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SUMMARY

Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from
1200 to 1350 °C. Results indicate that at and above 1250 °C, the silicon compacts containing 3.5 wt% polymer

char were fully converted to Si3N 4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without

polymer char could not be fully converted to Si3N 4 at 1350 °C under similar exposure conditions. At 1250 and
1350 °C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the

polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also

increased. By adding small amounts (-2.5 wt%) of NiO, the silicon compacts containing polymer char can be

completely nitrided at 1200 °C. The probable mechanism for the accelerated nitridation of silicon containing

polymer char is discussed.

INTRODUCTION

Polymeric materials are being used quite extensively in the processing of ceramics for a variety of reasons:

for improving dispersion of ceramic powders in a solvent (refs. 1 and 2), for improving flow characteristics and

consolidation behavior of ceramic powders (refs. 3 to 5), for forming ceramic bodies into complex shapes (refs. 6

to 9), for coating ceramic powder onto ceramic fiber, as precursor material for ceramic matrix or ceramic fiber
(refs. 10 to 12), and as a source of carbon (refs. 13 and 14). When used as a binder for ceramic powders, the

polymeric material is chosen based on its forming characteristics and its influence on the densification and

sintering behavior of the ceramics.

In general, polymeric materials when pyrolyzed leave a char of carbon whose amount can be varied from

-0 to 65 percent depending on the physical and chemical characteristics of the polymer. The acrylic binders

generally used for the fabrication of SiC and Si3N 4 ceramics leave less than 1 wt% polymer char on pyrolysis
(refs. 6 to 9) and are known not to interfere with the sintering kinetics of these ceramics. For the fabrication of

reaction-formed silicon carbide, a high char-yield polymer is deliberately chosen as a source of carbon. When

this polymer is mixed with silicon in proper proportion and pyrolyzed below 1000 °C, it typically yields a

mixture of silicon and carbon which upon heating to 1450 °C results in a SiC matrix with minimum amounts of

free silicon or carbon (ref. 15). The situation is quite different in the fabrication of reaction-bonded silicon
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nitrideusingpolymericmaterials.Although,theeffectof polymercharon thenitridationkineticsof commer-
cially availablesiliconpowders(averageparticlesize>3 lam)hasnotbeeninvestigated,arecentstudy(ref. 16)
hasshownthatthepolymercharof somepolymerstypicallyusedfor ceramicprocessingaffectsthenitridation
kineticsof lasersynthesized,highpuritysub-micronsiliconpowderin nitrogenbetween1250°Cand1350°C.
Charsof polymerssuchas,polyethyleneandpolystyrenedonotaffectthenitridationkineticsandcomplete
conversionof siliconto siliconnitrideis achievedwithinanhourof exposure.However,charsof polymerssuch
ashalogenatedethylene,polymethylmethacrylate,andpolysilazaneretardthenitridationkineticsof thesame
powderat bothtemperatures,andcompleteconversionof siliconto siliconnitrideis notachievedevenafter
30hr exposure.

Sub-micronsiliconpowders,fugitivepolymericbinders,andnonaqueoussolventsarealsobeingusedfor the
fabricationof SiCfiber-reinforcedRBSNcomposites(ref. 17).Suchcompositesareunderdevelopmentand
evaluationfor aircraftgasturbine applications. The reinforcement for the RBSN composites can be either

monofilaments or fiber tows. To facilitate infiltration of silicon powder between monofilaments or filaments in

the fiber tows or in two-dimensional woven fiber mats, sub-micron silicon powders are used. The polymer

binders used for the fabrication of SiC monofilament-reinforced RBSN composites leaves less than 1 percent

polymer char in the green bodies (ref. 17). This amount of polymer char does not interfere with the nitridation

process of the composites. However, the same polymer binder system can not be used for the fabrication of

small diameter(<20 }an) SiC fiber reinforced RBSN composites because of its poor forming characteristics.

Therefore, an entirely different polymer binder system must be used. One possible candidate is the polyvinyl-

based system.

The objectives of this study are two-fold. First, to investigate the effects of residual char of polyvinyl and

polyvinylidene polymers on the nitridation kinetics of sub-micron Silicon powder. Second, to determine the
nitridation mechanism of silicon in the presence of the polymer char alone and in combination with the

nitridation enhancing additive, NiO.

EXPERIMENTAL

A commercial grade silicon powder (Union Carbide, NY), thermoplastic polymer binders and additives, and

NiO powder (Baker Chemicals) were chosen as the starting materials. The average particle size of the

as-received silicon powder was ~61am. A vinyl-based polymer was used as the polymer additive. The choice of

the polymer binder and additive and their weight fractions depended on the forming characteristics of the total

system and the char yield of the polymers upon pyrolysis in nitrogen. As individual components, typical

polymer char yields for the chosen polymer binder and additive were 5 and 33 percent, respectively.

To reduce particle size, the as-received silicon powder was attrition milled for 36 hr in a 2-liter sintered
reaction-bonded silicon nitride vessel (Allied Signal Ceramics Company, Torrance, CA) filled with hot-pressed

silicon nitride balls (HPSN) and tetrahydrofuran (THF) solvent. The media charge was 300 gm of silicon

powder, 2400 gm of 6 mm diameter HPSN balls, and 1 liter of THF. Some batches contained as-received
silicon alone, and others contained as-received silicon with 2.5 wt% NiO. After attrition milling, the silicon-sol-

vent slurry was stored in a sealed polyethylene bottle until further use.

For ease of specimen preparation, tape casting was chosen as a method of fabrication. The same method is

also being used for the preparation of preforms of SiC/RBSN composites. For tape casting, the polymer binder
and additive mixture were first dissolved in a THF solvent, and then silicon and THF slurry were added to the

polymer solution. For all batches, the weight ratio of silicon to the total polymer content was maintained at

80:20. Although the total polymer content was kept constant, the polymer additive to binder content was varied

from 0 to 50 wt% to achieve desirable amounts of polymer char in the silicon tapes. The resultant slurry was



ultrasonicallystirredandcastonaTeflonplateto forma tape.Thetapewasdriedfor severalhoursin air to
removeexcesssolvent.Typicalthicknessof thedriedtapewas-2 to 3 mm.

Forthenitridationexperiments,discspecimens,eachwith dimensionsof 15mmin diameterand2 to 3 mm
in thickness,werecut fromthetapes.Eachspecimenwasfirst pyrolyzedbetween200and550°Candthen
nitridedat 1200,1250,and1350°C in ahightemperaturefurnaceequippedwitha thermogravimetricrecording
micro-balance(PerkinsElmer,TGA7 Series).Highpuritynitrogen(99.999percent)wasflowedthroughthe
TGAata rateof 60cc/min.

Thenitridedspecimensweregroundto powderandanalyzedby x-raydiffraction.Determinationof the
amountsof typicalphasessuchas,B-SiC,o_-andB-Si3N4, andunreactedSiwasaccomplishedby usinga
techniquereportedin theliterature(ref. 18).Thetotaloxygenandcarboncontentsin thespecimenswere
determinedby chemicalanalysis.

RESULTS

Theimpuritycontent,averageparticlesize,andsurfaceareaof thesiliconpowderbeforeandafterattrition
milling areshownin TablesI andII, respectively.Datashowthatafterattritionmilling,theaverageparticlesize
of theas-receivedsilicondecreasedfrom6 lamto 0.64larnandtheaveragesurfaceareaincreasedby anorderof
magnitudefrom 1.6to 30.2m2/gm.As expected,theoxygencontentof theattritionmilledpowderincreased
significantlydueits smallerparticlesizeandgreatersurfacearea.Theattritionmilling alsointroduced
extraneousimpuritiessuchas,yttriumandaluminumfromthemillingmediaintothesiliconpowder.

Typicalisothermalnitridationcurvesof attritionmilledsiliconpowdercompactswithandwithout3.5wt%
polymercharbetween1200and1350°Cin nitrogenareshownin figure1.Thecurvesshowthreedistinct
weightgainregions;a veryrapidinitialweightgainregionfollowedby a slowweightgainregionandthena
plateauregionwhereweightremainednearlyconstant.Comparison of the curves at 1200 and 1250 °C indicates
that at any exposure time, the silicon compacts containing polymer char showed significantly higher weight gain

than the silicon compacts without polymer char. The higher weight gain reflects higher conversion of silicon to
silicon nitride. At 1250 and 1350 °C, the reaction rates were faster in the first and second regions of nitridation

for the silicon compacts with polymer char compared to those of silicon compacts without polymer char. In
addition, the TGA curve of the silicon compact with polymer char leveled off after one hour of exposure. The

silicon compacts without polymer char nitrided at 1350 °C gained -52 wt% after -9 hr exposure. This is

~10 wt% higher than the weight gain observed for the silicon compacts with polymer char. Theoretically -66

percent weight gain is expected when silicon completely converts to silicon nitride. However due to loss of

silicon monoxide gas which is formed due to oxidation of silicon (a reaction between residual oxygen present in

flowing nitrogen and silicon) and active oxidation of silica on silicon powder, complete conversion of the initial
silicon to silicon nitride may not be possible. As a result, the weight gain seen is normally lower than the
theoretical value.

The influence of the nitridation enhancing additive, NiO, on the nitridation kinetics of polymer char

containing silicon compacts was also studied. Typical isothermal TGA curves for the silicon compacts with

polymer char, and with and without 2.5 wt% NiO at 1200 °C in 1 atm nitrogen are shown in figure 2. Addition

of a small amount of NiO to the silicon compacts containing polymer char permitted full conversion of silicon
to silicon nitride at 1200 °C within 24 hr. The fact that the silicon compact with NiO can be nitrided at a lower

temperature than the silicon compacts with polymer char alone suggests that the mechanism of nitridation in

these two systems can be different.



A summaryof XRD data for the nitrided TGA specimens are shown in Table III. The table shows that the

silicon compacts with polymer char nitrided at 1350 °C for 3 hr, and those with polymer char and NiO nitdded

at 1200 °C for 24 hr contained less than 1 percent residual silicon and small amounts of SiC; an indication of

near complete conversion of silicon to either Si3N 4 or SiC. The silicon compacts with polymer char alone
nitrided at 1250 °C for 24 hr achieved a high degree of conversion, but those nitrided at 1200 °C did not nitride

completely even after 48 hr exposure.

To determine if carbothermic reaction might be responsible for the accelerated nitridation in silicon compacts
containing polymer char, nitridation experiments were performed on fumed silica (CAB-O-SIL fumed silica

L-90) and carbon black (Monarch 1300) at 1200 and 1350 °C in 1 atm nitrogen in a TGA. Three different

molar ratios of carbon to silica (C/SiO2) were used; 3:1, 5:1, and 15:1. A C/SiO 2 ratio of 3 corresponds to that
present in the silicon compacts containing polymer char. The particle size and surface area of fumed silica and

carbon black are given in Table IV. The TGA results (shown in fig. 3) indicate that at 1200 °C (fig. 3(a)) and

1350 °C (fig. 3(b)), the compacts of carbon and fumed silica lost between 8 to 11 percent and -20 to 27 percent
of their initial weight, respectively, depending upon their molar ratios after 12 hr exposure. Furthermore, the

weight loss for these compacts seems to increase with increasing molar ratio and temperature, but the

temperature had a greater influence on the weight loss than did the molar ratio.

XRD analysis showed no evidence of crystalline phase in the compacts at all three molar ratios of carbon to

silica nitrided at 1200 °C. Those nitrided at 1250 and 1350 °C, irrespective of the molar ratios, showed ot-Si3N 4.
Chemical analysis of these compacts identified unreacted carbon and small amounts of silica in the compacts
nitrided at temperatures lower than 1350 °C indicating partial reaction between the silica and carbon. The

formation of o_-Si3N 4 suggests carbothermic reaction between silica and carbon black.

These results support a mechanism in which the silica layer on silicon powder reacts with polymer char to
initiate carbothermal reaction provided the surfaces of the silicon and polymer char are highly active.

To determine the effect of polymer char amount on the phase composition of the nitrided material, the

silicon compacts containing varying amounts of polymer char were nitrided in a graphite furnace at 1200 °C for

24 hr, and at 1350 °C for 1 hr. After nitridation, the compacts were analyzed for crystalline and non-crystalline
phases by XRD and chemical analysis, respectively. XRD phase analysis of the silicon compacts with polymer

char, and with and without NiO at 1200 o for 24 hr are shown in figure 4. It is clear from figure 4(a) that as the

polymer char content is increased in the silicon compacts without NiO, the amounts of SiC and total Si3N 4

increased, and the amount of unreacted silicon decreased. The offB ratio which is an indicator of Si3N 4 formation
by gas phase reactions also decreased with increasing polymer content. Theoretically, if carbon were to react
only with the silicon, we expect 3.33 grams of SiC for each gram of carbon. The fact that the wt% of SiC

formed was nearly three times the wt% of polymer char indicates that most of the polymer char is reacting with

the silicon. On the other hand, the silicon compacts containing NiO nitride under similar conditions (fig. 4(b))

showed no significant effect of polymer char content on the amounts of Si3N 4 and SiC. Comparison of figures 4(a)
and 4(b) indicates that the amount of SiC formed in the nitrided silicon compacts with polymer char and NiO is
lower than those with polymer char alone.

Figures 5(a) and (b) show the XRD phase analysis of silicon compacts with and without NiO, and with

varying amounts of polymer char nitrided at 1350 °C for 1 hr. In the absence of NiO, with increase in polymer
char content the amount of SiC also increased, but the amount of the unreacted silicon initially decreased and

then leveled off, and the amount of total Si3N 4 formed initially increased and then leveled off. The _g ratio

also decreased with increasing polymer char content. On the other hand, the silicon compacts with NiO under

similar nitriding conditions showed decreasing amounts of total Si3N 4 and increasing amounts of SiC with
increasing amount of polymer char. The amount of unreacted silicon was below the detectable limit. Again the



amountsof SiCformedin thesiliconcompactwith NiOwereconsistentlylowerthanthosein thecompacts
withoutNiO.

ThecarbonelementalanalysisresultsshowedthatthesiliconcompactsblendedwithNiO andnitridedat
1250and1350°Chadup to 1.1wt%excesscarbondependingonthepolymercharcontentin thepre-nitrided
compacts.Thepresenceof excesscarbonindicatesthatthepolymerchardid notcompletelyreactwithsilicon,
andthushelpsin explainingthelowerSiCcontentin thesecompacts.

Thequantitativeanalysisof thesiliconcompacts,thosecontainingbothNiOandpolymerchar,andthose
containingpolymercharalone,nitridedat 1200and1350°C indicateda totaloxygencontentof -3 percent.
Thisis nearlyhalf thatof theattritionmilledsiliconpowder(cf.TableII). Assumingthatall of theoxygenin
thenitridedcompactsis associatedwithsiliconnitrideasSiO2andwith NiO,thecalculatedtotalsilicacontent
in thenitridedcompactsis -6 percent.Thefactthatsilicacontentremainednearlythesamein thenitrided
compactswithandwithoutpolymercharsuggeststhatpolymercharhasno influenceon thetotalsilicacontent
of thenitridedcompacts.

DISCUSSION

Resultsof thisstudyindicatebeneficialeffectof polymercharonthenitridationkineticsof attritionmilled
siliconat andabove1250°C.Themechanismbywhichpolymercharenhancesnitridationcanbeanalyzed
basedon itsreactivitywithsilicaonsiliconpowderandits abilityto lowerthepartialpressureof oxygenin the
systemwhichincidentallyalsoinfluencesformationof ct-Si3N4.

In general,siliconpowder--as-receivedor attritionmilled---containsa smalllayerof silicawhosethickness
canvaryfrom- 3 to 4 nm.Unlessthissilicalayeris disruptedeitherphysicallyor chemically,thenitridation
reactiondoesnotstart(ref. 19).After theinitiation,theextentto whichnitridationreactionproceedsis
controlledby severalfactors:meanparticlesizeandsizedistribution;thenatureanddistributionof impuritiesin
thestartingsiliconpowder;sizeandsizedistributionof openporosityin thesiliconcompacts;dimensionsof the
siliconcompacts;andnitridingconditions.To removethesilicalayeronthesiliconpowdertwotechniqueshave
beensuccessfullyused;annealingthesiliconcompactsin H2(ref.20)or amixtureof N2+H2, (ref. 21) or

adding a small amount of a transition metal oxide, such as Fe203, NiO, MnO, Cr20 3 to the silicon compacts
(ref. 19).

In the first approach, the silicon compacts are annealed in a stream of flowing hydrogen or hydrogen

containing gases between 1000 and 1200 °C for 1 to 2 hr. At these temperatures hydrogen reacts with silica,

and the by-products of the reaction, SiO gas and water vapor, are removed by the flowing gas. Studies (refs. 20
and 21) have shown that the hydrogen annealed silicon compacts when nitrided at 1350 °C, consistently showed

faster nitridation kinetics than those of the unannealed silicon compacts, but similar compacts when oxidized
before nitridation showed slower nitridation kinetics.

In the second approach, a nitridation enhancing additive is used to disrupt the silica on silicon. Although the

mechanism by which the additive operates is not clearly understood, it is generally believed that silica on the

silicon reacts with the additive to form a porous silicate layer and this exposes the fresh surface of silicon for

nitridation (ref. 19).

It is well established in RBSN literature that during nitridation, Si3N 4 is formed by the reaction of silicon
and SiO vapors with nitrogen or by the direct reaction of solid silicon with nitrogen (ref. 19). The silicon nitride

phase formed by the gas phase reactions, i.e., by silicon vapors with nitrogen or by SiO vapors with nitrogen is

predominantly o_-Si3N4 (ref. 22), and that formed by the solid silicon with nitrogen (ref. 19 and 23) or by the



dissolutionoc-Si3N4 and reprecipitation from the silicate melt is B-Si3N 4 (refs. 19 and 24). Thus from the

knowledge of cy./g ratio, it is possible to determine which of these two reactions will be dominant during
nitridation.

The fact that the silicon compacts containing polymer char showed faster nitridation kinetics at 1250 °C or

greater, similar to those reported in the literature for the silicon compacts pre-treated in hydrogen, suggests that

polymer char reacts with the native silica on the surface of silicon powder similar to the hydrogen reaction with
silica.

In the SiO2-C-N 2 system (refs. 25 and 26), it is known that SiC, Si3N 4, SiO and Si2ON 2, form between 1200
and 1600 °C. The suggested overall reactions for the formation of these products are as follows;

SiO 2 + 3C = SiC + 2CO (1)

SiO 2+ C=SiO+CO (2)

2SiO 2 + N 2 + 3C = Si2N20 + 3CO (3)

3SiO + 2N 2 = Si3N 4 + (3/2)02 (4)

The conditions under which SiC, Si2N20, and Si3N 4 phases are stable depend upon the mole ratio of carbon
to silica, partial pressures of oxygen and nitrogen, and reaction temperature. Previous studies have shown that

the formation of SiC is favored when the mole ratio of carbon to silica is greater than 3 and at temperatures

greater than 1400 °C (ref. 27), and that the formation of Si3N 4 is favored at mole ratios of carbon to silica less
than 3 and at temperatures less than 1650 °C (ref. 28). It is also known that the formation of silicon oxynitride

can be avoided in the presence of excess carbon because carbon maintains the partial pressure of oxygen much

lower than 10 to 20 atm (ref. 23). Since silicon oxynitride phase was not detected by XRD analysis and since

the carbon to silica mole ratio used in the current study was lower than 3, the formation of silicon carbide by
equation (1) and the formation of oxynitride by equation (3) can be ruled out. From the process of elimination,

we conclude that equation (2) is the dominant reaction under the current experimental conditions. The

by-products of this reaction are SiO and CO. The SiO, being a reactive gas and an intermediary, can further

react with nitrogen to form 0c-Si3N 4. The other reaction product, CO, can partially react with silica or silicon or
be swept away with the flowing nitrogen.

After the silica layer on silicon is removed by the carbothermic reaction, the pristine surface of silicon can

react with excess polymer char or nitrogen, and the excess polymer char can also react with residual oxygen
present in the system as shown below:

3Si + 2N 2 = Si3N 4 (5)

Si +C= SiC (6)

2C + 0 2 = 2C0 (7)

Combining equations (2), (4) to (6), and (7) yields

4Si + 3SiO 2 + 7C + 4N 2 = 2Si3N 4 + SiC + 6CO (8)

6



Thefreeenergyof formation,AG,for Reaction8 at 1200°C is -74.4K cal/mole.Eventhoughthisreaction
is thermodynamicallyfeasibleat this temperature,completeconversionof siliconto Si3N4 maynotbepossible
dueto kineticreasonsasseenin figure3(a).Thephaseanalysisresultsof thenitridesilica/carboncompacts,and
thesiliconcompactscontainingpolymercharclearlyshowthatto obtainsignificantamountof Si3N4,a
nitridationtemperaturegreaterthan1200°C is required.

Althoughcarbothermicreactionis probablyresponsiblefor fasternitridationkineticsin thesiliconcompacts
containingpolymerchar,it is notclearwhetherthepolymercharlocallydisruptsorcompletelyremovesthe
silicalayeronsilicon.Asreportedearlier,theattritionmilledsiliconpowdercontains-6 wt%oxygen.
Assumingthatall theoxygenis in theformof silica,thetotalcalculatedamountof silicain thesiliconcompact
is -12 wt%.To completelyremovethisamountof silicarequiresatleast3 wt%of carbonchar.Therefore,as
thepolymercharcontentin thesiliconcompactsis increasedup to 3 wt%,weshouldexpectincreasingamounts
of SiOandCOaccordingto equation2.Increasingamountsof SiOimpliesgreateramountsof t_-Si3N 4 and

increasing (x/$ ratio in the nitrided compacts. However, figures 4(a) and 5(a) show that at low concentrations of

polymer char (-1.5 percent), the nitride silicon compacts show ct/B ratios of 2.5 to 3 and at high concentrations

(>2.5 percent), the o_/13decreases to less than 1. This also implies that at higher concentration of polymer char,

SiO and hence 0t-Si3N 4 formation is retarded. A decrease in the partial pressure of SiO with increase in the
polymer char content is possible if polymer char apart from reacting with the silica on silicon also reacts with

residual oxygen generated as the by-product of the Reaction 4 or the oxygen possibly present in the flowing
nitrogen. If these reactions were occurring, we should also expect lower amounts of silica in the nitrided

compacts containing polymer char than those containing no polymer char. Contrary to the expectations, the

silica content in the nitrided compacts remained nearly the same regardless of polymer char contents. This tends

to suggest that polymer char possibly triggers nitridation reaction by locally reacting with the silica on the
surface of silicon, but it does not completely remove the silica. The fact that most of the polymer char in the

silicon compacts converts to SiC also supports a mechanism in which polymer char locally reacting with silica
on silicon.

Whether the faster nitridation kinetics seen in the silicon compacts containing polymer char is primarily due

to carbothermic reaction or due to synergistic effects of carbothermic reaction and impurities present in the

silicon powder is not known. To prove the role played by polymer char in the nitridation reaction, further study

is needed on high purity sub-micron silicon powder with polymer char.

Results also show that the addition of small amounts of nitridation enhancing additive, NiO, to polymer char

containing silicon compacts does lower the nitridation temperature to 1200 °C, and complete conversion of

silicon to silicon nitride is possible within reasonable exposure time (<24 hr). This suggests that NiO is much
more effective in disrupting the silica scale on silicon and promoting nitridation than polymer char alone at

lower temperatures. It is hypothesized that NiO, similar to Fe203 and other transition metal oxide, devitrifies

silica or reacts with it to form a low melting nickel silicate. Both of these mechanisms facilitates direct access of

nitrogen to silicon.

SUMMARY OF RESULTS

The effects of polymer char on the nitridation of silicon has been determined. The major findings are as
follows:

(1) The silicon compacts containing polymer char showed faster nitridation kinetics than the silicon compacts

without polymer char, and complete conversion to silicon nitride within 6 hr at and above 1250 °C. Removal of

the silica layer on silicon powder by the polymer char appears to be the mechanism.



(2) As the amount of polymer char in the silicon compacts is increased, the amount of SiC in the nitrided

compacts is also increased. It is suggested that the polymer char reacts with silica and then with silicon.

(3) The nitridation temperature of the silicon compacts with polymer char can be reduced to 1200 °C by

adding small amounts (2.5 wt%) of nitridation enhancing additive, NiO.

CONCLUSION

The char of vinyl based polymer shows two beneficial effects on the nitridation kinetics of attrition milled

silicon powder: (a) it disrupts silica on silicon and thus enhancing kinetics of nitridation, and (b) it acts as a

scavenger for residual oxygen in the system. The polymer char and NiO containing silicon compacts can be

completely nitrided at 1200 °C. The NiO additive is more effective agent for facilitating nitridation by

disrupting the silica layer on the silicon powder than is the polymer char alone.
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TABLE I.--TRACE IMPURITY ANALYSIS OF

SILICON POWDER BEFORE AND AFTER

ATrRITION MILLING

Elements

Aluminum

Iron

Calcium

Chromium

Manganese

Titanium

Vanadium

Ziroconium

Yttrium

As-received

silicon,

wt%

O. 17x'-O.OI7

0.50-_0.050

O.Oli-O.O01

0.03i-0.003

0.04±0.004

0.01±0.001

0.01±0.001

0.02_'-0.002

0.01±0.001

36 hr attrition

milled silicon,

wt%

0.20z0.002

0.40z0.004

0.01 i-O.O01

0.02z0.002

0.05±0.005

0.01±0.001

0.01±0.001

0.01±0.001

0.20-_.002

TABLE II.--CHEMICAL ANALYSIS, SURFACE AREA, AND

AVERAGE PRTICLE SIZE OF SILICON POWDER

Mastiff

As-received

Attrition milled

for 36 hr

Oxygen,

wt%

0.43:t-0.04

6.0±0.06

Carbon, Surface Average

wt% area, particle

mZ/g size,

pm

0.025:t-0.001 1.6._ 6.0

0.30i-0.003 30.2±3 0.64
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TABLE III.--PHASE COMPOSTION RESULTS OF NITRIDED TGA SPECIMENS

System

Si

Si + ploymer binder +

polymer additive

Si + polymer binder +

2.5 wt% NiO

Si

Si + polymer binder +

polymer additive

Si

Si + polymer binder +

polymer additive

Polymer

char prior to

nitridation,

wt%

0

3.5

3.5

0

3.5

0

3.5

Nitriding

temperature,
°C

1200

1200

1200

1250

1250

Crystalline after phase nitridation distribution

Si3N 4,
wt%

36.2

72.4

97.2

1350

1350

44.4

86.4

98.1

94.3

SiC, Si,

wt% wt%

0 63.8

7.8 19.8

2.2 0.6

0 55.6

7.6 6

0 1.9

5.7 ND

Nitridation

time,

hr

64

48

24

48

24

12

3

TABLE IV.--SURFACE AREA AND

AVERAGE PARTICLE SIZE OF

FUMED SILICA, POLYMER CHAR,

AND CARBON BLACK

Material Surface

area,

m2/g

Fumed silica 100-_3

Polymer char 800_20

Carbon black 560a:15

Average

particle

size,

lam

0.25

<0.1

<0.1

11



so (a)

'=°°w'ch"io
4°117/ _ ,_ooo°..,°h.,.i.30

_2o _2o

10 10

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Time, min Time, min

Figure 1.--Isothermal TGA curves showing the effect of temperature Figure 2.--Isothermal TGA curves for silicon nitrided at 1200 °C in

on nitddation kinetics of attrition milled silicon powder compacts 1 atm nitrogen (a) silicon + 3.5 wt % char (from binder) + 2.5 wt %

with and without 3.5 wt % polymer char. NiO, (b) silicon + 3.5 wt % char {from binder and additive).
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Figure 3.--TGA curves showing effects of temperature and carbon

to silica molar ratio on nitddation kinetics of fumed silica and

carbon black. (a) 1200 °C. Co) 1350 °C.
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