
AIAA-94-1297-CP

UM-PRS: AN IMPLEMENTATION OF THE PROCEDURAL REASONING SYSTEM FOR

MULTIROBOT APPLICATIONS

Jaeho Lee, Marcus J. Huber, Edmund H. Durfee, Patrick G. Kenny

Artificial Intelligence Laboratory

The University of Michigan

Ann Arbor, Michigan 48109-2110

842

Abstract

The Procedural Reasoning System (PRS) is a gen-
eral purpose reasoning system that is particularly
suited for use in domains in which there are prede-
termined procedures for handling the situations that
might arise. We have just completed an implemen-
tation of PRS written in C++, which we call the
University of Michigan Procedural Reasoning System
(UM-PRS). In this paper, we show how UM-PRS pro-
vides a critical level of representation for robotic ap-
plications in unpredictable domains, because it allows
robotic vehicles to pursue long-term goals by adopt-
ing pieces of relevant procedures depending on the
changing context, rather than having to blindly follow
a prearranged plan. Specifically, UM-PRS has been
used to control a real outdoor vehicle that changes its
behavior based on what it sees in its environment. In

turn, this provides the substrate for coordinating mul-
tiple robotic vehicles, allowing them to represent joint
procedures and to infer each others plans through ob-
servation.

Introduction

We have been involved in a project which will, at its
terminus, result in a team of robotic vehicles that are
capable of autonomously working together while per-
forming reconnaissance and other militarily relevant

tasks. High-level plans for these vehicles will typi-
cally be in the form of mission plans and annotated
maps. A mission plan is a declarative representation
of the vehicles' major goals. Based on this, a human

annotates a map showing topographical and strategic
features to indicate where along planned routes some
changes in each robotic vehicle's behaviors must be

made (turned on, turned off, or parameters modified).
Thus, the annotated map represents a "program" to
be executed by the vehicles, where crossing certain
spatial lines trigger a vehicle to execute the next step
of its program.

The annotated map representation 8 is incomplete
in that it lacks the richness required for robotic con-
trol in unpredictable, dynamic environments. Blindly
following the preprogrammed sequence of behaviors
might be hazardous (if the context in which the se-
quence was formed changes) or impossible (if the ve-

This research was sponsored in part by ARPA under
contract DAAE-07-92-C-R012.

hicle loses track of its position on the map or if its
control is temporarily taken over by a human). There-
fore, it is important that the map and mission plan be
accompanied by more general knowledge about why
certain actions are being taken and in what context.
Military doctrine, as laid out in documents such as
field manuals, contains large numbers of standard op-
erating procedures (SOPs) that should be selectively

invoked as conditions and objectives change. In fact,
an annotated map for a mission plan typically repre-
sents a particular sequence of SOPs that are expected
to be useful. For a flexible, autonomous system to
succeed, however, the suite of SOPs must be avail-
able to the system at runtime.

The Procedural Reasoning System 4-_ is a general
purpose reasoning system particularly suited for use
in domains in which there are predetermined proce-

dures for handling the situations that might arise.
This makes it very applicable in domains such as
that discussed above. However, until recently, there
has not been an implementation of PRS that is freely
available for use. We have just completed an imple-
mentation of PRS written in C++, which we call the
University of Michigan Procedural Reasoning System
(UM-PRS).

In this paper we discuss the details of our initial im-
plementation. Our implementation is novel in terms
of both knowledge representations and control struc-
tures all written in C++ to meet the needs of efficient

real-time robotic control. First, we briefly introduce
the general concepts of procedural reasoning systems,
the specific representations and the interpreter of the
initial UM-PRS version. Second, we illustrate how
UM-PRS serves as an important intermediate level of

representation and reasoning between the high-level
mission plan and the executable annotated map, and
how it can interface with these levels. We also il-

lustrate how the flexibility provided by UM-PRS al-
lows autonomous responses beyond those permitted
by annotated maps alone. Third, we briefly describe
how UM-PRS has been used, to date, in the dynamic
control of a real outdoor vehicle and how UM-PRS

provides a basis for multi-vehicle coordination, both
in terms of allowing the automated formation of be-
lief networks that a vehicle can use to infer the plans
of others through observation, and in terms of rep-
resenting the collective activities of vehicles and the

Copyright © 1994 by Jaeho Lee. Published by the American Institute

of Aeronautics and Astronautics, Inc. with permission.

roles that they can play. Finally, we summarize the
current status of UM-PRS and the ongoing improve-
ments that we are making in order to realize the full,
flexible autonomous capabilities in our multivehicle

system.

Procedural Reasoning System

Developing reasoning systems that can reason and
plan in continuously changing environments in real-
time is emerging as an important area of application
of Artificial Intelligence. In this section, we describe
basic features of the Procedural Reasoning System

(PRS) that motivated us to adopt PRS as a concep-
tual framework for our system.

The Procedural Reasoning System 4-6 is a general-

purpose reasoning system, integrating trm:litional
goal-directed reasoning and reactive behavior. Be-
cause most traditional deliberative planning systems
formulate an entire course of action before starting

execution of a plan, these systems are brittle to the
extent that features of the world or consequences of
actions might be uncertain. In contrast, the Procedu-
ral Reasoning System continuously tests its decisions
(both high- and low-level) against its changing knowl-
edge about the world, and can redirect the choices
of actions dynamically while remaining purposeful to
the extent of the unexpected changes to the environ-
ment.

PRS thus is not a planning system in the traditional
AI sense, in that PRS does not concentrate on search-
ing for sequences of primitive actions that lead to spe-
cific goals. Instead, PRS is a plan execution system:
it assumes that it already has "plans" (procedures)
for achieving various goals in various contexts; how-
ever, it might string together actions in unexpected
ways as it dynamically chooses among procedures and
subprocedures in a changing environment.

Typically, accomplishing a mission in a military set-

ting is much more similar to the plan execution ac-
tivities of PRS than to the activities of traditional

planning systems. Procedures for military tasks such
as reconnaissance are developed and learned off-line, 2

and training involves mastering the selection and ex-
ecution of predefined procedures. These procedures

may contain knowledge about both cognitive (such as
situation assessment) and physical actions, and they
can be arbitrarily complex. Often, a "step" in one
procedure (such as "move to assembly area") might
itself correspond to several sub-procedures, each ap-
propriate in different contexts.

PRS is conceptually geared for representing pre-
cisely this kind of procedural information. Several
features that make PRS particularly powerful as a
situated reasoning system 6 are as follows:

• The semantics of its plan (procedure) representa-
tion, which is important for verification and main-
tenance.

• Its ability to expand and act on partial plans.

• Its ability to pursue goal-directed tasks while be-

ing responsive to changing patterns of events in
bounded time.

I DATABASE [KA LIBRARY(BELIEFS) (PLANS)

INTERPRETER

(REASONER)

....--__..

INTENTIONGOALS STRUCTURE

MONITOR I

T
I

T
•, COMMANDGENERATOR

Figure 1: PRS System Structure 3

• Its facilities for managing multiple tasks in real
time.

• Its default mechanisms for handling the environ-
ment's stringent real-time demands.

• Its metalevel (or reflexive) reasoning capabilities.

PRS consists of (1) a database (called World Model)
containing current beliefs or facts about the world;
(2) a set of current goals to be realized; (3) a set of
plans (called Knowledge Areas) describing how cer-
tain sequences of actions and tests may be performed
to achieve given goals or to react to particular situ-
ations; and (4) an intention structure containing those
plans that have been chosen for eventual execution
(Figure 1). An interpreter (or reasoning mechanism)
manipulates these components, selecting appropriate
plans based on the system's beliefs and goals, placing
those selected on the intention structure, and execut-
ing them)

The system interacts with its environment, includ-
ing other systems, through its database (which ac-
quires new beliefs in response to changes in the envi-
ronment) and through the actions that it performs as
it carries out its intentions. 3

UM-PRS

In our particular implementation of PRS, we have
been concerned to a large extent with the specific re-
quirements of the military task domain we have out-
lined, and which we will discuss further below. Thus,

whereas some versions of PRS have been developed
(typically in Lisp) to be extremely general, our goal
has been to identify the crucial features of PRS for
our application domain, and to implement them in a
robust way in C++. Some of the design and imple-
mentation decisions that we have made follow.

World Model

In our implementation, WM is a database of facts
which are represented as relations. A relation bas a
name and a variable number of fields. Initial facts

are asserted at the beginning of a UM-PRS program

by the user, and other facts can be either asserted or
retracted by the KAs, which will be explained below.

843

Knowledge Areas

A Knowledge Area (KA) is a declarative procedure
specification of how to satisfy a system goal or query.
It consists of the purpose (a goal, query, test, or world
model assertion or retraction) for executing the KA,
the context in which the KA is applicable, a graph-
ical network called the body which specifies what is
required to satisfy the purpose in terms of primitive
functions, subgoals, conditional branches, etc., and a
symbol table which holds values for variables when a
KA is instantiated for a specific situation. The con-
text consists of a mixed sequence of patterns to be
matched against the WM and expressions to be satis-
fied using the variable bindings generated during the
matching.

A SOAK (Set Of Applicable KAs) is a collection of
KAs which have been instantiated to achieve a goal
(purpose) that has just been activated. Each KA in
the SOAK is applicable to the specific situation, as
one role of the context is to filter out KAs that are

not relevant to a particular situation.
The body describes the procedure's steps, consist-

ing of a network of actions. The body can be viewed
as a plan schema. The schema is instantiated with
the bindings which are generated when the purpose
and the context of the KA are checked during SOAK
generation.

Actions

Actions are the arcs in a KA body that consti-
tute either primitive actions or subgoals to achieve.
A "primitive" action is a behavior or activity that
can be executed directly. Any other type of action
represents a) a goal that needs achievement, mainte-
nance, or to be waited upon b) a query, c) a test, or d)
an assertion or retraction of world model information.

Actions are represented by a base class that holds in-

formation regarding the KA in which the action is
found and the action name. Each of the types of ac-
tions are represented by a derived class that maintains
such information as function pointers (for a primitive
action), the expression to evaluate (for a test), a goal
or query expression, or a world model relation to as-
sert or retract.

Goals

Goals in UM-PRS are the world states that the

system is trying to bring about (or maintain, etc.).
A goal can be either a top-level goal, which controls
the system's highest order behavior, or a subgoal ac-
tivated by the execution of a KA arc.

Intention Structure

The intention structure acts as the run-time stack

for the system. It keeps track of the progress of each
high-level goal and all of the subgoals. The intention
structure suspends, resumes, cancels, and proceeds
with execution of goals in much the same way as an
operating system. The intention structure maintains
information about what KAs are currently active, as
well as what actions in each KA are to be executed

next. As there are conditional branches in a KA, the

intention structure must also maintain information re-

garding the success or failure of branches.

The Interpreter

The UM-PRS interpreter is similar to the inter-
preter described for PRS: It is what controls the exe-
cution of the entire system. Whenever there is new or
changed information in the world model or goal list,
the interpreter determines a new SOAK. From this
SOAK is selected the most appropriate KA, which is
placed in the intention structure. When there are
no SOAKs being generated, the interpreter checks
the intention structure for the currently active KAs
and executes the next primitive action. If this ac-
tion changes the goal list (by creating a subgoal or
by satisfying a goal) or world model, a new SOAK is

created and the cycle starts over. If a new SOAK is
not created, then the next arc in a leaf-level KA is
executed.

With this implementation, the interpreter facili-
tates switching to more important goals according to
the situation. This implementation also stays com-
mitted to one method of achieving a goal by not recon-
sidering alternatives unless the current method fails.
The UM-PRS interpreter is different from the PRS in-
terpreter in that there is currently no metalevel con-
trol, although we plan on adding that in the near
future as we enrich the set of KAs such that we could

have many KAs applicable in overlapping situations.

Example

We began by briefly describing the incomplete-
ness of the annotated map representation 8 in unpre-

dictable, dynamic environments. In this section, we
show examples of using both the annotated map rep-
resentation and the UM-PRS system. We first show a

clear correspondence between the annotated map rep-
resentation and the UM-PRS representation when ge-
ographical events are the main triggers of the actions.
In the second example, we show the limitation of the

annotated map representation and, in contrast, the
richness of UM-PRS when general (non-geographical)
events trigger actions.

Figure 2 is an example annotated map representa-
tion of a simple scenario of getting to an observation

point from the assembly area using road following and
STRIPE (a waypoint following method) alternatively.
The actions to be taken are annotated along the cir-
cles in the map. Figure 3 is an example UM-PRS
knowledge area that generalizes the procedure on the

annotated map. The actions in the KA body roughly
correspond to the sequence of actions represented in
the annotated map, and the KA representation (con-
text and body) is somewhat simplified to highlight
the correspondence between the two representations.
A full detailed working example is presented in the
Appendix.

An important advantage to using the procedural
representation over the annotated map representation

is that the correspondence between mission objectives
and map markings is made explicit. That is, with an
annotated map, the (human) mission planner has a

844

Assemble

A_ LD
Follow road

LD \
\\

\\\
\
\

\

__TRIPE

Follow road I
Figure 2: Annotated map

RSTA

NAME: "Get to OP"

PURPOSE: (ACHIEVE get_to_OP Sop)

CONTEXT: (FACT assembled "True")

BODY:

O

(EXECUTE Depart)

(QUERY An ived_OP $value)

O

(ACHIEVE Follow_Road)

\
\

O

(TEST (== $valu_T/rue")) (TEST_(=_value "False"))
/////////_/ --_

O O

(ACHIE_ 'E RSTA) (ACHIE_ 'E STRIPE)

0 0 /
[//

Figure3: UM-PRS KA

mission in mind, along with an operating procedure to
accomplish it. The overall operating procedure is not
explicitly represented anywhere, but only the steps
are given in the annotations. However, the human
interface using a UM-PRS-based system can be quite
different. The human can specify an objective, and
UM-PRS will retrieve appropriate KAs. In order to
instantiate those KAs, UM-PRS must bind variables
to values, and those values could include geographi-
cal information (where the assembly area is, or which
road to follow). Thus, while the user will certainly
still point to locations and regions on a map, he or
she will do so in response to the needs of the explicitly-
represented, standard operating procedures currently
being elaborated by UM-PRS.

The second example scenario is shown in Figure 4.

The vehicle starts out by issuing a command to start
the road-following behavior. This moves the vehicle
forward until it reaches a cone or goes past a maxi-
mum allowed distance. If it passes the max distance
without seeing the cone, the vehicle stops and the
demo is done. If the vehicle detects the cone, it ap-
proaches the cone and starts off-road behavior until

it sees that it has reached the end point. When the
vehicle has reached the end point, the demo is done.

The idea of the demo is to show that UM-PRS can

be used to represent conditional actions based on non-

geographical events such as cone detection. The cone
can be placed anywhere along the road, or there may
be no cone at all. Such non-geographical events are
hard to annotate in a map. The full KA description
of this demo is presented in the Appendix. Note that

the general capability of pattern-directed invocation
of UM-PRS makes it possible to represent high-level

choices of very different behaviors as well as simple
non-geometric events. So, for example, representing
procedures for context changes such as "running for
cover" after having "been discovered by enemy" is

easy to represent in UM-PRS, rather than cluttering
up regions of the map with annotations.

Experiments

In this paper, we have described our implemen-
tation of UM-PRS. Currently, we are experimenting
with using UM-PRS for robotic control of two indoor
mobile robots, and also of an outdoor robotic vehicle

(Figure 5). The scenario being used for our experi-
ments is a reconnaissance task in a military domain.
Typically, the means of satisfying the task's goals are
described in terms of procedures to follow in specific
situations. These procedures correspond exactly to
KAs, with the context and the purpose specific to the
situation in which it is applicable.

One thing we have to note is that M1 the actions de-
scribed in the KA body should eventually map down
to primitive actions (C or C++ functions) which are
directly executable on the real robot or vehicle. Since
our implementation is done in C++, the interface be-
tween KA actions and real primitive control functions
is very natural and efficient.

UM-PRS: Toward Multi-vehicle Coordination

Many tasks of interest, particularly in the military
domain, require the concerted efforts of several play-

845

a Vehicle

I I I
I
I ’I Road edge

! (I I

I I
Cone I Des? j 1

I A ! I
I

Cone I Des? j 1
I A ! I

I
I I I
I I I
I I I
I I I

Max distance

Figure 4: Cone Demo

ers. In other words, they require teamwork. Recently,
Georgeff’s colleagues7 have explored extensions to the
procedural representation to model different “roles”
played in team procedures, and have developed al-
gorithms for assigning roles to potential team mem-
bers. These capabilities need to be incorporated into
UM-PRS to capture the notion of roles in military
procedures, such as the roles of “bounder” and “over-
watcher” in a bounding-overwatch procedure. Since,
in such a procedure, the vehicles take turns watch-
ing and moving as they leapfrog across an area, the
roles will be assigned and reassigned dynamically in
the course of the procedure.

Having each adopted its role in a shared, team pro-
cedure, a vehicle can then work to achieve its goals
in the procedure. However, since how it chooses to
achieve its goals can impact the choices available to
other vehicles in how they achieve their goals, some
additional coordination is often needed. In essence,
while the vehicles might commit to a team plan at an
abstract level, they also might have to commit ahead
of time to how they might (or might not) elaborate
their plans into detailed actions. Anticipating and
making necessary commitments ahead of time (be-
fore they move into the field where communication
is more risky and error prone) should be done, but
overcommitment should be avoided lest the vehicles
commit to specific courses of action that they later
find to be suboptimal or even ineffective. Thus, while
the conceptual framework of PRS emphasizes delayed
commitment to action until the action must be taken,
coordination requires some degree of commitment to
the future. Extending UM-PRS to provide this capa-
bility is one of our ongoing efforts.

Also, once in the field, some coordination might be
needed, and is typically done through communicating
about plans, goals, or beliefs about the world. Each
of the involved vehicles can reason about this infor-
mation in order to detect possible conflicts, improve-
ments, synergies, etc. As mentioned before, explicit
communication may not always be possible, however,
due to such situations as hostile vehicles in the vicin-
ity, environmental noise, and broken equipment. Plan

Figure 5: Vehicle and Cone

recognition is the process of inferring the same infor-
mation (the motivating goals or beliefs of a vehicle)
based upon sensory observation of that vehicle’s ac-
tions. Once the plans have been inferred, the same
reasoning process can be used to make decisions re-
garding coordination.

One of the most significant issues that arises is that
plans of the robotic vehicles will be in the form of
UM-PRS Knowledge Areas, which are not conducive
to performing plan recognition. In response to this,
we are developing a system that will automatically
convert the plans of the other team vehicles into a
representation amenable to plan recognition, namely
belief networks. Belief networks, also called Bayesian
networks,’ provide the framework and mechanisms for
performing probabilistic reasoning about the relation-
ship between the observations of a vehicle’s actions
and the vehicle’s reasons (plans, goals, etc.) for per-
forming that action. While manual construction of
beiief networiis to represent the VM-PRS plans can
be done, it is extremely time consuming and subject
to variability. When considering the large number
of possible KAs for complex tasks, and hence t h e -
large number of possible plans that might be cre-
ated and executed, manual conversion of the plans
becomes impractical. By providing an automated sys-
tem, this process can be performed quickly, efficiently,
and without variation.

Conclusions

The representation and control scheme that we
have implemented has proven to be sufficiently pow-
erful for planning and execution in procedurally rich
domains, specifically in a robotic reconnaissance task.
Our experiments have shown the initial implemen-
tation to reactively switch between goals, while re-
maining committed to the current method of achiev-
ing each goal. We are actively working on many ex-
tensions to the initial implementation (such as met-
alevel control, and coordination mechanisms, as out-
lined above) that will make it even more powerful and
flexible.

846

Appendix: Example system

The example system included here as a demo for
UM-PRS is an early version of a KA library and prim-
itive functions developed to demonstrate the applica-
bility of UM-PRS to mobile robot tasks.

The idea of the demo is to show that a planner can
be used as a triggering device to enable and change
vehicle behaviors.

• The vehicle starts out by issuing a command to
start the YARF road following behavior. This
moves the vehicle forward until it reaches a cone

or goes past a maximum allowed distance.

• UM-PRS will wait until the vehicle is stopped (0
= not stopped, 1 = stopped). UM-PRS then will
query to see if the vehicle has seen the cone or

passed the max distance.

• If it passes the max distance, then the vehicle stops
and the demo is done.

• If the vehicle detects the cone, then the vehicle

stops and waits for the next behavior.

• If the vehicle sees the cone, then UM-PRS will issue

an Approach Cone behavior. UM-PRS will then
wait until the vehicle has stopped and check if it
has reached the cone.

• If the vehicle has reached the cone, then UM-PRS
will issue an Off Road behavior. UM-PRS will wait

until the vehicle has stopped and reached the end
point.

• When the vehicle has reached the end point, then
the demo is done.

KA code

GOALS :

(ACHIEVE cone_demo)

FACTS:

(vehicle_status "True _)

(demo_done "False")

(cone_found "False")

(cone_reached "False")

(vehicle_reached "False")

(vehicle_maxdist "False")

(vehicle_stopped "True")

//

II KA 1

//

KA {
NAME :

"complete cone demo"

DOCUMENTATION:

"This is the main KA

that will start the cone demo"

PURPOSE:

(ACHIEVE cone_demo)

CONTEXT:

(FACT vehicle_status "True")

(FACT demo_done "False")

BODY:

(i (ACHIEVE vehicle_initialized) 2)

(2 (ACHIEVE road_scouted) 3)

}

//

II KA2

//

KA {
NAME :

"initialized vehicle"

DOCUMENTATION:

_initialized all the vehicle controls"

PURPOSE:

(ACHIEVE vehicle_initialized)

CONTEXT:

(FACT vehicle_status 'True")

(FACT demo_done "False")

BODY:

(99

(I
(2
(3
(4
(5
(6
(7
(8
(9
(i0
(ii

(12

}

EXECUTE init_database 2) i)

EXECUTE home_robot Sx $y Sto) 2)

ASSERT vehicle_initalized) 3

ASSERT YARF 2) 4

ASSERT APPROACHCONE 4) 5

ASSERT OFFROAD 8) 6

ASSERT CHECKVEHICLE 16) 7

ASSERT STOPPED 2) 8

ASSERT CONEFOUND 4) 9

ASSERT MAXDIST 8) i0

ASSERT READCHEDCONE 16) ii)

ASSERT READCHEDVEHICLE 32) 12)

ASSERTVEHICLESTATUS 64) 13)

//

II KA3
//

"road scouted"

DOCUMENTATION:

"This KA will scout out a road,

as per the scenario plan"

PURPOSE:

(ACHIEVE road_scouted)

CONTEXT:

(FACT vehicle_status "True")

(FACT demo_done "False")

BODY:

(i (ACHIEVE road_followed_until_cone) 2)

(OR

((2 (FACT cone found Svalue) 3)

(3 (TEST (== $value "True")) 5)

(5 (ACHIEVE cone_approached) 6)

(6 (FACT cone reached $value) 7)

(7 (TEST (== $value "True")) 8)

(8 (ACHIEVE traveled_off_road) 9)

847

848

(9 (FACT vehicle_reached $value) i0)

(i0 (TEST (== $value "True")) ii)

(ii (ASSERT demo_done "True") 12))

((2 (FACT vehicle_maxdist $value) 20)

(20 (TEST (== $value "True")) 21)

(21 (ASSERT demo done "True") 12)))

//

II KA4

II

KA {

NAME :

"road_f o i 1 owed_unti l_cone"

DOCUMENTATION:

"This KA will follow the road

until the vehicle sees a cone

or passes the turn off point"

PURPOSE:

(ACHIEVE road_followed_until_cone)

CONTEXT:

(FACT vehicle_status "True")

(FACT cone_found "False")

(FACT vehicle_maxdist "False")

(FACT YARF SYARF)

(FACT STOPPED $STOPPED)

(FACT CONEFOUND $CONEFOUND)

(FACT MAXDIST $MAXDIST)

BODY:

(i (EXECUTE start_behavior $YARF) 2)

(2 (EXECUTE check_behavior

$STOPPED

$vehicle_stopped) 3)

(3 (FACT vehicle_stopped Svalue) 4)

(OR

((4 (TEST (== Svalue "False")) LOOP 2))

((4 (TEST (== $value "True")) 5)

(5 EXECUTE check_behavior

$CONEFOUND

Scone_found 6)

(6 ASSERT cone_found

Scone_found 7)

(7 EXECUTE check_behavior

SMAXDIST

$vehicle_maxdist) 8)

(8 ASSERT vehicle_maxdist

$vehicle_maxdist) 9)))

/*

start YARF behavior

while (not done)

if (vehicle stopped)

done = true

if (vehicle max distance)

stop all,

we are done with demo,

mission was not accomplished

else if (cone found)

assert found cone

*I

}

//

II KA5

//

NAME:

"cone_approached"

DOCUMENTATION:

"When the vehicle sees the cone,

it approaches it"

PURPOSE:

(ACHIEVE cone_approached)

CONTEXT:

(FACT vehicle_status "True")

(FACT conereached "False")

(FACT APPROACHCONE $APPROACHCONE)

(FACT STOPPED $STOPPED)

(FACT REACHEDCONE $REACHEDCONE)

BODY:

(i (EXECUTE start_behavior

$APPROACHCONE) 2)

(2 (EXECUTE check_behavior

$STOPPED

$vehicle_stopped) 3)

(3 (FACT vehicle_stopped $value) 4)

(OR

(4 (TEST (== $value "False")) LOOP 2))

(4 (TEST (== $value "True")) 5)

5 (EXECUTE check_behavior

$REACHEDCONE

Scone_reached) 6)

6 (ASSERT cone_reached

Scone_reached) 7)))

/*

start approach cone behavior

while (not done)

if (vehicle stopped)

done = true

if (reached cone)

assert at cone

*I

)

//

II KA 6

//

KA {

NAME :

"traveled_o f f_road"

DOCUMENTATION:

"When the vehicle is at the cone,

it does some off roading"

PURPOSE:

(ACHIEVE traveled_off_road)

CONTEXT:

(FACT vehicle_status "True")

(FACT vehicle_reached "False")

(FACT STOPPED $STOPPED)

(FACT REACHEDVEHICLE SREACHEDVEHICLE)

(FACT OFFROAD $OFFROAD)

BODY:

(i (EXECUTE start_behavior $OFFROAD) 2)

(2 (EXECUTEcheck_behavior
$STOPPED$vehicle_stopped)3)

(3 (FACTvehicle_stopped$value) 4)
(OR

((4 (TEST (== Svalue "False")) LOOP 2))
((4 (TEST (== $value "True')) 5)
(5 (EXECUTE check_behavior

$REACHEDVEHICLE
$vehicle_reached) 6)

(6 (ASSERT vehicle_reached
Svehicle_reached) 7)))

/*

start off road behavior

while (not done)

if (vehicle stopped)

done = true

if (reached vehicle)

assert at vehicle

/

/ KA7

//

KA {
NAME :

"vehicle_s tatus_checked"

DOCUMENTATION:

"Check to make sure the vehicle is ok

once in a while"

PURPOSE:

(ACHIEVE vehicle_status_checked)

CONTEXT:

(FACT CHECKVEHICLE $CHECKVEHICLE)

(FACT VEHICLESTATUS SVEHICLESTATUS)

BODY:

(i (EXECUTE start_behavior

$CHECKVEHICLE) 2)

(2 (EXECUTE check_behavior

SVEHICLESTATUS

$vehicle_status) 3)

(3 (ASSERT vehicle_status

Svehicle_status) 4)

/*

*/
}

if (vehicle status i= OK)

stop vehicle, stop prs

References

[1] Eugene Charniak. Bayesian networks without
tears. AI Magazine, 12(4):50-63, Winter 1991.

[2] Department of the Army, Washington, D.C. Tank
Platoon, FM 17-15, October 1987.

[3] Michael P. Georgeff and Franqois F41ix Ingrand.
Decision-making in an embedded reasoning sys-
tem. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, pages
972-978, Detroit, Michigan, 1989.

[4] Michael P. Georgeff and Amy L. Lansky. Pro-
cedural knowledge. Proceedings of the IEEE,
74(10):1383-1398, October 1986.

[5] Francois F41ix Ingrand and Michael P. Georgeff.
Managing deliberation and reasoning in real-time
AI systems. In Proceedings of the 1990 DARPA
Workshop on Innovative Approaches to Planning,
Scheduling, and Control, pages 284-291, San Diego,
CA, November 1990.

[6] Francois F. Ingrand, Michael P. Georgeff, and
Anand S. Rao. An architecture for real-time rea-

soning and system control. IEEE Expert, 7(6):34-
44, December 1992.

[7] David Kinny, Magnus Ljungberg, and Anand Rao.
Planned team activity. In Amedeo Cesta, Rosaria

Conte, and Maria Miceli, editors, Pre-Proceedings
of the Fourth European Workshop on Modeling Au-
tonomous Agents in a Multi-Agent World, pages 1-20,
Rome, Italy, July 1992.

[8] Charles Thorpe, Martial Hebert, Takeo Kanade,
and Steven Shafer. Toward autonomous driving:
The CMU navlab. IEEE Expert, pages 31-52, Au-

gust 1991.

849

