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Parallel robotic mechanisms have good accuracy, high
stiffness and large payload to weight ratio compared
to the traditional serial mechanism. This paper
compares two simple constant gain control schemes
for a parallel robotic mechanism actuated by hydraulic
cylinders. One of the control schemes which will be
referred to as a "ratebased scheme" uses the position
and rate information only for feedback. The other
control scheme referred to as the "fcf_e based scheme"
feeds back the force information also. It is shown

that for parallel robots with hydraufic actuators the
response of the end-effector can be improved by using
the force information from the actuators without

adding any extra computational burden. The force
based conu_l scheme can also be easily modified to
control the forces on the end-effector. The control
scheme has been implemented in a computer
simulation and the results are presented in the paper.

Introduction

Recently, there has been a lot of activity in the area
of parallel mechanisms (Figure 1). Parallel
mechanisms are able to overcome many of the
shortcomings of serial mechanisms. They have a
high stiffness, large payload to weight ratio and good
accuracy compared to serial mechanisms. The best
known application of parallel mechanism is the
Stewart Platform which is used in aircraft simulators.

These mechanisms also have potential for application
in zero/partial gravity simulators, assembly tasks and
precision machining.

scheme does not offer any capability for controlling
forces. The force based control scheme developed in

this paper can easily be modified to control these
forces. This ability is crucial to the successful
application of parallel mechanisms to assembly tasks.

The parallel mechanism analyzed in this paper is
shown in Figure 1. It is a six degree of freedom
mechanism. The top member and the base member
are connected by six limbs. Each limb is a hydraulic
cylinder with universal joints at each end. The piston
and the cylinder are allowed to rotate with respect to
each other. Thus each limb is a six degree of freedom
serial chain with one actuated prismatic joint. The
universal joints in the top member are located in a
plane and the universal joints in the base member are
also located in a single plane.

The first section of the paper examines the linearized
dynamic model of the fully parallel mechanism.
Using the linearized model, the control schemes are
studied. The following section describes the control
scheme in detail. The next section deals with the

Previous research in parallel mechanisms has been
focused on the kinematics of the mechanisms. The
general kinematic considerations are examined in [3],
[4], [7], [13] and [14]. The direct position kinematics
of some special parallel mechanisms are given in [5],
[9] and [10]. There is little research in the dynamics
and controls of parallel mechanisms. Some of the
dynamics issues are examined in [15].

An important part of assembly tasks is the control of
interaction forces between components. In other
applications such as partial/zero gravity simulators, it
will be required that the actuators apply constant
forces through the center of mass of the end effector.
In this application, again the forces on the end
effector will have to be controlled. The rate based

Figure 1. Special Parallel Mechanism (Each limb
consists of universal joints at each end and a
cylinderical joint between them; the prismatic joint is
actuated).

Copyright © American Institute of Aeronautics and
Astronautics, Inc., 1976. All rights reserved.
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complete dynamic simulation of the parallel
mechanism. To simulate the dynamics of the
mechanism, it is essential to have an efficient scheme
for the direct dynamics problem. This will help in
reducing the computational time required for
simulation. The models for the hydraulic cylinders
and the servolvalves are given in Appendix B. The
results are discussed in the last section.

Linearized Rigid"Body Model

In fully parallel mechanisms ([14]), the joint rates and
the end effector motion are related by the following
equation:

where

L = Vector consisting of the joint rates.
H = 6×6 matrix.
m = angular velocity of the end effector.
Ix = velocity of the point on the end effector
coincident with the origin.

The matrix H is a purely geometric quantity. The
columns of the matrix H are the wrench axis of the
joints.

For parallel mechanisms, static force decomposition
equation is:

where

R = Forces acting on the end effector.
F = Moments acting on the end effector about the
origin.
H = 6×6 matrix
F = Forces/Tofque's at the joints.

It will be assumed without any loss of generality that
the origin of the f'LXedcoordinate system is located at
the nominal position of the center of mass of the end-
effector.

The current approach, based on the rate control
scheme, is to control the joint lengths in the parallel
mechanism. Using this scheme, current position of
the end effector is compared to the desired position.
The error in the position is converted to an error in
the length of the limbs. The limbs are then
individually controlled to eliminate this error. This is
achieved by applying forces in the limbs that are

proportional to the error in the limb lengths. This is
given by the equation:

F = -KpL- KvL (3)

where
L = error in the limb lengths.

The equation of motion of the end effector is given by
(ignoring the non-linear terms):

where
M = Diagonal matrix with the mass of the end
effector as the diagonal term.
J = Moment of inertia matrix at the current position.
p, 0 ffismall errors in position and orientation of end
effectof.

Using equations (2), (3) and (4), the response equation
is (ignoring the actuator model):

[O 0J]I_] + HKvHTI_I + HKpHTIP] = 0 (5)

The gain matrices in the above equation, Kp and Kv
are diagonal matrices with constant terms (the
cylinders are controlled independently with constant
gains). Clearly, the response depends on the matrix
H, which depends on the position of the end effector.
This is undesirable. It is also not obvious from the

above equation, whether an increase in the gains
would lead to an improvement in the response of the
mechanism. Increase in the gains might lead to
deterioration in the response due to the structure of
the H matrix. Further, increasing the gains, leads to
a shift in all the closed loop poles of the above
system. The fast poles as well as the slow poles are
moved simultaneously. This leads to a marginal
improvement in the response of the system with large
changes in the gains. There is also the possibility of
exciting the higher order dynamics due to the presence
of fast poles (as a result of increase in gains).

As opposed to the above rate based scheme, in the
force based control scheme, the force is controlled in
each limb. The error in the current position of the
end effector is fed back as err(x in the forces exerted
by the limbs. This is given by the equation:

(6)
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The force to be produced by the actuators at the limbs
is given by (equation (2) and (6)):

(7)

The response equation is now given by (combining
equations (4) and(6)):

oil+ p p

In a simple implementation of the above scheme, Kp
and Kv can be chosen as diagonal matrices with fixed
diagonal terms. The response equations are now to a
large extent position independent and decoupled. The
response does not depend on the H matrix. The
coupling and the position dependency in the above
equation will come from the J matrix. This response
equation is an improvement over the previous
scheme. The closed loop poles can be assigned
independently in the above scheme and the response
improved without a corresponding large increase in
the gains.

The above scheme can also be easily adapted to
conu'ol the forces on the end effector. The direction
in which forces are to be controlled can easily replace
the position errors in equation (6). This would
effectively conlrol the forces in those directions.

D_ic Simulation and Control Scheme of the
Parallel Mechanism

A rigid body dynamic model was developed for the
parallel mechanism for simulation in MATRIXX.
Some of the assumptions made for the dynamic
model are as follows. The limbs were assumed to be
axisymmetric. The friction losses in the spherical
and revolute joints were assumed to be negligible.
The prismatic joint in the cylinder was assumed to
have viscous losses and the damping coefficient was
adjusted to obtain a response that closely
approximated the response from the actual
mechanism. The model for the hydraulic cylinders
consists of a leakage term which is assumed to be
proportional to the pressure difference in the cylinder
(assuming that the leakage flow is laminar). The
model for the servovalves was taken from [8].
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Figure 2. Block Diagram for Rate Based Control Scheme.
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The block diagram for the rate based control scheme
is shown in Figure 2. In this control scheme, the
hydraulic cylinders were controlled by dual stage
servovalves. Within the servovalve, the spool
position is fed back to the electromagnet with a
spring. The block diagram for the servolvalve is
given in Appendix B. The error in the position and
the velocity are fed back to the current in the
servovalve. The current in the servovalve is given
by:

| = -kpIe L - kvIe L (9)

where
i = 60<1 vector.

kp, kv = constants.
I = 6×6 identity matrix.
eL = error in limb lengths.

eL = error in limb length rates.

A decoupled controller with constant gains is chosen
for the controller because the gains are associated with
the hydraulic cylinders. Since all the hydraulic
cylinders are identical, the gains are kept the same for
all the cylinders.

The block diagram for the force based control scheme
is shown in Fig. 3. In this control scheme, the

cylinder were controlled by a prolxmional servovalve.
It was found that the spool position feedback in the
dual stage servovalve inhibited the response of the
mechanism. The maximum spool opening from the
servovalve was the same in both the valves to ensure

that a fair comparison could be made in both the
schemes.

The desired force in each of the limbs is given by:

v- H-I{K [%l+K F<l
-- k  L,oJ (10)

where

Kp, Kv = Diagonal constant matrices.

ep = error in position.

6p = error in velocity

e0 = error in angular position.

60 = error in angular velocity.

The gain matrices K p and K v are chosen to be
diagonal matrices. At the current location of the end-

effector, the off diagonal terms could have been

chosen to decouple the system. This decoupling
however, would not be possible for the complete
workspace due to the change in the inertia matrix.

The error in the desired force in the limbs given by
equation (10) and the actual force in the cylinder is fed
back to the spool. The position of the spool is then
given by:

X. = kfef (11)

where

kf = constanL

ef = 6><1error vector in the forces.

The gain for the force controller are kept the same for
all the cylinders, since the cylinders are identical.

Rigid Body Dynamic Model

ZD yf qi

hi2

bil

Figure 4. Parallel mechanism with a single limb and
the variables.

The six degree of freedom parallel mechanism shown
in Figure 1 consists of 13 rigid body elements. The
six equations of motion can be obtained for each
element, resulting in a large matrix (in this case
78×78 matrix) equation. This equation will be
computationally expensive to solve. In the following
section, a compact 6×6 matrix equation for the
dynamics of the parallel mechanism is obtained. This
would result in substantial savings in the

computational time for the simulation.

The convention followed in the rest of the paper is as
follows. All vectors and matrices are in bold letters.

The superscript on the top left hand corner of a vector
denotes the coordinate system. A superscript "t"
refers to the fixed coordinate system coincident with
the coordinate system attached to the top member and
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"li" refers to the fixed coordinate system coincident to
the coordinate system attached to the ith limb. No
superscript signifies the fixed world coordinate system
attached to the base member.

The equations of motion of the top member are given
by:

Mta = -Y. tFi3 +Mtg
i

Jt. = -_. (tqi×tFi3+t Ti3 _t o) xJt o)
1

where

[mM= 0

0

(12)

m

0

Jx -Jxy

J = -Jxy Jy -Jyz

L-Jxz -Jyz Jz

tg=tRb[O 0 _g]T

g = acceleration due to gravity.

tFi 3 = force applied by the top member to the ith
limb.

tTi3 = Torque applied by top member to the ith limb.

tq i = position of the ith force.

t_ = angular velocity of the top member in the top
coordinate frame.

In the above equations, the forces are unknown.

These forces are applied to the top member by the
limbs. The additional equations will come from the
dynamic analysis of the limbs. These dynamic
equations will be in the form:

l_ai3 = Dil_Fi3 +d i (13)

where

ai3 = acceleration of the ith universal joint.

Fi3 = force transmitted across the ith universal joint.

The development of the above equations for the
parallel mechanism under consideration here are given
in Appendix A.

The acceleration of the joint and the center of mass of
the top member are related by:

ltai3 =liRt (ta - qX tot + t) (14)

where

F 0 -tqi z tqiy ]
qX = tqi z 0 -tqi x

-tqi x tqi x 0

t t 2 t 2 t t t t t
[-qix(COy+C0z)_C0x(C0zqz+C0y qy)]

t / t /tfl)2+tfl)2'_ tclt) /t(o t +tfo t X/
= l- qiy[ z x_- y[ x qx z qzl/

L-,q,,.(to2+tm2) ,mz(,,oy,qy+to ,q )J

Combining (13) and (14) and rearranging terms:

f ]t a

[I3×3
-qXH t(x_tRl'Dl* Rt tFi3+tRl_di"L J -t (15)

The above constraint equation can be obtained for
each limb. This will give 6 such equations.

Another set of constraint equations can be obtained

for Ti3. The angular accelerations of the upper part
of the limb and the top member are related by:

(16)

The top two members of the above vector equation
are not important and thus are left blank. This
equation can be combined with the last equation in
equation set (16) to get:

[i00]tTi3 =-tRl_ 0 0 l_Rt tot

0 Ji2zJ

(17)

The equation of motion of the top member under the
influence of forces Fi3 are given by (12). Equation

(15) can be used to eliminate forces Fi3 from

equation (12) and equation (17) can be used to
eliminate Ti3 from equation (2). This leads to:
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M+ _ tR1Di'lltRt _ qXtRLDi-lltRt Ir'ti

i=I,6 ' i=1,6 ' II a[=

_, qXtglDi-ll'Rt J+i_6(tRL, Ji2zl'Rt-qXtR, D?'l'R,qX)Jt.t-Jiffil,6 t

i=1,6 |

]_ (qXtRltDild-qXtRltDi-ll'Rtt)+to xjtco/
i=l,6 J

(18)

These equations can be used to solve for the
accelerations of the top member. These are a very
efficient form of the dynamic equations.

The above accelerations are in the coordinate system
fixed to the top member. They can be transformed to
the accelerations in the fixed coordinate frame by a
simple coordinate transformation. Integrating the
accelerations will give the velocity of the top
member. The angular velocity of the top member can
be used to calculate the euler angle rates using the
following equation:

= Sec_ -Sin TCos_ Cost Cos_ 0 to0 (19)

Cosy Sin_ SinT Sin_ Cos_J

The above rigid body model was combined with the
dynamic models for the hydraulic cylinder and the
scrvolvalves. The details of these models are given in
Appendix B.

Discussion of Results

The results from the simulation are shown in Figures
(5)-(10). The top member was moved along the z-
axis from a initial position of (0,0,140.0) to a final
position of (0,0,140.2). while keeping the orientation
fixed. The move was commanded at 0.1s from the
start of the simulation to allow for the system to
attain equilibrium. The gains for the controller were
obtained by modifying the gains obtained from a
linearized analysis.

The results from the rate based scheme are shown in
Figures (5)-(7). The final position is obtained in
0.122s. The move in the z-direction induces

oscillation in the x and y directions. If the gains are
increased any further, the system will become
unstable.

The results from the force based scheme are shown in
Figures (8)-(10). The final z-position is reached in
0.058s. This is a 53% improvement in the step
response of the mechanism in the z-direction. The
gains in this system can be individually adjusted for

each direction and thus the response in the x, y and z
direction can be individually tailored. There is also a
significant steady state error in the response. This is
an expected error due to the weight of the top member
and the upper part of the limbs. This error can be
removed by adding a feedforward term to the
controller. The mechanism in the beginning of the
move can estimate the weight of the top member and
then use this information in the feedforward term.

A simple constant gain force control scheme has been
devised for the parallel mechanisms. This scheme is
easy to implement and is better suited to parallel
mechanisms than rate control schemes. The force

control scheme requires the computation of H-1 while
the rate control scheme uses the inverse position
kinematics. The H matrix can be inverted

symbolically to save on computational expense.

The preliminary results indicate that the force based
control scheme will improve the response over the
rate based control scheme. Further work, however is
required to reach any comprehensive conclusions.
There are important unanswered questions about the
effect of the position of the end-effector and the
payload mass on the response of the mechanism.

This control scheme can be easily adapted to control
forces on the end effector. This capability will be
crucial in applications of parallel mechanisms such as
assembly tasks or partial/zero gravity simulators.
The force control capabilities of the above control
scheme also needs further investigation.

The author wishes to acknowledge the support of
NASA JSC grant no NAG 9-672 for the above
research.
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Figure al. Free body diagram of the lower part of
limb.
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Fia _ '

Fi2y /Fi2x

Figure a2. Free body diagram of the upper part of the
limb.

Giventhepositionofthecoordinatesystemattached
to the top member and its orientation, the position
vector of the ith joint on the top member, in the fixed
coordinate system can be computed by

si=bRt tqi + r

where

-CosyCos_ -Sin7Cosa + CosySinl3Sina

bR t = Siny Cos_ Cosy Cosa + Sin7Sin[3Sina

-Sinl3 Cosl3 Sina

SinTSinot+ Cosy Sin[3Cosa ]

-Cosy Sinot+ Sin7 Sin_ Cosa]
Cos_ Cosa J

tqi = position of ith joint in the top coordinate
system.

r = position of the origin of the top coordinate
system in the fixed coordinate system.

The vectorsalongthelimbsin thefixedcoordinate
systemaregivenby:

li = Si - Pi

The limb lengths are the magnitude of this vector:.

!_2_
li=llil

For each limb, a coordinate system attached to the
limb is setup. The limbs will be assumed to be
axisymmetric. The z-axis for the new limb
coOrdinate system is along the limb. The x-axis is
perpendicular to the z-axis of the limb coordinate
system and the x-axis of the fixed coordinate system.
Thus the rotation matrix is given by:

bRli =

=

0
lixliy liz

lixliz liy

lix

liy

liz

where

lix, liy, liz = components of the vector li.

The velocity of the ith joint is given by:

t_i=tv+t 0_tqi

where

tv = velocity of the center of mass (coincident with
the origin) of the top member.
ko = angular velocity of the center of mass of the top
member.

The velocity of the ith joint in the limb coordinate
system is:

li _i=li R tts i

where

l_Rt=l_RbbRt

In the following section, all the variables are in the
limb coordinate system. The superscript is avoided
for clarity.
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The angular velocity of the ith limb in the limb
coordinate system is given by:

siy
c°ix = 1

COiy = -- Six
l

The velocity of the prismatic joint is given by:

i= Siz

The required equations of motion of the bottom link
are:

Ti2x = (Jilx + milb211)Ctix + bilFi2y + billmilgiy

2
Ti2y = (Jily + milbill)°qy + bilFi2x + billmilgix(al)

where
Jilx = mass moment of inertia of the lower limb
about the x-axis.

Jily = mass moment of inertia of the lower limb
about the y-axis.

giy I_Rb 0 = gravity vector in the limb

kgizJ L-gJ
coordinate system.

g = acceleration due to gravity (9.81 m/s2).

The equation of motion of the top limb are given by:

0tiy = CillFi3x + Oil 2

0tix = ci21Fi3y + Ci22

li = ci31Fi3x + Ci32

whele

li
Cil I =

Jily + Ji2y + milbi211 + mi2(li - bi22) 2

li
ci21 =

Jilx + Ji2x + milb?ll + mi2(li - bi22) 2

[milbil 1 + mi2(l i - bi22)]gix
Oil 2 -

Jily + Ji2y + milbi211 + mi2(li - bi22) 2

2mi2iiC,0iy (li - bi22)

Jily + Ji2y + milb211 + mi2(li - bi22) 2

[milbil 1 + mi2(1 i - bi22)]giy
Ci22 =

Jilx + Ji2x + milbi211 + mi2(li - bi22) 2

2mi2iiO)ix(l i - bi22)

Jilx + Ji2x + milbi211 + mi2(li - bi22) 2

1
Ci31 =

mi2

Fit + mi2giz + mi2(l i - bi22)(co 2 + 0_i2y)
Ci32 --

mi2

Fia = force from the actuator

(a3)

The angular acceleration in equation (a3) are related to
the acceleration of the top joint by the equation:

mi2 [(1 i - bi22)etiy + 2iieOiy ]= Fi3x - Fi2 x + mi2gix

_ (Zix =
mi2[-(1 i - bi22)lZix 2iiO_ix ]= Fi3y - Fi2y

+mi2giY aiy =

mi2[li - (li - bi22)(co 2 + toi2y)] = Fi3z - Fi2z

+mi2giz

Ji2x_ix = -bi22Fi3y - bi21Fi2y - Ti2 x

Ji2yOtiy = bi22Fi3 x + bi21Fi2 x - Ti2y

Ji2zlZiz = Ti3 x (a2)

where

Qtix, aiy, etiz = angular acceleration of the limb in
the limb coordinate system.
mi2 = mass of the upper part of ith limb.
Ji2x, Ji2y, Ji2z = mass moment of inertia of the
upper part of ith limb about its center of mass.

Combining equations (al) and (a2):

-ai3y - 2iicoix

li

ai3x - 2ii(Oiy

li
(a4)

Combiningequations(a3)and(a4):

ai3 = DiFi3 + d i (aS)

where

ai3 =

Fi3 =

D i =

ai3x ai3y ai3z] T

"Fi3 x Fi3y Fi3z] T

Cilll i 0 0 ]

J0 -Ci211i 0

0 0 ci31
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Cil21i + 2itOiy ]

di = / -Ci221i - 2it_i_ {

Lo,,,-1(o.'.+oi .)j
This matrices D i and d i in this equation can be
computed for each fimb.

The model for the two stage servovalves for small
displacements is given by the block diagram in Fig.
1.

Armature Flapper

Af

Figure bl. Block Diagram of Flow Control hydraulic
servovalve ([89.

The flow through an orifice is given by the equation:

Q = KArl - P2 Col)

where

Q = volume flow rate.
A = area of the orifice.

Pl = pressure on one side of the orifice.

P2 = pressure on the other side of the orifice.
K = constant.

For a positive displacement of the servovalve Xs, the
supply pressure is connected to chamber 2 of the
cylinder and the return side is connected to the

chamber 1. The equations are given by:

Qin = K,x, 3_-_s - P2 + KI(Pl - P2)

Qou, = K,x, Pl.f_- Pr - KI(Pl - P2)

Oa2)

(b3)

These flow rates are equal to the corresponding
volume changes in the chambers. These change are
given by:

Qin =iA2 _ A2(I- b2) alp2 (b4)
dt

Q_t = _i Al(bl + b2 - l) dla I (b5)
13 dt

Using the above set of equations:

A2(I- b2) @2 = K, ix, _ p2 - iA2
13 dt ('o6)

+KI(Pl-D2)

Al(bl +b2-1) dPl =_KslX.l_l _p r +iA1
dt Co7)

-KI(Pl-P2)

If Xs is negative, then these equations are:

A2(I- b2) dP2 = -K, Ix, r - Pr - iA2
dt 0)8)

+Kt(DI-P2)

Al(bl +b2-1) dPl = K.Ix.l_. -Pl + iAl
dt (tO)

The above set of differential equations can be solved
to obtain the pressure in the cylinder chambers. The
force on the limb is given by:

Fia = P2A2 - PlA1 - c i (blO)

where

c = damping coefficient.

This completes the development of the equations for
the hydraulic cylinder.
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