
AIAA-94-1293-CP

Passive Mapping and Intermittent Exploration for Mobile Robots

Sean P. Engelson

Yale University

Department of Computer Science

P.O. Box 208285 Yale Station

New Haven, CT 06520-8285

Email: engelson@cs, yale. edu

Abstract

An autonomous robot must be able to learn maps
of its environment while accomplishing meaning-
ful tasks. Such 'passive' map-learning is difficult,
since it cannot rely on active exploration. How-
ever, it gives the robot more flexibility in how it
learns about a complex novel environment. The
primary difficulty is that incorrect maps may be
inferred, since insufficient information may be
available at any one time (since exploration is
disallowed). We address this problem by allow-
ing maps to contain errors, while correcting those
errors when possible via a set of heuristic error-
correction strategies. Results in a realistic sim-

ulation with a random walk (to simulate worst-
case explorative action) demonstrates the efficacy
of the basic technique.

Passive mapping may still be inefficient, so we
incorporate intermittent exploration while main-
taining the benefits of the passive approach. This
is done by using predefined 'opportunity scripts'
which direct the robot in ways that improve the
map. Scripts are short plans which are applied
depending on whether or not they interfere with
other robot goals. The scripts we have imple-
mented mostly use known techniques to improve
mapper efficiency. Occasional use of these scripts
over a base random walk strategy shows a speedup

in map convergence, demonstrating the efficacy
of intermittent exploration. Also, by using inter-
mittent exploration, very complex worlds could be
learned efficiently.

1 Motivation

While robotic manipulation technology has revolutionized
manufacturing in recent years, the potentials of mobile
robotics remain virtually unused. There are a number of
reasons for this, some of them sociological, but the main
reason is that the technology of mobile robotics is not yet
sufficiently mature for most practical applications. One
of the main research areas which requires development is
map-learning. By this, we mean the automatic acquisition
by a mobile robot of a model of its large scale environ-
ment (floor layout, for example). This is needed, even in
known environments, because hard-wiring the structure of
its environment into a robot can be very costly, and it is

difficult (if not impossible) to keep such a representation
up to date when the environment is changed. Naturally,
there are also cases where the structure of the environment

Copyright_1993 by the American Institute of

All rights reserved.

cannot be known accurate in advance even to the system
designers; automated mapping is required in those cases.

There are many useful tasks that mobile robots can per-
form that require the use of some sort of environmental

map. One example is that of an office or factory courier,
whose function is to transfer materials between areas of

a building. This task is one of the few for which mobile
robots are currently being used; TRC has a robotic courier
installed in hospitals, for delivering non-critical items to
patients upon request. Their robot contains a detailed,
preprogrammed map of the hospital building it works in;
the hospital environment was also engineered somewhat
to support reliable navigation (beacons were places, for
example). Effective map-learning would cut the costs of
installing such a system, by both easing the initial setup,
and by making the robots more flexible (they could be
transferred between different buildings, say).

Another class of tasks are those in which little or no

a priori information about the environment exists. One
such task, ripe for robot use, is search-and-rescue mis-
sions. Rescuing people often involves going into hazardous
environments, so it would be desirable to use robots wher-
ever possible. Such rescue missions, whether from burning
buildings or from caves, often require learning the struc-
ture of the environment on the fly, so that searching is done
efficiently (time is usually of the essence). Also, there is
no time to explore for exploration's sake (we will return

to this point below). A task which is similar, though in
a completely different domain, is planetary exploration.
Getting men to Mars to carry out scientific exploration
and experimentation is, at present, a difficult proposition.
A cost-effective solution that has been proposed is to send
robots to gather scientific data. These robots will need
to move about in large areas of the surface to gather that
data, and hence will need some sort of internal mapping
to support navigation.

1.1 Passive mapping

There are several features of the tasks described above that

underscore important issues for robotic map learning. The
first is that mapping does not occur in a vacuum. It is
a part of a larger system, aiding navigational planning.
A related point is that mapping should take place during
normal goal-directed task execution. In fact, a 'mapping
phase' wherein the agent maps out its entire environment
may be wholly infeasible due to the environment's size or
changeability. We therefore propose the view that map-
ping should be 'passive', and not require controlling the
robot's actions. It thus functions as a static map, as far as
planning is concerned, but the map's utility transparently

Aeronautics and Astronautics, Inc.

810

improves over time. A schematic diagram of the high-level
cognitive architecture our view implies is shown in Fig-
ure 1. The mapper and deliberator (action selector) are
functionally independent. Exploration enters deliberation
through a sort of ‘back door’, via suggested exploration
scripts (described below in Section 5).

i

The World

Figure 1: Cognitive modular divisions in the passive map-
ping paradigm. Solid arrows indicate control flow; dashed
arrows indicate information flow.

Our approach may be contrasted with much previous
research in map learning, where the mapper is viewed as
a procedure which, after some amount of time, outputs
a ‘correct’ map; this representation is then to be used
for planning and reasoning. This paradigm, or variations
thereof, is ubiquitous (eg, [3; 41). These methods typi-
cally require the mapper to be ‘active’ and to take control
of the robot when uncertain information must be verified.
This is ixeeded due to the desire to learn a ‘complete’ and
‘correct’ map in finite time; however, this active approach
interferes with goal-achievement . This approach has other
problems in the r ed world as we]!, since the rea! world is
(practically) open-ended-the world to be learned cannot
be bounded. Also, attention must be paid, in constructing
a world representation, to the use to which it will be put.
We address these issues below.

1.2 Overview
In the next section, we describe a general framework for de-
veloping adaptive models of a robot’s environment, which
we have used to develop our mapping system. We then
describe the representatiop scheme we use for mapping,
which incorporates both topological and metric informa-
tion. In Section 4, we describe the algorithms used in
the mapping system, including mapping-error diagnosis
and correction methods. Given this passive mapper, we
then develop methods for intermittent exploration, to im-
prove mapping efficiency. We then describe our results in
a robotic simulation. Section 7 reviews related previous
work in map-learning. We close with a discussion of how
our methods could be used in practice, and future direc-
tions for our research.

2 Adaptive Modeling
2.1 Adaptive State-Space Models
We view the mapping system as a sort of adaptive state-
space model. There are two fundamental operations for
which a state-space model is used: state estimation and
state prediction. Planning uses these operations in con-
junction with a domain theory describing the physics of
the world. We may thus view such a model as a black box
which outputs a state prediction given a previous state and
a robot action, and outputs an improved state estimate
given a state prediction and sensory input. This is essen-
tially what is known to control theorists as an observer. It
gives a very general conceptual framework, encompassing
both continuous estimation methods such as the Kalman
filter and discrete methods such as Markov chain models.
The fundamental point we wish to stress is the use of the
model as a black box for estimation and prediction, as far
as the rest of the planning/control system is concerned. In-
ternal issues of representation, and indeed whether or how
the representation changes over time, should be largely ir-
relevant to the rest of the system. In what follows, we
develop an architecture for such systems, and then show
how we have applied it to the specific problem of mobile
robot map-learning.

2.2 Discretizing the World
Robots typically live in continuous state-spaces (eg, the
plane for a mobile robot); to represent these spaces ef-
fectively, some sort of discretization must be done. Our
work focuses on robots designed to operate in indoors en-
vironments (office buildings, factories, etc.). We adopt a
technique based on Kuipers’ topological mappers [13; 141,
which use control laws with good stability properties (ac-
tions) to pick out distinguished ‘places’ in a continuous
space. This allows a distinguished set of points (actually,
small! regions! to constitute ‘waypoints’. Waypoints may
be corridor intersections, or areas near particular pieces of
equipment; the main requirement is that they be recogniz-
&le. Wzypoint*s can be used to represent the structure of
the entire space, relative to the capabilities of the robot.
As noted by Kuipers, this approach allows a representation
to directly support navigational planning. Abstractly, the
state space is represented as a finite state machine with
non-deterministic transitions (which can often be assigned
transition probabilities).

2.3 The Architecture
We now present an architecture for adaptive discrete state-
space models. We first divide the system at a high level
into an estimator and an adapter (refer to Figure 2). The
core of the estimator is the loop between projection and
matching. The projector predicts new states given old
state estimates and control inputs. There may be mul-
tiple state estimates in the system, which we call tracks
(each tracks a possible true state). The matcher decides
which states are consistent with each predicted estimate,
given the current perceptual input. Thus far, we have
the standard recursive estimation framework. Now, the
spaces we are interested in are both very large (thousands
of states) and relatively unstructured (without even ap-

811

proximate closed form estimators). Hence we need index-
ing, to find likely candidate states to feed to the matcher.
Further, in different situations, different matching meth-
ods will be appropriate (for error recovery, for example).
Therefore, the matcher is divided into a general match-
ing engine, dependent only on the representation language,
and a task-dependent set of matching methods (marchers).
The matching engine also provides a method of conflict
resolution to determine which matchers are applicable in
given circumstances.

restructuring module when it performs an update, since
a change made by the updater to the representation may
trigger a restructuring operation.

3 Diktiometric Representation

The first step in specializing the architecture described
above to robot mapping is the specification of a represen-
tation language for our maps. The straightforward method
using the discrete state-space approach amounts to topo-
logical mapping, the method suggested by Kuipers in [13].
The world is represented as a graph of waypoint nodes,
labeled with local perceptual information. Transitions are
labeled with robot control routines which constitute the ac-
tions that move the robot between waypoints ([9] describes

how these routines are derived). We extend this notion
to directly take into account geometric knowledge as well.
Diktiometric 1 representation explicitly represents geomet-
ric relations between waypoints. A diktiometric represen-

tation (a diktiometry) consists of two graphs, a path graph
and a reference graph (see Figure 3). Path graph nodes
represent waypoints, and arcs represent action transitions.
Nodes in the reference graph represent local coordinate
frames, with links giving known geometric relations. The
two graphs are connected by reference links, giving the
positions of waypoints with respect to particular local ref-
erence frames.

Figure 2: Adaptive state-space model architecture.

The adapter consists of an updating module and a re-

structuring module. The updater adjusts the parameters
of states in the representation, for example, the position
of a known waypoint. It also can monotonically change
the topology of the represented state space by, for exam-
ple, adding new state transitions. The exact type of up-
dating that is performed depends on the matches found
by the matcher; different matchers may (and usually will)
have different associated update methods. A deeper sort of
adaptation is restructuring, which uses information about
the large-scale structure of the known state-space as well as
integration of observations over longer terms to adjust the
structure of the state-space. This may involve splitting or
coalescing states, adjusting hierarchical relationships, and
so on. Like matching, and for the same reason, we divide
this module into a general restructuring engine and a task-
dependent set of restructurers. To alleviate the problem of
searching aimlessly in the state space for restructuring to
do, it can be advantageous for the updater to inform the

"°''" °°''*l.............. . r0nc0
/ i"". ,.,...,'/t--',, Graph

. I ° .,

v,L,____,l,, /"°'v°'ld
Figure 3: A schematic picture of a diktiometry, where
doorways are taken as 'waypoints'. Action links are solid,
reference links are dashed.

3.1 Uncertain Geometry

We represent uncertain geometric relations between way-
points relative to local reference frames with limited cov-
erage. This ensures that, provided the robot knows which
reference frame's domain it is in, relative uncertainly re-
mains bounded. This is so regardless of the method used
to represent uncertainty. In the multi-dimensional Gaus-
sian distribution approach [20], the local reference frame

iFrom the Greek 8g_rvou meaning 'network', and Iz_rpou
meaning 'measurement'. Diktiometric representations repre-
sent the world as a network of waypoints with relative positions.

812

approachamounts to maintaining a set of smaller covari-
ante matrices (with smallish eigenvalues) instead of a sin-
gle large covariance matrix for the entire system (which will
necessarily have some large eigenvalues, hence large uncer-
tainty, even between nearby points). The local reference
frames are related to each other by small covariance ma-
trices; a position in any frame can be related to any other

by appropriate composition. The local method is also a
performance win when locality can be established (though
doing so may incur extra costs). Rather than using such a
statistical representation for odometric uncertainty, how-
ever, we advocate the use of bounding intervals.

The primary reason that Gaussian noise models are so
widely used is the Kalman filter, and its non-linear cousin,
the extended Kalman filter. These are the optimal lin-
ear recursive updating procedures, given a truly Ganssian
noise model. However, when this model is not correct,
the Kalman filter can be suboptimal and can even diverge.
We therefore prefer a non-distributional approach. Rather
than representing a probability distribution on the true
value of a measurement, we give bounds on the possible
true values. These bounds give us a set of possible val-
ues within which true must lie. Projection and updating
can be done easily and efficiently using interval arithmetic
[1]. Our contention is that odometry is subject to so many
unmodellable sources of noise (slippage, bumps, voltage
fluctuations, etc.) that the best that can be hoped for is
reasonable bounds on relative position. In a typical of-
fice environment, with current equipment, odometric error
over distances of several meters is about 10% of distance

traveled 2. This gives reasonably tight bounds on relative
motion; use of sensory feedback (eg, visual motion analy-
sis) may also help.

4 The Mapping System

The adaptive state-space architecture described above,
combined with diktiometric representation, provides a
framework for designing a robot mapping system which
supports the flexible navigation planning tasks we wish to
address. This section describes in more detail how this
works.

4.1 Indexing waypoints

For some applications using the adaptive state-space model
paradigm, indexing is trivial, due to there being a relatively
small number of states. If, however, we wish to learn dik-
tiometries of large-scale spaces in an open-ended fashion,
we must deal with thousands of waypoints (at least). It
is simply infeasible to examine the entire diktiometry for
matching waypoints to extend a track. On the other hand,

there is no fool-proof way of generating only the most 'sim-
ilar' candidates that we know of. Hence, we developed
heuristic indexing methods that should work well in prac-
tice. There are three categories of indexing we examine:
expectational, geometric, and perceptual.

Each of the geometric and perceptual indexing modules
produces a stream of sets of candidate waypoints. Each
set in a stream contains better candidates than those fol-

lowing it, while members of a set are assumed to all be

2Jonathan Connell, personal communication.

equivalently good. The indexing methods are integrated
by running the modules in parallel and combining the can-
didate sets that come out.

Expectations The simplest form of indexing uses the
path graph to predict the expected state of the robot after
executing the current action. Given a particular current
waypoint, the expectational candidates are those which
are predicted by the last action taken from that waypoint.
Naturally, there may be more than one, since actions can
be non-deterministic. Expectational indexing produces
one candidate set, used together with the first sets pro-
duced by other indexing.

Geometric Indexing The second sort of indexing is ge-
ometric indexing, based on waypoint positions. The basic
idea is to find waypoints whose position relative to a track's
is consistent with the last position change. We will discuss
two indexing methods which use the reference graph to find
waypoints likely to be near the current (projected) robot
position.

The simplest method is to use a depth-limited search
through the reference graph, starting from the current
track's frame. If the new position estimate may be con-
sistent with one of a frame's waypoints, the waypoints are

checked individually for consistency and candidates sug-
gested. This method assumes that the area has been rea-
sonably well explored, so that the robot moves between
frame regions known to be neighbors. This implies that
each ply of the search is less plausible (as the search gets
farther from the source), giving, as desired, a stream of
candidate sets. On the other hand, the assumption of

nearby frames giving correct candidates will not always be
correct, particularly in the early stages of learning (how-

ever, more frames may be searched then, since there is less
to search). On the other hand, the farther a frame is in the
reference graph, the less useful information (in general) it
gives for constraining the robot's position.

Perceptual Indexing The objective of perceptual in-
dexing is to quickly find those stored percepts that are
most similar to the current one. Furthermore, since the

robot will never be in quite the same configuration twice,
the indexing method should be robust with respect to small
changes in position and orientation. We have developed an
image-based method for waypoint recognition, using the
notion of image signatures. An image signature is an array
of values, each computed by a measurement function from
a subset of the image (the image is tesselated). As demon-
strated in [8], signatures can be matched to each other
for fairly reliable recognition. The problem here is how to
index this database so that similar signatures taken at dif-
ferent orientations will be found quickly. This can be done

by indexing the signatures by their columns, since if two
signatures are taken at different rotations, they will match
at a horizontal offset. Hence, an input signature's columns
are used to index the columns close to them, marking each

signature found at the offset implied by the column match.
When enough of a database signature's columns have been
marked, the signature's waypoint is suggested as a match
candidate.

Column indexing can easily be implemented as a k-d

tree [18]; an iteratively growing hypercube search is used

813

to search progressively further and further from the input

column. In this way, good candidate waypoints can be
found based on perceptual cues, even if they are geometri-
cally distant. A similar approach could also he taken using
3D estimates of the positions of visual features. Using the
method of Atiya and Hager [2], feature triples can be rep-
resented by a set of 6 parameters describing a triangle. If
triples of features going around the robot's viewpoint are
stored thusly, a similar k-d tree approach can be used for
indexing. Using this method, more sophisticated methods
of 3D recognition and position registration can be done
as well, given the required perceptual capabilities (eg, a
system such as [21]).

4.2 Matching and updating

State identification in diktiometric mapping amounts to
matching the robot's projected position and sensory in-
puts with candidate waypoints (generated as above). If we
could guarantee that no mapping errors would ever occur,
then the matching problem amounts to little more than
filtering possibilities for consistency. However, as noted
above, this is never the case, and so error diagnosis and
correction must continually be performed. One way in
which this is done is through the use of multiple match-
era, each indicating a particular state of affairs, including
mapping errors. Each matcher consists of a match test
which compares the projected robot state with waypoints
in a candidate set, and an update method which is applied
to waypoints that are determined to match. Resolving be-
tween multiple applicable matchers is done by arranging
them in a partial order; the maximal applicable matchers
are used. This preference relation is constructed so that
more reasonable decisions take precedence over less likely
decisions (posit as few and as plausible errors as possible).
If no matchers apply, a new waypoint node is created.

4.2.1 Matchers

There are four main matchers that we currently use.
Two that correspond to normal extension of the map are
CONTINUE and LINK. CONTINUE matches a waypoint that
was expected with consistent position estimate and view;
the waypoint's position estimate and view set are updated.
LINK matches a waypoint with consistent position estimate
and view which was unexpected, and so also adds a new
action link to the path graph. Two other matchers correct
for positional inconsistency caused by incorrect waypoint
identification or odometric error. To deal with the case

where a waypoint's position interval does not contain its
true position (due to update with an outlier), the system
keeps track of the waypoint's nominal envelope, the least
bounding interval of the estimates used for updating the
waypoint's position. This is asymptotically guaranteed to
contain the true position. Thus, E-MATCH matches a way-
point such that the projected robot position is consistent
with the waypoint's nominal envelope, indicating a possi-
ble waypoint position inconsistency. The waypoint's posi-
tion estimate is the grown to contain the nominal envelope,
presumably consistent. To deal with a track drifting from
true, N-MATCH allows a match with a waypoint near the
track's projected position; the track is then 'snapped' to
the waypoint. A fifth, 'pseudo-match' is used for waypoint
creation; when it is chosen to be used, a new waypoint is

added with a track's projected state.

4.2.2 Dynamic priorities

A static priority scheme for matchers, while easy to im-
plement, will seldom really be appropriate. For exam-
ple, CONTINUE should only be preferred to LINK in well-
explored areas, otherwise it is no better (since few links
are known). We thus propose a dynamic scheme for pri-
oritizing matchers, using estimates of the quality of the
mapper's knowledge. This is done using local grid-based
methods to maintain estimates of how well areas have been

visited or traversed, as well as confidence in each individ-
ual track, based on its recent history. We can thus express
preferences as the following:

• Prefer CONTINUE to LINK if the region just traversed
has been well traversed (hence probably mapped) in
the past.

• Prefer E-MATCH or waypoint creation to N-MATCH

when a track has high confidence, and the converse
when a track has low confidence.

In a similar fashion, other ideas of when particular types

of matching are more appropriate can be expressed. This
framework of a dynamic partial order controlled by meta-
knowledge determined preferences seems both flexible
enough to encode the required diagnostic knowledge, while
providing a simple and modular mode of expression.

4.3 Transients

The first function of the restructurer in our system is to
deal with map errors due to transients, non-existent states
and transitions hallucinated due to nonreproducable con-
ditions. Of course, if a hallucination is consistent, it may
(usually) be considered real enough, as far as the robot is
concerned. The only way to detect these transients, with-
out taking over control of the robot, is to maintain statis-
tics of when each link is thought to have been traversed and
each waypoint is thought to have been visited. If these are
compared with the frequency that the link or waypoint
was expected, transients will be distinguished by a very
low frequency of occurrence. The offending link/waypoint
is then removed from the diktiometry. This also helps deal
with (slowly) changing environments.

4.4 Waypoint restructuring

A deeper sort of error that cannot be discovered by us-
ing imprecise matching (hence requiring restructuring) is
structural inconsistency. Incorrect waypoint identification
can lead to either multiple waypoints in the world be-

ing represented by a single waypoint node (polytopy) or
the converse, a single real-world waypoint represented by

multiple nodes (monotopy). These sorts of errors can be
dealt with by the system's restructurers. The concept be-
hind these restructurers is that while one observation of

a waypoint may not be sufficient to determine its iden-
tity, integration of many observations can yield statisti-

cally significant evidence of environmental structure. We
deal below with two restructurers, one for splitting to deal
with polytopy, and one for merging to deal with mono-
topy. To a great extent these two are inverses, and we
apply similar methods for both, as summarized in Table 1.

We divide the constraints applied into three categories:

814

Constraints
Geometric

Local

Non-local

Splitting Merging
Multimodal dis- Unimodal distri-

tribution of po- button of posi-
sition observa- tion observations

tions for a way- for two different
point node waypoint nodes
Separable corre- Nearly identical
luted sets of output link sets
input-output ac-
tion link pairs

Multiple
mergable track
histories

Table 1: Constraints for waypoint restructuring.

geometric constraints on the positions of waypoints, local
path constraints about local functional relationships in the
path graph, and non-local path constraints applied to larger
portions of the path graph.

Each of these restructurers can, in principle, operate
independently. To integrate them, we propose to use a
'veto-based' strategy. Each restructuring method depends
on certain thresholds, giving the desired confidence in a
diagnosis of mono/polytopy. If we give each two thresh-
olds, such that when the higher is satisfied we say that a
diagnosis is proposed, and when the lower is not satisfied
the diagnosis is rejected, the three strategies can he used
in tandem as follows. If a diagnosis of either monotopy or
polytopy is proposed by at least one restructurer, and is

not rejected by any, we accept the diagnosis. This provides
a sensible and modular integration of multiple constraints
for diktiometry restructuring.

Geometric constraints The essential insight here is
that by making the reasonable assumption that all way-
points are at least some minimum distance apart (call it
6aep), we can discover when sets of position observations
(from odometry) come from one or many waypoints. If
then make the further weak statistical assumption that
the distribution of position estimates for a waypoint is uni-
modal, we can use a multimodality test to test for struc-
tural inconsistency. If a single waypoint node represents
two real waypoints, we would expect the distribution of
position estimates matched to the node to be bimodal.

Similarly, if two nodes correspond to one waypoint, their
combined observation set should be unimodal. This will

not always work, so we use other constraints as well.

Local path constraints The next sort of restructuring
we consider uses a functional kind of constraint. The idea

is that each waypoint has a consistent, if stochastic, input-

output behavior (effects of performing actions). This being
the case, polytopy is indicated by inconsistent effects at one
waypoint, and monotopy by two waypoints with (nearly)
identical effects. This is similar to Chrisman's approach

to the closely related perceptual aliasiug problem found in
reinforcement learning [6]. Here, the merging method is
simpler--if two waypoints have nearly identical incoming

and outgoing action link sets (greater than a large fraction
go to the same waypoint via equivalent actions), then the
waypoints should be merged. The waypoints also should

have been visited often enough to ensure that the known
links are representative. Splitting requires examining how
well incoming links predict outgoing links. If the incoming
links can he partitioned into two sets such that the sets'
'images' (the sets of outgoing links taken after coming in
on each link in a set) are (nearly) disjoint, then a split is
indicated. This heuristic detects cases where a waypoint
node does not adequately represent a functional state of
the robot. By assumption, each waypoint corresponds to
a single functional state (though the converse need not
hold).

Non-local path constraints A third method uses non-
local path constraints for determining restructuring. Cur-
rently, this only applies to merging. One problem with
the local path approach to diagnosing monotopy is merg-
ing deadlock, where two different waypoints both need to
be merged, but each inhibits the other being merged since
local information does not suffice (the link sets are not
identical). Hence what is needed is a sort of sub-graph
isomorphism. Unfortunately, this is intractable, so we use
a heuristic approximation. As the robot travels through
the world, each track maintains a history of the waypoints
it matched to. As well, each waypoint P in a history is
associated with other waypoints that (a) were considered
as matches but rejected, and (b) could be mergable with P
(ie, their position estimates are consistent). An arbitrary
length limit is placed upon histories to prevent them from
growing without bound. When a track matches a way-
point, it deposits copies of its histories at the waypoint.

When two waypoints have enough histories consistent with
each other, the histories are used to 'sew up' a portion of
the path graph. This may introduce spurious merges, but
with conservative threshold choices, it can work in concert

with the two methods described above to provide effective
restructuring.

5 Opportunistic Exploration

Even though passive mapping, as described above, is im-
portant so that the robot can pursue its goals while learn-
ing, it can also be inefficient. This problem can be ame-
liorated somewhat, without sacrificing the benefits of pas-
sivity, by allowing the mapper to advise the deliberator of
actions that the mapper would find useful. These can be
treated by the deliberator as goals to satisfy when feasi-
ble; failure of a mapper goal does not invalidate a plan.
So, if the robot decides it has an extra ten minutes before
it has to deliver a package, it can take a short trip down a
side corridor to see where it leads. The main point is that
ultimate control lies inside the deliberator, which has the
responsibility of balancing the utility of the various goals
it must achieve.

We implement this idea by using opportunity scripts--
short, stereotyped sequences of actions designed to help
mapping in particular situations (an early version of this
is described in [11]). These are suggested to the deliber-
ator by an opportunity checker, which examines the cur-
rent mapper state to determine if any scripts are applica-
ble. Those which are, are sent to the deliberator where
they may get executed. Even if they aren't, there is no
great loss, since the mapping system's correctness does
not depend on the actions the robot takes. There are two

815

• Uncertainty of the last Aposition high

[] • Uncertainty of all track positions high
• Didn't just retrace step

•]ry to get a fixation on the last waypoint
visited;

I-_ • If found, go there, otherwise exit;
• Try to return, if possible.

RETRACE STEP

sorts of opportunities that can be dealt with in this way--
exploration and experimentation.

There are two reasons to use opportunity scripts to aid
mapping. One is that a robot will not naturally explore the
world efficiently, since its actions are determined by other
considerations. The other is that mapper-directed activ-
ity may improve the reliability of mapping decisions and
reduce the introduction of errors into the map. We have
developed and tested some heuristic opportunity scripts to
thus aid mapping; they are described below.

5.1 Exploration scripts

The essential idea of using opportunity scripts to improve
mapping is that they can be performed whenever a high-
level decision process determines that other goals can be
put off for a short while. This implies, first of all, that these
scripts must apply in general circumstances, as the mapper
has no control over when they will be called upon. Sec-
ondly, the scripts must be fairly limited in duration, so that
they can do their business of improving mapping and then
let the robot get back to its high-level goals. Scripts have
two components, an application test which determines if
the script is relevant, and a (loop-less) procedure which is
executed if the script is applied. Scripts use the mapper's
data structures, in particular the set of current tracks and
the map itself.

We have investigated a number of exploration scripts.
Some seek to reduce positional uncertainty. Others at-
tempt to find new waypoints and action links. Scripts are
also used to reduce ambiguity in the map or in the robot's
position estimate. Some probe map waypoints which seem
likely to not really exist. Keep in mind that all these scripts

do is direct the behavior of the robot, indirectly focusing
the attention of mapping system.

RETRACE STEP:

One important source of error and ambiguity in a map is
positional uncertainty. When the robot performs an action
with a very uncertain estimate of relative position, and the
robot's a posteriori position estimate (after matching to
its map) is also particularly uncertain, a simple and useful
heuristic for reducing uncertainty both in the map and in
the current position estimate is to retrace the last step
taken. That is, the robot tries to return to the waypoint
it just came from; if it manages that, it tries to get back
to where it started.

HEAD FOR UNCERTAINTY:

A more generally applicable heuristic for reducing map
uncertainty is to simply head for nearby waypoints with
large positional uncertainty, under the assumption that
if they are reached, new constraints will improve the pc*

• There 0s a nearby waypoint whose uncer-
tainty is high

• Only one track is current

• Iry to get a fixation on the uncertain way-
point based on its relative position;

• If fixation found, go there, otherwise exit.

HEAD FOR UNCERTAINTY

•]here is only one track, with high uncer-
tainty

• There is nearby waypoint with low uncer-
tainty

• Try to go to that waypoint.
HEAD FOR CERTAINTY

sitional estimate. This can only be reasonably tried, of
course, if the robot's current waypoint is unambiguous.

HEAD FOR CERTAINTY:

The converse of the last script is useful when the robot's
positional uncertainty gets too high, and that is to head
for a nearby waypoint whose position is known very pre-
cisely. If the robot reaches and recognizes the waypoint,
the robot's position will then also be known more precisely,
improving further mapping.

DISAMBIGUATE TRACKS:
It will often occur that the robot's estimate of its cur-

rent position will be ambiguous. If there are thus multiple
current tracks, a good way to distinguish between them is
to try to perform an action with different results for the
different possible waypoints the robot is at. This will usu-
ally result in the incorrect track becoming inconsistent and
thus dropped.

PROBE AMBIGUOUS ACTION:

One kind of map ambiguity is when a waypoint has mul-
tiple action links coming from it labeled with the same ac-
tion. While this ambiguity may be inherent, it may also be
that one of the links is due to a transient; hence, further
examination is warranted. This is achieved by attempting
to perform such an ambiguous action--this will tend to
speed up elision of any transients, and just maintain the
real action links.

PROBE SPLITTAGE:

The kind of map ambiguity we consider for now is where
two identical links from different waypoints end at the
same waypoint and there is reason to believe that only
one is real. This happens when a waypoint is split (see

• There are multiple current tracks.

• Choose an action link whose destination is

known reachable from some, but not all, of
the tracks' waypoints;

• Try to go to that link's destination way-
point.

DISAMBIGUATE TRACKS

816

• [here ,s a smi;le current track,
• There are multiple links from the current

waypoint labeled with the same action.

• Perform that action.

PROBE AMBIGUOUS ACTION

• lhere is a single current track,
• The current waypoint was recently split off

from another waypoint.

• Choose an action link which both waypoints
have in common,

• Try to traverse it.

PROBE SPLITTAGE

above). Since both waypoints resulting from a split have
copies of the same action links, many of those links will
be invalid. Hence, when the robot is at a waypoint which
resulted from a recent split, the PROBE SPLITTAGE script
tries to perform an action that has (in the map) identi-
cal consequences in the two split-off waypoints. This will
accelerate elision of the invalid action links.

HEAD FOR UNEXPLORED AREA:

Most of the previous scripts have dealt with improving
the system's knowledge of waypoints already in its map.
Finding new, unknown waypoints in an efficient manner,
however, would also be useful, so that the world may be
more quickly explored. We thus try to head for an area of
the world which has not likely been visited by the robot
before. To decide that this holds of some area, each lo-
cal reference frame has associated with it a coverage grid,
which tesselates the area about the frame into a coarse

grid, and keeps track of an estimated certainty that the
robot has visited each grid cell. Then, an area is deemed
to be unexplored if the likelihood of part of it having been
visited in the past is sufficiently low. Thus, HEAD FOR
UNEXPLORED AREA looks in the vicinity of the current
waypoint for a nearby area which looks unexplored, and if
one is found, attempts to head in its direction.

HEAD FOR RARE WAYPOINTS:

Recall that transientenvironmental featuresare even-

tuallyelidedby the mapping system by noting theirfre-
quency of apprehension. This processcan be speeded up if

the robot triesto reach waypoints which look likelyto be

transients.Since transients,by theirvery nature,are not

encountered often,itislikelythat a waypoint that has not
been visitedoftenistransient.Ifso,then repeatedlytrying

to reach the waypoint willcause the system tonoticethat

itisnot encountered as expected,and so itwilleventually

be elided.Ifitisnot a transient,then the mapper willjust

gain a bitmore information about the waypoint.

5.2 Experimentation

The main type of experimentation that can be done in our
framework delays diktiometry adaptation until more in-
formation has come in. Whenever a radical update or re-
structuring would normally be performed, a note is made
of the operation to be performed, along with the informa-

• lhere is only one current track.
• The current waypolnt has a neighbor which

has been visited less than a threshold num-
ber of times.

• Choose such a rarely visited neighbor,
• Try to go to there.

HEAD FOR RARE WAYPOINTS

tion required before it can actually be performed and a set

of exploration scripts to help gather that information. For
example, before performing a merge, a script may be used
to probe the distinctness of the two waypoints. This infor-
mation is associated with the waypoint(s) involved, so that
when the robot returns, the scripts are then suggested to
the deliberator for execution. Again, as with exploration
scripts, the particulars of the experimentation scripts used
depend on the types of updating and restructuring done.
We are currently working on developing a set of experi-
mentation scriptsfor our system, but they have not yet

been implemented.

6 Results

We present here the results of some experiments we have
performed in simulation on the system described above.
The simulator is described in [10]; space precludes a full
discussion here. Briefly, waypoints are determined by con-
figurations of walls and image signatures are simulated by
noisy samples of wall 'color'. Wherever possible, worst-
case assumptions were made with respect to sensor and
effector noise; all such parameters are adjustable. The
performance of the mapper was quantitatively evaluated
by measuring a posteriori position error--the error inher-
ent in allowing the robot to rely on the map to determine
its expected position after each move. We measure this
by calculating the sum-of-squared-distance (SSD) between
the robots actual relative motion and predicted relative

motion for each track after a move. If the system is ef-
fective at mapping, we expect the average SSD per move
to asymptotically converge to a small constant. There are
other useful performance metrics discussed in [9], but the
different methods give qualitatively similar results--space
does not permit inclusion here.

Figure 4(a) shows a typical small environment used for
evaluation. The world was designed to be confusing; every
waypoint looks the same as every other. For each run, the
robot was controlled by an essentially random walk, while
the mapper ran in the background. A move is defined as
a sequence of actions ending with the robot in a distin-

guished waypoint (here, corners or doorways). Each run
was 700 moves; a good maps were generally learned within

300. As Figure 4(b) shows, SSD position error starts out
high, but quickly begins to converge to a low asymptote

(non-zero due to inherent odometric error). This demon-
strates the effectiveness of the system in a confusing envi-
ronment, even with no mapper control over the robot.

The use of exploration scripts were tested by randomly
executing them when applicable (generally 30% of the
time). Comparative results are shown in Figure 4(c), which
shows a significant improvement in mapper performance

817

I " " .
(a)

_q

,lOt

_n

lOq

s 1_1_2o_ 3o_

(b) (c)
I !

1-

Figure 4: (a) A simple, but confusing, robot environment
(left) and a typical map learned (right). (b) SSD position
error (y-axis) vs. number of waypoint visits (z-axis), av-
eraged over 10 runs. (c) Improvement (in another, larger,
world) by occasionally using exploration scripts (solid) vs.
pure random walk (dashed).

when exploration scripts are used. We expect a further
improvement when we have taken into account the con-
flict resolution between different scripts; we are currently
investigating how to compare scripts so that the most use-
ful gets executed. This question is connected to the larger
question of assigning utility to exploration and experimen-
tation, which is important in terms of the deliberator's

tradeoffs between goabachievement and mapper script ex-
ecution. This will form an important focus of our work in
the near future.

7 Related Work

Much research on navigational mapping deals with prob-
lems of local metric representation (eg., [3; 7; 2]), which
is generally unsuitable in large-scale spaces. Kuipers and
Byun first develop the notion of a topological place graph
based on 'distinctive' locations [14]. However, while they
go to some length to avoid error creeping into the map by
using active experimentation, there is no provision for er-
ror correction. Levitt el al. also utilize a topological map

which avoids accumulation of navigation error, by using
local reference frames based on landmarks [15]. However,
their system appears to depend heavily on reliable land-
mark acquisition. Miller and Slack use information gener-
ated for reactive local navigation to build rough geometri-
cal maps of rocky terrain [17]. Their maps are notable in
that they can directly be used for reactive navigation.

Basye et al. develop a probabilistic theoretical frame-
work for map learning [4]. They probabilistically elimi-
nate errors in the learned map by using active exploration,
assuming limited directional certainty and globally recog-
nizable places. However, their methods use very simple
models of perception and action and do not use the rich
geometrical and perceptual structure available. Hence they
are forced to use strongly active strategies to learn maps
reliably.

Our methods for dealing with mapping errors can also
be incorporated into existing mapping systems with mini-
mal modification. Virtually any system that uses a place

....................-" /.
/ .." _--_::=-"-:5--.-:::::-_:":';";,h_

, ,.., ,., ..,,

,f." '.. "., ." '. I
: .._ _ -,,-' '*. I

_..." ." \ Y'. ",.I
. . tp

t
/ " " "'-- "'" d_" -4_

q."" -.\2,.. ._.-:m- .- j ,.

x._ =:=::=::::_Tg;_

Figure 5: A complicated world and a learned map, learned
after 3000 moves, with exploration scripts.

graph representation can be reformulated in our terms.
Specifically, Sarachik's system for visual navigation [19] is
particularly apposite. Her system visually recognizes room
shapes and finds doors, linking them together in a place
graph. A room's perceived shape can be used as its percep-
tual description; its position can be described in a locally
determined reference frame. Our error correction machin-

ery could then be applied virtually as is.

Mataric [16] uses constraints derived from knowledge of
the robot's underlying behavior to derive a topological map
based on linear graph segments. Yeap [22] describes a hi-
erarchical topological map, with place nodes described by
2D geometric models. Braunegg [5] develops a similar style
of map, where rooms are characterised by the geometric
arrangement of vertical edges, measured by stereo vision.
Kriegman [12] describes a method for visually instantiating
generic models of the robot's surroundings, such as hall-
ways, bringing top-down constraints to bear on geometric
interpretation.

8 Discussion

In this paper, we have shown how map-learning can
be organized around the principle of passive mapping.
Passive mapping involves two important components:
error-tolerant representations and explicit error-correction
strategies. In addition, exploration can be helpful, but
should be optional. This can be implemented through the
use of exploration scripts, as described above.

Our mapping system, as we have described, is a pas-

818

sire mapping system designed for indoor environments. In
the future, we want to extend this work to other types of
environments, such as city streets or forests. At present,
though, this work is directly applicable to some real-world
mapping tasks, such as those involved in inter-office de-
livery or some search-and-rescue tasks. Implementation of
complete systems that could be deployed for such tasks is
not yet feasible; it awaits other developments in effective
perception and robust action.

References

[1] G. Alefeld and J. Hertzberger. Introduction to Interval
Computation. Academic Press, New York, NY, 1983.

[2] Sami Atiya and Greg Hager. Real-time vision-based
robot localization. In Proc. Int'! Conf. on Robotics
and Automation, 1991.

[3] Nicholas Ayache and Olivier D. Faugeras. Maintain-
ing representations of the environment of a mobile
robot. IEEE 7Yurts. on Robotics and Automation,

5(6), 1989.

[4] Kenneth Basye, Tom Dean, and Jeffrey S. Vitter.
Coping with uncertainty in map learning. Techni-
cal Report CS-89-27, Brown University Department
of Computer Science, June 1989.

[5] David J. Braunegg. MARVEL: A System for Rec-
ognizing World Locations with Stereo Vision. PhD
thesis, MIT, 1990.

[6] Lonnie Chrisman. Reinforcement learning with per-
ceptual aliasing: The perceptual distinctions ap-
proach. In Proc. National Conference on Artificial
Intelligence, pages 183-188, 1992.

[7] Alberto Elfes. Sonar-based real-world mapping and
navigation. IEEE Journal of Robotics and Automa-
tion, RA-3(3):249-265, 1987.

[8] Scan P. Engelson. Active place recognition using im-
age signatures. In Proceedings of SPIE Symposium on
Intelligent Robotic Systems, Sensor Fusion V, 1992.

[9] Sean P. Engelson. Passive Map Learning for Mobile
Robots. PhD thesis, Department of Computer Science,
Yale University, 1994. (forthcoming).

[10] Sean P. Engelson and Niklas Bertani. ARS MAGNA:
The abstract robot simulator manual. Technical Re-

port YALEU/DCS/TR-928, Yale University Depart-
ment of Computer Science, 1992.

[11] Scan P. Engelson and Drew McDermott. Passive
robot map building with exploration scripts. Tech-
nical Report YALEU/DCS/TR-898, Yale University
Department of Computer Science, March 1992.

[12] David J. Kriegman. Object Classes and Image Con-
tours in Model-Based Vision. PhD thesis, Stanford

University, 1989.

[13] Benjamin Kuipers. Modeling spatial knowledge. Cog-

nitive Science, 2:129-153, 1978.

[14] Benjamin Kuipers and Yung-Tai Byun. A robust qual-
itative method for robot spatial reasoning. In Proc.
National Conference on Artificial Intelligence, pages
774-779, 1988.

[15] T. S. Levitt, D. T. Lawton, D. M. Chelberg, and P. C.
Nelson. Qualitative landmark-based path planning
and following. In Proc. National Conference on Arti-

ficial Intelligence, Seattle, Washington, 1987.

[16] Maja J. Mataric. A distributed model for mobile
robot environment-learning and navigation. Technical
Report 1228, MIT Artificial Intelligence Laboratory,
1990.

[17] David P. Miller and Marc G. Slack. Global symbolic
maps from local navigation. In Proceedings of IJCAI-
91, pages 750-755, 1991.

[18] Franco Preparata and Michael Inn Shamos. Compu-
tational Geometry: An Introduction. Springer-Verlag,
New York, 2nd edition, 1988.

[19] Karen B. Sarachik. Visual navigation: Construct-
ing and utilizing simple maps of an indoor environ-
ment. Technical Report 1113, MIT Artificial Intelli-
gence Laboratory, 1989.

[20] Randall Smith, Matthew Self, and Peter Cheese-
man. Estimating uncertain spatial relationships in
robotics. In Proceedings of the Second Workshop on
Uncertainty in Artificial Intelligence, Philadelphia,

PA, 1986.

[21] C.J. Taylor and David Kriegman. Structure and mo-
tion from line segments in multiple images. In Proc.
Int'i Conf. on Robotics and Automation, May 1992.

[22] Wai K. Yeap. Towards a computational theory of cog-
nitive maps. Artificial Intelligence, 34(3), April 1988.

819

