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Abstract

This paper addresses a central issue in robot
construction, namely the control of deliberation

time. The complexity of automated planning and
scheduling makes it undesirable, sometimes in-

feasible, to find the optimal action in every situa-

tion since the deliberation process itself degrades

the performance of the system. The question is
how can an intelligent robot react to a situation

after performing the "right" amount of thinking.
It is by now widely accepted that a successful

robotic system must trade off between decision

quality and the computational resources used to

produce it. Anytime algorithms, introduced by
Dean, Horvitz and others in the late 1980's, were

designed to offer such a trade-off. Recent work by

Zilberstein and Russell shows that the advantages
of anytime algorithms can be extended to the con-

struction of complex robotic systems. This paper

describes the compilation and monitoring mech-

anisms that are required to build robots that can
efficiently control their deliberation time.

I. Control of Deliberation Time

Intelligent robots must perform real-time deliberation

to solve such problems as path planning, task scheduling,

and interpretation of sensory data. An important aspect

of intelligent behavior is the capability of robots to factor

the cost of deliberation into the deliberation process. Two
factors determine the cost of deliberation: the resources

consumed by the process, primarily computation time, and

constant change in the environment that may decrease the
relevance of the outcome and hence reduce its value. A

useful mechanism to quantify this dependency is based on

the definition of a utility function U(S) over the states of

the world. The utility of a state defines the desirability of

that state. For example, the utility of a robot that assem-
bles a certain product can be measured by the number of

products completed each hour. Utility functions extend the

traditional notion of deadline (allowing for gradual decrease

of value over time) and the traditional notion of goals (al-

lowing for partial goal satisfaction). Thus, they are more

suitable for control of real-time robotic systems.

To choose an optimal course of action and to maximize

its utility function, a robot must perform some real-time

problem solving. The performance of robotic systems can

be improved by optimizing the quality of their decisions

net of deliberation cost. The problem of deliberation cost

has been widely discussed in economics, engineering and

artificial intelligence. In artificial intelligence, researchers
have proposed a number of meta-level architectures to con-

trol the cost of base-level reasoning [3, 9, 14]. The model

presented in this paper belongs to this class of solutions:

its meta-level reasoning component optimizes resource al-

location to the base-level performance components. This
approach separates two, central aspects of robot construc-

tion: the development of the performance components and

the optimization of performance. This modularity is ac-

complish by using anytime algorithms as the elementary
components of the system.

The rest of the paper describes our approach in de-

tail. Section II describes the notion of anytime algorithms.
It shows how to construct anytime algorithms and how to

characterize the trade-off that they offer between quality of

results and computation time. Section III explains the ben-

efits and difficulties involved in the composition of anytime
algorithms. Sections IV and V describe the two main com-

ponents of our solution to the composition problem, namely

off-line compilation and run-time monitoring. Section VI

describes briefly some applications of this approach. Fi-

nally, Section VII summarizes the benefits of our approach
and discusses some directions for further work.

II. Anytime Algorithms

The term "anytime algorithm" was coined by Dean
in the late 1980's in the context of his work on time-

dependent planning. Anytime algorithms are algorithms
whose quality of results improves gradually as computa-
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tiontimeincreases,hencetheyofferatradeoffbetween
resourceconsumptionandoutputquality.Manynumerical
approximationmethods,suchasTaylorseriesapproxima-
tion,arebasedoniterativeimprovementand,assuch,can
beconsideredananytimealgorithm.

Variousmetricscanbeusedto measurethequality
of a resultproducedbyananytimealgorithm.Froma
pragmaticpointof view,it mayseemusefulto definea
single type of quality measure to be applied to all anytime

algorithms. Such a unifying approach may simplify the

meta-level control. However, in practice, different types
of anytime algorithms tend to approach the exact result in

completely different ways. The following metrics have

been proved useful in anytime algorithm construction:

1. Certainty - this metric reflects the degree of certainty

that the result is correct. The degree of certainty can be

expressed using probabilities, fuzzy set membership,
or any other approach.

2. Accuracy - this metric reflects the degree of accuracy
or how close is the approximate result to the exact

answer. Normally with such algorithms, high quality

provides a guarantee that the error is below a certain

small upper bound.

3. Specificity - this metric reflects the level of detail of

the result. In this case, the anytime algorithm always

produces correct results, but the level of detail is in-
creased over time.

Many existing programming techniques produce use-

ful anytime algorithms. Examples include iterative deepen-

ing search, variable precision logic, and randomized tech-
niques such as Monte Carlo algorithms or fingerprinting

algorithms. For a survey of such programming techniques

and examples of algorithms see [21].

The notion of interrupted computation is almost as old

as computation itself. However, traditionally, interruption

was used primarily for two purposes: aborting the execution
of an algorithm whose results are no longer necessary, or

suspending the execution of an algorithm for a short time be-

cause a computation of higher priority must be performed.

Anytime algorithms offer a third type of interruption: inter-

ruption of the execution of an algorithm whose results are

considered "good enough" by their consumer.

Conditional performance profiles

To allow for efficient recta-level control of anytime

algorithms, we characterize their behavior by conditional

performance profiles (CPP) [19]. A conditional perfor-
mance profile captures the dependency of output quality

on time allocation as well as on input quality. In [21], the

reader can find a detailed discussion of various types of con-

ditional performance profiles and their representation. To

simplify the discussion of compilation, we will refer only
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Figure 1: Graphical representation of a CPP

to the expected CPP that maps computation time and input

quality to the expect output quality.

Definition 1 The conditional performance profile (CPP),

of an algorithm .A is a function CPPA : Qin x 7_+

Qout that maps input quality and computation time to the

expected quality of the results.

Figure 1 shows a typical CPP. Each curve represents

the expected output quality as a function of time for a given

input quality.

Interruptible and contract algorithms

In [15] we make an important distinction between two

types of anytime algorithms, namely interruptible and con-

tract algorithms. An interruptible algorithm can be inter-

rupted at any time to produce results whose quality is de-

scribed by its performance profile. A contract algorithm
offers a similar trade-off between computation time and

quality of results, but it must know the total allocation of

time in advance. If interrupted at any point before the ter-

mination of the contract time, it may yield no useful results.

Interruptible algorithms are in many cases more appropri-

ate for the application, but they are also more complicated

to construct. In [15] we show that a simple, general con-

struction can produce an interruptible version for any given
contract algorithm, with only a small, constant penalty.
This theorem allows us to concentrate on the construction

of contract algorithms for complex decision-making tasks

and then convert them into interruptible algorithms using a
standard transformation.

IlL Composing Anytime Algorithms

Modularity is widely recognized as an important issue

in system design and implementation. However, the use of

anytime algorithms as the components of a modular system

presents a special type of scheduling problem. The question
is how much time to allocate to each component in order

to maximize the output quality of the complete system. We
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Figure 2: A composite module for speech recognition

refer to this problem as the anytime algorithm composition

problem.

Consider for example a speech recognition system

whose structure is shown in Figure 2. Each box represents
an elementary anytime algorithm whose conditional perfor-

mance profile is given. The system is composed of three

main components. First, the speaker is classified in terms of

gender and accent. Then a recognition algorithm suggests

several possible matching utterances. And finally, the lin-

guistic validity of each possible utterance is determined and

the best interpretation is selected. The composition prob-

lem is the problem of calculating how much time to allocate
to each elementary component of the composite system, so

as to maximize the quality of the utterance recognition.

Solving the composition problem is important for sev-

eral reasons. First, it introduces a new kind of modu-

larity into real-time system development by allowing for

separation between the development of the performance

components and the optimization of their performance. In

traditional design of real-time systems, the performance
components must meet certain time constraints that are not

always known at design time. The result is a hand-tuning

process that, may or may not, culminate with a working

system. Anytime computation offers an alternative to this

approach. By developing performance components that are

responsive to a wide range of time allocations, one avoids

the commitment to a particular performance level that might
fail the system.

The second reason why the composition problem is

important relates to the difficulty of programming with any-

time algorithms. To make a composite system optimal (or

even executable), one must control the activation and in-

terruption of the components. In solving the composition

problem, our goal is to minimize the responsibility of the

programmer regarding this optimization problem. Our so-
lution is described in the following two sections.

IV. Compilation

Given a system composed of anytime algorithms, the
compilation process is designed to: (a) determine the opti-

mal performance profile of the complete system; and (b)

insert into the composite module the necessary code to

achieve that performance. The precise definition and solu-

tion of the problem depend on the following factors:

1. Composite program structure - what type of pro-

gramming operators are used to compose anytime al-

gorithms?

2. Type of performance profiles - what kind of per-

formance profiles are used to characterize elementary

anytime algorithms?

3. Type of anytime algorithms - what type of elemen-

tary anytime algorithms are used as input? what type

of anytime algorithm should the resulting system be?

4. Type of monitoring - what type of run-time monitor-

ing is used to activate and interrupt the execution of

the elementary components?

5. Quality of intermediate results - what access does

the monitoring component have to intermediate re-

suits? is the actual quality of an intermediate result
known to the monitor?

Depending on these factors, different types of compi-

lation and monitoring strategies are needed. To simplify the

discussion in this paper, we will consider only the problem

of producing contract algorithms when the conditional per-

formance profiles of the components are given. We will as-

sume that no active monitoring is allowed once the system

is activated. A broader, in-depth analysis of compilation
and monitoring can be found in [21].

Let .7" be a set of anytime functions. Assume that all

function parameters are passed by value and that functions

have no side-effects (as in pure functional programming).

Let 7? be a set of input variables. Then, the notion of a

composite expression is defined as follows:

Definition 2 A composite expression over .T with input
is:

1. An expression f(il,..., i,_) where f E .T is a function

of n arguments and il, ..., in E I.

2. An expression f (gl , ..., g,_ ) where f E .T is a function

of n arguments and each 9i is a composite expression

or an input variable.

For example, the expression A(B(x), C(D(y))) is a

composite expression over {A, B, C, D} with input {x, y}.
Suppose that each function in _- has a conditional perfor-

mance profile associated with it that specifies the quality of

its output as a function of time allocation to that function

and the qualities of its inputs. Given a composite expres-

sion of size n, the main part of the compilation process is

to determine a mapping:

T: t _ (tl,..., tn) (1)

This mapping determines for each total allocation, t, the

allocation to the components that maximizes the output

quality.
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A compilation example

Let us look first at a simple example of compilation

involving only two anytime algorithms. Suppose that one
algorithm takes the input and produces an intermediate re-

suit. This result is then used as input to another anytime

algorithm which, in turn, produces the final result. Many

systems can be implemented by a composition of a sequence
of two or more algorithms. For example, an automated re-

pair system can be composed of two algorithms: diagnosis

and treatment. This can be represented in general by the

following expression:

Output +-- ,,42(.-41 (Input))

Figure 3 shows the performance profiles of .A1 and

•,42. These performance profiles are defined by:

Ql(t) = 1 - e-xlt Q2(t) = 1 - e -_2t

Assume that the output quality is the sum of the qualities of

.A 1 and ..42, then the following result holds:

Theorem 3 Given the performance profiles of _z_l and .A2,

the optimal time allocation mapping is:

(,lnkl -lnk2 +A2t lnk2 -lnA1 +Alt)7-: t
•_1 "b )_2 ' "_1 -[- "_2 (2)

Proof: Since the overall output quality is:

Q(x) = 1- e -_1_ + 1 - e -x2(t-_) (3)

the maximal quality is achieved when _ = 0.
In other words:

Ale -_'1_ -- A2e-A2(t-z) = 0 (4)

The solution of this equation yields the above allocation. []

To complete the compilation process, the compiler

needs to insert code in the original expression for proper
activation of ,,41 and .,42 as contract algorithms with the

appropriate time allocation. This is done by replacing the
simple function call by an anytime function call [21]. The

implementation of an anytime function call depends on the
particular programming environment and will not be dis-

cussed in this paper.

The complexity of compilation

The compilation problem is defined as an optimization

problem, that is, a problem of finding a schedule of a set

of components that yields maximal output quality. In order

to analyze its complexity, it is more convenient to refer to

the decision problem variant of the compilation problem.

Given a composite expression e, the conditional perfor-

mance profiles of its components, and a total allocation
B, the decision problem is whether there exists a schedule

of the components that yields output quality greater than

or equal to K. To begin, consider the general problem

of global compilation of composite expressions, or GCCE.

In [21 ], we prove the following result:

Theorem 4 The GCCE problem is NP-complete in the

strong sense.

The proof is based on a reduction from the PAR-

TIALLY ORDERED KNAPSACK problem which is

known to be NP-complete in the strong sense. The mean-

ing of this result is that the application of the compilation

technique may be limited to small programs. To address the

complexity problem of global compilation, we developed

an efficient local compilation technique.

Local compilation

Local compilation is the process of finding the best

performance profile of a module based on the performance

profiles of its immediate components. If those components
are not elementary anytime algorithms, then their perfor-

mance profiles are determined using local compilation. Lo-

cal compilation replaces the global optimization problem

with a set of simpler, local optimization problems and re-

duce the complexity of the whole problem. Unfortunately,

local compilation cannot be applied to every composite ex-
pression. If the expression has repeated subexpressions,

then computation time should be allocated only once to

evaluate all identical copies. Local compilation cannot han-

dle such cases. However, the following three assumptions

make local compilation both efficient and optimal [21]:

1. The tree-structured assumption - the input compos-

ite expression has no repeated subexpressions, thus its

DAG (directed acyclic graph) representation is a tree.

2. The input-monotonicity assumption - the output
quality of each module increases when the quality of

the input improves.

3. The bounded-degree assumption - the number of

inputs to each module is bounded by a constant, b.

Under these assumptions, local compilation is both ef-

ficient and yields optimal results [21]. The first assumption

is needed so that local compilation can be applied. The

second assumption is needed to guarantee the optimality of

the resulting performance profile. And the third assumption
is needed to guarantee the efficiency of local compilation.

Using an efficient tabular representation of performance
profiles, we could perform local compilation in constant
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time and reduce the overall complexity of compilation to

be linear in the size of the program.

Repeated subexpressions

While the input-monotonicity and the bounded-degree

assumptions are quite reasonable (and also desirable from a

methodological point of view), the tree-structured assump-
tion is somewhat restrictive. We want to be able to handle

the case of repeated subexpressions. To understand the
problem, consider the following expression:

F = E(D(B(A(x)), C(A(x))))

Figure 4 shows the DAG representation of F. Recall that

the purpose of compilation is to compute a time allocation

mapping that would specify for each input quality and total

allocation of time the best apportionment of time to the

components so as to maximize the expected quality of the

output. But local compilation is only possible when one
can repeatedly break a program into sub-programs whose

execution intervals are disjoint, so that allocating a certain

amount of time to one sub-program does not affect in any

way the evaluation and quality of the other sub-programs.

This property does not hold for DAGs. In the example

shown in Figure 4, B and C are the ancestors of D, but

their time allocations cannot be considered independently

since they both use the same sub-expression, A(x).

To address this problem we have developed a num-

ber of approximate compilation techniques that work effi-
ciently on DAGs, but do not guarantee optimality of the

schedule [21]. The compilation of additional programming

constructs, such as conditional statements and loops, is an-

alyzed in [21]. To summarize, a number of compilation

techniques have been developed that can efficiently pro-

duce the performance profile of a composite system based

on the performance profiles of its components.

V. Run-Time Monitoring

Monitoring plays a central role in anytime computa-

tion as it complements anytime algorithms with a mech-
anism that determines their run-time. We examine the

monitoring problem in two types of domains. One type

is characterized by the predictability of utility change over

time. High predictability of utility allows an efficient use

of contract algorithms modified by various strategies for
contract adjustment. The second type of domains is char-

acterized by rapid change and a high level of uncertainty. In

such domains, active monitoring, that schedules interrupt-

ible algorithms based on the value of computation criterion,
becomes essential.

Given a compound anytime program, 79, whose el-

ementary anytime components are E = {.A1, ..., ,A,_}, a

monitoring scheme is defined as a mapping that determines

a certain time allocation for each activation of an elementary

component.

Definition 5 A monitoring scheme for a program 79 is a

mapping:
.M : E x Z + -+ R +

where E is the set of elementary components of P.

M (i, j) is the time allocation to the jth activation of
the i th component. A monitoring scheme supplies the nec-

essary information to make a compound anytime program
executable in a well defined way. In defining monitoring

schemes, we make a distinction between passive and active

monitoring.

Definition 6 A monitoring scheme is said to be passive if

the corresponding time allocation mapping is completely

determined prior to the activation of the system.

Definition 7 A monitoring scheme is said to be active if it

is not passive. That is, the corresponding time allocation

mapping is partially determined while the system is active.

Under active monitoring, some scheduling decisions
are made at run-time. Such decisions are based on the

actual quality of results produced by the anytime compo-

nents and based on the actual change that occurred in the

environment. The main reason why active monitoring is

necessary in control of anytime algorithms is the problem

of uncertainty. In an entirely deterministic world, passive

monitoring can yield optimal performance. However, in

unpredictable domains there is much to be gained in per-

formance by introducing an active monitoring component.

Two primary sources of uncertainty affect the opera-
tion of real-time robotic systems. The first source is internal

to the system. It is caused by the unpredictable behavior

of the system itself. The second source is external. It is

caused by unpredictable changes in the environment. These

two sources of uncertainty are characterized by two separate
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knowledgesources.Uncertaintyregardingtheperformance
ofthesystemischaracterizedbytheperformanceprofileof
thesystem(inparticular,weuseperformance distribution

profiles to represent the probability distribution of quality

of results). Uncertainty regarding the future state of the
environment is characterized by the model of the environ-

ment. Obviously, the type of active monitoring may vary
as a function of the source of uncertainty and the degree of
uncertainty.

Monitoring contract algorithms

It is easier to construct contract algorithms than in-

terruptible ones, both as elementary and as compound al-

gorithms. Therefore, I will examine first the monitoring

problem assuming that the complete system is presented

as a contract algorithm, ..4. The conditional performance

profile of the system is QA(q, t) where q is the input quality
and t is the time allocation. Assume that Q.4(q, t) repre-

sents, in the general case, a probability distribution. When

a discrete representation is used, QA(q, t)[qi] denotes the
probability of output quality qi.

Let So be the current state of the domain and let St

represent the state of the domain at time t, let qt represent
the quality of the result of the contract anytime algorithm at

time t. UA(S, t, q) represents the utility of a result of quality

q in state S at time t. This utility function is given as part
of the problem description. The purpose of the monitor is

to maximize the expected utility of the result, that is, to find

t for which U.4(St, t, qt) is maximal. Contract algorithms

are especially useful in a particular type of domains which
is defined as follows:

Definition 8 A domain is said to have predictable utility if
U.4(St, t, q) can be determined for any future time, t, and

quality of results, q, once the current state of the domain,
So, is known.

The notion of predictable utility is a property of do-

mains. The same utility function can be predictable in one
domain and unpredictable in another. What makes a domain

predictable is the capability to determine the exact value of

results of a particular quality at any future time. Hence, the

state of the domain may change, even in an unpredictable

way, and utility may still be predictable. To explain this sit-
uation, we define a function, f (S), that isolates the features

of a state that determine its utility. In other words,

VSI,S2 /(S1) = f(S2) :=_ UA(SI,t,q) = UA(S2, t,q)

(5)
Consider for example a transportation domain that refers
to traffic on a particular road. The state of the domain is

defined by the location and velocity of each vehicle and

f(S) may be, for example, the traffic density. Using the
function f, it is easy to show that a domain with predictable

utility is a domain for which f(St) can be determined once

the current state, So, is known. In general, three typical

cases of such domains can be identified:

1. A static domain is obviously predictable since St = So

and f(St) = f(So). For example, the game of chess
constitutes a static domain.

2. A domain that has a deterministic model is predictable
since future states can be uniquely determined and

hence f(St) can be determined. For example, a do-

main that includes moving objects has a deterministic

model when the velocity of each object is constant.

3. A domain for which there is a deterministic model to

compute f(St), once the current state is known, is pre-

dictable. Note that this does not require a deterministic

model of the domain itself. An important sub-class is
all the domains for which f(S) = 0, that is, domains

in which the utility function depends only on time.

The initial contract time

The first step in monitoring contract algorithms in-
volves the calculation of the initial contract time. Due

to uncertainty concerning the quality of the result of the

algorithm, the expected utility of the result at time t is
represented by:

U'A(St, t) = E Q.4(q, t)[qi]UA(St, t, qi) (6)
i

The probability distribution of future output quality is pro-
vided by the performance profile of the algorithm. Hence,
an initial contract time, to, can be determined before the

system is activated by solving the following equation:

tc = arg mtmx { U'A (St, t) } (7)

Under passive monitoring, this initial contract time is used

to determine (using the compiled performance profile of the

system) the ultimate allocation to each component.

In some cases, it is possible to separate the value of

the results from the time used to generate them. In such

cases, one can express the comprehensive utility function,
UA(S, t, q) as the difference between two functions:

U.a(St,t,q) = VA(So,q) - Cost(So,t) (8)

where V.a (S, q) is the value of a result of quality q in a par-

ticular state S (termed intrinsic utility [14]) and Cost(S, t)
is the cost of t time units provided that the current state

is S. Similar to the expected utility, the expected intrinsic

utility for any allocation of time can be calculated using the
performance profile of the algorithm:

V_(S,t) = E Q.a(q,t)[q_]V4(S, qi) (9)

Finally, the initial contract time can be determined by solv-
ing the following equation:

tc = arg mtax{V_(So, t) - Cost(So, t)} (10)
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Figure5:A sequenceofresidualsub-systems

Onceaninitialcontracttimeis determined,several
monitoringpoliciescanbeapplied.Themosttrivialoneis
thefixed-contractstrategythatleadstoapassivemonitoring
scheme.Underthisstrategy,theinitialcontracttimeand
thecompiledperformanceprofileofthesystemareusedto
determinetheallocationto thecomponents.Thisalloca-
tionremainsconstantuntiltheterminationoftheproblem
solvingepisode.Thefixed-contractpolicyisoptimalunder
thefollowingconditions:

Theorem9 Optimality of monitoring of contract algo.
rithms. The fixed-contract monitoring strategy is optimal

when the domain has predictable utility and the system has

a fixed performance profile.

Proof: This result is rather trivial since, when the domain

has predictable utility and the system's performance pro-

file is fixed, utility of results at any future time can be
determined. The initial contract time, that maximizes the

comprehensive utility, remains the same during the compu-

tation and no additional scheduling decision can improve
the performance of the system, n.

We now look at two extensions to the fixed-contract

policy for cases with high degree of uncertainty regarding
the quality of the results. In such cases, the initial contract

time must be altered by an active monitoring component.

Re-allocating residual time

The first type of active monitoring that we analyze in-

volves reallocation of residual time among the remaining
anytime algorithms. Suppose that a system, composed of

several elementary contract algorithms, is compiled into an

optimal compound contract algorithm. Since the results of

the elementary contract algorithms are not available during

their execution, the only point of time where active monitor-

ing can take place is between activations of the elementary

components. Based on the structure of the system, an exe-
cution order can be defined for the elementary components.

The execution of any elementary component can be viewed

as a transformation of a node in the graph representing the
program from a computational node to an external "input"

of a certain quality. This transformation is shown in Fig-

ure 5. The quality of the new input is only known when the

corresponding elementary component terminates. Based

on the actual quality, the remaining time (with respect to
the global contract) can be reallocated among the remain-

ing computational components to yield a performance im-

provement with respect to allocation that was based on the

probabilistic knowledge of quality of intermediate results.

In order to be able to allocate time optimally to each

component, the monitor needs to access not only the per-

formance profile of the complete system, but also the per-
formance profiles of the residual sub-systems. The compi-

lation problem has to be solved for each residual system.

For example, for the system modeled by Figure 5, five per-

formance profiles must be calculated. These performance

profiles can be derived using the standard local compilation
technique. The only difference is that the compiler does not

need to store the allocation to all the components but only

the allocation to the next component in the activation order.

Adjusting contract time

The second type of active monitoring for contract al-
gorithms involves adjustments to the original contract time.

As before, once an elementary component terminates, the

monitor can consider its output as an input to a smaller

residual system composed of the remaining anytime algo-

rithms. By solving the previous equation that determines
the contract time for the residual system, a better contract
time can be determined that takes into account the actual

quality of the intermediate results generated so far.

If the elementary components are interruptible, the

contract time can be adjusted while an elementary compo-

nent is running. Given the quality of the results generated

by that component and its performance profile, a new con-

tract may be determined. In that case, the new contract may

affect the termination time of the currently active module
in addition to affecting the run-time of future modules.

Monitoring interruptible algorithms

We turn now to the problem of monitoring interrupt-

ible anytime computation. The use of interruptible algo-
rithms is necessary in domains whose utility function is not

predictable (and cannot be approximated by a predictable

utility function). Such domains are characterized by non-

deterministic rapid change. Medical diagnosis in an inten-

sive care unit, trading in the stock exchange market, and

vehicle control on a highway are examples of such do-
mains. Many possible events can change the state of such

domains and the timing of their occurrence is essentially
unpredictable. Consequently, accurate projection into the

far future is very limited and the previous fixed-contract

approach fails. Such domains require interruptible decision

making.
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Active monitoring using the value of computation

Consider a system whose main decision component

is an interruptible anytime algorithm, .A. The condi-

tional probabilistic performance profile of the algorithm

is Q.a(q, t) where q is the input quality and t is the time
allocation. As before, Q.4(q, t) is a probability distribution

and Q.a (q, t)[q_] denotes the probability of output quality

qi.

Let S be the current state of the domain. Let St be

the state of the domain at time t. And, let qt represent the

quality of the result of the interruptible anytime algorithm at
time t. UA (S, t, q) represents the utility of a result of qual-

ity q in state S at time t. The purpose of the monitor is to

maximize the expected utility by interrupting the main de-

cision procedure at the "right" time. Due to the high level
of uncertainty in rapidly changing domains, the monitor

must constantly assess the value of continued computation

by calculating the net expected gain from continued com-

putation given the current best results and the current state

of the domain. This is done in the following way:

Due to the uncertainty concerning the quality of the

result of the algorithm, the expected utility of the result in

a given future state St at some future time t is represented
by:

U_(St,t) = E QA(q,t)[q_]Ua(St,t,q_) (11)
i

The probability distribution of future output quality is pro-

vided by the performance profile of the algorithm. Due to
the uncertainty concerning the future state of the domain,

the expected utility of the results at some future time t is

represented by:

U_(t) = Ep(St = S)U_(S,t) (12)
S

The probability distribution of the future state of the domain

is provided by the model of the environment.

Finally, the condition for continuing the computation at
time t for an additional At time units is therefore VOC > 0

where:

VOC = U_(t + At) - U_(t) (13)

Similar to the case of contract algorithms, monitoring

of interruptible systems can be simplified when it is possi-
ble to separate the value of the results from the time used

to generate them. In such cases, one can express the com-

prehensive utility function, U a(S, t, q), as the difference
between two functions:

U.a(St,t,q) = VA(S,q)-Cost([to,t]) (14)

where V.4 (S, q) is the intrinsic utility function, S is the cur-
rent state, tc is the current time, and Cost([tc, t]) is the cost

of the time interval Its, t]. Under this separability assump-
tion, the intrinsic value of allocating a certain amount of

time t to the interruptible system (resulting in domain state

S) is:

v (s,t) = EQA(q,t)[qi]VA(S, qi ) (15)
i

Hence, the intrinsic value of allocating a certain time t in
the current state is:

V_(t) = Ep(St = S)V_a(S,t ) (16)
S

And the condition for continuing the computation at time t

for an additional At time units is again VOC > 0 where:

VOC = V_(t + At) - V_(t) - Cost([t, t + At]) (17)

Theorem 10 Optimality of monitoring of interruptible al-

gorithms. Monitoring interruptible algorithms using the

value of computation criterion is optimal when At --_ 0

and when the intrinsic value function is monotonically in-
creasing and concave down and the time cost function is

monotonically increasing and concave up.

Proof: A function q is called concave up on a given in-

terval I if it is continuous, piecewise differentiable, and

Vx, y E I for which q'(x) and q'(y) exist, (x < y) =_

(q'(x) < q'(y)). It is called concave down ifVx, y E I for

which q'(x) and q'(y) exist, (x < y) _ (q'(x) > q'(y)).
Note that the assumption of monotonically increasing and
concave down intrinsic value function is identical to the

assumption of Dean and Wellman (See [4], Chapter 8, page

364) that performance profiles have the property of dimin-

ishing returns.

Now, suppose that the current time is tl and that

VOC -= V_(tl + At) -- V_(tl) - Cost([tl,tl + At]) < 0
(18)

Since the intrinsic value function is concave down, it is

guaranteed that for any future time t2 > tl :

V_(t2 + At) - V_(t2) < V_(tl + At) - V_(tl) (19)

Since the time cost function is concave up, it is guaranteed

that for any future time t2 > tl:

Cost([t2, t2 + At]) > Cost([tl, tl + At]) (20)

Hence, it is guaranteed that for any future time t2:

VOC = V_(t2 + At) -- V._ (t2) - Cost([t2, t2 + At]) < 0
(21)

And therefore termination at the current time is an optimal
decision. []

Summary

The monitoring problem has been examined in two

types of domains. One type is characterized by the pre-

dictability of utility change over time. High predictabil-

ity of utility allows an efficient use of contract algorithms
modified by various strategies for contract adjustment. The
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secondtypeof domain is characterized by rapid change and

a high level of uncertainty. In such domains, monitoring

must be based on the use of interruptible algorithms and the

value of computation criterion. In domains with moderate

change and some degree of predictability of future utility,

one can use an integrated approach. That is, activate the

system with an initial contract time and then, if additional
time is available, continue to monitor it using the value of

computation criterion.

VI. Applications

The advantages of compilation and monitoring of any-

time algorithms have been demonstrated through a number

of applications. In this section we briefly describe two such

application.

Mobile robot navigation

One of the fundamental problems facing any au-

tonomous mobile robot is the capability to plan its own

motion using noisy sensory data. A simulated robot navi-

gation system has been developed by composing two any-

time modules [22]. The first module, a vision algorithm,

creates a local domain description whose quality reflects

the probability of correctly identifying each basic position
as being free space or an obstacle. The second module, a

hierarchical planning algorithm, creates a path between the

current position and the goal position. The quality of a plan

reflects the ratio between the shortest path and the path that

the robot generates when guided by the plan.

Anytime hierarchical planning is based on perform-

ing coarse-to-fine search that allows the algorithm to find

quickly a low quality plan and then repeatedly refine it by

replanning a segment of the plan in more detail. Hierarchi-

cal planning is complemented by an execution architecture

that allows for the execution of abstract plans - regardless
of their arbitrary level of detail. This is made possible

by using plans as advice that direct the base level execu-

tion mechanism but does not impel a particular behavior.

In practice, uncertainty makes it impossible to use plans

except as a guidance mechanism.

The conditional performance profile of the hierarchi-

cal planner is shown in Figure 6. Each curve shows the ex-

pected plan quality as a function of run-time for a particular
quality of the vision module. Finally, an active monitoring

scheme was developed to use the compiled performance
profile of this system and the time-dependent utility func-
tion of the robot in order to allocate time to vision and

planning so as to maximize overall utility.

One interesting observation of this experiment was

that the anytime abstract planning algorithm produced high

quality results (approx. 10% longer than the optimal path)
with time allocation that was much shorter (approx. 30%)

than the total run-time of a standard search algorithm. This
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Figure 6: The CPP of the anytime planner

shows that the flexibility of anytime algorithms does not

necessarily require a compromise in overall performance.

Model-based diagnosis

Model-based diagnostic methods identify defective

components in a system by a series of tests and probes.

Advice on informative probes and tests is given using di-

agnostic hypotheses that are based on observations and a

model of the system. The goal of model-based diagnosis is

to locate the defective components using a small number of

probes and tests.

The General Diagnostic Engine [5] (GDE) is a basic

method for model-based diagnostic reasoning. In GDE,

observations and a model of a system are used in order

to derive conflicts (A conflict is a set of components of

which at least one has to be defective). These conflicts are

transformed to diagnoses (A diagnosis is a set of defective

components that might explain the deviating behavior of

the system). The process of observing, conflict generation,

transformation to diagnoses, and probe advice is repeated

until the defective components are identified. GDE has
a high computational complexity - O(2n), where n is the

number of components. As a result, its applicability is lim-

ited to small-scale applications. To overcome this difficulty,

Bakker and Bourseau have developed a model-based diag-

nostic method, called Pragmatic Diagnostic Engine (PDE),
whose computational complexity is O(n2). PDE is simi-

lar to GDE, except for omitting the stage of generating all

diagnoses before determining the best measurement-point.

Probe advice is given on the basis of the most relevant con-
flicts, called obvious and semi-obvious conflicts (An obvi-

ous (semi-obvious) conflict is a conflict that is computed

using no more than one (two) observed outputs).
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In orderto constructareal-timediagnosticsystem,
Pos[13]hasappliedthemodelofcompilationofanytime
algorithmstothePDEarchitecture.PDEcanbeanalyzed
asa compositionof twoanytimemodules.In thefirst
module,asubsetofall conflictsisdetermined.Posim-
plementsthismodulebyacontractformof breadth-first
search.Thesecondmoduleconsistsofarepeatedloopthat
determineswhichmeasurementshouldbetakennext,takes
thatmeasurementandassimilatesthenewinformationinto
thecurrentsetofconflicts.Finally,theresultingdiagnoses
arereported.

Twoversionsofthediagnosticsystemhavebeenim-
plemented:onebyconstructingacontractalgorithmand
theotherbymakingthecontractsysteminterruptibleusing
ourreductiontechnique.Theactualslowdownfactorof
theinterruptiblesystemwasapproximately2,muchbetter
thantheworstcasetheoreticalratioof4.

VII. Conclusion

We presented a model for intelligent robot control that

is based on compilation and monitoring of anytime algo-

rithms. It offers both a methodological and a practical
contribution to the field of real-time deliberation. The main

aspects of this contribution include: (1) simplifying the
design and implementation of complex intelligent robots

by separating the design of the performance components

from the optimization of performance; (2) mechanizing the

composition process and the monitoring process; and (3)

constructing machine independent real-time robotic sys-
tems that can automatically adjust resource allocation to

yield optimal performance.

The study of anytime computation is a promising and

growing field in artificial intelligence and in real-time sys-

tems. Some of the primary research directions in this field

include: (1) Extending the scope of compilation by studying

additional programming structures and producing a large

library of anytime algorithms; (2) Extending the scope of

anytime computation to include the two other aspects of
robotic systems, namely sensing and action; and (3) Devel-

oping additional, larger applications that demonstrate the

benefits of this approach. The ultimate goal of this research

is to construct robust real-time systems in which percep-

tion, deliberation and action are governed by a collection
of anytime algorithms.
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