behavior module is
triggered when the current state lies within some
specific trigger region. For example, the region of
sensor state space which represents the situation in
which a large object is directly in front of the robot
should trigger an obstacle avoidance behavior
module which causes a turn.

_;,1 Path alannlna

A goal is the desired end state of a behavior. This
definition of a goal assumes that the robot has
achieved the purpose for its existence when this
end state has been reached. This is only the case
for simple robots and well-defined behaviors. In
general, each subtask also has a goal, and each
sub-subtask has goals. Similarly, the goal for the
entire behavior is really a subgoal of a larger con-
textual plan, which may only be implicit in the de-
sign of a robot. For example, a robot's explicit
goal at the topmost level may be to achieve a
mowed lawn. This is a subgoal of the implicit task
"keep the lawn mowed" which requires that the
robot repeat the lawn mowing subtask whenever
the grass gets too long. Real plans thus have a hi-
erarchical, self-similar nature where simpler sub-
tasks look very similar to the contextual task. Thus
we can treat contextual plans in the same way as
subtasks.

The decision tree which represents all possible
paths (starting from the current state) to a goal is
the problem space within which the navigation
plan must be constructed. This problem space is a
virtual scratchpad for the subsumption planner.
The root of this tree represents the system's current

location. The planner visualizes a future course of
action which is expected to reach a goal.

The planner makes its decisions based on general
knowledge of the problem domain, which it has
accumulated by experience or by design. The ben-
efit of using a planner over simple reactive behav-
ior is that knowledge which is more global in na-
ture than that available at the decision point may
be applied to solve the problem in (hopefully) a
more efficient manner. This more-global knowl-
edge is in fact a partial world model. The premise
of the subsumption planner is that partial world
models may be distributed across the system as
cause-effect predictors, associated with the action-
generating behaviors which are capable of steering
the robot into a desired state.

It is the responsibility of the cause-effect predic-
tors to propagate the decision tree into the future to
determine the best plan. Unlike a game theoretic
rain-max planner, in which the goal is to win the
game, not to reach any specific game state, the
subsumption planner can create a much more spe-
citic visualization of the goal. A chess playing al-
gorithm can only "'visualize" the winning goal
state by forward chaining from the current state;
there are a great number of possible winning
states. It does not select a goal state and attempt to
generate a plan which achieves it. The chess player
tries a great number of state trajectories until a
completely defined state is achieved which belongs
to the subset of checkmate (goal) states. To the
general purpose planner, however, most specifics
of the goal state are irrelevant and can safely be
ignored.

In the case of the maze navigator, the only aspect
of the goal state which is relevant is the location.
All other aspects of the goal state can be ignored.
Since the goal state may be so loosely defined, the
planner can restrict its search for potential behav-
iors to only those whose effect is to cause the robot
to change location.

The most general behavior which can cause this ef-
fect may be called the travel behavior. This be-
havior may direct, manage, or simply allow (but
not micro-manage!) the action of subservient be-
haviors which cause forward motion, turns, obsta-
cle avoidance, etc.

The entire course of action of the travel behavior
need not be planned in great detail in advance. The
robot need only realize that travel is capable of
producing the desired effect. Once this is known,
the robot depends on travel to complete the entire
task of getting to the goal. The repertoire of behav-
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iors travel has at its beck and call will perform
their own planning as needed.

The travel behavior makes its decisions in the
context of its view of the sensor space. It delegates
responsibility for selecting a sequence of turns at
intersections to the navigate-maze behavior when
it senses the domain (walls and passageways)
through which it must travel. (An alternate behav-
ior might be navigate-meadow; a meadow is a
term for a large area where there is a possibility
that proximity sensor bearings may be lost, so
other navigation techniques, such as dead-reckon-
ing, are called for.)

The navigate-maze behavior selects an active
subordinate behavior based on its "map" (a repre-
sentation of its expectations) or on heuristics if the
map does not apply to the current situation. It does
this by examining relevant elements of the real or
virtual state space (orientation and location) and
associating with that trigger state a "best" reaction.
The "map" is therefore in the form of an associator
which generates some reaction based on a set of
inputs. This assoeiator represents a partial world
model. Each managerial behavior module contains
an associator which embodies only the knowledge
relevant to that behavior.

The plan, represented as a trajectory in state space,
has associated with it a quality indicator. When the
state arrives at a decision point in real execution,
the decision it makes is the one associated with the
highest quality indicator. If sensors indicate a de-
viation from the expected sensor state as contained
in the virtual sensor space, the quality of trajecto-
ries which are affected by that deviation is re-
duced. Alternate plans may or may not be gener-
ated at that point. At the point of departure from
expectations (i.e., the current state), the robot
makes a decision according to the new highest
quality plan.

5.2 An Exam019

Assume flinta maze is to be navigated as in Fig. 3.
The robot will start at location s and is to find its
way to goal location g. There are two paths. The
shortest path, right at a and left at b, is blocked by
an obstacle which cannot be sensed until past b.

I I

Fig. 3.Maze example

The subsumption planner contains a travel behav-
ior capable of physically relocating the robot. This
manager behavior controls subordinate behaviors
navigate-maze and navigate-meadow. In the sub-
sumption architecture, it would do this by inhibit-
ing output from the undesired behavior. Another
behavior, follow-corridor, is a behavior triggered
upon sensing walls on either side and clear space
in front. It simply travels along the midline of the
corridor. The turn behavior is a composite behav-
ior, consisting of a turn-manager and four types
of subordinate turn generating behaviors,
turn(left), turn(right), turn(straight), and
turn(back). These tunas are dependent on orienta-
tion; turns dependent on compass direction could
be used identically. The turn-manager contains a
mm-associator which is the mechanism containing
the world model for the navigation domain. Since
navigation in the maze world is performed by de-
ciding which way to mrn at intersections, the turn-
map in this case resides in turn-manager. Another
partial model, the corridor-length-map, provides
expectations of distance to the follow-corridor
predictor. Other low level modules, not discussed
here, prevent collisions with obstacles, keep the
robot in the center of the hall, keep the robot
moving, etc.

The robot will behave as follows:

1) The robot begins at location s. The fol.
low-corridor reactor begins to generate actions as
in the traditional subsumption architecture, and the
robot starts moving down the hall. It moves toward
location a.

2) At the same time that the reactor begins
generating actions, the travel behavior is triggered
by some higher level behavior to start the planning
process. The travel behavior assumes responsibil-
ity for moving the robot from s to g. The predictor
generates a simple state space trajectory between s
and g. Travel allows navigate-maze to assume re-
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sponsibility for completing the plan and its execu-
tion. Only navigate-maze is triggered by the ab-
stract maze/meadow sensor. The follow-corridor
sensor is also triggered by the abstract corridor
sensor. The follow-corridor predictor generates
the expected location a based on its knowledge of
corridor length. In the virtual sensor map, a is
stored as a waypoint to be reached at time tq The
virtual sensor space at a indicates the sensory situ-
ation of a 4-way intersection. The turn-manager
behavior is virtually triggered by an abstract inter-
section sensor.

3) The turn-manager associator senses
global location a. The global location sensor is ab-
stracted from a variety of fused raw sensors, per-
haps including visual clues, wheel odometers, spa-
tial sensors such as sonar or rangefinder, and any
other sensors which distinguish this location as
different from others in any way. The associator
outputs "turn-fight" as the highest quality plan, fol-
lowed by "turn-straight" as the next highest. Note
these are not behaviors but rather decisions on
which behavior should be activated as part of the
plan. Other alternatives have a quality indication of
ZerO.

4) The planner is now done until the robot
reaches a0 since all details for the plan segment
from s to a are complete. The turn manager in-
hibits its own triggering until ready to resume
planning.

5) The robot reaches a. Since the prediction
turned out to be accurate, the top quality plan has
not changed. This plan indicates the behavior
turn(right) should be executed next. Turn right is
selected by turn-manager as active, and the pre-
dictor generates a' as the next waypoint, a' virtu-
ally triggers follow-corridor, and that predictor
generates waypoint b. Virtual sensor situation b
then triggers turn-manager, which inhibits itself
from making a commitment until b is physically
reached. The planner waits for the robot to catch
up.

6) At b, the turn-manager associator gen-
erates the decision "turn-left". Robot starts the
turn(left) behavior using the reactor mechanism.
But, an unexpected obstacle is sensed. The blocked
path causes the entire trajectory quality to go to
zero. The expectation violation alert is made avail-
able to any behavior.

7) The robot is still near b. The navigate-
maze behavior notices the expectation violation.
Its reaction is to replan. It predicts that it can still
reach the goal, since there is a second, albeit lower
quality, plan available from a previous waypoint.

All motion-generating behaviors are allowed to
trigger from the real sensor state b. Follow-corri-
dor has the best quality plan, a direct trajectory to
end up near a. The robot now moves under direc-
tion of follow-corridor.

8) At a', c, and d, decisions are made in the
same manner as above. Finally, the robot moves to
g. Travel has completed its visualized plan, along
with all its subordinates. The travel behavior ter-
minates, and current state g may be used to trigger
the next behavior.

This paper has described an extension to the sub-
sumption architecture which implements planning
using a virtual sensor space as a planning tool. The
planner, given a goal, generates a new plan, moni-
tors execution of the plan, and replans in the event
of a discrepancy between expectation and reality.
The planner operates as a distributed network in
parallel with the existing subsumption network.
The theoretical motivation for this technique was
presented. An example in the domain of maze nav-
igation showed its operation in a simple applica-
tion.
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