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ABSTRACT: This paper extends a local sensor
based planning method for hyper-redundant robot
mechanisms. In a previous paper, sensor feedback
control methods are considered. A highly localized
sensor feedback method for hyper-redundand manip-
ulators is termed, partial shape modification (PSM).
A PSM utilizes a mechanism's hyper-redundancy to
enable both local obstacle avoidance and end-effector
placement in real time. This paper considers the sit-
uation in which the limits of a PSM is violated. In
other words, what does the robot do when it can not
only locally adapt to the environment. Local sensor
based planning has been implemented on a thirty de-
gree of freedom hyper-redundant manipulator which
has eleven ultrasonic distance measurement sensors
and twenty infrared proximity sensors. The robot is
controlled by a real time control computer which com-
municates with sensors through an innovative sensor
bus architecture. Experimental results obtained us-
ing this test bed show the efficacy of the proposed
method.

1. Introduction

This paper extends experimental results from [TCB]
in the area of local sensor based planning for hyper-
redundant robot manipulators. Recall from [ChB90b]
that a "hyper-redundant" manipulator is a kinemat-
ically redundant manipulator in which the degree of
redundancy is very large or infinite. Such robots are
analogous in morphology to tentacles, an elephant's
trunk, a monkey's tail or a snake. "Sensor based
planning" incorporates sensory information into some
stage of a robotic motion planning, whether it be
navigation, locomotion, grasping, etc. "Local Sen-
sor Based Planning" fine tunes a robot's plan, based
on sensor information. Local sensor based planning
is useful when: (1) the robot only has a coarse knowl-

edge of the world because of limited memory; (2)
the robot's world model contains inaccuracies; and
(3) the world is subject to unexpected occurrences or
rapidly changing situations. These situations can be
overcome with local sensor based planning strategies.

Due to their many degrees of freedom, hyper-
redundant robots are potentially superior for opera-
tions in highly constrained and unusual environments
encountered in applications such as inspection of nu-
clear reactor cores, chemical sampling of buried toxic
waste, and medical endoscopy. Hyper-redundant
robots can also be used as tentacle-like grasping de-
vices for capturing and manipulating floating satel-
lites [ChB90c] or to enable complex "whole arm ma-

nipulation." Mobile hyper-redundant robots also of-
fer novel means for locomotion [ChB91a, ChB93a,
ChB93b, ChB93c] in complex environments.

The above mentioned applications are characterized
by environments which are difficult to precisely model
and which are time varying. Thus, local sensor-based
motion planning schemes are vital to the realistic de-
ployment of hyper-redundant robots in these applica-
tions. While hyper-redundant robots have many ad-
vantages for the above described applications, they
have one disadvantage. Since hyper-redundant ma-
nipulators have a large number of joints or actuators,
small joint displacement errors can accumulate to rea-
sonably large errors in the position of the tip relative
to the base. Thus, the effective accuracy of hyper-
redundant robots could be improved by distributing
sensors along their length and employing sensor based
planning schemes.

Thus, local sensor based planning can be used to:
(1) account for spatial uncertainty or inaccuracies in
the world model used by a "global" planner to con-
struct a robot plan; (2) increase the effective accuracy

of a hyper-redundant robot mechanism; and (3) lo-
cally adapt to rapid environmental variations, such
as moving obstacles, that can not be easily or rapidly
handled by a global planner.

The local sensor based planning algorithm of hyper-
redundant manipulators is based on the analysis
found in [ChB90b, ChB91a, ChB92a, ChB92c, Ch].
This work has been demonstrated on an actual ex-
tensible 30 degree-of-freedom hyper-redundant robot
system. A hyper-redundant manipulator which can
vary its length, within the limitations of its actuators,
is termed "extensible." A more detailed account of
this mechanism and its capabilities can be found in
[ChB92b].

Robotic motion planning has been an important area
of research. Since the introduction of configuration
space methods [LoWes], several other theories have
been published, some of which are summarized in
[Sh,Lat]. However, these methods plan from a per-
fect model of the world, which is normally unavail-
able to a real robot. More recently, methods have
been developed in which the robot explores the envi-
ronment to gather information for the planning pro-
cess [CaLi]. These approaches assume that the sen-
sors provide perfect information about the environ-
ment. There has been little work devoted explicitly
to motion planning for robot snakes. One approach is
based on the construction of tunnels through the ob-
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stacle field, through which the manipulator "slithers"
[ChB90a, Ch]. In another work, sensor based plan-
ning for highly redundant robots is based on a tactrix
[ReLu]. However, this work assumes that there are
perfect sensors on the robot; nor has it been imple-
mented on a real robot. Hirose [HiU] implemented
an "active cord" mechanism, which used tactile sen-
sors to guide its motion. A previous paper [TCB]
presents preliminary strategies for local sensor based
planning, which are implementable in real time, can
employ a variety of sensors, and exploit the benefits
of hyper-redundancy.

In this paper, a local sensor based planning strategy
for hyper-redundant manipulators is extended so it
can be more accommodating. The local sensor based
planner in [TCB] did not consider its own limitations.
There, the hyper-redundant manipulator can only lo-
cally adapt to a changing environment over a fixed
length of the robot. For a fixed length of robot, a
hyper-redundant manipulator uses its extensibility so
it can locally avoid obstacles. However, the robot can
only deform until its joint limits are met, in which
case the hyper-redundant manipulator can no longer
adapt. In other words, the robot used up all of its ex-
tensibility over the fixed length. The longer this fixed
length, the more the robot can deform. However, the
longer the length, the less local the response, which
is undesireable. In the new algorithm, the length of
the deforming part of the robot is variable, there-
fore enhancing its ability to locally adapt. In effect,
the manipulator uses more of its extensibility from
other parts of the robot to locally avoid objects. Ex-
periments demonstrate that local sensor based plan-
ning is not only useful, but also implementable in
real time with very reasonable computing power and
simple sensors.

The structure of this paper is as follows. Section 2
reviews the basic framework of hyper-redundant ma-
nipulator kinematics which is based on "backbone
curves." The backbone curve and its deformation
is the basis for the algorithms of Section 3. We pri-
marily consider algorithms for planar mechanisms, as
the experimental verification of these ideas was per-
formed on a planar robot. Many of these algorithms
can be extended to the spatial case. Section 4 de-
scribes the experimental setup, while Section 5 de-
scribed the actual results of these experiments.

2. Background

This section reviews a hyper-redundant robot kine-
matic analysis framework that forms the basis of this
work. Recall from [ChB90b] that we assume that
(regardless of mechanical implementation) the impor-
tant macroscopic features of a hyper-redundant robot
can be captured by a backbone curve. A backbone
curve parametrization and an associated set of ref-
erence frames which evolve along the curve are col-
lectively called the backbone reference set. In this
paradigm, inverse kinematics and task planning re-
duces to the determination of the proper time vary-
ing behavior of the backbone reference set [ChB90b].

Similarly, local sensor based planning is equivalent in
this approach to modification of the backbone curve
shape in order to accommodate impinging obstacles.

In [ChB92c], many techniques are introduced for
parametrizing the backbone curve. In this paper, we
will assume that the Cartesian position of points on
a backbone curve can be parametrized in the form:

/0 8= (2.1)

where s E [0, 1] is a parameter measuring distance
along the backbone curve at time t. The backbone
curve base is the point s = 0. g(s, t) is a vector from
the backbone curve base to point s. By convention,
$(0, t) = 0. if(s, t) is the unit tangent vector to the
curve at s. l(s,t) is the length of the curve tangent
and assumes the general form:

l(s,t) = 1 + e(s,t) > 0. (2.2)

e(s,t) is the local eztensibility of the manipulator,
which expresses how the backbone curve locally ex-
pands or contracts relative to a fixed reference state.
We show later on that the robot needs this extensi-
bility in order to locally avoid obstacles.

The parametrization of Eq. (2.1) has the following
interpretation. The backbone curve is "grown" from
the base by propagating the curve forward along the
tangent vector, which is varying its direction accord-
ing to if(s, t) and varying its magnitude (or 'growth-
rate') according to l(s, t).

Our experiments have been performed on a device
with planar geometry. In the planar case, the back-
bone curve is the locus of points:

_(s,t)- [xl(s,t), x2(s,t)] T

where

/0 s
zl(s,t) = l(_r,t) sinO(cr, t)d_r (2.3)

/0 8
x2 (s, t) = l(cr, t) cos 0(a, t)d_r. (2.4)

O(s,t) is the angle, measured clockwise, which the
tangent to the curve at s makes with the z2-axis
at time t. By convention (2.4), 0(0) = 0, and
zl(0) = z2(0) = 0. By comparing equations (2.1)
with equations (2.3) and (2.4), it easy to see that

g(s,t) = [sin 0(s, t), cos0(_,t)] T in the planar case.
l(s) and 0(s) are termed "shape functions," as they
control they shape of the backbone curve through the
forward kinematic relations (2.3) and (2.4).

Within the context of this modeling technique, the in-
verse kinematic problem, or "hyper-redundancy res-
olution" problem, reduces to the determination of
the time varying behavior of backbone curve shape
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functionsthat satisfies task requirements. Different
hyper-redundancy resolution techniques can be found
in [ChB90a, ChB91a, ChB92a, ChB92c, Ch]. In one
approach, which is relevant to the algorithm of Sec-
tion 3, the backbone curve shape functions are re-
stricted to a "modal form"

Ns NI

o(8,t)= l(8,t)=
i=l i=Ne+l

(2.5)
where _i(s) isa "mode function,"and ai(t)isthe as-
sociated "modal participationfactor."N = No + Nz
is the total number of modes, which must equal
or exceeds the number of task constraints.Hyper-
redundancy isresolvedinthe modal approach by con-
strainingthe backbone curve toN effectiveDOF. The

{{b,}are predetermined functionschosen by the pro-
grammer, and can often be selectedto incorporate

physical characteristicsof the task [Ch]. Thus, the
backbone curve geometry becomes solelya function
ofthe {ai}. The inversekinematics problem reduces

to findingthe {ai} which satisfytask constraints.In

[ChB91a, ChB92c], closed form solutionsare given
for severalchoicesof mode functions.

A continuous backbone curve inversekinematic solu-
tion isused to determine the actuator displacements
of a continuous morphology robot such as one con-
structedfrom pneumatic actuator bundles. For dis-
cretelysegmented morphologies, such as the proto-
type describedinthispaper in Section4,the contin-
uous curve solutioncan be used, via a "fitting"pro-
cess,to compute the actuator displacements which
cause the manipulator to exactly assume or closely
approximate the continuous backbone curve model.
The fittingtechniqueswhich are used in subsequent
examples are reviewed in [ChB91a, ChB92c].

3. Local Sensor Based Planning Algo-
rithm

Local Sensor-Based Planning (LSBP) assumes that
a backbone curve is somehow determined by a high
level global planning process. The backbone curve
shape is then modified in response to sensory infor-
mation. LSBP does not use a model of the environ-
ment, and is intended for rapid response to environ-
ment changes. In order to describe the local sensor
based planning strategy,a sensor model must be de-
scribed.

3.1. Sensor Models

The algorithm described below uses a very simple sen-
sor model. We assume that the sensors are rigidly at-
tached to the backbone curve at a fixed point. That
is, they move with the backbone curve, and their ori-
entation is a function of the backbone curve tangent
at the point of attachment. The sensors are assumed
to measure, along a fixed direction termed the sen-
sor measurement axis, the distance to a nearby ob-
stacle. The sensor measurement axis is a function
of the sensor and the backbone curve geometry (See

Fig. 1). Our sensors do not measure the distance
to the point on the obstacle which is nearest to the
backbone curve. Rather, they measure the distance
which would actually be computed by realistic sen-
sors. This simple model is representative of the in-
frared and ultrasonic sensors discussed in Section 4.
In addition, there is often some directional ambiguity
due to the finite width of a typical sensor's beam pat-
tern. We assume that the sensor measurement axis
is the centerline of the beam pattern. The distance
measurement returned by the sensor is the nearest
point of the obstacle lying within beam pattern cone.
Since it is impossible to resolve the angular ambigu-
ity, we assume that nearest point of the obstacle lies
along the beam pattern centerline.

Mcasurcmcnt Axis

/

Figure 1: Simplified Distance Mea-

surement Sensor Model

3.2. Partial Shape Modification Con-
trol

This section describes a PSM planning strategy in
which the backbone curve is approximated by a large
number, rid, of discrete endpoints. The sensors are
assumed to be rigidly attached at points along the
discretized backbone curve. There are typically many
approximating segments between adjacent sensor at-
tachments. When a sensor detects the presence of an
obstacle, the backbone curve shape locally deforms
in a region around the sensor. In our simulations
and experiments, nd "_ 100, and there were about 10
discrete points between sensor points.

The actual response, a displacement of the approx-
imating points, is determined by a local sensor re-
sponse function (LSRF), which is assumed to be a dis-
crete unimodal function. A unimodal function is one
which has one local maximum, the global maximum,
over its domain. The response function is "added" to
the current backbone curve, locally drawing it away
from an obstacle. In Figure 2, a triangle LSRF is
added to a straight backbone curve, deforming the
backbone curve away from an sufficiently close ob-
stacle.

Since the robot only detects the obstacle at a sensor
point, the reaction to the obstacle should be greatest
at the sensor point, and should monotomically de-
crease at points away from the sensor point. There-
fore, the sensor point is the center of this unimodal
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function,andisassumedto be farthest away from the
obstacle.

The LSRF should also look like the beam pattern of
the sensor associated with the sensor point. Typi-
cally, beam patterns have a central lobe along the
sensor axis, in which the obstacle likely lies. In the ex-
perimental setup, the spatial resolution of the robot's
actuators is much lower than the azimuth resolution
of the sensors on the robot. Therefore, a simple tri-

angle (or cone) is a sufficient approximation to the
main lobe of the beam pattern, and thus, a reason-
able choice for a LRSF. Later on, it is shown that a
triangle response function leads to a trivial and ef-
ficient solution to LSBP for planar hyper-redundant
manipulators. So, the example displayed in Figure 2
is a good example of a LSRF.

The half width of the LSRF is slightly larger than the
distance between two adjacent sensors on the back-
bone curve. This way, if two adjacent sensors detect
the same obstacle, their cumulative response function
is still unimodal.

ResponseFunction _ _ ]

Backbone Curve Discrete Backbon© Points Scmor Points

.+
_CCCC_C CCC_

DcfotmeM B_kbonc Curve

Figure 2: Backbone,

Response Function, and
Deformed Backbone

In this approximation method, the position of the dis-
crete segment endpoints can be approximated by the
discretization of the continuous forward kinematics
integral (Eq. (2.1)):

k=i

iff(s,,t) = E l(sk,t)g(sk,t) (3.2.1)
k=O

l(s) and if(s) are continuous shape functions which
are specified by a global planner. They need not as-
sume a modal form. Also, an endpoint may or may
not coincide with a sensor point.

A small differential change in ff(si) is:

k=i

k:O

(3.2.2)

where sk = k__ where nd is the number of discrete

points along the back bone curve. _ff is a local change

in the backbone curve tangent direction, while _rep-
resents a local stretch.

The goal of this PSM method is to compute the local

perturbations, _ff and _, which deform the backbone
curve away from obstacles. The changes in backbone
curve tangent and stretch are determined from _ff,
which in turn is determined by the LSRFs. The mod-
ified backbone curve shape is then used by the fitting
algorithms to determine the appropriate actuator dis-
placements.

Assume that at some initial time, a global planner
specifies a backbone curve shape. Thus, ¢5/_= 0 ini-
tially. For each sensor point along the backbone curve
that detects an obstacle within its response envelope,
a discrete unimodal LSRF is added to (or subtracted
from, depending upon from which direction an ob-
stacle appears to be) @, the vector which contains
the prescribed changes to the backbone curve. Set-
ting @(s_,t) = 0, guarantees that, within the lim-
its of the discretization approximation, the end effec-
tor position will not change. Setting @(s_,t) = O,

@(s,_-1,t) = 0, and _a(s_,t) = 0 guarantees that
the end effector position and orientation will not
change. The new backbone curve can be computed

after _g and _['are determined from (3.2.1).

In the case of a planar backbone curve, (3.2.2) can
be written in matrix form:
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where*¢ = t), = Za t), = t),
= l'(sl), and if/ = ff(si, t). The x and y compo-

nents of _f(s_,t) are respectively denoted *p_ and

@_. Similary, the x,y components of *g(si, t) are

_u_ and _u_v. _ and 5g each have 2n elements, and

_l'has n elements.

For given _f, there is not a unique solution to
Eq. (3.2.3). A simplified (and unique) solution for
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(3.2.3)is obtainedbysettingl(s_,t) = 1 Vl<i<n (i.e
61(si,t) -- 0). Although all of the l(s,,t) -- 1, the
snake can still use its extensibility to avoid obstacles
because [[gi +6if/i[ ¢ 1. In other words, the length of
the tangent vectors are no longer constrained to have
unit length in this approximation unless additional

restrictions are employed. After setting 61(si, t) = 0
and enforcing the end effector constraints,(3.2.3) be-
comes:

¢ 6r:
6p_
6p_
6p_

0
k o /

'1 0 0 0 ... 0 0 0 0_
0 1 0 0 ... 0 0 0 0
1 0 1 0 ... 0 0 0 0
0 1 0 1 ... 0 0 0 0

: : : : .....

i o i ; ..: i o ; o
0 1 0 1 ... 0 1 0 0

1 0 1 0 ... 1 0 1 0

,0 1 0 1 ... 0 1 0 1,

(,hL_-
6,_

.I
'h'-_-' l
6,,;'[
,_u_-I I

(3.2.4)

which has a simple, obvious and easily computed so-
lution to (3.2.4).

i __ i i-1 (3.2.5)ux --Px --Px

i__ i i--1 (3.2.6)uy -- py - py

The discretized backbone curve is then used, via a
fitting procedure, to compute the local actuator dis-
placements which implement the desired deforma-
tion. Figure 3 displays a PSM deformation of a 30

DOF variable geometry truss manipulator (kinemati-
cally identical to the real system described in Section
4) in response to an impinging obstacle. The back-
bone curve is approximated by 100 segments. The
manipulator is originally in a straight configuration,
which locally deforms to avoid a simulated obstacle
in Figure 4. In this simulation, the response function
is shaped like a triangle.

Figure 3: OriginalI Figure 4: ResultingI

3.3. Extended PSM

Due to mechanical limitations of the robot, such as
joint limits, a real hyper-redundant manipulator has
a limited amount of local extensibility. That is, Ilell <
T where T is the limit of local extensibility of the
manipulator. This means that at any point, there is
a fixed range over which the backbone can expand or
contract relative to a fixed reference state.

The original PSM assumes that there is infinite local
extensibility, which is unrealistic for actual robots. In
the example in figure 5, an object becomes unaccept-
ably close to the robot, which locally moves away
from the object using an LSRF. However, the ob-
ject continues to move towards the already deformed
robot, which wants to move further away locally from
the object, using the same LSRF. Although a back-
bone curve is determined in this situation, it is not
likely that a real mechanism can fit this curve because
this backbone requires a lot of local extensibility from
the manipulator. In this case, the IH]< T constraint
was violated because 116g(si, t)I I > T.

p \

_dl laml _l_mlkm

DarrA_l _ C_

Figure 5: Same Response

So, a new LSRF has to be used which utilizes the
extensibility of neighboring regions on the backbone
curve, while not using any local extensibility from the
already deformed section (i.e. maintaining the con-
straint Ilel] < T). This is called "sucking" extensibil-
ity from other parts of the robot snake. In figure 6,
the local extensibility limit is not exceeded, and the
robot is still able to accommodate for the object's
displacement.

FI

-)

-)

Figure 6: Modified Response
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To prove the feasibility of the proposed algorithms, 
a distributed sensor system was developed for the 30 
degree-of-freedom hyper-redundant robot system de- -_  __ - _- 
scribed in [ChB92b]. Figure 7 shows the structure 
of this testbed. This section describes the test bed 
structure in detail. 
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The hyper-redundant manipulator is a modular Vari- 
able Geometry Truss design [Ch]. The 30 degree-of- 
freedom (DOF) planar robot consists of ten modules 
(also called bays) of 3 DOF each (Fig. 7). Each DOF 
consists of a D.C. servo motor which drives a lead 
screw. Each lead screw is instrumented with a lin- 
ear potentiometer. The real time system controller is 
based on a VME-bus multiprocessing computer, cur- 
rently consisting of two Heurikon (68030 and 68020) 
single board processors, and the VxWorks real time 
operating system. One processor is dedicated to the 
closed loop feedback control of the actuator positions. 
The other processor is dedicated to  processing of sen- 
sor data and real time computation of the PSM algo- 
rithms. 
To enable flexible, modular, and easily expandable 
experimentation with sensor based planning, a novel 
34 wire “Sensor Bus” architecture was developed for 
the sensor system. One end of the sensor bus is con- 
nected to  the PSM processor via a parallel port. The 
sensor bus consists of an eight bit outgoing data path, 
a four bit status line, a two bit strobe and one inter- 
rupt request line. The data path and the two strobe 
lines enable the CPU to access up to 256 sensors and 
to  send eight bits of information to the sensor pe- 
ripherals for possible sensor control purposes. The 
interrupt request line is connected to  the hardware 
counter on the CPU board so that accurate timing 
measurements can be made in real time. 
Sensors can be added to the system via “Sensor In- 
terface Modules.” This module decodes the sensor 
bus address and generates signals to control sensors. 
Up to  two ultrasonic sensor modules and six sets of 
sensors which produce data with 4 bit (or less) quan- 
tization can be controlled. Currently, only four in- 
frared sensors per board are present, though up to 
eight infrared sensors and eight mechanical switchs 
can be directly connected. The sensor interface mod- 
ule circuitry is mounted on a printed circuit board 
which is 15cm by 12cm in size. Fig. 8 shows a photo- 
graph of the sensor interface module. The sensor bus 
is physically connected in the bottom of the module 
in a daisy-chain fashion. In the figure, two ultrasonic 
transducers are shown above the module. . Also the 
infrared proximity sensor is shown on the side of the 
module. 

4.2. Sensors 
Currently, the robot has two types of sensors: in- 
frared (IR) and ultrasonic (US). There are five sets of 
two US sensors. Each set is rigidly attached to alter- 

Figure 8: Sensor Interface Module 

nate bays so that each sensor points outward from the 
backbone curve (or the centerliiie of the mechanism). 
An additional US sensor will be mounted at the front 
of the mechanism, pointing forward. Twenty IR sen- 
sors, again two at each the ten bays facing outward, 
are currently mounted on the snake. In the near fu- 
ture, twenty-four additional IR sensors will be added, 
two more at each bay, and four in front. Fig. 9 
schematically shows how these sensors are distributed 
throughout the mechanism. 

Figure 9: Sensor Arrangement 
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Electrostatic type ultrasonic sound transducers deter- 
mine distance by measuring the time of flight of the 
ultrasound pulse leaving the transducer, bouncing off 
an object and returning to  the sensor. A 50kHz sonar 
wave burst is transmitted when the sonar-ranging 
module is triggered [Ci]. The ranging module out- 
put is connected to  the sensor bus interrupt request 
line. The echo return time is computed by the CPU 
hardware counter. Since the sixteen bit resolution 
distance measurement result is read from the hard- 
ware counter, no result is ever sent through the sensor 
bus. This design greatly simplifies the hardware re- 
quired. 

The US sensors are activated sequentially (at 16 mil- 
lisecond intervals) to prevent interference between 
sensors. These sensors are calibrated to measure dis- 
tances ranging from lOcm to  2.5m, with a 2% accu- 
racy. There is about twenty degrees of conical ambi- 
guity for direction, because of the transmitting beam 
pattern of the transducer [Ci]. In this work, it is 
assumed that the obstacle lies along the cone’s cen- 
terline, which is locally normal to the backbone curve 
at the point of sensor attachment. 

The IR sensors yield binary proximity information- 
i.e., the presence or absence of the obstacle in some 
pre-set range. An infrared LED emits modulated in- 
frared light, and if an obstacle is near the robot, the 
IR sensor will detect the reflected light. The range of 
the IR system can be adjusted by setting potentiome- 
ters on the sensor boards. Currently, the IR system 
is set up to  detect the presence of obstacles up to  four 
inches away from the robot. Like the US, the loca- 
tion of an obstacle is not precisely known, but lies 
somewhere in a cone emanating from the IR sensor. 

Each sensor has its own advantage. The IR sensors 
have a very fast response and can be sampled at ex- 
tremely high rates. They are thus suitable for the 
PSM system. The US sensors provide proportional 
obstacle distance, rather than binary proximity in- 
formation. They are thus more useful for accurate 
planning. However, since the US sensors are sequen- 
t i d y  polled to prevent interference, the minimum 
sampling period is 176 milliseconds. The IR sensors 
are sequentially polled in a similar fashion, but at 
a significantly higher rate. To maximize the use of 
both types of sensors, the sensor interface module is 
designed to operate both US and IR sensors simulta- 
neously in different intervals. 

4.3. Remote Operation Console 
The real time computers are connected to Sun work- 
stations via the ethernet. Via software sockets, infor- 
mation can be transferred through the ethernet be- 
tween the real time computer running VxWorks and 
the Sun workstations running Unix. C programs and 
many software packages, such as Matlab, are able to 
directly communicate with the real time computers 
via the sockets. Therefore, these programs can con- 
trol the snake. The FSM and higher levels of control 
are implemented on the SUN workstation. 

Experimental robot control programs are developed 

,& i ! 
Figure 10: Infrared Sensor 

in a combination of C and Matlab. Via an X-Window 
interface, these programs graphically display and con- 
tinually update the robot’s configuration and sensor 
measurements. Fig.11 shows the X-Window opera- 
tion console window. In addition, many motion plan- 
ning and sensing commands can be executed using a 
graphical menu interface. End-effector via points of 
a hyper-redundant trajectory can be specified by a 
mouse, and the trajectory is then executed by the 
real-time system. 

In addition to  graphically depicting the current con- 
figuration of the manipulator, this system displays 
US and IR sensor measurements. The solid cones 
emanating from the manipulator represent US sen- 
sor data. In this representation scheme, the closet 
point t o  an obstacle in the sensor beam pattern lies 
somewhere on the distal arc of the cone. The dashed 
arcs much closer to the mechanism indicate that the 
IR sensors have detected nearby obstacles at these 
locations. 

I t  \\ 

Figure 11: Operation Console 
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5. Results 
The PSM algorithms described in Section 3.2 and 
3.3 have been implemented on our hyper-redundant 
robot test-bed. Photographs of two experiments are 
shown below. In the first experiment, the backbone 
curve, dictated by some high level planner, was a 
straight line. Two obstacles were moved into an un- 
acceptably close proximity (about lOcm or 4in) to the 
mechanism, and the manipulator locally deformed 
away from each obstacle while maintaining constant 
end-effector position. Truthfully, the end-effector was 
displaced slightly from its original position (less than 
a 1 inch displacement over a distance of -16 feet). 
The current implementation of the discrete approx- 
imation algorithm employs only IR sensors, because 
there are many more IR sensor distributed alonn the 
snak 

ro r 

:e. See figure.~2. ... 

In the next experiment, again, the backbone curves 
starts off as a straight line. See figure 13. One obsta- 
cle was moved unacceptably close to the robot which 
resulted in the mechanism moving, as it did in the 
first experiment. See figure 14. Then, the object was 
moved sufficiently close to the deformed robot, pass- 
ing through the original backbone curve, and the ma- 
nipulator still deformed away. See figure 15. Such a 
large local deformation would not have been possible 
with the original PSM. 

Th second experiment showed the local shape modifi- 
cation capability of the new PSM algorithm proposed 
in this paper. In real time, the old PSM reliably 
works, when the actuators in the section of the robot 
that is deforming are not near their joint limits. In 
such a case, the new PSM is the same as the old PSM. 
As actuators' limits are approached, local deforma- 
tion may become infeasible, and this is where the new 
PSM becomes useful. The new planner uses extensi- 
bility from neighboring actuator displacements along 
the manipulator so, the robot can still locally deform. 
However, once all the actuators reach there limit, i.e. 
all the extensibility is used up, the robot has to report 
to a higher level planner in order to accommodate for 
all the constraints in .the environment. This ability is 
currently being implemented in our system. 

Y 
b r 

Figure 12: First Experiment Figure 13: Second Experiment 

827 



Figure 14: Intermediate 

Figure 15: Final 

6. Conclusion 
In this paper, a local sensor based planning method 
for hyper-redundant robots is extended. This method 
is based on a backbone curve kinematic framework. 
In the previous work, the limit of local deformation 
was limited to the extensibility over a fixed portion 
of the robot. In this paper, in order to  better com- 
pensate for objects penetrating the backbone curve, 
extensibility was used over a variable portion of the 
robot. 
This method was implemented on an actual 30 DOF 
hyper-redundant manipulator test bed. An innova- 
tive sensor bus architecture and a graphical program- 
ming and display interface were reviewed. Experi- 
ments using this system showed the applicability and 
effectiveness of the proposed method to  real hyper- 
redundant manipulators. A reasonable amount of 
computer power was required for real-time implemen- 
tation of these algorithms. 

As suggested in the previous section, we are currently 
working to improve the communication between low 
level planners and a high level planner so that the 
robot can better interpret and react to  exceptional 
conditions indicated by the PSM level. In addition, 
we intend to  develop better sensor function meth- 
ods which properly combine ultrasonic and infrared 
sensor readings from adjacent sensors. The highly 
distributed nature of sensors on a hyper-redundant 
mechanism also point to the need for new theories 
on deploying and using massively redundant sensor 
arrays. Finally, future work will focus on using sen- 
sor data for higher level, i.e. global, hyper-redundant 
robotic planning. 
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