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A tract

A method of dealing with singularities and joint
limits in the inverse kinematics for both redundant and

non-redundant serial-link manipulators is presented.

The method uses damped least squares with dynamic

weighting for the approximate solution of the inverse

Jacobian problem. Damped least squares has become a

popular approach for dealing with singularities. The

method presented extends the utility of damped least

squares by incorporating dynamic weighting matrices

within its formulation. This allows specific joints to be

targeted in the minimization of the joint differential

vector. An efficient algorithm is given for the solution

of the weighted damped least squares problem. This

algorithm is implemented, along with an algorithm to set

the weights, for a six d.o.f, telemanipulator slave. A

solution that is approximate in the task space and that is

physically realizable in the joint space is obtained at or

near singularities and/or joint limits. Away from

singularities and joint limits an exact solution is
obtained. The results are a well behaved slave

manipulator under teleoperational control even when the

slave is at or near singularities and/or when unreachable
configurations are commanded.
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The inverse kinematics problem can be stated as

follows: given a desired position and orientation of the

end effector of a manipulator fred a joint configuration

that satisfies it. This problem is central in the control of

robot manipulators. Any time the motions of a

manipulator are described in a general space such as a

Cartesian space, the inverse kinematics must be solved.

In order to avoid this, manipulators are often controlled

by describing the motions only in the joint space. This is

done, however, with a great loss of generality. For

serial-link manipulators the inverse kinematics problem

is complicated by non-linearities, singularities,

unreachable configurations, multiple solutions, and even

infinite solutions in the case of a redundant manipulator.

The nonlinearities can be avoided by calculating the

inverse kinematics iteratively using the Jacobian of the

manipulator. Redundancies, while complicating the

solutions, are actually utilized to satisfy some criteria

that is secondary to the motion of the end effector. This

is a large body of research. The focus of this paper is in

dealing with singularities and unreachable

configurations.

The methods discussed here utilize the damped

least squares inverse of the Jacobian, which has been

proposed by many researchers for the inverse kinematics

problem. 1_-,3,4-5This inverse has the benefit of being

compatible with solutions based on the pseudoinverse

which has become a very popular method of calculating

the inverse Jacobian. The pseudoinverse has become

popular for many reasons including the utilization of

redundancy. 6,7_,9 The use of damped least squares

results in an approximate solution with a decrease in the
size of the solution vector. This is beneficial in

controlling the large joint rates resulting from exact

solutions near singularities. The addition of dynamic

weighting matrices in the damped least squares solution

is proposed in this paper, to increase its utility. Using

weighting matrices the damped least squares solution is

extended to methods of dealing with unreachable

configurations caused by joint limits. The previous

research with damped least squares has dealt mainly

with singularities. The dynamic weights can also be

used to target the problem joints, of a particular

singularity in reducing the size of the joint space solution
vector.

For any serial-link manipulator a particular

configuration of the joints corresponds to a unique
position and orientation of the end effector in Cartesian

space. This relationship is described by the forward

kinematics function of the manipulator. The methods

used to develop this function are well established. The

position and orientation, or the task space variable,
x _ Rm (generally m=6), of the end effector is described

as a function of the joint space variable, q e R n, by the

nonlinear forward kinematics equation,

x = A(q) (1)
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The differential relationship of x and q is described

using the following linear equation:

_/ot
8x=J(q)&! where J(q) m _q/c3_ (2)

In equation (2) J(q) is the m x n manipultor Jacobian

matrix. General methods for the development of the
forward kinematics function and the Jacobian of a

manipulator can be found in any introductory text on

robotics such as Craig1°, Paul n, or Koivo 12. (Note:

Hereafter the functional dependence of J on q will be
dropped and assumed to be understood.)

The inverse kinematics problem almost always

reduces to that of solving equation (1) for q or equation

(2) for &! in an iterative scheme to find q. Analytical

solutions of equation (1) are known only for a few simple

non-redundant (m=n) manipulator geometries. The six

degree of freedom (m=n=6) manipulator geometries for

which these solutions exist were clarified by Piepe r13.

Iterative inverse kinematics schemes can be used by

solving equation (2). This can be done off line or it can

be done on line within the control system of the

manipulator, using each iteration to calculate the joint

control law. An example of on-line iterative inverse

kinematics is resolved rate control. 14 Nearly all of the

contemporary research dealing with inverse kinematics

solutions is devoted to finding a solution or an

approximate solution to equation (2). This is true for

three reasons: 1) there are many manipulators for which

an analytical solution to (1) does not exist; 2) the

nonlinearities of equation (1) impede the development of

general methods for a numerical solution procedure; 3)

general methods for dealing with the other complications

of inverse kinematics can be incorporated in the solution

of (2). Solutions to equation (2) are commonly found

by solving a linear system of equations for &lusing some

well established method, such as Gaussian elimination.

In the non-redundant, exact case these solutions are

described using the equation

= J-_Sx (3)

This equation may be generalized to include redundant

manipulators and/or approximate solutions using the

following equation:

&l = J#Sx (4)

In this equation J# is a some type of inverse of the

Jacobian matrix. If m=n then J# is likely to be j-l,

whereas for redundant manipulators (n>m) J# might be

the Moore-Penrose pseudoinverse 15,J* - jT(jjT)-I. In

the redundant case with the pseudoinverse, (4) is a

particular solution, the minimum norm solution, of the

general solution given by

&i = J#_Sx+(I- J#J) v (5)

Here, v e R n is an arbitrary joint space vector used to

satisfy some criterion such as obstacle avoidance. The

null space vector, v, is projected into the null space of

the Jacobian, taking advantage of the redundancy.

Therefore, the solution given by (5) still satisfies

= .!_1. It might be noted that in the non-redundant

case where j#=j-1, the second term of equation (5)

vanishes and the null space vector has no effect.

2 Singularities and Work_nace Boundaries

The solutions to the inverse kinematics problem

given in the previous section work well for control of a

manipulator when it is not near a singularity or

workspace boundary. However, near a singularity or

workspace boundary certain components of commanded

movements either require large joint rates or are

physically impossible to satisfy. Therefore a robust

algorithm for the calculation of the inverse kinematics of

a manipulator must deal with singularities and

workspace boundaries.

Physically, a singularity may be described using end

effector motions (or forces) in the task space. In a

singular configuration a manipulator is degenerate,

causing the end effector to loose degrees of freedom in
the task space. This means that the robot cannot move

(control forces) in certain directions or that motion

(force) in some direction is dependent upon motion

(force) in others. Near a singularity small motions (large

forces) in certain directions require large joint rates

(small joint torques).

Mathematically a singularity may be described using
the Jacobian matrix. The Jacobian is rank deficient

(rank(J)<m) when the manipulator is in a singular

configuration. In the case of m=n the determinate of the

Jacobian is zero. Near a singularity the Jacobian

becomes ill-conditioned and elements of the inverse or

pseudoinverse are large. If the condition number of the
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Jacobianbecomestoo largethen a general solution

attempting to solve equation (2) will have numerical

problems.

A significant amount of research is devoted to

developing inverse kinematics with singularity
robustness. Methods that utilize redundancy to avoid

singularities have been proposed by many
researchers. 16,17,1s,19 However none of these methods

ensure both a nonsingular Jacobian and non-cyclic

behavior. Also, they need the null space vector which

might be used for other purposes. Whitney 14proposed

removing the under generating block of the Jacobian and

then using a pseudoinverse to calculate an approximate

solution near singularities. However this requires a

different Jacobian for each singularity. Futhermore,

achieving continuity when switching solutions is difficult

with this method. The most appealing of the proposed

solutions are those that use damped least squares. 1;-3.4,s

Workspace boundaries are the boundaries between

that space which is reachable by the manipulator

(W c R m) and that space which is not (W). These

boundaries occur in configurations where the

manipulator is at a singularity(s) or at a joint limit(s).

Because of joint limits an algorithm that deals with all of

the singularities of a manipulator does not necessarily

deal with all of the workspace boundaries.

Few solutions to the joint limit problem have been

given in the literature. Some propose the use of

redundancy to avoid joint limits. 6 The methods proposed

do not ensure their avoidance and are not applicable in

cases where redundancy is not available. In practice this

problem has been dealt with at the global level of path

planning, searching the entire path for unreachable

configurations. However, this is not always possible

such as when the manipulator is operated

teleoperationally with a human giving real time
commands.

3 Inverse Kincmati_i lIsin_ Damned Least Sauares

The damped least squares solutions to the inverse

kinematics problem are intended to ensure a well
conditioned matrix for the solution algorithm while

limiting the size of the solution vector, &l. This is done

by adding a diagonal matrix, al, to the matrix jjT.

Damped least squares may be used when an approximate

solution to equation (2) is necessary or acceptable.

If iSqis found usLqg the equation &l = J*_x, where

J* is the pseudoinverse. Then the solution,&l, satisfies

m nl[ qU2 (6)

among all &lsatisfying

 nllSx-J U 2 (7)

where I1"11denotes the Euclidean norm. If the Jacobian is

of full rank then satisfying the constraint (7) is the same

as satisfying equation (2).

If the approximate solution of damped least squares,

&l = J+Sx where

J+ = JT (JJT +cd)-l, ft.>O, (8)

is used then the solution satisfies

 n{llSx- J qU2 +a2 I[ ql[2} (9)

Note that for a=0 the damped least squares solution is

the pseudoinverse solution.

In the damped least squares case the size of error in

the task space is weighed against the size of the resulting

solution. For a given 5x the size of the solution vector is

decreased by increasing (x. However, this is done at the

expense of using an approximate solution. As Ct

increases so does the size of the error in the task space.

A large (x has the other benefit of ensuring a well

conditioned matrix for inversion. It has been shown by

Mayorga et al.1 that the condition number, K, of the
matrix P - (jjT +aI), is

= +ct) (10)

where (_1->(_2>.-.> Gm ->0 are the singular values of

the Jacobian matrix. It can be seen in this equation that

K is made arbitrarily close to 1 by increasing c_, thus

ensuring a well conditioned matrix for inversion even in

a singular configuration where (_m=0.

Simply stated, if one is willing to give up the
exactness of the solution then the size of the joint rates
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can be reduced and a well conditioned matrix for

inversion can be ensured by increasing ix. It should be

pointed out that an exact solution may not be physically

obtainable or even desirable near a singularity. This is

due to the loss of degrees of freedom in the task space or

the necessity of large joint rates, which may be

unachievable or beyond safety limits.

4 The Addition of Wei_htin_ to

Damned Least Souares

The weighted damped least squares solution is

intended to increase the utility of the damped least

squares solution by providing the ability to significantly

affect the size of individual components of mimimized

vectors. This is done by adding weighting matrices to

the formulation of the damped least squares problem.

The importance of individual components in the

minimization condition of the damped least squares

solution can be adjusted by scaling the rows and columns

of the Jacobian before the damped least squares solution

is calculated. Consider the following reformulation of

equation (2):

Wx_x = WxJWqWql_q (11)

where the weighting matrices are defined by

Wx --diag[w h ...Wxm], Wxi >0

Wq ---diag[wql ...Wq_], Wqi >0
(12)

If the following definitions are made

8x w - Wx_x ' 8q w = Wql_q,

Jw-= WxJWq, Pw -Jw JT +o_I
(13)

then (11) can be written

8Xw = Jw&lw (14)

Solving (14) using damped least squares

r r += Jw (JwJw +txI)-lSxw = JwSxw) results in an

approximate solution to equation (2), given by

+

&l = Wq&lw = WqJwSxw (15)

This solution satisfies

 n{UW ' xJ 'U2+o IW: II2} (16)

Taking the diagonal structure of the weighting

matrices into account, it can be seen in the minimization

condition (16) that the relative importance of the

individual components of the task space error vector and

of the solution vector are controlled by the individual

elements of W x and Wq respectively. If or>0 then

increasing the size of Wxi decreases the size of

(Sx-J_q) i and decreasing the size of Wqi decreases the

size of &li. The strict inequalities in (12) may be

relaxed for Ct>0 allowing Wqi =0 for some i. This may

be desired if it is necessary to eliminate the use of some

&li from the solution, such as at a joint limit.

5 Solution Algorithm

In solving the inverse kinematics it is desirable to

avoid the explicit inversion of a matrix since this is

computationally expensive. A more efficient algorithm

will solve a linear system of equations using Guassian

elimination or some similar method. It is also desirable

to minimize the number of matrix-matrix multiplies and

to factor the matrix-matrix and matrix-vector

multiplication. The following reformulation of the

problem, will aid in the understanding of the solution

algorithm presented here.

+

= WqJwSX w

= WqjTw (JwJTw +otI) -t 8x w
T -I

= WqJwP w 8Xw

= WqjTwy

(17)

where y = PwlSXw .

An efficient solution algorithm for inverse

kinematics problem using weighted damped least

squares is summarized in the following five steps:

1. calculate or set J, 8x, W x , Wq, and ct

2. form 8x w = WxSx and Jw = WxJWq

3. form Pw= JwJTw+ aI
4. solve 8x w = PwY for y using Cholesky

decompostion

5. form &i: WqjTwy
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It is not claimed that this is the computationally optimal

algorithm for solving this problem. An optimal

algorithm is both application and hardware dependent.

However, this algorithm is fairly efficient if the

implementation takes advantage of the structures of the
matrices and vectors involved. Most important are the

diagonal structure of Wx and Wq, and the symmetry of
Pw. Additionally, Pw is positive definite if: 1)

rank(J w)=m anda_>0, or 2) a>0. Jw can only

be rank deficient if J is rank deficient or some weight is
set to zero. In either of these cases, a will be

significantly larger than zero if it is set correctly.

Therefore, Cholesky decomposition can be used for the

solution of the linear system in step 4. One might note

that the two conditions given above, are actually the

conditions that ensure Pw is nonsingular, which is

important in any solution scheme.

The algorithm above does not include the utilization

of a null space vector for self motion of redundant

manipulators. A algorithm similar to the one above

which utilizes the a null space vector requires a

reformulation of the general solution to equation (2).
Such a reformulation follows.

{Jw_iXwq_l = Wq + ++(I-JwJw)vw}
T -1

= +(I-JwP w WxJWq)W q v}Wq {JwPw _ixw T -1 -1

T -1
= Wq {JwPw (Sx w -WxJv) +Wqlv}

T -1
= WqJwP w Wx(Sx-Jv) +v

=WqjTwY+V

(18)

where y=P_lWx(SX-Jv ) .

An algorithm similar to the one above which

implements the general solution is summarized by the

following five steps.

1. calculate or set J, 8x, v, Wx ,Wq, and a

2. form z=Wx(Sx-Jv) andJw=WxJWq

3. form Pw = JwJTw+ o_I

4. solve z = PwY for y using Cholesky

decomposition

5. form 8q = WqjTy + v

6 Settln_ the Weighting Matrices
and the Damnine Factor

6.1 General Discng_ion of the WeDhtine Matrices

and the Damnine Factor

Developing an algorithm to set the weights and

damping factor is not a trivial task. There are several

requirements of this algorithm. The basic idea is to

dynamically adjust the weights and damping factor so

that: 1) an exact solution is obtained away from

singularities and joint limits; 2) an approximate
solution, that is near the desired solution in the task

space and is physically realizable in the joint space, is

obtained near singularities and joint limits; 3) the

transitions between exact and approximate solutions and

between different approximate solutions are smooth.

A non-zero damping factor, o_, is used to ensure a
well conditioned matrix and to include the solution

vector in the minimized quantity. However, for _t>0 the

solution is an approximate one. Therefore, away from

singularities and joint limits, _ should be zero. As the

manipulator approaches a singularity or joint limit 0t

should be increased in a manner that: 1) ensures a stable

numerical solution; 2) keeps the joint differentials
within safe limits. A value of ¢_ that satisfies the second

condition will most probably satisfy the first. It should

be noted that the first condition is only a concern near

singularities or when there is a very large relative

difference in the size of the individual weights that are

used. It should also be noted that satisfying the second

condition is dependent upon the method used to set the

joint weights.

The relative sizes of the joint weights are used to

control the importance of each of the joints in the

minimization. If a joint has a small weight and _ is

non-zero, then the approximate solution tends not to use

that joint. For example, in a region near a singularity

where the rate for joint i tends to be large, Wqlshould be
small. The weight might also be small near a limit for

joint i. However, setting a joint weight based solely on

the distance from the joint limit poses a problem in itself.

If this is done, the joint will tend to stay at the limit even

if the exact solution gives a &h which is away from the

limit. Therefore it is necessary to include another

criterion such as the direction of &li in the previous
iteration of the inverse kinematics.
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The relative sizes of the error vector weights can be

used to control the importance of individual components

of the task space error vector. Increasing Wxl decreases
the size of (_ix-_Xl)i. While there are certainly

situations in which it would be useful to dynamically set

W x , what is suggested here is use of a constant W x to

normalize the Jacobian matrix. For m=6 the Jacobian

contains three rows related to position and three rows

related to orientation. The units in which position and

orientation are measured create large differences in the

relative magnitude of the elements of 8x. A constant

W x can be used to balance the importance of position
and orientation.

6.2 Previous Work Dealin__ With Settin__ the

Several schemes have been proposed for the

computation of the damping factor in damped least

squares without dynamic weighting. Most of these

schemes are aimed at providing singularity robustness

and do not include provisions for joint limits. Nakamura

and Hanafusa 2 proposed that the damping factor be

calculated as follows:

o/ 2s= s0(1- w0) ifw <w 0
(19)

ifw >w 0

(jjT + ¢tl) = LDL T . It is shown that the parameters _,

d$, and d s can be calculated inexpensively as by-

products of Guassian elimination in the solution of the

damped least squares problem. A method was suggested

by Chan and Lawrence 4 for the calculation of the

damping factor for both singularity and workspace

boundary robustness. They give the equation

s =s0118Xe[I2 (21)

where 8x e is the error of the manipulator in the task

space and s o is a constant. None of the methods given

in first three references 1,z3 provide for a non-zero

damping factor near joint limits. This is because they

are established only for singularity robustness. The last

scheme 4, which does include provisions for joint limits,

has questionable performance in providing a well

conditioned matrix near singularities. Also, its

performance with load generated task space errors is

questionable. All of these methods are intended to be

used throughout the workspace of the manipulator.

While it is theoretically justified to find a general

method to handle all cases, perhaps a more effective

solution would be to find measures which target specific

singularities and joint limits. Such measures could also

be used in the setting of the joint weights to specifically

target the problem joint(s) for that singularity.

where w = 4det(JJ T) is Yoshikawa's manipulability

measure 2° and s 0 and w 0 are constants to be determined

experimentally. A modification to this scheme is given

Kelmar and Kholsa 3. They suggest a method of

calculating the damping factor using the manipulability

measures at the ith and (i+l)th iterations. Mayorga et

al. 1 proposed a scheme which establishes an upper

bound, e 0, for the condition number of the matrix

(jjT +ctl). In their scheme _ is calculated for the next

iteration using parameters calculated in the present

iteration and the three constants s o, g0, and m. The

method is described as follows:

Si+ 1 = {S0(1-0g/g0)2

ifg > go
(20)

ifg_<g 0

where g = m_4dg / d s . Here _ is the upper bound of the

infinity norm IILI[**,dg and dsare the greatest and

smallest elements, respectively, of the diagonal matrix

D, and L is the unit triangular matrix such that

6.3 Scheme for Settino the Weiehtino Matrices and

the Damninp Factor

A scheme for setting the damping factor and joint

weights is presented here. It considers both singularities

and joint limits. The equations for this scheme, (22)

through (29), are given below. In each iteration of the

kinematic calculations, it determines a damping factor

and a set of joint weights for each singularity. It also

determines a damping factor and a joint weight for each

pair of joint limits. However, only the maximum

damping factor, and the minimum weight for each joint,

are used in the inverse kinematics solution (equations

(28) and (29)).

The damping factor ranges in value from zero, when

the manipulator is not in the region of a singularity or

limit, to s0, when the manipulator is at a singularity or

limit. The joint weights range in value from one, away

from singularities and limits, to Wqo s at a singularity,

and to w q0l at a joint limit. Different minimum values

for the joint weights are used at singularities and limits
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because at a limit it is desired to completely eliminate

the joint from the solution, while at singularity it might

only be desired to control the rate of the joint. To

prevent sticking at the limit, zero is not used. In practice

a small joint differential obtained using a small joint

weight, rather than zero, can be discarded.

For the singularities the damping factor and joint

weights are set using a measure of distance from the

singularity (equations (22) and (23)). A measure of
distance, either a linear distance or an angle, must be

identified for each singularity that is reachable by the

manipulator. The joints that need additional damping

also need to be identified for each singularity. If it is not

possible to make these identifications, then (22) might be

replaced by a scheme similar to those given in (19) or

(20). However, the benefits of dynamic joint weighting

are lost, for singularities, if these schemes are used.

Because a joint limit is a one sided problem,

temporal ramps are used in setting the damping factor

and weights, when considering joint limits (equations

(26) and (27)). These ramps are calculated using: one as

an upper bound; a dynamic lower bound found using the

distance from the limit the joint is moving towards; and

a discrete step (equations (24) and (25)). If a joint is in a

joint limit region and moving towards the limit, then its

weight is ramped down to a value that is found using the

distance from limit. If it is moving away from the limit,

then its weight is ramped back up to 1.

The following nomenclature and equations are

defined for the algorithm used to set the damping factor

and joint weights.

Constants

a 0 ...................... upper limit of damping factor

wq0s, Wq0_......... lower limits of joint weights for
singularities and joint limits

d0sj ,d0_ ............ edge the region for singularity j and
edge of region for joint limits

5u ...................... step to increase or decrease the joint

limit ramps in successive iterations

hilim i , lolim i .... high and low limit for joint i

_j ....................... set of joints for increased damping near
singularity j

Variables

asj,cq, .............. damping factor as calculated for
singularity j and for joint limit i

Wqs_ ,Wq_ .......... joint weight of joint i as calculated for
singularity j and for joint limit i

dsj ,d_ ............... "distance" from singularity j and from
joint limit i

uei ..................... temporal ramp for joint limit i
&hold ................ differential for joint i from previous

iteration

ao(l_(d /dosj)2) ifdsj<dos jasj = _ if dsi _>dos j (22)

(W(_sj) if dsj < d0sj and i_ SjWqs_= if dsj > d0s i or i _ ._j

where W(dsi ) = Wq0s + (1- Wq0s)dsi / dos j

(23)

_hilimi -qi if_'Xtiold->0
dti =[.qi-l°limi ifq_liold <0 (24)

__max{uei-Su, dti/dol] if d_ <dot (25)
uti -_ min{uti +Su, 1] if dl i >-dol

Wql i = WqOe +(1- WqOl)u_ (26)

(_*|i = aO (1-u_) (27)

(28)

Wql = min{mjin(Wqs_ ), Wq/i} (29)

A constant W x is used to normalize the Jacobian
matxix. The first three rows of the Jacobian are related

to position, which is measured in linear units, and the
last three are related to orientation, which is measured in

radians. The elements of W x are set as follows:

Wx: = Wx2 = Wx3 = NORM

Wx, =Wx 5 =Wx6 =1
(30)

Here NORM - n / (max reach of manipulator).

7 Discussion of an Imnlementation of

Weiohted Damned Least Souares

Weighted damped least squares, along with the

scheme for setting the weights and damping factor, is

used in the control of a slave manipulator in a
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teleoperational master and slave system. The controller

for the slave, which runs on a 33 MHz 486 PC/AT at

about 300 Hz, includes: analog and digital interfaces,

joint servos, inverse kinematics, and communications

with the master controller. The telerobotic manipulators

used in the system are the Kraft master and slave.

These manipulators have six degrees of freedom and are

kinematically similar. In the particular control system

described however, they are not controlled using a joint

space mapping between the master and slave, which is

normally true of kinematically similar master and slave

systems. Instead, a Cartesian space mapping, with

scaling and indexing, is used. Therefore, the master can

command unreachable configurations to the slave.

Furthermore, the master may not be near a singularity,

and therefore not hindered in any direction, while the

slave is operating near a singularity, and therefore with

limited capabilities in certain directions. Weighted

damped least squares is used in dealing with these

unreachable configurations and singularities, in real time

within the local control loop of the slave. Exact

solutions of equation (2) are found when the slave is

away from joint limits and singularities, and

approximate solutions are found when the slave is at or

near a joint limit or singularity.

This inverse kinematics algorithm performs quite

well in the system described above. The human operator

is free to move the master about without worrying about

what will happen when the slave is given physically

unrealizable commands. The approximate solutions are

both smooth and stable when the manipulator contacts

the environment and/or when the manipulator is in

several joint limit and/or singularity regions. Operation

near a singularity results in approximate solutions with

damped motion for the joints which swing about

dangerously if the exact solution is used. Operation near

joint limits result in approximate solutions that do not

use the limited joint. The movements of the end effector,

resulting from the approximate solutions, are intuitive to

the operator. This is because the solutions are

approximate in the task space. In contrast, solutions that

are approximate in the joint space are not intuitive to the

operator. Approximate joint space solutions result from

an exact mathematical solution to equation (2) with

partial implementation in joint space due to the physical
limitations.

If the parameters of the algorithm are tuned well,

the transitions between exact and approximate solutions

and between different approximate solutions are smooth.

However, if small values are used for dosj and/or dot
then the manipulator tends to "jerk" when transitioning

from one solution to the next. If a large value is used for

w qOt, then the resulting mathematical solution uses the

limited joint even at the limit, and the physical solution,

which is a partial implementation of the mathematical

solution, is not intuitive. However, if zero is used for

Wq0_ then the joint differential does not reverse and
allow the joint move away from the limit. It was found

that a small value of w q0_ is sufficient to allow this to

happen. It was also found experimentally that a small

value for s 0 was sufficient. Although it is not done

here, a minimum value for o_0 might be developed using

some theoretical justification such as an upper bound on

the condition number of (jjT + oJ) at the singularities.

In this paper a general procedure for the calculation

of inverse kinematics with singularity and joint limit

robustness has been presented. The procedure uses a

damped least squares solution to solve the inverse

kinematics iteratively and incorporates dynamic joint

weighting for the reduction of specific joint differentials.

The procedure gives an approximate solution at or near

singularities and/or joint limits and an exact solution

away from singularities and joint limits. An algorithm

was given for the efficient calculation of the inverse

kinematics using the procedure and a scheme for setting

damping factor and joint weights was given. The

algorithm and scheme were implemented for a six d.o.f.

teleoperator and a well behaved slave manipulator

resulted under teleoperational control.
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