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CHAPTER I

Introduction

The mechanics of wave propagation in the presence of obstacles is of great inter-

est in many branches of engineering and applied mathematics like electromagnetics,

fluid dynamics, geophysics, seismology, etc. Such problems can be broadly classi-

fied into two categories: the bounded domain or the closed problem and the un-

bounded domain or the open problem. Analytical techniques have been derived for

the simpler problems; however, the need to model complicated geometrical features,

complex material coatings and fillings and to adapt the model to changing design

parameters have inevitably tilted the balance in favor of numerical techniques. The

modeling of closed problems presents difficulties primarily in proper meshing of the

interior region. However, problems in unbounded domains pose a unique challenge

to computation, since the exterior region is inappropriate for direct implementation

of numerical techniques. A large number of solutions have been proposed but only

a few have stood the test of time and experiment.

The goal of this thesis is to develop an efficient and reliable partial differential

equation technique to model large three dimensional scattering problems in electro-

magnetics.
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1.1 Background

Ever since the method of moments (MoM) was introduced by Harrington [4] in

the late 60s, numerical techniques for predicting electromagnetic field behavior have

gained in popularity. With increases in computing speeds and memory and the need

to simulate real-life problems, researchers have been actively trying to refine the older

numerical methods as well as devise newer and more efficient solution techniques.

The MoM is based on applying integral equations on the surface of the desired

structure and computing the fields everywhere in space [5]. For anisotropic materials,

the entire volume needs to be discretized and a volume integral equation must then

be solved. However, the matrix obtained from discretizing an integral equation is

full and thus requires O(N 2) storage, where N is the number of unknowns. In 3D

problems, this is a serious limitation since the method can scale up to large problems

only at considerable computational cost. Thus we need to seek solution techniques

which scale favorably with increasing problem size.

Partial differential equation (PDE) methods, like finite element and finite differ-

ence methods, offer the most attractive alternative to integral equation techniques

since they lead to matrix systems which are sparse. Therefore, only the non-zero

entries of the final matrix system need to be stored resulting in O(N) storage re-

quirement. Thus the increase in storage demand with increasing problem size is seen

to be minimal.

PDE techniques like finite elements were, however, originally constructed for

solving bounded domain problems. In recent times, finite elements are increasingly

being used for modeling unbounded problems, where the desired parameter decays

off to zero infinitely away from the region of interest. In electromagnetics, the desired
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parameter is a field quantity like the electric or magnetic field. It is obviously imprac-

tical to extend the finite element mesh to infinity; thus the mesh must be truncated

at a suitable distance from the region of interest. Boundary conditions should then

be applied at this artificial mesh truncation surface such that the boundary appears

transparent to the propagating field.

There are two types of mesh truncation conditions: exact and approximate. Exact

boundary conditions can be placed very close to the region of interest; however, they

suffer from potential uniqueness problems [6] and give rise to partly full systems.

The loss of uniqueness associated with systems where the exact boundary condition

is employed on the mesh truncation boundary is well-known and was first pointed out

by Mautz and Harrington[7]. Remedies like complexification of the wave number [8]

and using the combined field integral equation [9] exist, and must be used for a robust

implementation. Although the problem of interior resonances can be now avoided,

the finite element-boundary integral system still possesses a partly full system which

affects its scalability to large problems.

Approximate boundary conditions, on the other hand, are local in nature but

preserve the sparsity of the finite element system. This advantage is partly offset

by the fact that the finite element mesh must be extended some distance away from

the region of interest and the approximate boundary condition imposed on the mesh

truncation surface. These boundary conditions work on the principle that the higher

order terms of the expansion for the propagating field decay rapidly away from the

target. Therefore, if the truncation boundary is placed far enough from the region

of interest, the boundary condition on the mesh termination surface needs to absorb

only the lowest order terms of the field expansion to accurately model the physics

of the problem. In this thesis, our aim is to examine the performance of these
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approximate conditions, also known as absorbing boundary conditions (ABCs), in

practical three dimensional problems and to derive improved boundary conditions

which will enable more efficient utilization of the available resources.

1.2 Outline of thesis

This dissertation describes the development of a finite element method for the

solution of general three-dimensional scattering problems. The entire research has

been geared towards a robust, state-of-the-art solution of unbounded domain prob-

lems in electromagnetics. Improvements in solution convergence, mesh termination

conditions, algorithmic complexity and computational speed have all been carried

out with an eye to making the methodology more efficient in terms of computer

storage and time.

Chapter 1 presents a brief introduction to the problem, its possible applications

in science and industry and our motivation in preferring this solution methodology

over more traditional ones.

Chapter 2 gives a short review of the fundamental laws that govern electromag-

netic phenomena and the modeling technique of finite elements. The wave equation

for electromagnetic fields is derived and various boundary conditions satisfied on

material interfaces are presented. A brief outline of the method of finite elements

and its application in electromagnetics is given.

Chapter 3 provides a detailed review on the construction and implementation

of scalar and vector shape functions for two- and three-dimensional finite elements.

Traditional node-based shaped functions are presented for a wide variety of element

shapes and their pros and cons are outlined. The problem with nodal basis for a

full-scale vector formulation is explained and edge-based vector shape functions are
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introduced. The development of two- and three-dimensional edge bases is presented

for a wide variety of element shapes. Higher order edge basis functions are pre-

sented for triangles and tetrahedra along with other recently developed novel shape

functions.

Chapter 4 describes the formulation and implementation for closed and open

domain problems. In the first part of the chapter, the closed problem is solved by

determining the eigenvalues of an empty or filled metallic cavity. The origin and

avoidance of spurious modes is discussed. The open problem is then formulated in

the second part of the chapter and schemes for terminating the finite element mesh

are discussed. The code is then validated for a wide class of perfectly conducting

and composite geometries having arbitrary shapes.

Since the finite element-absorbing boundary condition methodology becomes ex-

tremely attractive for large problems, it is essential that the computer code be as

computationally efficient as possible. Chapter 5 details the optimization and the

subsequent parallelization of the finite element code and the various numerical con-

siderations associated with it. The strategies for sparse matrix storage as well as

solution of sparse systems using preconditioned iterative methods is outlined. The

inherent parallelism in various types of point and block preconditioners is examined

along with performance figures on the KSR1 and the Intel iPSC/80 massively parallel

architectures.

In Chapter 6, new mesh termination conditions which can be applied on termi-

nation surfaces conformal to the target are derived and applied on some benchmark

geometries. Since these ABCs are enforceable on doubly curved surfaces, dramatic

reductions in computer storage and solution time are obtained. The improved bound-

ary conditions are applied on mesh truncation surfaces composed of combinations of



cylinders, spheresand flat planesand their performance examined with respect to

mesh termination distance and system symmetry. Extensions to more complex mesh

termination boundaries are possible.

Chapter 7 concludes the thesis by summarizing the important results obtained

during the course of this work and its possible future extensions.



CHAPTER II

Basic concepts of electromagnetics and finite
elements

As mentioned in the last chapter, this thesis deals with the application of finite

elements to three-dimensional problems in electromagnetics. Therefore, it is impor-

tant to have a grasp of both the finite element method as well as electromagnetic

theory to solve these problems. This chapter is thus divided into two parts. The

first part gives a brief review of the basic concepts of electromagnetics and the re-

sulting differential and integral equations pertaining to our problem. The second

part introduces the reader to the formulation of boundary-value problems with finite

elements.

Electromagnetics:

Maxwell's equations

basic concepts

Electromagnetic waves in all space axe governed by a set of fundamental equations

called Maxwell's equations. In differential form, they are written as

cOB

VxE - cOt : (Faraday's law) (2.1)

cOD
VxH = J + cO--"t- : (Maxwell-Ampere's law) (2.2)

V-D = p : (Gauss' law) (2.3)
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where

V.B = 0 : (Gauss' magnetic law) (2.4)

E - electric field intensity in volts/m

D - electric flux density in coulombs/sq, m

H =_ magnetic field intensity in amperes/m

B - magnetic flux density in webers/sq, m

J - electric current density in amperes/sq, m

p ----_ electric charge density in coulombs/cu, m

Another fundamental equation, frequently referred to as the equation of continuity,

is given by

V.J = Op
at (2.5)

and expresses the conservation of charge.

Of the five equations stated in this chapter, only three are independent. Either

the first three equations, (2.1-2.3), or the first two equations, (2.1 and 2.2) and

the fifth equation (2.5), can be chosen as independent equations. The remaining

two equations,(2.4 and 2.5) or (2.3 and 2.4), can be derived from the independent

equations and are thus called auxiliary or dependent equations.

The three independent equations cannot be solved since the number of unknowns

exceeds the number of equations. Maxwell's equations become definite only when the

three constitutive relations between the field quantities are specified. These relations

describe the macroscopic properties of the medium being considered. For a simple

medium, they are given by

D = eE (2.6)
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/9 = _H (2.7)

J = o'E (2.8)

where the parameters e,/_ and a denote the permittivity (farads/m), permeability

(henrys/m) and conductivity (mhos/m) of the material, respectively. For anisotropic

media, the constitutive relations are given as

D = _. E (2.9)

B = _. _I (2.10)

J = _E (2.11)

We will be considering only isotropic media in the following sections since the gen-

eralization to anisotropy is trivial and introduces needless algebraic complexity.

It is usually sufficient to consider the steady-state solution for electromagnetic

fields as produced by currents having sinusoidal time dependence. The set of Maxwell's

equations, using complex phasor notation and the constitutive relations, can then be

written as

VxE = -ywttH (2.12)

VxH = J + yweE (2.13)

V.(eE) = p (2.14)

V.(#H) = 0 (2.15)

V.J -- -.lwp (2.16)

where w is the angular frequency of oscillation and the time convention e j'_t is used

and suppressed.



10

2.1.2 Wave equations

The two curl equations, (2.1 and 2.2), can be combined together with the assumed

constitutive relations, (2.7 and 2.8), to obtain a separate second-order differential

equation for each field. By taking the curl of (2.1) or (2.2) and eliminating H or E

respectively, we obtain

1
V × =V ×E - k_c,E = -3wJ (2.17)

V×LV×H-k   He = Vx (2.18)

where ko = wev/'i'_o_ois the free-space wave number, e_ and /_ are the respective

relative permittivity and permeability of the medium under consideration and d is

an impressed or source current. The differential equations shown above are called

inhomogeneous vector wave equations in three dimensions.

2.1.3 Boundary conditions

Mathematically, the solution of a partial differential equation (PDE) like the wave

equation, outlined in (2.17) and (2.18), is not unique in a region unless boundary

conditions are specified, i.e, the behavior of the field on the boundary of the region

of interest. Boundary conditions play the same role in the solution of PDEs that

initial conditions play in the solution of differential equations for electric circuits. An

electromagnetic problem is thus completely defined only when it contains information

about the governing differential equation and the corresponding boundary conditions

at material discontinuities or inhomogeneities.

At the interface between two media, say medium 1 and medium 2, the boundary

conditions can be mathematically expressed as

x (El- E2) = 0 (2.10)
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ft. (D1 - D2) = 0 (2.20)

for electric fields and

fix (H1-H2) = 0 (2.21)

fi" (B1- B2) = 0 (2.22)

for magnetic fields, where fi denotes the unit normal to the interface. It is assumed

in (2.20) and (2.21) that neither surface currents nor surface charge exist on the

boundary. Equations (2.19) and (2.21) state that tangential electric and magnetic

fields are continuous across dielectric boundaries.

It is possible to simplify the above boundary conditions at the interface of a

perfect electric conductor and free-space. Since a perfect conductor cannot sustain

a field inside it and likewise since the flux lines of B are continuous, (2.19) can be

rewritten as

fix E = 0 (2.23)

and (2.22) reduces to

fi.B=0 (2.24)

However, the conductor surface can support a surface current (Jo = fi x H) and a

surface charge (p8 = fi" D).

2.1.4 Radiation conditions

It can be shown that the electric field within a finite volume can be derived in

terms of the sources within the volume and the field values on the surfaces bounding

that volume. If we make this volume infinitely large, we arrive at the Sommerfeld
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radiation condition [10] given by

lim r + jko_b = 0 (2.25)

where g, is regular at infinity and describes a component of the electric or magnetic

field and r = _r-_. In three dimensions, the radiation becomes

lim R [VxE + jkoR x E] = 0 (2.26)

where R = _/z 2 + y2 + z2. A similar result exists for the magnetic field. The radia-

tion condition requires that E and H diminish as R -1 when R _ e_.

2.1.5 Radar cross-section

The radar cross-section (RCS) is a quantity characterizing the scattering from

an obstacle. It is defined as the area intercepting that amount of power which,

when scattered isotropically, produces at the receiver a power density equal to that

scattered by the target under consideration. In the three-dimensional case, the RCS

is defined as

a(0,_) = lim 4_rR 2 IF'I2

wher F ° denotes the scattered field (either E ° or H °) at the observation point

(R, 0, _b) and F i"c represents the incident field , usually a plane wave, coming from

(R, 0

2.2 Finite elements: basic ideas

The finitedement method (FEM) is a numerical method for obtaining approx-

imate solutions to boundary-value problems in physics and engineering. Very few

analyticalsolutionsare possibleand thus a numerical method likethe FEM provides
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us with an alternative solution technique for these problems. For a particular class of

such problems, there exist extremum principles by which the solution being sought

makes an appropriate functional stationary, or, in certain cases, extremal. In other

problems for which no genuine extremal principles can be derived, the error resulting

from the substitution of the numerical approximation into the differential equation

is minimized.

In the following pages, we will give a brief description of the two accepted for-

mulation schemes - the Ritz variational method [11] and the Galerkin method of

weighted residuals [12]. We will then discuss how the finite element method is used

to solve PDE problems formulated by the two abovementioned schemes.

2.2.1 Boundary value problem

We basically seek an unknown function u which satisfies a differential equation

A(=) = £u - f = o

in a domain fl and certain boundary conditions

(2.2s)

B(u) = 0 (2.29)

on the domain boundary F. In electromagnetics, the form of the governing differential

equation ranges from the simple Poisson equation in statics to the complicated vector

wave equation such as (2.17) and (2.18). The boundary conditions can also vary from

Dirichlet and Neumann conditions to more complicated higher-order transition and

radiation conditions.

2.2.2 The Ritz method

The Ritz method, or the Rayleigh-Ritz method, is a variational formulation where

the solution to the boundary value problem is obtained by searching for the stationary
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point of the functional. If the operator £ in (2.28) is self-adjoint and positive-definite,

then the solution to (2.28) can be found by determining the stationary point of the

functional [1]

1

F(fi)=_<£fi, fi>-<fi, f> (2.30)

with respect to fi, where fi denotes the trial function. The inner product, denoted

by angular brackets, is given by

< a, b >= fn a b dV (2.31)

Once the functional is found, we approximate the trial function by the expression

N

fi = Y]_ Ciwi = CTw (2.32)
i=l

where w_ are basis functions and Ci are constant coefficients to be determined. Sub-

stituting (2.32) in the expression for the functional, we get

where C is the column vector of unknown coefficients and the superscript denotes

the transpose of a vector. On differentiating F(fi) with respect to G and setting the

resultant expression to zero - equivalent to finding the stationary point of F(fi) - we

obtain a system of equations

[.A] {C} = {b} (2.34)

where the elements of the matrix .A and the vector b are given by

.A = fn wi£w.i df_ (2.35)

b = fa wif dft (2.36)
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On solving (2.34) for the unknown coefficients {C} of the finite element bases,we

obtain a solution for the desiredquantity everywherewithin the computational do-

main.

It should be pointed out that the inner product as defined in (2.31)extends the

applicability of the variational formulation to complex numbers. This is of utmost

importance in electromagneticssincematerial fillings areoften lossy.However,unlike

in other branchesof science,the functional doesnot haveany physical significancein

electromagneticsand is thus usedsparingly. A further limitation is that the matrix

.A must be symmetric for a variational principle to exist. Problems which give rise

to unsymmetric matrices need to be handled differently. The weighted residual or

the Galerkin method provides an alternative, and simpler, approach of formulating

the finite element equations.

2.2.3 Galerkin's method

Galerkin's method or the weighted residual method tries to minimize a residual

in the mean square sense. If we assume that fi is an approximate solution to (2.28),

on replacing u with fi in (2.28) we obtain the residual

T_-- £fi- f ¢ 0 (2.37)

Naturally, the best approximation for fi would be one that reduces the value of the

residual to a minimum at all points in 9/. The integral of the residual, weighted with

some known weighting functions wi, is then required to vanish in 12.

'Rwi diq = 0 (2.38)

In the Galerkin method, the weighting functions wi are chosen to be identical to

the basis functions used for expanding ft. With this choice of weighting functions,
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the residual 7_ is orthogonal to the subspace of functions spanned by the basis of _,

ensuring that the resulting approximation is in this sense the best possible from the

space of approximating functions. The expression (2.38) then becomes

=0, i= ,N (2.39)

where fi has been expanded as in (2.32). This again leads to a matrix system identical

to the one given in (2.34), obtained by the Ritz method. One of the advantages of this

formulation is that the matrix system need not be symmetric for its validity. Also,

the method can be applied to problems for which no genuine extremum principles

exist.

2.2.4 Implementation scheme

The implementation scheme for FEM follows three broad outlines.

Step 1: At first, the problem is discretized by dividing the entire computational

domain into simple subdomains, the elements. For two-dimensional problems, com-

monly used elements are triangles, parallelograms and quadrilaterals with straight or

curved edges. In three dimensional implementations, the elements of choice are usu-

ally terahedra, curvilinear bricks or prisms with straight or curved surfaces [13, 14].

Step 2: Next, a suitable approximation function is chosen for the problem to be

solved. The form of approximation depends on the type of element and must satisfy

certain continuity conditions across inter-element boundaries. Further, the form of

the polynomial function must remain unchanged under a linear transformation from

one Cartesian coordinate system to another. This requirement is satisfied if the

polynomials are complete to a specific order like

U(X, y) -- Cl -I- C2X + C3y + C4X 2 + cSxy "{-C6y 2 (2.40)

/
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or when the extra terms are symmetric with respect to one another, as in the following

incomplete third-order polynomial

u(x,y)=c,+c2x+c3y+c4x_+csxy+ce, y2+crx2y+csxy 2 (2.41)

Such approximation functions have the characteristic that, for fixed x or y, they are

always complete ploynomials in the other variable. The two examples shown above

apply in two-dimensions; the extension to three-dimensional elements is trivial.

Once the order of the polynomial is selected, we can derive an expression for the

unknown solution in an element, say the eth element, having the following form:

11

u e = _ u_N_, (2.42)
k=l

where n is the number of bases in the eth element, u_¢ is the value of the unknown

function at node, edge or facet j and N_ is the basis (or shape) function for the

element.

Step 3". In the third step, we enforce the extremum principle by substituting

(2.42) into the functional expression (2.30) or into the residual value (2.37). On

imposing the stationarity of the functional as explained in Section 2.2.2, we obtain

the system of linear equations (2.34). An alternative procedure of minimizing the

weighted residuals (2.38) yields an identical system of linear equation (2.34). As

mentioned earlier, both the variational (Ritz) and the weighted residual (Galerkin)

formulations are equivalent when the matrix system is symmetric. In addition, the

Galerkin method can handle unsymmetric systems. Finally, the solution of (2.34)

specifies the values of the desired function everywhere within the computational

domain.

In the next chapter, we will be discussing step 2 in more detail. The two subse-

quent chapters are devoted to the derivation of the finite element equations for our
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application and the optimizations undertakento enablerapid solution of the system.

lb



CHAPTER III

Shape functions for scalar and vector finite

elements

The finite element method is used for modeling a wide class of problems by

breaking up the computational domain into elements of simple shapes. Suitable

interpolation polynomials (or shape functions) are used to approximate the unknown

function within each element. It is then possible to program the computer to solve

complicated geometries by specifying the shape functions only. The element choice,

however, needs human intervention and intelligence to ensure a reliable solution of

the of the problem at hand.

In this chapter, we will discuss the derivation of node-based and edge-based shape

functions for two dimensional and three dimensional finite elements. Node-based

shape functions have been used extensively in civil and mechanical engineering ap-

plications as well as in scMar electromagnetic problems. However, a full three di-

mensional vector formulation brings out numerous deficiencies in these traditional

element shape functions [15, 16]. Edge-based shape functions have thus been derived

to overcome the problems associated with nodal bases and are now being applied

widely for solving vector problems in electromagnetics. We will also describe a gen-

eral procedure for deriving higher-order shape functions for node and edge basis.

19
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3.1 Node-based elements

In node-based finite elements, the form of the sought function in the element

is controlled by the function values at its nodes. The approximating function can

then be expressed as a linear combination of basis functions weighted by the nodal

coefficients. If the function values _ at the nodes are taken as nodal variables, then

the approximating function for a two-dimensional element e with p nodes has the

form

p

_(x,y) = _ ¢_N._(x,y) (3.1)

Since the expression (3.1) must be valid for any nodal variable fi_, the basis function

N.',(x, y) must be unity at node i and zero for all remaining nodes within the element.

Shape functions can be derived either by inspection (Serendipity family) or through

simple products of appropriate polynomials (Lagrange family). It is easier and more

systematic to construct higher-order bases in the Lagrange family while progression

to higher orders is difficult in the Serendipity family. However, Lagrange shape func-

tions have undesirable interior nodes and more unknowns than Serendipity shape

functions of the same order. All shape functions derived in the following sections

impose function continuity or Co continuity (not slope continuity) between elements.

3.1.1 Two dimensional elements

Rectangular elements

The simple shape of the rectangular element permits its shape functions to be written

down merely by inspection. On examining the element shape given in Figure (3.1),

the shape functions can be cast in the form

g; =
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A_ -zc +--_ + z y _-t- - y

.4 _ -zc+T +z -y_+ +y

(1 x:+h; _y_+ +y
N; - A_ y-x

where x_ and y_ denote the coordinates of the mid-points of the edges, h_ and h i

represent the edge length and A _ denotes the area of the element. Higher order

*'X

4

l® .0

3

T

Figure 3.1: Rectangular element

rectangular elements are presented in Zienkiewicz [13]. However, these elements can

model only regular geometries and are thus not very useful in practice.

Irregular geometries can be modeled by using quadrilateral elements which can

also be viewed as distorted rectangles. To construct basis functions for a quadrilateral

element, we need to use a transformation that maps a quadrilateral element in the

xy-plane to a square element in the _r/plane (Figure 3.2). Such a transformation can

be found by satisfying the following relation at the four nodes of the quadrilateral

element:

x = a + b_ + crl + d_r I y = a' + b'_ + drl + d'_r I (3.2)
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4

1 2

3
4

_=-1

I

T

r 3

_=1

T1=:-1 2

Figure 3.2: Transformation of a quadrilateral element in the xy plane to a unit square

in the _t/plane

On solving for the unknown coefficients a,..., d, the basis functions can be cast in

the following form

N,=_l(l+_o)(l+t/o), i=1,...,4 (3.3)

where _o = _i and 11o= r/T/{. The variables (_i, _/_) denote the coordinates of the ith

node in the (_, 11) coordinate system.

Triangular elements

Triangular elements axe popular since they can model arbitrary geometries. We will

determine the shape functions of triangular elements by using Lagrange interpolation

polynomials. Let us consider a point P within a triangular element (Figure 3.3). The

area of the smaller triangle formed by points p, 2 and 3 is given by

1

A1 =

1 x y

1 xl y_

1 _i y_

(3.4)
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3

1 2

Figure 3.3: Triangular element

The area coordinate L_ is then given by

A1

L_= _- (3.5)

where zX is the area of the whole triangle and can be found from (3.4) by replacing x

and y in the first row with Xl and Yl. Similarly, the two remaining area coordinates

L2 and L3 are given by

A2 Area P31

L_ - A -- Area 123 (3.6)

zh3 Area P12

L_ - A - Area 123 (3.7)

The values for x and y inside the triangular element reduce to

3 3

z = _] L_x_ y = __, L_y_ (3.8)
i=1 i=1

The area coordinates are equal to the basis functions - Nf, i = 1,2,3 - when the

required interpolation order is linear. Higher order basis functions for triangular and

quadrilateral elements are derived in [13, 14].
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3.1.2 Three dimensional elements

Shape functions for three dimensional elements can be described in a precisely

analogous way to their two dimensional counterpart. However, the simple rules for

inter-element continuity given previously must be modified. The nodal field values

should now interpolate to give continuous fields across the face of each element.

Rectangular bricks

The simplest polynomial approximation to a rectangular brick element is the trilinear

function

fi'(x, y, z) = a e + bex + cry + dez + e'xy + feyz + gezx + hezyz (3.9)

whose eight parameters are uniquely defined by the values of the function fi at the

eight corners of the brick. From the eight resulting equations, we can determine the

coefficients a e, be,..., h e and write the final expression in the form

s

0e(x,y,z)= _ g¢(x,y, z)07 (3.10)
i--1

However, this is a cumbersome process and can be easily avoided by writing down

the required basis functions by mere inspection. Since the basis function N_ must

be unity at node i and zero at the remaining nodes, the eight interpolation functions

can be written down as

( he)(.)1 - c+-_+x -Yc+'_+Y zc+-_-zg_ = _ xe h= • _ e h=

g_ _-71 xc+y-x_ -y_+_-+y__ z_+y-ze•

t ¢
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)( )( ':)N_- V_ --_+_ v:+ -v -z:+7+z

( )( )1 -x: + h_ h_ h_g_- vo T+x -v:+_-+v -z:+7+z

1( h: )( )( h:)N- _7c x:+T -_ -v_+V +_ -z_+_-+z

where x_, y_, and z_ denote the coordinates of the center of the element, h;, h i, and

h_ represent the edge lengths of the element and V e denotes the element volume.

Bricks with quadratic interpolation functions need 20 degrees of freedom and thus

have node points at the corners and the mid-points of each edge.

Shape functions for hexahedrM elements or distorted bricks can be derived by

mapping the element in the xyz coordinate system onto a standard cube in a new

(rl_ coordinate system. The required transformation yields

g s 8

• = }2 N_(_,,7,¢)_ ; v = F_,N_(_,,7,¢M ; z = _ N_(_,,7,¢)z_ (3.11)
i=l i=l i=l

where

1

m_ = 8(1 + _i_)(1 + r/i_?)(1
+ ¢_¢) (3.12)

with (_i, rh, _i) denoting the coordinates of the ith node.

Tetrahedral elements

The three dimensional analogue of a two-dimensional triangle is a tetrahedron (four-

faced element). Once again, we can introduce special coordinates, called volume

coordinates or simplex coordinates, to simplify the derivation of shape functions. If

P is a point within the tetraJaedron shown in Figure 3.4, the four volume coordinates

are given by

Volume P234
L1 =

Volume 1234
Volume P341

L2 =
Volume 1234
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1

4

3

Figure 3.4: Tetra_edral element

Volume P412
L3 :

Volume 1234

Volume P123
L4 -

Volume 1234
(3.13)

and any position within the element is specified by

4 4 4

x = _ Lixi ; y = _.,L,y, ; z = _ L,z,
i=1 i=1 i----1

Quadratic shape functions for a tetrahedron necessitates the use of ten node points

- the 4 corner nodes and the remaining 6 on the mid-points of the edges.

Other elements

Other three-dimensional elements having simple shapes include the triangular prism

and isoparametric elements. It is much easier to discretize a complicated structure

by using parallelopipeds in combination with prism elements. To ensure that a small

number of elements can model a relatively complex region, curved or isopararnetric

elements can be used. There is a good review of such elements in [13, 17].
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3.2 Edge-based elements

In electromagnetics, we encounter several serious problems when node-based el-

ements are employed to represent vector electric or magnetic fields. First, spurious

modes are observed when modeling cavity problems using node-based elements [18].

Secondly, special care needs to be taken to impose boundary conditions at material

interfaces and conducting surfaces [19]. The first limitation can also jeopardize the

near-field results of a scattering problem, the far-field escapes contamination since

spurious modes do not radiate.

Edge-based finite elements, whose degrees of freedom are associated with the

edges of the finite element mesh, have been shown to be free of the above shortcom-

ings. They were described by Whitney [20] over 35 years ago and have been revived

by Nedelec [21] and Bossavit and Verite [15] and Hano [22]. Mur and de Hoop [23],

van Welij [:24], Barton and Cendes [25] and Lee,et al [26] have extended their appli-

cability to various two- and three-dimensional shapes and even constructed higher

order elements for a more accurate approximation of the field values.

3.2.1 Two dimensional elements

Rectangular elements

We first consider the rectangular element first since its shape function is usually the

easiest to formulate. For the element shown in Figure 3.1, we can find its edge-

based finite element basis function merely by inspection. If the edges are numbered

according to Table 3.1 and considering that the basis function should be unity along

one edge and zero over all others, the vector basis functions can be written as

- _ -y+yg + _
h_
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Edge no. il i2

1 1 2

2 4 3

3 1 4

4 2 3

Table 3.1: Edge numbering for rectangular element

W_ 1 ( _ h2_)= h'-_v Y-Yc+

w; =

= x-xc+

where 5¢, _ and $ are the unit vectors in the Cartesian coordinate system. The electric

field within the finite dement is then given by

E° = _ E:W_. (3.14)

where E_ denotes the tangential field along the ith edge. The basis functions N_

guarantee tangential continuity across inter-element boundaries since they have a

tangential component only along the ith edge and none along the other edges. They

are also divergenceless within the element and possess a constant non-zero curl. It

should be noted that by taking the cross-product of f_ with W_., we obtain basis

functions which possess normal continuity across element boundaries, have zero curl

and non-zero divergence. The latter are ideal for representing surface current densi-

ties and are known as roof-top basis functions in electromagnetics. They have found

extensive use in the solution of integral equations [27].

Edge basis for quadrilateral elements can be derived by carrying out the trans-

formation detailed in the derivation of nodal basis for quadrilaterals in the previous

,71t
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section and then taking the gradient of the resulting expression for each edge. The

edge-based quadrilateral element has two shortcomings. First, the integrals associ-

ated with these elements do not lend themselves to easy evaluation and secondly, the

basis functions are not divergence free. However, their ability to model complicated

shapes with a lesser number of unknowns than tetrahedra and property of tangential

continuity across elements make them attractive for use in two-dimensional vector

formulations.

Triangular elements

Since the edges of an arbitrary triangular element are not parallel to the x or y axis,

it is not easy to guess the form of the vector basis function by inspection. Therefore,

the edge basis for a triangular element is expressed in terms of its area coordinates,

L1, L2 and L3. These are the so-called Whitney elements. If the local edge numbers

are defined according to Table 3.2, then edge bases for a triangular element are

defined as

Wk = N_j = L_VLj- LjVL_, i, j-i,...,3 (3.15)

where Wk denotes the basis function for the kth edge of the element. The vector

field inside the triangular element can, therefore, be expanded as

E _ = _ E_,W_ (3.16)
k--1

where ET, denotes the tangential field along the kth edge. It can be easily shown

that the edge-based functions defined in (3.15) has the following properties within

the element:

V.Nij w_ 0

V×Nq = 2VLi × VLj
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Edge no. il i2

1 1 2

2 2 3

3 3 1

Table 3.2: Edge numbering for triangular element

If ill is the unit vector pointing from node I to node 2 in Figure 3.3, then fil.VL1 = -1

and 61 • _7L2 = 1. Since L1 is a linear function that varies from unity at node 1 and

zero at node 2 and L2 is unity at node 2 and zero at node 1, we have

61 " N12 = L1 + L2 = 1 (3.17)

along the entire length of edge 1. This implies that N12 has a constant tangential

component along edge 1. Moreover, since L1 vanishes along edge 2 and L2 vanishes

along edge 3, N12 has no tangential component along these edges. Thus, tangential

continuity is preserved across inter-element boundaries but normal continuity is not.

A different method of constructing edge basis functions for triangular elements is

given in [28].

Higher order vector basis functions include the contribution of facet elements to

the approximating function. Unknowns in the triangular element are assigned as

shown in Figure 3.5 [29]. The tangential projection of the vector field along edge

{i, j} is determined by two unknowns E j and Ej and two facet unknowns- F1 and

F2 - are provided to allow a quadratic approximation of the normal component along

two of the three edges. Only two facet unknowns are required to make the basis

functions of second order complete. Therefore, there are 8 degrees of freedom for

-zT/
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1
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3

Figure 3.5: Second order triangular edge element

each triangular element. The higher order vector field within the element is given by

3 3

E _ = __, __, EJeLiVLj + F_LIL2VL3 + F_L1L3VL2 (3.18)
i=l j=l

i#j

where we have arbitrarily chosen the facet variables to lie on edges 1 and 2. These

variables are local unknowns associated with each separate triangular element and are

included to provide a linear approximation for Vt x Et, where the subscript t denotes

the tangential component. Since the edge variables provide common unknowns across

element boundaries, tangential continuity of the field over the boundary is assured.

However, an obvious disadvantage of these elements is that the 2 facet variables

cannot be symmetrically assigned. This disadvantage can be avoided by using third

order elements [30].
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3.2.2 Three dimensional elements

Edge-based elements have facilitated to a great degree the finite element analysis

of three dimensional structures in electromagnetics. Linear nodal basis with their

problem of spurious modes and difficulty in maintaining only tangential continuity

across material interfaces are not as convenient for electromagnetic field simulations

in three dimensions. On the other hand, the introduction of edge based shape func-

tions provide a robust way of treating general three dimensional problems having

material inhomogeneities and structural irregularities like sharp edges and corners.

In the following section, we will consider the simple rectangular bricks first and

will proceed to derive edge-based shape functions for more complicated structures

like tetrahedrals and curvilinear hexahedrals. The chapter is concluded with a brief

discussion on hierarchical edge elements.

Rectangular bricks and hexahedrals

As in the two dimensional case, we derive the edge-based shape function for a rect-

angular brick (see Figure 3.6) by simple inspection. Since a constant tangential field

component must be assigned to each edge of the element, we can express the shape

function along each edge of the element as [31]

_ --Y+Ye+ -z+z_+ i
h_hz

w_- ,_ y-y_+ -z+z_+
h_h_,

1 -y + y_ + z - z_ +W_ - , ,
h_hz

= - -z+z_+ -z+z;+ y
h_,h:
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Figure 3.6: Rectangular brick element

1(- z - z_ + -z + x: + :_
h_h'.

W_ - 1 (-z + z, + h-_) (x - x: + _) :_
h_h_

W_ - hlh_ (Z- z, + hm_) (x- x: + _) S"

- -x + x_ + -y + y_ + ¢_
h_h_

W_° - h _ x-x:+ -y + y: + f_

h_h_ -x + x_ + y-y_ + f_

1 • e

h_hz

where h_, hl, h_ denote the edge lengths in the x, y, and z directions, respectively,

and the center coordinates of the brick are given by (x_, y_, z_). If the edge numbers

are defined as in Table 3.3, the expression for the vector field within the element can
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be expressed as

12

E" = _ E_W_ (3.19)
i=1

where E_ represents the value of the electric field along the ith edge. The vector basis

Edge no. Node il Node i2

1

2

3

4

5

6

7

8

9

i0

11

12

1

4

5

8

1

5

2

6

1

2

4

3

2

3

6

7

4

8

3

7

5

6

8

7

Table 3.3: Edge definition for rectangular brick

N/_ defined for the rectangular brick element have zero divergence and a nonzero curl.

Furthermore, the expansion (3.19) guarantees tangential continuity of the electric

field across the surfaces of the elements.

A rectangular brick element has limitations in the sense that it is unable to

model irregular geometries. Due to this reason, the analog of the two dimensional

quadrilateral ( the hexahedral element) finds much wider use in modeling practical

three dimensional problems. As in the case of the quadrilateral element in two
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dimensions, a hexahedral element in Cartesian coordinates can be seen as the image

of a unit cube under a trilinear mapping to the _rl( coordinate system (see Figure

3.7).

54___8 _ " i 5

2
2

Figure 3.7: Mapping of a hexahedral element to a unit cube

Let us consider those faces for which _ =constant. Therefore, V_ must then

possess only a normal component on that face. Since _ varies linearly along the

edges that are parallel to the _-axis, the vector function V_ has nonzero tangential

components only along those edges that are parallel to the _-axis. Using the node-

based expression for the shape function in a hexahedral element given in (3.12), we

may write the corresponding edge bases as

W_= _h--z'(1 + rhr/) (1 + ¢i¢') V_,
8

W_ = hA (1 + _i_)(1 + (i_') Vr/,
8

W_ = t_A (1 + {,{)(1 + r/,r/) V¢,
8

edges IIto _-axis

edges l[ to y-axis

edges IIto (-axis

(3.20)

(3.21)

(3.22)

where (_, r/i, (i) denote the coordinates at edge i.

The vector bases derived above possess all the desired continuity properties of

edge elements and generally result in about half the number of unknowns than that

7

3
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obtained by tetrahedral gridding. However, these basis functions are not divergence-

less and it is difficult to generate a finite element mesh of an arbitrary structure using

hexahedral elements.

Tetrahedral elements

Tetrahedral elements are, by far, the most popular element shapes to be employed

for three dimensional applications. This is because the tetrahedral element is the

simplest tessellation shape capable of modeling arbitrary three dimensional geome-

tries and is also well-suited for automatic mesh generation. The derivation of shape

functions for these elements follow the same pattern as that for triangular vector

basis functions. If we consider the tetrahedron shown in Figure 3.4 and define the

edge numbers according to Table 3.4, we have

W_ = N_j = L_VL_- L_VL_, i,j = 1,...,4 (3.23)

and the vector field within the element can be expanded as

6

E = E;W (3.24)
k=l

A nice explanation of the physical character of the edge-based interpolation function

is given by Bossavit [32]. Let us consider edge number 1 connecting nodes 1 and 2.

Since VL2 is orthogonal to facet {134} and VL1 is orthogonal to facet {234}, the

field turns around the axis 3-4 and is normal to planes containing 3 and 4. The field

thus has only tangential continuity across element faces. Edge elements can also be

described as Whitney elements of degree 1.

Whitney elements of the second degree are called facet elements because they are

constant over the face of the tetr_hedron. The vector function for the facet element

can be written as

Nijk = 2 (L_VLj × VLk + LjVLk x VLi + L_VLi x VLj), i,j,k = 1,... ,43.25)

/

"b"
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Edge no.

1

2

3

4

5

6

Node il Node i2

1 2

1 3

1 4

2 3

4 2

3 4

Table 3.4: Edge definition for tetrahedron

As explained in [32], we now have a central field (emanating as if from node 4 in

Figure 3.4) on each of the two tetrahedra that share the face {1,2,3}. The field can

be imagined as coming from the 'source' 4, growing, crossing the facet and vanishing

into the 'well' 4', the fourth vertex of the other tetrahedron. This field thus has

normal continuity and the flux across the facet forms the degree of freedom for the

element.

Alternative expressions for linear basis inside a tetrahedron have been derived in

[25]. They are given by

¢

J fv-i + gT-_ x r,
W___

[ 0,

with

r in the tetrahedron
(3.26)

otherwise

f7-i

gT-i

hT-i

- 6V_ ri, x ri_ (3.27)

- (3.28)

in which i = 1,2,..., 6, Ve is the volume of the tetrahedral element, 6i = (ri2 - ril )/hi

is the unit vector of the ith edge and hi = Ir_ - rq I is the length of the ith edge
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with ri, and ri 2 denoting the position vector of the i_ and iz nodes. It can be shown

that (3.23) is identically equal to (3.26) when simplified. Therefore,

gT-i = hT-i(VLi3 × VLi2), i=1,...,6

where il and i2 are given in Table 3.4. The basis functions given in (3.26) have zero

divergence and constant curl (V x W_ = 2g_).

The order of the polynomial approximation for the first order edge element given

in (3.23) or (3.26) can be taken as 0.5. This is because the value of the basis function is

constant (O(1)) along the edge it supports and is linear (O(r)) everywhere else within

the element. Mur and de Hoop [23] presented edge elements which are consistently

linear, yielding a linear approximation of the field both inside each tetrahedron and

along its edges and faces. Since this requires two unknowns per edge, there are

12 degrees of freedom per element. The basis functions in [33] are derived by first

defining the outwardly directed vectorial areas of the faces as

Ai = rj x rk + rk x ri + rt X rj (3.29)

where ri, i = 1,..., 4 denote the position vectors of the vertices of the tetrahedron

and i,j, k,l are cyclic. Then the edge-based vectorial expansion function is defined

by

N,j(,) =- ¢,(r)A_3V ' i,j = 1,...,4,i _j (3.30)

where V is the volume of the tetrahedron and ¢(r) is a linear scalar function of

position given by

1 (r-rb).A 
= 3V

in which eb is the position vector of the centroid of the tetrahedron. We observe that

¢i(r) equals unity when r = rl and zero for the remaining vertices of the tetrahedral
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element. In that sense,they are very similar to the simplex or volume coordinates

mentionedearlier. They also satisfy the following equalities:

1"

4

i=l

4

=
,=1

= 1

The edge basis function Nij is a linear vector function of position inside the tetra-

hedral element and its tangential component vanishes on all edges of the element

except the one joining vertices i and j. Nij varies linearly along the edge formed by

nodes i and j such that Nij .rj = 0 while

Nij" (ri - rj) = 1

These basis functions have non-zero values of divergence and curl.

An inspection of the expressions for the vectorial areas reveals that the form is

identical to that obtained by taking the gradient of one of the simplex or volume

coordinates mentioned earlier. In other words, the three components of the vector

A1 have the same functional dependence as that obtained by VL1

1

VL,- 6V

y2 1

det y3 1

y4 1

Z2

Z3

Z4

- St det

x_ 1

xa 1

x4 1

Z2

z3 + _ det

Z4

X2

X3

X4

1 y3
I

1 y4

where L] is the volume coordinate for a tetrahedron defined in (3.13), det indicates

the value of the determinant of the matrix and xi, yi, zi denote the coordinates of

the ith vertex. The basis functions with consistently linear interpolation in the

tetrahedron can now be rewritten in more convenient notation as

Wk = N_j = L_VLj, i,j = 1,...,4,i _ j (3.31)
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Still higher order basis functions are sometimesnecessaryfor rapidly changing

fields or for modeling extremely thin structures where linear interpolation for the

highly stretchedelements is not enough. The secondorder edgebasis (O(rLS)) for

a tetrahedral elementwas first presentedby Lee, Sun and Cendes I33]. We need 20

degrees of freedom to achieve a quadratic approximation of the vector field inside

a tetrahedron (see Figure 3.8). Accordingly, the field within a tetrahedron can be

written as

4 4 4

E : y_ y_ EJiL,VLj + E (F_LiLjVLk + F_LiLkVLj) (3.32)
i=1 j=l i=1

where i, j, k form cyclic indices. The facet variables FI and F_ are common unknowns

E 2 1

E2 E4
3 3

Figure 3.8: Tetrahedral element

for two tetrahedra that share the same face. Even higher order edge-based elements

up to polynomial order 2 can be constructed. Each tetrahedral element now has 30

unknowns - 3 along each edge and 3 on each face.
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Other elements

Recently, Wang and Ida proposed a systematic method for the construction of curvi-

linear elements in [34]. The vector shape function is expressed in the following form:

Wi(r) = ¢i((,r/,_)vi(r), i=l,...,M (3.33)

where ¢i(_,r/,() are completely defined in the local coordinate system, vi contains

the edge and facet information and M denotes the number of degrees of freedom in

the element. These basis functions usually lead to a symmetric system of equations.

However, it is difficult to find commercial mesh generation packages which construct

curvilinear elements for a wide range of geometrical configurations.

Hierarchical vector elements

Finite elements are said to be hierarchical when the basis functions for an element

are a subset of the basis functions for any elment of higher order [13]. The basis

functions described in [35] are hierarchical and tangentially continuous. Vector el-

ements complete upto polynomials of order 2 are available and basis functions of a

given order are fully compatible to be used with basis functions of lower or higher

orders. Thus elements of different orders could be used in the same mesh - lower

order elements could be used in regions where field variation is uniform and higher

order elements employed in regions where the field varies rapidly.

The implementation of hierarchical vector elements can be a bit tricky, especially

at the transition boundaries where elements of one order merge into the elements

of another order. If several vector elements share an edge, the field tangent to the

edge can be made identical in each of the tetrahedra. This is done by setting the

coefficient of the corresponding basis function for the edge in all tetrahedra to be

identical. For tangential continuity across a face, the same equality must be enforced
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betweenthe coefficientsof all the edge and facet functions associated with the face.

Table 3.5 gives the basis functions for hieratchicM vector finite elements. Higher

order basis functions ate constructed by systematically adding the extra terms upto

the desired order. It should be noted that the bases for the tetrahedron with 6 and

Element type

Edge

Edge

Face

Face

Edge

Face

Polynomial

order

0.5

1.5

2

Unknowns

per element

6

12

20

30

Basis function

Li_TLj - LjVLi

V (LiL_)

Table 3.5: Hierarchical basis functions for tetrahedron

20 unknowns shown in Table 3.5 is identical to the linear and second order edge basis

given in (3.23) and (3.33), respectively.



CHAPTER IV

Vector finite elements for 3D electromagnetic

problems

Finite elements have been used extensively to model open and closed domain

electromagnetic problems in scalar form in two and three dimensions[14, 36, 37].

But a reliable full vector formulation proved to be extremely difficult to implement.

The cause of the problem was found to be the traditional nodal basis functions that

were being used to discretize the unknown field variable. The reasons for the failure

of node-based elements in modeling the vector wave equation will be discussed in

a later section. Fortunately, a novel remedy was found by assigning the degrees of

freedom to the edges rather than to the nodes of elements. These types of elements

had been described by Whitney[20] in terms of geometrical forms about 35 years

back and were revived by Nedelec [21] in 1980. In recent years, Bossavit [15] and

others [22, 23, 24, 25] applied these edge-based finite elements successfully to model

three dimensional problems. In all these works, edge elements were seen to be devoid

of the shortcomings commonly experienced with node-based elements.

The goal of this thesis was to develop a general purpose code for computing the

scattering pattern of three dimensional composite structures having complex shapes.

Edge based functions with their robustness in modeling general three dimensional

43
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problems were evidently our choice. Since the only simple shape to model an arbi-

trary three dimensional space is a tetrahedron, we settled on edge-based tetrahedra

as our mesh discretization units. The mesh truncation was chosen to be done with ab-

sorbing boundary conditions (ABCs) which are local in nature, preserve the sparsity

of the finite element system and permit scaiability to large problems with minimal

storage -O(N)- and computational time - O(k • N), k << N- penalties.

In the first part of this chapter, we present the weighted residual or weak for-

mulation for the closed domain problem and solve for the eigenvalues of a metallic

cavity having arbitrary shape. In passing, we briefly describe the problem of spurious

solutions encountered with node-based elements. We also validate our methodology

by comparing the computed eigenvalues with analytically derived ones. In the latter

part of the chapter (Part II), we formulate the open domain problem in terms of the

variational functional, describe the enforcement of boundary conditions for perfectly

conducting and composite targets and present the proof of the mesh termination

condition in detail. We then validate our solution by comparison with measured or

analytically derived data.

PART I : CLOSED DOMAIN PROBLEM

Solving Maxwell's equations for the resonances of a closed cavity is important in

understanding and controlling the operation of many devices, including particle ac-

celerators, microwave filters, microwave ovens and optical fibers. However, the exact

eigenvalues can be obtained only for simple geometries. For arbitrarily shaped cav-

ities, numerical techniques like the finite element method must be used, but the

occurrence of spurious modes [18] in the node-based finite element approach has

plagued the computation of their eigenvalues. This difficulty can be circumvented
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with the introduction of a penalty term [38] to render the finite element vector field

solutions non-divergent. However, it is difficult to satisfy continuity requirements

across material interfaces and treat geometries with sharp edges [39] using classical

finite-elements, obtained by interpolating the nodal values of the vector field com-

ponents. As mentioned in the Introduction to this chapter, edge elements, a type

of vector finite elements with their degrees of freedom associated with the edges of

the mesh, have been shown to be free of these shortcomings. Generally these lead

to more unknowns but the higher variable count is balanced by the greater sparsity

of the finite element matrix so that the computation time required to solve such a

system iteratively with a given accuracy is less than the traditional approach [25].

Here we solve for the eigenvalues of an arbitrarily shaped metallic cavity using

node-based and edge-based vector finite elements. The computed data are then

compared with analytical results for empty and partially filled cavities. A comparison

between the storage intensity and computational accuracy for edge-based rectangular

bricks and tetrahedra is also presented. Finally, we compute the eigenvalues of a

metallic cavity with a ridge along one of its faces.

4.1 Formulation

4.1.1 Finite element equations

Consider a three dimensional inhomogeneous body occupying the volume V. To

discretize the electric field E within this volume, we subdivide the volume into small

tetrahedra or rectangular bricks, each occupying the volume V_ (e = 1,2,..., M),

where M is the total number of elements. For a numerical solution, we expand E

within the eth volume element as
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E = ]E E;W; (4.1)
j=l

where W_ are the edge-based vector basis functions, E_ denote the expansion coef-

ficients of the basis, m represents the number of edges comprising the element and

the superscript stands for the element number. On substituting this into the usual

vector wave equation and upon applying GMerkin's technique, some vector identities

and the divergence theorem, we obtain the weak form of Maxwell's equation

_ koerW i_ j _(v × wT). (v × w;)- 2 _.w; dv
j=l

-3koZo/s, W 7 .(fi x H)ds (4.2)

where /_i represents the weighted residual integral for element e, S, denotes the

surface enclosing lie, fi is the outward unit vector normal to S,, Zo is the free-

space intrinsic impedance and er, _u_ is the material permittivity and permeability,

respectively. Equation (4.2) can be conveniently written in matrix form as

{/_i} = [A_] {E'} - k_[B_] {Ee} - {Ce} (4.3)

where

/v. 1Ai_ = _--_(V x W_). (V x W;)dv (4.4)

B_j = Iv, e,.W_. W; dv (4.5)

C_. = 3koZo/s W_'(f* x H)ds (4.6)

and on assembling the equations from all the elements making up the geometry, we

obtain the system

M M M M

[A el {E e} - ko2 _ [B e] {E e} - _ {C e}
e=l e=l e=l e=l

= {0} (4.7)

/
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where all matrices and vectors following the summation sign have been augmented

using global numbers.

Due to the continuity of tangential H at the interface between two dielectrics, an

element face lying inside the body does not contribute to the last term of (4.7) in the

final assembly of the element equations. As a result, the last term of (4.7) reduces to

a column vector containing the surface integral of the tangential magnetic field only

over the outer surface of the body. In this application, the surface enclosing the vol-

ume of the body V is perfectly conducting and, thus, the coefficients associated with

the edges bordering the perfectly conducting surface can be set to zero a priori. This

reduces the original unknown count and eliminates the need to generate equations

for those edges/unknowns which would have otherwise involved the column vector

{C_}. Also since {C _} is only associated with boundary edges, the surface integral

associated with it vanishes and (4.7) can be written as

[AI{E} = A[B]{E} (4.8)

where [A] and [B] are N x N symmetric, sparse matrices with N being the total

number of edges resulting from the subdivision of the body excluding the edges on

the boundary, {E} is a N x 1 column vector denoting the edge fields and A = k0_

gives the eigenvalues of the system. A solution of (4.8) will yield the resonant field

distribution {E} and the corresponding wavenumber k0.

4.1.2 Origin of spurious solutions

Conventional finite element basis functions give rise to spurious solutions when

(4.8) is solved. As Wong and Cendes points out in [40], the origin of these spurious

solutions lies in the infinitely degenerate eigenvalue k = 0 in the spectrum of (4.8).

Given the eigenvalue system in 4.8 along with the PEC boundary condition fix E = 0
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on the boundary, thereexistsan infinite numberof scalar functions ¢ such that f: = 0

on the boundary. Then E = -Vg, is a permitted eigenfunction corresponding to the

eigenvaIue k = 0. If the discretization scheme fails to model this infinite dimensional

nullspace of the curl operator exactly, spurious solutions to the eigenvalue problem

will appear.

One way to get rid of spurious modes is to formulate the eigenvalue problem such

that k = 0 is no longer a permissible eigenvalue. This is achieved by enforcing

V.E=0 (4.9)

exactly everywhere in the solution region. Then the only solution corresponding to

the k = 0 eigenvalue is the trivial one E = 0. This is also the reason why spurious

solutions do not occur when the Helmholtz equation is discretized. In finite elements,

solving a problem (4.8) along with a constraint (4.9) is well known [13]. Researchers

have mostly tried the penalty function approach of constrained minimization [38, 39]

since it is simple to implement. However, the penalty approach is a mere fiz and

not a cure for the problem. Since the spurious eigenmodes are now shifted far into

the visible spectrum, they are not completely eliminated and are dependent on an

user-defined parameter which specifies how strongly the divergenceless condition is

to be imposed.

Other than the penalty method, derivative continuous finite elements (C 1 ele-

ments) have also been proposed [40] to alleviate this problem. In this method, an

auxiliary vector field _ is introduced such that

E = V×¢" (4.10)

Since substitution of (4.10) for E into (4.8) results in second derivatives, we need

to construct first derivative continuous elements or C 1 elements. As shown in [40],
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discretization of E using node-based C 1 elements eliminates the problem of spurious

solutions since the nullspace of the curl operator is modeled exactly. However, C 1

elements are not commonly found in finite elements and need to be explicitly derived

for the problem at hand.

Another method of eliminating spurious modes, without getting rid of the eigen-

value k = 0, is by using edge elements [41]. Bossavit in [41] provides a mathematical

proof as to why spurious modes do not appear with edge based elements and why

they are likely to be present with node-based vectorial elements. However, special

node-based elements, like the C 1 element in [40], do not present this problem.

Thus the root cause of spurious modes appears to be the improper modeling of the

nullspace of the curl operator. Any basis function which approximates it correctly

will be stable and free of spurious modes. As it turns out, conventional Lagrangian

finite elements are unsuitable; either 6 '1 node-based elements or edge-based elements

of any order can be used to obtain the true solutions.

4.1.3 Basis functions

Edge no. il i2

1 1 2

2 1 3

3 1 4

4 2 3

5 4 2

6 3 4

Table 4.1: TETRAHEDRON EDGE DEFINITION
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The vector edge-based expansion functions for rectangular bricks were presented

in [31]. Vector fields within tetrahedral domains can be conveniently represented

by expansion functions that are linear in the spatial variables and have either zero

divergence or zero curl. The basis functions defined in [25] are associated with the

six edges of the tetrahedron and have zero divergence and constant curl. To define

them, let us assume that il and i2 are the terminal nodes of the ith edge and the

six edges of a tetrahedron are numbered according to Table 4.1. The vector basis

function associated with the (7 - i)th edge of the tetrahedron is then given by

f_-i + gz-_ x r, r in the tetrahedron
= (4.11)

0, otherwise

with

bT-i

fz_i = _V_rq × r, 2 (4.12)

b bT_ e 
gz-i -- 6Vt (4.13)

in which i = 1, 2,..., 6, Vt is the volume of the tetrahedral element, ei = (r; 2 -ril )/b_

is the unit vector of the ith edge and bi = Ir_2 - rill is the length of the ith edge

with ril and ri 2 denoting the location of the il and is nodes.

In general, the implementation of the above discretization will involve two num-

bering systems, and thus some unique global edge direction must be defined to ensure

the continuity of fi × E across all edges [42]. Here we choose this direction to be

coincident with the edge vector pointing from the smaller to the larger global node

number. Finally, since V- W_ "-- 0, the electric field obtained from a solution of (4.3)

satisfies the divergence equation within each element and, thus, the solution will be

free from contamination due to spurious solutions.
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Mode Analytical Computed Computed Error (%) Error (%)

(bricks) (tetra.) (bricks) (tetra.)
270 260

unknowns unknowns

TEl01 5.236 5.307 5.213 - 1.36 .44

TMllo 7.025 7.182 6.977 -2.23 .70

TE011 7.531 7.725 7.474 -2.58 1.00

TE201 7.767 7.573 - 3.13 - .56

TMl11 8.179 8.350 7.991 -2.09 2.29

TEll1 8.350 8.122 -2.09 .70

TM_lo 8.886 9.151 8.572 -2.98 3.53

TE10_ 8.947 9.428 8.795 -5.38 1.70

Table4.2: EIGENVALUES (k0, CM -1) FOR AN EMPTY 1CM × 0.5CM × 0.75CM

RECTANGULAR CAVITY

4.2 Results

In Table 4.2, we present a comparison of the percentage error in the computation

of eigenvalues for a lcm × .5cm x .75cm rectangular cavity using edge-based rect-

angular bricks and tetrahedra. The edge-based approach using tetrahedral elements

predicts the first six distinct non-trivial eigenvalues with less than 4 percent error

and is seen to provide better accuracy than rectangular brick elements. The maxi-

mum edge length for the rectangular brick elements was .15cm whereas that for the

tetrahedral elements was .2cm. To investigate this matter further, we considered a

cubical metallic cavity having a side length of .5cm. A plot of the percentage error

in calculating the first three degenerate resonant frequencies versus the number of

unknowns is given in Figure 4.1 for both rectangular bricks and tetrahedral elements.

It is clear in this example that the tetrahedral elements predict the eigenvalues with

greater accuracy than the rectangular bricks.

In Tables 4.3, 4.5 and 4.4, we compare the exact eigenvalues with those computed

using edge-based tetrahedral finite elements. The finite element mesh was generated
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Figure 4.1: Performance comparison of rectangular bricks and tetraJledrals.

using SDRC I-DEAS, a commercial pre-processing package and it is seen that the

numerical results are in good agreement with the exact values for both homogeneous

and inhomogeneous cavities. The exact eigenvalues of the half-filled cavity as de-

scribed in Table 4.3 are computed by solving the transcendental equation obtained

upon matching the tangential electric and magnetic fields at the air-dielectric inter-

face. As seen, these results agree with those predicted by the finite element solution

to within 1 percent (no symmetry was assumed in this solution). Similar comparisons

are given in Table 4.4 for a sphere having lcm radius.

Finally, Table 4.6 presents the eigenvalues of the geometry illustrated in Figure

4.2. This is a closed metallic cavity with a ridge along one of its faces.

It is noted that as the degeneracy of the eigenvalues increases, the matrix be-

comes increasingly ill-conditioned and the numerical solution is correspondingly less

accurate [43]. This is clearly observed from the data in Table 4.4 for the case of a
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Mode Analytical Computed Error (%)
192

unknowns

TEzl01 3.538 3.534 .11

TEz_01 5.445 5.440 .10

TEzl0_ 5.935 5.916 .32

TEz301 7.503 7.501 .04

TEz20_ 7.633 7.560 .97

TEzl03 8.096 8.056 .50

Table 4.3: Eigenvalues (ko, cm -1) for a Half-Filled lcm x 0.1cm x lcm Rectangular

Cavity Having a Dielectric Filling of er = 2 Extending from z = 0.5cm to
z = 1.0cm.

,//_i" 1.0era

".---0.4_ "_-0.4

Figure 4.2: Geometry of ridged cavity

perfectly conducting hollow spherical cavity. Since the second lowest TM mode has

five-fold degeneracy, the computational error is seen to be the greatest. However, for

the partially filled rectangular cavity_ the absence of degenerate modes gives results

which are accurate to within 1 percent of the exact eigensolutions. We finally remark

of the inherent presence of zero eigenvalues in our computations whose number is

equal to the internal nodes. These zero eigenvalues are easily identifiable and since

they do not correspond to physical modes, they were always discarded.



54

Mode Analytical Computed Error (%)

300

unknowns

TMolo 2.744 2.799 -2.04

TM 111,_ven 2.802 - 2.11

TMIII,odd 2.811 -2.44

TMo_I 3.870 3.948 -2.02

TM1_l,eve. 3.986 -2.99

TM121,odd 3.994 -3.20

TM_I,_. 4.038 -4.34

TM221,odd 4.048 --4.59

TEo11 4.493 4.433 1.33

TE111,even 4.472 .47

TEl 11,odd 4.549 -- 1.25

Table 4.4: Eigenvalues (k0, cm -_) for an empty spherical cavity of radius lcm

4.3 Conclusions

It was shown that the resonant frequencies of an arbitrarily shaped inhomo-

geneously filled metallic resonator can be computed very accurately via the finite

element method using edge-based tetrahedral elements. The same method in con-

junction with node-based elements is much less reliable and not readily applicable

to regions containing discontinuous boundaries in shape and material. Edge-based

rectangular bricks do not provide as good an accuracy as edge-based tetrahedral

elements and their use is further limited to a special class of geometries.

PART II : OPEN DOMAIN PROBLEM

Of generic interest in electromagnetic scattering is the modeling of composite config-

urations comprised of metallic and non-metallic sections. In the case of man-made

structures, abrupt material discontinuities and metallic corners are also encountered

along with resistive sheets and thin ferrite coatings intended for controlling the scat-

.#
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Mode no. Analytical Computed Error(%)

TM 010 4.810 4.809 .02

TE 111 7.283 7.202 1.1

7.288 -.07

TM 110 7.650 7.633 .22

7.724 -.97

TM 011 7.840 7.940 -1.28

TE 211 8.658 8.697 -.45

8.865 -2.39

Table 4.5: Eigenvalues for an empty cylindrical cavity of base radius 0.5cm and height

0.5 cm (380 unknowns)

terer's radar cross-section (RCS). Differential equation methods, especially the finite

element method (FEM), with its capability of handling arbitrary geometries and its

versatility in modeling inhomogeneities and material discontinuities has been a viable

solution approach for bounded domain problems. However, for unbounded problems

as is the case with electromagnetic scattering, the solution is more involved since the

finite element mesh needs to be truncated artificially at some distance from the object

with a suitable boundary condition. These boundary conditions can be either global

or local. Global boundary conditions are exact but lead to fully populated submatri-

ces thus spoiling the sparse, banded structure of the finite element system. Further,

problems due to internal resonances may arise in many cases [44]. In contrast, local

conditions such as the absorbing boundary conditions (ABCs), are approximate but

have the important advantage of retaining the sparsity of the matrix system. Also,

they are free from the interior resonance problem that plagues boundary integral

termination schemes [44]. ABCs are essentially differential equations enforced at the

mesh truncation boundary and are chosen to suppress non-physical reflections from

that boundary, thus ensuring the outgoing nature of the waves.
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No. Ca) (b)
I 4.941 4.999

2 7.284 7.354

3 7.691 7.832

4 7.855 7.942

5 8.016 7.959

6 8.593 8.650

7 8.906 8.916

8 9.163 9.103

9 9.679 9.757

10 9.837 9.927

Table 4.6: Ten lowest non-trivial eigenvalues (ko, cm -1) for the geometry drawn in

Figure 2: (a) 267 Unknowns; (b) 671 Unknowns

A variety of ABCs have been derived and widely employed in FEM solutions of

open region two-dimensional scattering problems. However, the method's implemen-

tation and performance for scattering by three dimensional geometries using edge-

based finite elements has not received similar attention. The only three-dimensional

implementations of the FEM for scattering has been a hybrid solution combined with

the boundary element method (BEM) [42, 31, 45] and those formulations combined

with ABCs [46, 47]. The boundary element method, though exact, is equivalent to

employing a global boundary condition for terminating the mesh and consequently

leads to a full submatrix, restricting the method's utility to small geometries. For

large-scale three-dimensional applications, it is necessary to employ an ABC for ter-

minating the mesh to retain the O(N) storage requirement, characteristic of the

finite element method. However, the use of traditional node-based elements suffers

from various difficulties as mentioned in the Part I.

To avoid these difficulties, we consider an implementation of the FEM using vec-

tor basis functions whose degrees of freedom are associated with the fields along

the six edges of a tetrahedron. Our implementation is further coupled with a mesh

J
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termination scheme based on the vector ABCs derived in [48, 49]. In contrast to

the implementation proposed in [50], the one presented here preserves the symmetry

of the finite element system, thus being computationally more efficient and making

it ideally suited for solution via a conjugate gradient type of algorithm. Further,

the implementation discussed in [50] requires that the absorbing boundary be placed

nearly a wavelength away from the scatterer, whereas in our implementation re-

markably accurate results are obtained with the ABCs enforced a small fraction of

a wavelength from the scattering body. This is probably due to the accuracy of the

second order ABCs derived in [49].

4.4 Formulation

In the following section, the open domain problem is formulated in terms of the

finite element functional. The final system is obtained by setting the first variation in

the functional to zero and then a Rayleigh-Ritz minimization is performed to arrive

at the final answer.

4.4.1 Derivation of finite element equations

Let us consider the problem of scattering by an inhomogeneous target associated

with possible material discontinuities. To solve for the scattered fields via the FEM, it

is necessary to enclose the scatterer- embedded inside the volume V- by an artificial

surface So on which the ABC is enforced (see Figure 4.3). The ABCs to be considered

in this chapter are the Sommerfeld radiation condition given by

fi x V x E" = -jkofi X fi x E" (4.14)

and the second-order ABC [49] which can be written as

fixVxE' = c_E_+_Vx[fi(VxE'),]+_Vt(V.E_) (4.15)
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Figure4.3: Illustration of scattering structure Vd enclosed by an artificial mesh ter-

mination surface, So, on which the absorbing boundary condition is im-

posed.

where a = jk,_ = 1/(2jk + 2/r), E ° represents the scattered electric field, fi is

the unit normal to the surface So and the subscripts t and n denote the transverse

and normal component to So, respectively. When these ABCs are employed on the

artificial boundary So, they annihilate all field terms of O(r -{2m+1)) and smaller,

where m denotes the order of the ABC. The ABCs outlined above were derived for

spherical surfaces [49] but in this work we have extended their application to So

which include flat sections. In this case, the local curvature is used to replace 1/r

in (4.15). For flat sections, the 1/r term, therefore, reduces to zero. This permits

the construction of termination boundaries conformal to the scatterer, thus reducing

the size of the the computational domain. A detailed derivation of (4.15) as well as

other more general ABCs are outlined in Chapter 6.

The vector ABCs (4.14) and (4.15) can be combined and more conveniently writ-
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ten as

fi×V×E" = P(E') (4.16)

for the scattered field formulation in which E" is the working variable and

fi×V×E = P(E)+U _'c (4.17)

for the total field formulation where the unknown is the total electric field. In (4.17),

u'oo= _ ×v ×E'°°- P (E'_°) (4.18)

where E = E s + E i'_c is the total field and E i'_c is the incident electric field. Con-

sidering (4.17) to be the boundary condition employed at So, we can express the

functional for the total electric field as

+£° [E.e(E/+2E.u'o_]es (4.19)

where er and #, are the relative permittivity and permeability, respectively.

The above functional can be generalized to account for the presence of impedance

and resistive sheets or other discontinuous boundaries. In the case of a resistive card,

the transition condition [51]

fix (fix E)= -Rfi x (H + - H-) (4.20)

must be enforced, where H ± denotes the total magnetic field above and below the

sheet, R is the resistivity in Ohms per square and fi is the unit normal to the sheet

pointing in the upward direction (-I- side). For an impenetrable impedance surface,

the appropriate boundary condition on that surface is

fi × (fix E) : -T/fi x H (4.21)
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where fi is the unit normal to the surface and r/ is the surface impedance. Taking

into consideration these boundary/transition conditions, the functional for the total

electric field can be more explicitly written as

f_ 1 (_ ×E)'(_ ×E) es+jLZo -ff

+ [E-e(E)+2E.U'"°]eS (4.22)

where K is the surface resistivity (R) when integrating over a resistive card and

equals the surface impedance (r/) for an impedance sheet.

In order to deal with anisotropic scatterers, the functional outlined in (4.22)

undergoes a slight modification since the material properties of the scatterer (perme-

ability and permittivity) are now second rank tensors rather than scalars. Equation

(4.22) can therefore he written as

F(E) = fv[(VxE)'{[_-"(VxE)}-k°2E .{_.E}]dV

+jko2o h _-(n x E)-(fi x E)dS

+/so Is. P(E)+ 2E. V i"c] dS (4.23)

where

and

p=

P=x P_'v Pzz

Pzz Pzv pzz

_xx Cxy _xz

_yx _tOd _gz

_zx Czy _zz

(4.24)

(4.25)
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The symmetry of the final systemof equations now depends on the symmetry of the

permeability and the permittivity tensors.

The formulation presented above is in terms of the total field but we can easily

revert to a scattered field formulation by setting E" = E - E ;'_c and noting that the

scattered field satisfies the wave equation inside the domain of interest.

Let us consider the case where the computational volume V is occupied by a

dielectric structure and is bounded internally by the surface of a perfect conductor

and externally by the mesh termination boundary. On examining the terms inside

the volume integral in (4.19), we can define

 420,
Expressing the above relation in terms of the incident and the scattered fields, we

have

G(E, E) = G(E', E ") + 2G(E', E i"c) + G(E'"C, E '"c) (4.27)

The first and the third terms on the RHS of (4.27) cannot be simplified any further.

The second term will, however, lend itself to more simplification. Making use of a

simple vector identity and the divergence theorem, we can rewrite G(E', E i'c) as

_oe_r., ] dV

- ]_or'. (_xv×r'oo)ds (_.28/

since

dV =

#,.
X VxE in_) dS (4.29)
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and the surface integral cancels out everywhere inside the computational domain

except on the mesh termination boundary 5".. If we define V_ to be the volume

occupied by dielectric materials, then the remaining volume (Vo = V - lid) is the

volume occupied by free space. On incorporating this into (4.28), we have

G(E',E '=) = /_o E'. [V×V×E '°°- k_E '°_] dV

- £0E'.(. ×v×E'°o)es ( 3o)

Since the incident electric field satisfies the wave equation in free space, the first

term of (4.30) is identically zero. The third term cancels exactly with the cross term

fSo E. U i'_c dS in the total field functional (4.19). The second term can be simplified

by employing a standard vector identity and the divergence theorem to yield

/vd E., [vxlVxEi._ _ -'_ .-.,i.c]Xoerm J dV =

L_(V×E'). (v×z "°) - kS,S'. Z'"°eY
i, r

ZE,. (_ x H'"_)es (4.31)+jkoZo fs. _,,

where the normal to Sd is directed away from Va. The surface integral over the

dielectric interface Sa occurs since the tangential component of the scattered elec-

tric field is discontinuous over the interface between two dielectrics having dissimilar

permeabilities. It should be noted that (4.31) holds good even when there are mul-

tiple dielectric regions present. If the dielectric regions have the same permeability

(#_ =/_2 = ... #_. = 1, for example) and different permittivitie8, the surface inte-

gral contribution over the dielectric interfaces -Sal,..., Sd.- is zero. If different per-

meability values axe also present, then the permeability values must be substituted

into the element equations and the direction of the normal for the two elements on

J
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the interface should take care of the respective signs. Therefore, G(E', E i"c) reduces

to

G(E', E'"') /v I(VxE') • (VxE/"') - ko_¢_E '- E'"" dV

+jkoZo fs 1E° " (fi x H '"c) dS
a I-tr

-/So""("×_×'-"')_ (4.32)

The impedance and resistive sheet boundary conditions can be incorporated in a

similar way into the scattered field functional. After simplification, the functional

F(E s) for the scattered field is then given by

F(E') /v [ I (V x E') . (V × ES) - k2oe,E" E'] dV

is 1 (fixE').(fixE')dS+ j koZo k -'K

+/So E'. P(E°)dS

I---E".(fix H i"') dS+ 2j koZo fsa i_

+2 fv_ [ I (V x E') . (V x Ei"C) - k2oe,E" . E'_'] dV

+2jkoZo fsk 1 ._(n x E')-(fi x Ei"')dS

+s(_'oo) (4.33)

where lid is the volume occupied by the dielectric (portion of V where er or #, are

not unity), Sd encompasses all dielectric interface surfaces and

L_'..I..'_,_: is<,[°_:_'+_× _"_-_ _:_'1"

when the second order ABC is employed. The function f (Ei'') is solely in terms

of the incident electric field and vanishes when we take the first variation of F(E_).

We remark that the scattered field formulation was implemented in our code.
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4.5 Finite element discretization

To discretize the functional given in (4.33), the volume V is subdivided into a

number of small tetrahedra, each occupying the volume V" (e = 1, 2,..-, M), where

M denotes the total number of tetrahedral elements. Within each element, the

scattered electric field is expressed as

m

E _ = _ E_W; = {W_}T{Ee} = {Ee}T{W _} (4.34)
j=l

where W_ are the edge-based vector basis functions [25], E; denote the expansion

coefficients of the basis and represent the field components tangential to the jth

edge of the eth element, m is the number of edges making up the element and

the superscript stands for the element number. The basis functions used in our

implementation have zero divergence and constant curl.

The system of equations to be solved for E; is obtained by a Rayleigh-Ritz

procedure which amounts to differentiating F with respect to each edge field and

then setting it to zero. On substituting (4.34) into (4.33), taking the first variation

in F and assembling all M elements, we obtain the following augmented system of

{_} M M, Mp= _-'_[A'I{E'} + Y_.[B'I{E °} + _ {C p} = 0 (4.35)
e----I $----I p----I

equations

In this, M° denotes the number of triangular surface elements on 5', and So and Mp

is equal to the sum of the surface elements on Sk, Sd and the volume elements in Vd.

The elements of the matrices [A'], [B'] and {C p} are given by

= . ×Wl). (V × W;)- k ¢,Wl-W; aV

= jkoZo[/s 1" ]_(n x W,'.). (fix W;)dS
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+ [ [,,wc,.w;, + #(v x w,').. (v x w;). - a(v. wc,)(v, w;,)]dS
J S,o _

Cr = 2jkoZo W_'. (fi x Hi"_)dS + fs[ _-;(n x W_')-(fi x )dS

+2/ [_(VxW_')(VxE '"_) 2 , E,._]" -- ko_,W i " i dV

v$

where Vf is the volume of the pth tetrahedron inside the dielectric, S" and S p repre-

sent the surface area of the sth and pth triangular surface element and the subscripts

t and n denote the tangential and normal components of a vector, respectively. The

boundary condition fix E" = -fix E inc must be imposed a priori on metallic bound-

aries; however, no special treatment is required at material discontinuities. Only the

identification of the edges on material discontinuities or inhomogeneities is required

to kick in the contribution from the surface integrals in (4.33).

The biconjugate gradient algorithm with diagonal preconditioning was used to

solve the sparse, symmetric system of equations. The residual norm was usually

set to less than 0.1% of the solution norm as a criterion for convergence since lower

tolerances did not appear to offer significant improvement on the far-field values. The

data structure was constructed such that only the non-zero elements of the upper

triangular part of the symmetric, sparse matrix were stored in a Na x k complex

array. In our case, N_ was typically 1.1 x N,,, where N= denotes the number of

unknowns and k was equal to 12. The corresponding addresses were stored in a

separate Na x k integer array. The storage required in this scheme was about 25N,,

and the number of distinct non-zero elements was typically 9N,_.

4.6 Results

A computer program was written for implementing the proposed FE-ABC formu-

lation. This implementation was validated by computing the scattering for several
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0.755A. Plane wave incident from 0 = 180°;_ = 90°.

configurationsincluding metallic and dielectricbodies as well as structures satisfy-

ing resistiveand impedance boundary conditions.Figure 4.4 compares the measured

[52]bistaticcross-section(0_"c= 180°, _"c = 90°) of a metallic cube having an edge

length of 0.755A with the corresponding pattern computed by the three-dimensional

FF_,-ABC code. The second-order vector ABC was employed on a spherical mesh

truncation boundary which was placed only 0.1A from the edge of the cube. About

33,000 unknowns were used for the discretizationof the computational domain and

the [A] matrix contained a total of 264,000 distinctnon-zero entries. The storage

requirement of this matrix was consequently much smaller than that of the 1400

unknown moment method system (azsuming the same sampling rate as the FEM of

14 points/A) which had 2 millionnon-zero entries.

In Figure 4.5,we plot the normal incidence backscatter RCS of a perfectlycon-
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Figure 4.5: Backscatter RCS of a perfectly conducting cube at normal incidence as

a function of edge length

ducting cube as a function of its edge length. The meshes constructed for this

experiment were terminated on conformal boundaries, i.e,on another cube placed a

small distance (more than 0.15A) from the scatterer. As seen, the agreement with

measured data [52]isremarkably good over a 50dB dynamic range.

Figure 4.6 presents backscatter data for a cylinderof radius 0.3A and height 0.6A.

The data from the three-dimensional finiteelement code again compare wellwith that

obtained from a moment method-body of revolutioncode. The mesh was terminated

on a sphericalboundary at a distance of 0.3A from the edge of the scattererand the

system consistedofnearly 33,000 unknowns. Convergence was achieved within about

350 iterationswhen the Sommerfeld radiationcondition was imposed on the spherical

mesh termination boundary. Each iterationtook approximately 0.1 seconds on a

Cray YMP aftervectorizationand on the average itwas found that for N > 25,000,
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the number of required iterations were approximately N/100. The agreement was

quite good even on enclosing the metallic cylinder with a rectangular outer boundary

placed 0.3A from the edge of the scatterer•

The results presented till now have been for perfectly conducting geometries.

However, the real advantage of the FEM over integral equation techniques is the ease

with which the former can handle material inhomogeneities and transition conditions.

With this in mind, the remaining figures show backscatter and bistatic patterns for

scatterers comprised of resistive cards, dielectric material and combinations of these.

The first geometry that we tested was that of a homogeneous dielectric sphere having

a relative permittivity of 4 and a radius of 1/2r. The bistatic pattern of the geometry

is compared to that obtained using a CG-FFT formulation (Figure 4.7) and is seen
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Figure 4.7: Bistatic echo-area of a homogeneous dielectric sphere (e, = 4; koa = 1).

to agree remarkably well. The finite element mesh was terminated only 0.3,k from

the dielectric body.

Another of the test cases was a prolate spheroid shown in Figure 4.8 filled with

lossy dielectric having c_ = 4-jl, koa = rr/2 and a/b = 2, where a and b are the major

and minor axes of the spheroid, respectively. The bistatic pattern (0 inc = 180°; q_i,_c=

90 °) obtained from the FE-ABC solution agree reasonably well with those obtained

via the hybrid finite element-boundary integral method presented in [42]. However,

the corresponding convergence rate for non-metallic bodies and resistive/impedance

sheets was found to be slower than that observed for metallic scatterers. A diagonal

preconditioner was, therefore, used to accelerate the convergence of the biconjugate

gradient algorithm with encouraging results.

For our last example, we compute the scattering from an inhomogeneous geom-

etry with embedded resistive cards. Particularly, the scatterer shown in Figure 4.9
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Figure 4.8: Normalized bistatic pattern of a lossy prolate spheroid (e_ = 4-jl; koa =

:r/2;a/b = 2), where a and b are the major and minor axes of the

spheroid, respectively

consists of an air-filled resistive card block (0.5A x 0.5A x 0.25X) joined to a metallic

block (0.5A x 0.5A x 0.25)_). In Figure 4.10, we compare a principal plane backscatter

pattern obtained from our 3D FE-ABC implementation with data computed using a

traditional moment method code [53] for both polarizations. The computed data is

again seen to follow the reference data closely. For the FE-ABC solution, the scat-

terer was enclosed within a cubical outer boundary placed only 0.3A away from the

scatterer. This resulted in a 30,000 unknown system which converged to the solution

in about 400 iterations when using the Sommerfeld radiation condition and in 1600

iterations when the second order ABC was used. For this geometry, the second order

ABC did not provide a significant improvement in accuracy (only about 0.1dB) over

the first order condition. The same case was run with a higher discretization result-

ing in a system of 50,000 unknowns; however, there was no significant difference in
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Figure 4.9: Geometry of cube (a = b = 0.5X) consisting of a metallic section and a

dielectric section (e_ = 2- j2), where the latter is bounded by a resistive

surface having R = Zo.

the far-field values with the earlier case. The geometry for the backscatter pattern

shown in Figure 4.11 is the same as in Figure 4.9 with the air-filled section now

occupied by a lossy dielectric having e_ = 2 - j2. The backscatter echo-area pattern

for the ¢05 polarization as computed by our FE-ABC code is again seen to be in good

agreement with corresponding moment method data [53].

4.7 Conclusions

In this chapter, we have shown that the finite element technique with vector ba-

sis functions, when coupled with ABCs for mesh termination and the biconjugate

gradient algorithm for the solution of the resulting system, is a viable procedure for

computing the scattering by three-dimensional targets. We have found that these

ABCs can be enforced only a small fraction of a wavelength from the scatterer's

surface. This is probably due to the fast (l/r) decay of the scattered fields. As

a result, in addition to the sparsity of the matrix, the total number of unknowns
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Figure 4.10: RCS pattern in the z - z plane for the composite cube shown in Figure

4.9. The lower half of the cube is metallic while the upper half is air-

filled with a resistive card draped over it.

is kept under control. Further, due to the use of edge elements, the program can

easily handle sharp conducting edges and tips, inhomogeneous dielectric and/or mag-

netic materials, resistive sheets and impedance surfaces. These, in conjunction with

the well-known advantages of the finite element method, result in low O(N) stor-

age requirement, making the computation of large body scattering possible. These

capabilities along with the ease in modeling arbitrary geometries, makes this formu-

lation, to the best of our knowledge, one of the first suitable for solving practical

three-dimensional scattering problems.
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CHAPTER V

Optimization and parallelization

In the previous chapter, we laid the foundation for our methodology by outlining

the formulation of the finite elment system together with the absorbing boundary

condition method of mesh termination and presenting some examples to validate

our solution technique. We found that the FE-ABC technique yielded accurate

far-field values for small geometries, i.e., structures whose dimensions are less than

a wavelength. However, our principal motivation was to compute scattering from

large, three dimensional structures having arbitrary material inhomogeneities and

regions satisfying impedance and/or transition conditions. As mentioned earlier, the

number of unknowns escalates rapidly in three dimensions as the target size increases.

Therefore, the limiting factor in dealing with three dimensional problems is the

unknown count and the associated demands on storage and solution time. Solution

techniques which have O(N) storage and feasible solution times are thus the only

way that the curse of dimensionality can be avoided. This is one of the principal

reasons for the popularity of partial differential equation techniques over integral

equation (IE) approaches which lead to dense matrices and O(N 2) storage. As the

problem size increases, the IE and hybrid methods, both of which need O(NI), 1 <

l < 2, storage, quickly become unmanageable in terms of storage and solution time.
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Another concern while solving problems having more than 100,000unknowns - a

scenario that can be envisionedfor most practical problems - is to avoid software

bottlenecks. The algorithmic complexity of any part of the program should increase

at most linearly with the number of unknowns.

In this chapter, the implementationdetailsof our finite elementcodearepresented

along with the associatednumerical considerations. The various trade-offs associ-

ated with the data structures usedto representsparsematricesand their impact on

vectorization and parallelization arediscussed.The iterative solver,a preconditioned

biconjugategradient (BCG) algorithm, is studied alongwith point and block precon-

ditioning strategiesand the trade-offs betweenthe two types of preconditioners are

outlined. A modified incomplete LU (ILU) preconditioner is presented,which seems

to work better than the original ILU preconditioner for our matrix systems. Itera-

tive solvers for unsymmetric matrix systems are also mentioned to handle anisotropic

geometries and situations where the mesh termination condition makes the system

unsymmetric. In order to facilitate the solution of large problems, the computation-

ally intensive portions of the finite element code have been parallelized on a variety

of massively parallel architectures like the KSR1 (Kendall Square Research) and the

Intel iPSC/860. A full analysis of the communication patterns is also presented for

the KSR1 machine.

5.1 Numerical considerations

The finite element code implemented by the authors can be divided into four

main modules:

• Input/output

• Right-hand side vector (b) generation
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• Finite element matrix (A) generation

• Linear equation solver

The input to the program consists of the mesh information obtained by pre-processing

the mesh file generated from SDRC I-DEAS, a commercial CAD soRware package.

The right-hand side vector,b, is usually a sparse vector and only a small fraction

of the total CPU time is required to generate it. The finite element matrix genera-

tion consists of too many subroutine calls and highly complex loops to permit any

significant speedup through vectorization. It is, however, highly amenable to paral-

lelization as will be discussed later. The most time-consuming portion of the code

is the linear equation solver, taking up approximately 90% of the CPU time. On

a vector computer like the Cray YMP, it is possible to vectorize only the equation

solver. However, short vector lengths and indirect addressing inhibit large vector

speedups.

5.2 Matrix storage and generation

The matrix systems arising from I-DEAS were very sparse: on the average, the

minimum number of non-zero elements per row was 9 and the maximum number of

non-zeros per row was 30. The total number of non-zeros varied between 15N and

16N, where N is the number of unknowns.

There are various storage schemes for sparse matrices. In this chapter, we will

discuss the ITPACK format [54], the jagged diagonal format and the Compressed

Sparse Row (CSR) format. Knowledge of the storage formats is important since the

speed of computation on vector or parallel processors is directly linked to the data

structure used for matrix storage.

/
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In the ITPACK storage scheme, a sparse matrix .4 of order N is stored using two

arrays T_ and PC. For example, if we have the 5 × 5 unsymmetric matrix .A

30045

70402

40700

00800

97000

Then, according to the ITPACK scheme, the rows of the array :D will contain the

non-zero elements of the corresponding rows of the original matrix. The number of

columns of :D will be equal to the maximum number of non-zeros in a row; rows

containing fewer non-zero elements will be zero padded. The array T_ thus looks like

345

742

470

800

970

The column indices of the elements in T_ are stored in an integer array _C defined

as

145

135

13,

3 * •

12,

The asterisk denotes that the corresponding elements of T_ are zeros. The ITPACK

storage scheme is attractive for generating finite element matrices since the number
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of comparisons required while augmenting the matrix depends only on the locality of

the corresponding edge and not on the number of unknowns. Moreover, the sparse

matrix-vector multiplication process can be highly vectorized because of large vector

lengths when the number of non-zeros in all rows is nearly equal. However for our

application, almost half the space is lost in storing zeros. As a result, a lot of

storage as well as computational effort is wasted in storing arid operating on zeros,

respectively.

The modified ITPACK scheme [55] does alleviate this problem to a certain de-

gree by sorting the rows of the matrix by decreasing number of non-zero elements.

However, 30% of the allotted space is still lost in zero padding.

The best trade-off between storage and speed for our application on parallel

architectures is obtained by storing the non-zero matrix elements in a long complex

vector, the column indices in a long integer vector and the number of non-zeros per

row in another integer vector. On a vector machine, the jagged diagonal storage

scheme gives better results in terms of vectorizability. This scheme will be explained

in the next section.

The data structure used for storing the sparse matrix on MPP machines is referred

to as the Compressed Sparse Row (CSR) format. A similar data structure which

stores the row indices instead of the column indices is called the Compressed Sparse

Column (CSC) format. The CSC format is sometimes used when the matrix is

to be accessed along the rows and not the columns, e.g., in the multiplication of

the transpose of a sparse matrix with a vector. In our implementation, a map of

the number of non-zeros for eaeh row is obtained through a simple pre-processor.

The main program stores the matrix in CSR format, thus minimizing storage and

sacrificing a bit of speed. The required storage is 15N to 16N complex words plus
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integers for D and PC, respectively, and N integers for the array containing the

pointers to the rows' data.

5.3 Linear equation solver

In three dimensional applications, the order N of the system of linear equations

may be very large. Direct solution methods usually suffer from fill-in to an extent

that these large problems cannot be solved at a reasonable cost even on state-of-

the-art parallel machines. It is, therefore, essential to employ solvers whose memory

requirements are a small fraction of the storage demand of the coefficient matrix.

This necessitates the use of iterative algorithms instead of direct solvers to preserve

the sparsity pattern of the finite element matrix. Especially attractive are iterative

methods that involve the coefficient matrices only in terms of matrix-vector products

with A or A T. The most powerful iterative algorithm of this type is the conjugate

gradient algorithm for solving positive definite linear systems [56]. In our implemen-

tation, the system of linear equations is solved by a variation of the CG algorithm,

the biconjugate gradient (BCG) method. This scheme is usually used for solving

unsymmetric systems; however, it performs equally well when applied to symmetric

systems of linear equations. For symmetric matrices, BCG differs from CG in the

way the inner product of the vectors are taken.

The conjugate gradient squared (CGS) algorithm [57] performs best when applied

to unsymmetric systems of linear equations. It is usually faster than BCG but is more

unstable since the residual polynomials are merely the squared BCG polynomials and

hence exhibit even more erratic behavior than the BCG residuals. Moreover, there

are cases where CGS diverges, while BCG still converges. Recently, Freund [58] has

proposed the quasi-minimal residual (QMR) algorithm with look-ahead for complex



80

symmetric matrices.

Based on the above, the biconjugate gradient (BCG) algorithm was found to be

most suitable for our implementation. The BCG requires 1 matrix-vector multiplica-

tion, 3 vector updates and 3 dot products per iteration. The solution scheme requires

only three additional vectors of length N. The vector updates and the dot products

can be carried out extremely fast on a vector Cray machine like the Cray YMP,

reaching speeds of about 190 MFLOPS. However, the matrix-vector product, which

involves indirect addressing and short vector lengths, runs at about 45.5 MFLOPS

on 1 processor of the 8-processor Cray YMP. As a rule of thumb, the biconjugate

gradient algorithm with no preconditioning consumes 4.06 microseconds per iteration

per unknown on the Cray YMP.

As mentioned earlier, there are two problems which limit the vectorizability of

a sparse matrix code - short vector lengths and indirect addressing. There is not

much one can do about the second problem since sparse matrices must have indirect

addressing to exploit the O(N) storage feature. However, the first problem can be

removed by storing the matrix in a different format such that the vector lengths are

approximately equal to the order of the system being solved. The storage format is

called the jagged diagonal format [59]. The rows are ordered by decreasing degree

and the leftmost elements of each row are stored as a dense vector with an additional

vector indicating the column numbers of each element. The matrix is thus stored

as a collection of vectors of decreasing length. The inner loop of the matrix-vector

multiplication routine traverses the entire length of a jagged diagonal, which can be of

the order of the system being solved. This feature enhances vectorization massively.

The storage requirement of the above format can be made to be the same as the

previously mentioned CSR format through careful programming. The altered code

.t
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then runs at around 275 Mflops on a Cray C-90. The dot product reaches speeds

of 550 Mflops and the vector updates execute at 600 Mflops. It must be mentioned

that the CRAY C-90 is a substantially faster machine than the Cray YMP but the

CSR formatted matrix-vector multiplication routine runs about 4 times slower on

the C-90. Therefore, we can reliably state that the method of jagged diagonals is the

best sparse matrix storage scheme in terms of computer storage and vectorizability.

The still slower execution speeds of the matrix-vector multiply compared with the

vector update is due to the indirect addressing in the inner loop which causes memory

contention.

5.4 Preconditioning

The condition number of the system of equations usually increases with the num-

ber of unknowns. It is then desirable to precondition the coefficient matrix such that

the modified system is well-conditioned and converges in significantly fewer iterations

than the original system. The equivalent preconditioned system is of the form

[C-I] [A] {x} = [C-1]{b} (5.1)

The non-singular preconditioning matrix C must satisfy the following conditions:

1. should be a good approximation to A.

2. should be easy to compute.

3. should be invertible in O(N) operations.

The preconditioners that we discuss below are the diagonal and the ILU point

and block preconditioners. Block preconditioners are usually preferable due to re-

duced data movement between memory level hierarchies as well as decreased number
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of iterations required for convergence. Block algorithms are also suited for high-

performance computers with multiple processors since all scalar, vector and matrix

operations can be performed with a high degree of parallelism.

5.4.1 Diagonal preconditioner

The simplest preconditioner that was used in our implementation was the point

diagonal preconditioner. The preconditioning matrix C is a diagonal matrix which

is easy to invert and has a storage requirement of N complex words, where N is the

number of unknowns. The entries of C are given by

C_/ = 6_ A_j, i = 1,...,N; j = 1,...,N (5.2)

where 6ij is the Kronecker delta. The matrix C -I contains the reciprocal of the

diagonal elements of A. The algorithm with the diagonal preconditioner converged

in about 35% of the number of iterations required for the unpreconditioned case. This

suggested that our finite elment matrix was diagonally dominant since the reduction

in the number of iterations was rather impressive. The diagonal preconditioner is

also easily vectorizable and consumes 4.1 microseconds per iteration per unknown

on the Cray YMP, a marginal slowdown over the unpreconditioned system.

A more general diagonal preconditioner is the block diagonal preconditioner. The

point diagonal preconditioner is a block diagonal preconditioner with block size 1.

The block diagonal preconditioning matrix consists of m x m symmetric blocks as

shown in Figure 5.1. The inverse of the whole matrix is simply the inverse of each

individual block put together. If the preconditioning matrix C is broken up into n

blocks of size m, the storage requirement for the preconditioner is at most m x N.

However, this method suffers a bit from fill-in since the inverted rn × m blocks are

dense even though the original blocks may have been sparse. Due to this reason,
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Figure 5.1: Structure of block preconditioning matrix

large blocks cannot be created since the inverted blocks would lead to full matrices

and take a significant fraction of the total CPU time for inversion. However, since

the structure of the preconditioning matrix is known a priori, this preconditioner

vectorizes well and runs at 194 MFLOPS on the Cray-YMP for a block size of 8. For

a test case of 20,033 unknowns, a block size of 2 caused the maximum reduction in

the number of iterations(14%) and ran at 197 MFLOPS.

5.4.2 Modified ILU preconditioner

The next step was to use a better preconditioner to improve the condition number

of the system resulting in faster convergence. The traditional ILU preconditioner

[60] was employed with zero fill-in; however, the algorithm took a greater number of

iterations than the diagonal preconditioner to converge to a specified tolerance. This

was probably because the ILU preconditioned system may not have been positive
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definite [61]. The preconditioned conjugate gradient method usually converges faster

if the preconditioner is positive definite, although this is not a necessary condition.

Higher values of fill-in were not attempted since the preconditioner already occupied

storage space equal to that of the coefficient matrix.

Algorithm 1 : Modified ILU preconditioner with zero fill-in

It is assumed that the data is stored in CSR format and that the column numbers

for each row are sorted in increasing order. The sparse matrix is stored in the vector

and the column numbers in 7_C. SI_(i) contains the total number of non-zeros

till the ith row. The locations of the diagonal entries for each row are stored in the

vector _I.A_. The preconditioner is stored in another complex vector, _.

for i=1 step 1 until n-I do

begin

lbegfdiag(i)

lendffisig(i)

for jflbeg+l step 1 until lend do

begin

jj=pc(j)

ijfsrch(jj, i)

if (ij.ne.O) then

begin

lu (ij)=lu (ij)/lu (ibeg)

end

end

end
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A modified version of the ILU preconditioner was next employed by eliminat-

ing the inner loop of the traditional version. The algorithm basically scales the

off-diagonal elements in the lower triangular portion of the matrix by the column di-

agonal. Since the matrix is symmetric, it retains the LDL T form and is also positive

definite if the coefficient matrix is positive definite. This preconditioner is less ex-

pensive to generate and converges in about 1/3 the number of iterations taken by the

point diagonal preconditioner. It has been tested with reliable results for N < 50000.

However, the time taken by the two preconditioning strategies is approximately the

same since each iteration of the ILU preconditioned system is about three times more

expensive. The forward and backward substitutions carried out at each iteration runs

at 26.5 MFLOPS on the Cray YMP and proves to be the bottleneck since they are

inherently sequential processes and the vector lengths are approximately half that

of the sparse matrix-vector multiplication process. The triangular solver is also ex-

tremely difficult to parallelize. Techniques like level scheduling and self scheduling

try to exploit the fine grain parallelism in the sparse system [62].

We implemented the level scheduling algorithm to examine the potential paral-

lelism in the forward/backward substitution step. For solving any lower triangular

system Lx = b, the ith unknown in the forward solution is given by

xi = bi - _ lijxj (5.3)

If L is dense, all the components xl,...,xi-1 need to be computed before xi can

be obtained. However, when L is sparse, most of the lijs are zero; hence, we may

not need to compute all of the unknowns xl,... ,xi-1 before solving for xi. Level

scheduling is based on this simple observation. The dependencies between the un-

knowns can be modeled using a graph in which node i corresponds to the unknown
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zi and an edge from node j to node i indicates that lij _: 0 implying that the value

of xj is needed for solving xl. The operation shown in (5.3) can now be rewritten as

1( )b,- l, x, (5.4)
j<i:li,j_O

Thus xi can be solved at the kth step if all the components xj in (5.4) have been

computed in the earlier steps.

In order to implement the level scheduling algorithm, we need to define the depth

of a node and the level of the graph. The depth of a node is defined as the maximum

distance from the root [59]. Therefore, we will place an imaginary root node with

links to the nodes having no predecessors so that the depth of each node will be

defined from the same point. The depth of each node can now be computed with

one pass through the structure of the coefficient matrix L by

if lij = 0 for all j < i

}otherwise

f

depth(i) = _ 1, (5.5)

[ 1 + maxj<i{depth(j): lit _ 0},

The level of the graph can then be defined as the set of nodes with the same depth.

The level scheduling algorithm can now be implemented without physically ordering

the matrix, but solving the system in increasing order of node depth and distributing

the nodes at each depth among the available processors.

Algorithm 2 : Forward elimination step with level scheduling

The number of levels of the graph , nlev, can be easily determined from the depth

information. Two other integer vectors are also required. ORDER(i) stores the

ordering of the rows of L in terms of increasing node depth. LEVEL(i) stores the

index to the start of each level in ORDER(i).

do k=l,...,nlev
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do j=ilevel(k),...,ilevel(k+l)-I

i=iorder(j)

execute Equation 5.4

enddo

enddo

(parallel loop)

However, our efforts at parallelizing the ILU preconditioned system with level schedul-

ing did not lead to significant speedup mainly due to the enormous amount of mem-

ory traffic that was generated. This observation was also noticed in [62], where the

authors estimated that the parallel algorithm generated as much as 10 times more

traffic than the sequential code. In order to look for an effective parallelizable ILU

preconditioner, we next turned our attention to a block ILU preconditioner.

In our scheme of implementing the block ILU preconditioner, we distribute one

block to each processor in a multi-processor architecture, thus achieving load balanc-

ing as well as minimizing fill-in. The modified ILU decomposition outlined earlier

is then carried out on each of these individual blocks. Further, since the blocks are

much larger than the block diagonal version, the preconditioner is a closer approxi-

mation to the coefficient matrix. Moreover, the triangular solver is fully parallelized

since each processor solves an independent system of equations through forward and

backward substitution. In our test case of 20,033 unknowns, the number of iterations

was reduced by approximately half the number required by the diagonal precondi-

tioner. Since the work done is less than twice that for the diagonal preconditioner, we

achieved a marginal savings of CPU time. However, the number of iterations required

for convergence is highly sensitive to block size as shown in Table 5.1 for N = 20,033.

Table 5.1 clearly shows that a larger block size (smaller number of blocks) does not

guarantee faster convergence. Nevertheless, there is an approximately 50% decrease
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in the number of iterations over the point diagonal preconditioner, regardless of block

size. The optimum block size is dependent on the sparsity pattern of the matrix and

can only be determined empirically. The savings in the number of iterations over the

No. of blocks No. of iterations

8

12

16

24

28

127

176

185

172

162

174

223

177

Table 5.1: No. of iterations vs no. of blocks for a block ILU preconditioned biconju-

gate gradient solution method.

point diagonal preconditioner for 28 blocks is given in Table 5.2 for a system having

224,476 unknowns. From the table, it is clear that the block ILU preconditioner

Angle of

incidence

0

i0

20

30

40

50

60

70

80

90

no. of iterations

point diagonal (I) block ILU (II)
2943

5985

5464

6048

5770

5107

6517

5076

5305

2898

2758

3834

3984

3651

3256

3720

4162

4108

3551

2832

Ratio

(II/I)

.937

.641

.729

.604

.564

.728

.639

.809

.669

.977

Table 5.2: No. of iterations required for convergence of a 224,476 unknown system

using the point diagonal and block ILU preconditioning strategies.

is very effective in reducing the iteration count; however, the CPU time required is

about 10% less than that required by the point diagonal preconditioner for the best

case.
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5.5 ParaUelization

The different versions of the FE-ABC code were parallelized on two different types

of massively parallel architectures - the KSR1 and the Intel iPSC/860. The KSR1 is a

parallel machine which implements a shared virtual memory, although the memory

is physically distributed for the sake of scalability. The Intel iPSC/860, on the

other hand, is a distributed memory, Multiple Instruction, Multiple Data (MIMD)

system in which the nodes process information independently of one another and

communicate by passing messages to each other. The conversion of sequential or

vectorized code to parallel code involves two primary tasks:

• parallelization of DO loops

Parallelism is introduced by allowing each processor to execute a portion of the

DO loop.

• distribution of arrays among the processor set

Since each processor only has a limited amount of memory, each array is divided

into smaller units that reside on each node. This also allows array accesses from

each processor to be serviced by different nodes, thus reducing contention for

resources on any single node.

On a cache-only memory machine such as the KSR1, only the first step is neces-

sary since the hardware cache system automatically takes care of data distribution

among the processors. This makes porting codes to the KSR1 quite easy. However,

the increased control of data distribution and communication on the iPSC/860 can

translate into improved performance for some applications. We will first describe

our port and performance figures for the KSR1 and then detail our port on the Intel

iPSC/860.
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1. KSR1 port

The basic strategy for the parallelization of the code is described on the biconjugate

gradient solver with diagonal preconditioning. The other versions use the same par-

allelization scheme with slight modifications. We also comment on the parallelization

of the matrix assembly phase.

Complex Real

Operation , + , +

Matrix Multiply nze nze - N 4nze 4nze- 2N

Vector Updates 4N 3N 16N 12N

Dot Products 3N 3N 12N 12N

Table 5.3: Floating point operations per iteration.

The symmetric biconjugate gradient method iteratively refines an approximate

solution of the given linear system until convergence. Figure 5.2 shows the method

in terms of vector and matrix operations. For a system of equations containing N

unknowns, all these vectors are of size N and the sparse matrix is of order N. The

number of nonzero elements in the sparse matrix is denoted as nze. Table 5.3 shows

the operation counts per iteration for each type of vector operation. In the FE-ABC

code, each vector operation is implemented as a loop. The program is parallelized

by tiling these loops. For P processors, the vectors are divided into P sections

of NIP consecutive elements. Each processor is assigned the same section of each

vector. This partitioning attempts to reduce communication while balancing load.

To guarantee correctness, synchronization points are added after lines 2, 7, and 9.

Lines 2 and 7 require synchronization to guarantee that the clot products are com-

puted correctly. Note that the dot products in lines 6 and 7 require only one syn-

chronization. The line 9 synchronization guarantees that p is completely updated

-9
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before the matrix multiply for the next iteration begins.

In the sparse matrix vector multiplication, each processor computes a block of the

result vector by multiplying the corresponding block of rows of the sparse matrix with

the operand vector. Since the operand vector is distributed among the processors,

data communication is required. The communication pattern is determined by the

sparsity structure of the matrix, which in our case is derived from an unstructured

mesh. Therefore the communication pattern is unstructured and irregular. However

since the sparse matrix is not modified during the iterative process, the communi-

cation pattern is the same at each iteration. Vector updates and dot products are

easily parallelized using the same block distribution as in the sparse matrix vector

multiply.

Although sparse computations are known to be hard to implement efficiently

on distributed memory machine, mainly because of the unstructured and irregular

communication pattern, the previous scheme was easily and efficiently implemented

on the KSR1 MPP thanks to the global address space [63]. Table 5.4 shows the

execution time of one iteration (in seconds) and the speedup for different numbers

of processors and for two problem sizes.

For both problems, the performance scales surprisingly well up to a large number

of processors. For the 20,033-unknown problem, the speedup for the parallelized

sparse solver varies from 1 to 38 as the number of processors is increased from 1 to

56 (Figure 5.3). The overall performance of the solver on 28 processors is more than

three times that of a single processor on the Cray-YMP. The large problem (224,476

unknowns) exhibits superlinear speedup which can be attributed to a memory effect.

As a matter of fact, the large data set does not entirely fit in the local cache of a

single node in the KSR which results in a large number of page faults. However, as
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Initialization:

z given

r =b-Az ; p=r ; trnp=r.r

Repeat until (resd < tol)

q =Ap (1) / Step 1

a=tmp/(q.p) (2) J
= = = + ¢rp (3)

r = r - aq (4)

q = C -1 * r (5) Step 2

,'e,d= _, ,'1 (6)

_=(,.q)/tmp (7)

imp = # x trap (8) 1 Step 3

p=q+_p (9) J
EndRepeat

.A is a sparse complex symmetric matrix.

C is the preconditioning matrix.

q, p, z, v are complex vectors.

a, 3, trap are complex scalars; resd, 1ol are real scalars.

Figure 5.2: Symmetric biconjugate gradient method with preconditioning.
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Figure 5.3: Speedup curve for the linear equation solver on the KSR1

the number of processors increases, the large data set is distributed over the different

processors' memories.

The global matrix assembly is the second largest computation in terms of execu-

tion time. The elemental matrices are computed for each element in the 3D mesh

and assembled in a global sparse matrix. A natural way of parallelizing the global

matrix assembly is to distribute the elements over the processors, have each pro-

cessor compute the elemental matrix of the elements it owns and update the global

sparse matrix. Since the global sparse matrix is shared by all processors, the update

needs to be done atomically. On the KSR1 this is done by using the hardware lock

mechanism.

The performance for the matrix assembly is given in Table 5.5 and also in Figure

5.3.
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Procs

G

8

16

29

60 b

N=20,033

Execution time

(secs per iter)

.515

.071

.040

.027

Speedup

i

7.3

12.9

19.1

N=224,476

Execution time

(sees per iter)

10.8

1.4

.671

.304

.149

Speedup

1

7.7

16.1

35.6

76.2

Table 5.4: Execution time and speedup for the iterative solver

5.5.1 Analysis of Communication

In the main loop (Figure 5.2), significant communication between processors takes

place only during the sparse matrix vector multiply (line 1) and the vector update of

p (line 9). The rest of the vector operations incur little or no communication at all.

The distribution of the nonzero entries in the matrix affects the amount and nature

aFor 1, 8 and 16 processors, only the first 100 iterations were run.
_Code run on a 64 node KSR at Cornell University

Procs

1

2

4

8

16

25

28

Table 5.5: Execution time and

(20,033 unknowns)

Execution time

in seconds
i,,

24.355

13.376

6.811

3.744

1.89

1.625

1.276

Speedup

1

1.8

3.6

6.5

12.9

15.0

19.1

speedup for the matrix generation and assembly
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of communication. In this section, we present an analysis of the communication

pattern incurred by the sparse matrix vector multiplication as derived from analysis

of the sparsity structure of the matrix.

Line 1. In the matrix-vector multiply, each processor computes an N/P-sized

subsection of the product q. The processor needs the elements of p that correspond to

the nonzero elements found in the N/P rows of A that are aligned with its subsection.

Because the matrix A remains constant throughout the program, the set of elements

of p that a given processor needs is the same for all iterations in the loop. However,

since p is updated at the end of each iteration, all copies of its element set are

invalidated in each processor's local cache except for the ones that the processor

itself updates. As a result, in each iteration, processors must obtain updated copies

of the required elements of p that they do not own.

These elements can be updated by a read miss to the corresponding subpage, by

an automatic update, or by an explicit prefetch or poststore instruction. Figure 5.4

lists the number of subpages that each of the 28 processors needs to acquire from other

processors. Automatic update of an invalid copy of a subpage becomes more likely

as the number of processors sharing this subpage grows. The number of processors

that need a given subpage (excluding the processor that updates the subpage) is

referred to as the degree of sharing of that subpage. Figure 5.5 shows the degree of

sharing histogram for the example problem. Since the only subpage misses occurring

in Step 1 of the sparse solver are coherence misses due to the vector p, the use of the

poststore instruction to broadcast the updated sections of the vector p from Step 3

should eliminate the subpage misses in Step 1. However, the overhead of executing

the poststore instruction in Step 3 offsets the reduction in execution time of Step 1.

On a poststore, the processor typically stalls for 32 cycles while the local cache is
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Figure 5.4: Counts of p subpages required by each processor for sparse matrix-vector

multiply (total copies=5968)

busy for 48 cycles. As a result, the net reduction in execution time is only 3%.

Line 9. Before proceeding with the updates of the N/P elements of p for which

it is responsible, each processor must acquire exclusive ownership for those elements.

Because a cache line holds 8 consecutive elements, each processor will generate N/8P

requests for ownership (assuming all subpages are shared). In order to hide access

latencies, the request for ownership can be issued in the form of a prefetch instruction

after step 1. This could lead to an eightfold decrease in the number of subpage misses.

However, as with the poststore instruction, the benefit of prefetching is offset by

the overhead of processing the prefetch instructions in step 2. This is because the

processor stalls for at least two cycles on a prefetch and the local cache cannot satisfy

any processor request until the prefetch is put on the ring. The overall execution

time is reduced by only 4% in this case.
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Figure 5.5: Degree of sharing histogram of p subpages during sparse matrix-vector

multiply (28 procesors)

Lines 2, 6, 7. The rest of the communication is due to the three dot products.

Each processor computes the dot product for the vector subsection that it owns.

These are then gathered and summed up on a single processor.

2. Intel iPSC/860 port

The parallelization of the DO loops is one of the main tasks since the majority of the

computer time is spent on solving the linear system of equations. The basic strategy

for parallelizing the DO loops on the iPSC/860 is similar to the KSR1 - each portion

executes a portion of the DO loop. This scheme works fine as long as there are no

dependencies in the body of the loop, as is the case for the vector updates and the

sparse matrix-vector multiply of the linear solver. However, the main loop in the

matrix generation/assembly phase contains a dependency between loop iterations.
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As on the KSR1, this problem is solved by using a mechanism by which each processor

locks a row of the matrix while performing an update. Since the locking of each row

is maintained by the processor whose memory holds the particular row, processors

lock and unlock rows by sending messages to the appropriate row owner.

Even though the parallelization of loops enables programs to run faster on multi-

processors, the distribution of arrays must be done for the code to run at all. Arrays

are distributed in the code by partitioning one dimension among the processors.

Thus for a 1000 element array, processor holds the first 100 elements, processor 2 the

next 100 and so on. The straightforward method for accessing this distributed array

involves the translation of array references into subroutine calls. Thus an expression

z = a(i) is translated into the call call fetcha(i,z). The subroutine fetcha then

sends a message to the processor that holds element a(i), which in turn sends a reply

message with the value of a(i). Although this scheme requires the implementation of

a new subroutine for each distributed array and the replacement of each array access

with a subroutine call, the process is easy and mechanical. However, such a scheme

does not result in good performance.

The primary reason for this is that the overhead for sending a message is much

higher than that of sending a single byte. The cost for sending 10 or even 100 bytes

is usually not much higher than that of sending 1 byte. Thus, messages need to be

'bundled' for fast and efficient operation. However, the simple strategy mentioned

above is in direct contrast to message bundling. Therefore, we have implemented

the simple scheme for parts of the code that do not take up a significant portion of

computation time like the matrix generation/assembly phase and a better scheme

for accessing the distributed arrays in the equation solver phase.

The primary operation in the solver that generates communication is the sparse
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matrix-vector product. Sincethe matrix-vector product involvesperforming a dot

product of each row with the distributed vector, each processormust obtain the

valuesfor the entire vector from the other processors. The dot product operation

must becarried out in severalphasesaseachprocessormay not be able to hold the

entire vector in memory. Thus each processorP begins the matrix-vector multiply

by sending its portion of the vector to other processors, then performs the following

tasks for every other processor P'

• Reads the portion of the vector owned by P'.

• Updates the partial dot product for each row by adding the product of the

appropriate matrix element with the elements of the partial vector.

After performing the above operations for all the processors, the dot product is

complete. Unfortunately, each phase requires a pass over all the sparse matrix rows

owned by the processor. In the future, it may be possible to sort each row of the

matrix to allow the phases to pass over the rows in order.

The speedup results on a problem with 31000 unknowns show that the problem

scales reasonably well for a small number of processors. However, as the number of

processors increases, much of the time is spent on communication and book-keeping

than on true computation. Efforts are under way to run a larger problem.



CHAPTER VI

Conformal absorbing boundary conditions for the

vector wave equation

As mentioned in the previous chapters, the focus of this thesis is the computation

of scattering from large three-dimensional structures. Since we are dealing with

large targets having arbitrary shape, a spherical mesh termination boundary is not

as attractive in terms of storage and computational cost. This is especially true

for long and thin geometries where a sphere is the least economical shape of mesh

termination, in terms of the number of unknowns. The ideal situation would be

to enclose the scatterer inside a mesh termination boundary which is of the same

shape as the scattering body (see Figure 6.1). If boundary conditions could be

derived for such conformal mesh truncation surfaces, the volume to be meshed and

the corresponding computing cost would then be minimized. However, available

three dimensional ABCs for the vector wave equation as derived by Peterson [48]

and Webb and Kanellopoulos [49] are only suited for application on spherical mesh

terminations.

Our goal, therefore, is to derive new vector ABCs for three dimensional analysis

which can be applied on a surface conformal to the structure of interest. We begin

with a modified Wilcox expansion whose leading order term recovers the geometrical

100
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Figure 6.1: Scatterer enclosed in conformal mesh termination boundary

optics fields and thus, given the appropriate principal curvatures, the resulting ABC

completely absorbs all geometrical optics fields from the surface. We then proceed

to derive the first and second order absorbing boundary conditions in terms of the

principal curvatures of the surface on which they are employed. We also introduce an

approximation to make the absorbing boundary condition contribution symmetric.

In the next step, we incorporate these boundary conditions into the finite element

equations and express them in a readily implementable form. We also comment

on the symmetry of the system for doubly curved surfaces. In the last section, we

examine the performance of these ABCs - in terms of computational cost - when

applied on mesh termination surfaces conformal to the scattering object.

6.1 Formulation

It is known that the electric field in a homogeneous region of space is governed

by the vector wave equation

VxVxE- ko2E = 0 (6.1)
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where ko is the free-space wave number. We assume that the field has a well-defined

phase front in the region under consideration. Since we are concerned only with local

behavior, we can assume that the phase fronts can be treated as parallel regions.

Consequently, the surface describing the phase fronts can be specified by a net of

coordinate curves denoted by tl and t2 and a third variable n denotes the coordinate

along the normal to the phase front. The point of observation in the Dupin coordinate

system [64] can now be defined as

x = nfi + Xo(tl, t2) (6.2)

where fi is the unit normal and Xo (tl, t2) denotes the surface of the reference phase

front. The curl of a vector in the above coordinate system is given by

0E
VxE = Vr x E + fi x 0--'ff (6.3)

where VT x E is called the surface curl involving only the tangential derivatives and

is defined as [65]

VT X E = --fix VE. + t2_lEtl - tlK2Eta "_-l'lV . (E x lPl) (6.4)

In (6.4), el and _2 denote the principal curvatures of the surface under consideration,

Etl, Et2 are the tangential components and E, is the normal component of the electric

field on the surface. The principal curvature of a surface is defined as [64]

1 1 Oh1 (6.5)/¢1 --
R, h, On

1 _ 1 Oh2 (6.6)
t¢2- R2 h2 On

where hi, h2 are the metric coefficients and R1, R2 are the principal radii of curvature.

Using the aforementioned coordinates, the Wilcox expansion for a vector radiating

5 5
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function can now be generalized to read

e-JJ, o, oo Ep (tl,t2)

- (6.7)

where Ri = pi q-n, i = 1,2 and pi is the principal radius of curvature associated

with the outgoing wavefront at the target.The lowest-order term in (6.7)represents

the geometrical optics spread factor for a doubly curved wavefront and reduces to

the standard Wilcox expansion [66] for a spherical wave. Moreover, (6.7) can be

differentiated term by term any number of times and the resulting series converges

absolutely and uniformly [66].

6.1.1 Unsymmetric ABCs

In the 3D finite element implementation using vector basis functions and the

electric field as the working variable, we need to relate the tangential component of

the magnetic field in terms of the electric field at any surface discontinuity. Therefore,

our next task is to derive a relation between fix VxE (i.e., fi x H where H is the

magnetic field) and the tangential components of the electric field on the surface.

Taking the curl of the electric field expansion given by (6.7) and crossing it with the

normal vector, we have

e-Jk°"_o[(Jko+,_m--_')E,t VtEp,.,+pt_mEvt]n × V×E - 4_ = _+_ + -¥_ j (6.8)

where u = _ and

VtE,, = -(fixfixV) E,,

_1 "lt- /¢2
/_rrt --

2
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Consideringthat Eo, is zero due to the divergenceless condition [66] and simplifying,

we obtain the first order absorbing boundary condition

fi x VxE - (jko + to,,, - 7") Et - e-Jk°"4rr_-,°°VtEP,up+l+ ptc,,,Ept (6.9)
p=l

or, fi×V×E-(jko+x_-n')Et = 0 +O(n -3) (6.10)

for a conformal outer boundary. Not surprisingly, this is the impedance boundary

condition for curved surfaces as derived by Rytov [67]. It should be noted that in the

above equation, VtEn and tc,_ are each proportional to n -1. Therefore, the leading

order behavior of (6.10) is O (n-3), i.e., only the first two terms of (6.7) are exactly

satisfied by (6.10). If the scattered field contains higher order terms, application of

(6.10) will give rise to non-physical reflections back into the computational domain.

In order to reduce these spurious reflections, we need to either shift the mesh trun-

cation boundary farther away from the scatterer or employ higher order boundary

conditions which satisfy higher order terms of (6.7).

To reduce the order of the residual error further, we consider the tangential

components of the curl of (6.9). This yields

x Vx x Vxn-(jko + =

4r _ jko -4- (p + 3)t_m tea VtErn + pt_,nEpt= U p+l

u,+' _--_'_1" j (6.11)

where % = _lt;2 is the Gaussian curvature. Using the result derived in (6.9) and

simplifying, (6.11) reduces to

fix Vx [fix VxE-(jko + _,,,- _-)E,] =

4_r _= j ko + (p + 3 )m,. '_,,,_ 7"

_m
(6.12)

t
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If we take a closer look at the term in the square brackets on the RHS of (6.12), we

find that it can be written as

e-J_°" X-"_¢ VtEp,, + ptcmEpt
4r /_, p_rn up+l

p=l

_m
× V×E- (jko + ,¢,,, - 7.) Et}

where we have substituted

4_r p_-_[ up+' j =fi×VxE-(jko+_,,,-7.)Et
(6.13)

using the relation derived in (6.9).

Now the dominant terms on the RHS of (6.12) can be eliminated by considering the

higher-order operator

[fix Vx-- (jko+3_,_ _ 7")] {fix _TxE-(jko+_m- 7")Et}+
tern

( Kg ) e -jk°n °° VtEpn-l-ptcmEpt21¢m 7" VtEn -- __, pt_m
nm 4r up+l

p-----1

(6.14)

The residual of (6.14) can be reduced further to yield the absorbing boundary con-

dition of second order which satisfies (6.7) to O (n-S). This second order ABC is

found to be

[fix Vx- (jko+4_,,_ % 7")] {fix VxE-(jko + _,,, -7.)Et} +
Krn

2nm 7" VtE,_ = 0
gm

(6.15)

and the residual is equal to

e-J,o, o_ VtEr _ +
4r _(p - 1)_;,-,, u,+,Pn''E_t (6.16)

p=2

The operator on the LHS of (6.15) can be applied repeatedly to obtain ABCs of

increasing order; however, higher order basis functions are needed for their imple-

mentation.



106

After some algebraic manipulation, the terms on the LHS of (6.15) reduced to

simpler ones. In addition to the wave equation, the following vector identities were

derived to carry out the simplifications and are provided below for the reader's con-

venience:

fix VxE,

fix VxV,E.

fix Vx (fi x VxE)

= fixVxE-VtE.

= X7_(V.E 0 + 2,=X7_E.

= Vx {fi(VxE).}-k_E,-A_ {(VxE), tl +(VxE)4t, }

where A_ = rl - '¢2. The derivation of these identities is given in Appendix B. Upon

simplification, the second order ABC can he compactly written as

-(D-2_.)_×V×E+{4__.-_ +D (jko-_.)+(_)_.+,.A,_.}B,

+Vx{h(VxEl_}+(jko+3,¢= '% 2_.) V,E, = 0 (6.17)
/¢m

in which

D = 2jko + 5_= -
t¢9

_{'lm,

and

(7)2 . E` = ,¢_E,,t_+ _¢]E,2t2

= ilh - i2i2

(6.18)

The second order ABC derived in [48] is recovered on setting gl = _2 = 1/r.

6.1.2 Symmetric correction

It has been shown by Peterson in [48] that the LHS of (6.17) when incorpo-

rated into the finite element equations gives rise to an unsymmetric matrix system

in spherical coordinates. To alleviate this problem, KaneUopoulos and Webb [49]
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suggested an alternative derivation involving an arbitrary parameter which would

lead to a symmetric matrix while sacrificing some accuracy. Below, we discuss a

different approach which leads to a symmetric ABC without the introduction of an

arbitrary parameter.

On considering the series expansion of the term fi × V×VtE,,, we have

e-jkon oo V tE;,_
fi×WxVtE, = ,4---z--_-'{Jk°+(P+l)x" } uP+I

p=l

oo

p=2 /ZP+I

= mY,E. +2 .V,E.+O

and on making use of the vector identity

Vt (7. Et) = fi x VxV_E,, - 2XmVtE,

given earlier, we arrive at the following result

Vt (V.E,) = jkoV,E,_ + 0 (n -5) (6.19)

Since our ABC was derived to have a residual error of O (n-5), we can replace

jkoVtE,_ with Vt (_7-Et) without affecting the order of the approximation. Doing so,

the second order ABC with a symmetric operator can be rewritten as

(D - 2xm)fi × V×E = {4x_ - x 9 + D(jko- 7")+ (7) 2. +'_mAx_ ") Et+

Vx {fi(VxE),} + _o jko + 3x,_ x,n 27" V,(V.E_) (6.20)

It can be easily shown that the above boundary condition leads to a symmetric

system of equations when incorporated into the finite element functional for surfaces

having xl = '_2. Equations (6.10) and (6.20) reduce to the boundary conditions

derived in [49] on setting xx = x2 = 1Iv which have been found to work well for

spherical and flat boundaries [68].
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6.1.3 Finite element implementation

The boundary condition outlined in equation (6.20) cannot be incorporated into

the finite element equations without modification. As explained in Chapter 3, the

absorbing boundary condition is implemented in the finite element system through

the surface integral over the mesh termination surface So.

], E ×v×r,ds = Jsr,.P(E)ds
0 0

where P(E) denotes the boundary condition relating the tangential magnetic field

to the tangential electric field on the surface.

Let PI(E) denote the first order absorbing boundary condition given by (6.10),

where the subscript represents the order of the ABC. Therefore, the surface integral

contribution for the first order ABC reduces to

fsoE'PI(EldS = fSoE.E, dS- fsoE.( .E,) dS (6.21)

Using some basic vector identities and considering that Et = -fix fix E, we deduce

that

L
(6.22)

which is a readily implementable form of the first order ABC. However, the second

order ABC does not simplify as easily. If P2(E) denotes the second order ABC given

by (6.20), we can rewrite it in a more compact vector notation as

P2(E) = _.Et+_3.[Vx{fi(VxE)n}]+_.{Vt(V-E,)} (6.23)

where the tensors _, fl and _ are given by

--or - D -12,c,,, (4ro_ - '_g + D(jk°-r'x) + 'c_ + '_"'A'c} _l{a

_T
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31 =

l {4,c__%+D(jko_,C2)+_]_,_,_Ax}[,2{, 2
-tD - 2,_,,,

D - 2,_m

' ( -, )jko(D - 2x,,,) jko + 3t_m t_,,, 2x, {,{a

1 ( x94 jko(D 2xm) jko + 3x,,, Xrn

(6.24)

(6.25)

2x2) t2t2 (6.26)

Substituting the second-order absorbing boundary condition in the surface inte-

gral given in (6.23), we have

soE. P2(E) dS

+ fs E.{V.Vt(V.Et)} dS
o

11+12+13

Let us examine the integral 11. Since Et = -fi x fix E, we have

I1 "_- /'3o cqE2t' + a2E2t2 dS (6.27)

after employing some simple vector identities.

The other two integrals (/2 and /3) do not reduce as easily to simple, imple-

mentable forms. They are first simplified using basic vector and tensor identities

and then the divergence theorem is employed to eliminate one of the terms. Consid-

ering the integrand of the second integral/2, we note that

where we have set ¢ = (VxE),_. Using some additional vector identities and letting

• E = F, we get

F. Vxfi¢ = V.(¢fi × F)+¢fi.V×F

= V. (eft × F) + ¢ (V×F),
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Using the results from [64], the first term in the above identity can be further sim-

plified to read

v. (¢,_x F)
0

= Vo. (¢e,x F) + _ {eel. (e,

= V..(¢_ x F)

x F)} - J {¢e,.(,,,× F)}

(6.2s)

where V, denotes the surface gradient operator and 3 = _1 + s2. The integral I2

can now be written as

*_= L v.. (_ ×F)ds+L <V×F/odS

We can now apply the surface divergence theorem to the first term on the RHS of

the this expression to yield

/_,ov.. (_,_xv) ds = £ _. (,_xF)dl=0 (6.29)

since the surface So is closed. We note that rh = [ x fi and I is the unit vector along

the edge of the surface element and C denotes the contour of integration. On the

basis of (6.29) and considering that/3 is a simple scalar, 12 reduces to

z_,= ]s°/_(VxE)_ dS (6.30)

We now turn our attention to simplifying I3 for implementation in the finite

element equations. Considering the integrand of Ia, we have

E.{_.V,(V.E,)} = (#- E) . {V,(V.E,)}

= (,.E). {V¢-_}

where ¢ = V. Et. Next, setting G = 7" E, we obtain

f .0_/ 0_
G . I,V¢ - n-_ j = V" (¢G) - eV "G - G"_ (6.31)
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The first term in the above identity can be written as

0
V .(_bG) = V, .(,],G)+ -_n (_bG.) - J (_bG.)

and since _G,/On = xT .G - V .Gt + JG,, the LHS of (6.31)reduces to

{G. V'¢ - n_-_.n = V,,. (_G) - CV. Gt (6.32)

We now replace the integrand of 13 with the expression in (6.32) and use the diver-

gence theorem to eliminate the first term of (6.32). Specifically,

13 = fSoVO'(¢G) dS- fsoCV'GtdS

o _o

where ria has been defined earlier and the contour integral vanishes since the surface

is closed. The integral Iz can finally be rewritten as

/3 = - [_ (V. Et)(V. Gt) dS (6.33)
o

Using (6.27), (6.30) and (6.33), the complete surface integral term incorporating

the conformal second order ABC reduces to

/_o_.,,_<_,,__/_o(o,,_,'_+o_,_)_ +L_,x_>_,,_
-/So(V. Et) {V. (V" E)t} dS (6.34)

It remains to be seen whether the integrals in (6.34) lead to a symmetric system

when incorporated into the finite element equations. With this in mind, we will

examine three simple shapes and check whether they preserve symmetry of the finite

element system. It will then be possible to generalize our findings to a more general

mesh truncation boundary.
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Let us consider the case of a sphere of radius r. Since the two principal curvatures

of the sphere are identical (_1 = 'q = l/r), the first order boundary condition reduces

to the simple Sommerfeld radiation condition

On a spherical boundary, the second order ABC also reduces to the comparatively

simple form:

j 1 (V×E)2/ oE.P2(E)dS = ]So koE;+ 2jko+2/ 1 (V-E,) 2]2jko + 2/r dS

(6.36)

The ABC given in (6.36) is identical to the boundary condition derived in [49] for a

spherical mesh termination surface and leads to a symmetric system of equations.

Next, we consider the case of a planar termination boundary in which case t_l =

t_2 = 0. The first order ABC then reduces to the Sommerfeld radiation condition

and the second order ABC for a planar boundary simplifies to

[J _1 (VxE)2" 2jk---_l(V'E,)_] dS (6.37)

Since the planar boundary is a special case of a spherical boundary, (6.37) again

reduces to asymmetric system of equations.

Now we examine the situation when the mesh termination boundary is cylindrical

in shape and of radius p. The principal curvatures of the cylindrical surface are

then t_l = 1/p and _2 = 0. Since the principal curvatures are no longer identical,

the tensors _ and _ do not reduce to simple scalars. The first order ABC for a

cylindrical outer boundary is given by
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and the second order ABC gives by

Iso : L (od :+ +
- fSo(V. E,) {V. (7," E),} dS (6.39)

where acl,ac2,/_c and ffc are obtained by substituting nl = lip and _2 = 0 in the

original expressions for _,/_ and 7- It is seen that the first order ABC given by

(6.38) leads to a symmetric matrix for a cylindrical boundary. On the other hand,

the second order ABC does not yield a symmetric matrix for an arbitrary choice

of basis functions. However, the boundary condition outlined in (6.39) preserves

symmetry on using linear edge-based elements for discretization.

The above discussion enables us to conclude that the first order boundary condi-

tion leads to a symmetric system for surfaces having arbitrary principal curvatures.

However, symmetry is guaranteed for the second order ABC only when the two prin-

cipal curvatures of the mesh termination boundary are identical, i.e., only when the

outer boundary is limited to a planar or a spherical surface. Thus if we want to

enclose a scatterer having arbitrary shape within a conformal outer boundary, an

unsymmetric system of equations will have to be solved. It should, however, be

noted that the resulting unsymmetric system will, in general, have a lesser number

of unknowns than its symmetric counterpart.

6.2 Applications

In the previous section, we have discussed the derivation of absorbing boundary

conditions which can be employed on surfaces conformal to the scattering or radiating

structure. As a result, the mesh termination boundary can be made to enclose the

scattering object more snugly. Consequently for arbitrary targets, we achieve a
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substantial saving in the amount of volume to be meshed between the ABC surface

and that of the scatterer. This is particularly critical when the target is cylindrical

in shape or a combination of cylindrical, doubly curved and planar surfaces as is the

case with any real-life structure.

In this section, we examine the performance of these boundary conditions when

applied on conformal mesh termination surfaces.

A. Composite cube

For our first example, we compute the backscatter pattern of the half metal-half

Figure 6.2: Geometry of cube (a = b = 0.5)_) consisting of a metallic section and a

dielectric section (er = 2- j2), where the latter is bounded by a resistive

surface having R = Zo.

dielectric cube geometry shown in Chapter 3. However, instead of using a spherical

surface to terminate the mesh, we employ the absorbing boundary condition on a

piecewise planar surface, i.e., a cubical box placed only 0.3A from the face of the

scatterer. The geometry is shown in Figure 6.2 and needed only 30,000 unknowns
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for discretization. This is in stark contrast to the 40,000 unknown system which

resulted when the geometry wasenclosedin a spherical termination boundary. The

decreasein the unknown count is even more dramatic as wego to larger scatterers.

In Figure 6.3, we plot the backscatterpattern in the x - z plane (E_ "c = 0 polar-
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Figure 6.3: RCS pattern in the x- z plane for the composite cube shown earlier. The

solid curve is the FEMATS pattern and the black dots are MoM data for

the E_ nc = 0 polarization. Mesh termination is piecewise planar.

ization) for the metal-dielectric cube geometry given in Figure 6.2 and compare the

computed values with data obtained from a traditional method of moments (MoM)

code [53]. The dielectric-filled section has unit permeability and a relative permit-

tivity of 2 - j2. The agreement with reference data is seen to be excellent; it can

therefore be concluded that accuracy of the far-field values has not been affected by

a different mesh termination scheme. In fact, we have obtained results of comparable

accuracy with only 75% of the computing resources than were necessary before. This

observation will be made by the reader again and again in the following pages as the
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fullcapabilityof these conformal ABCs isdemonstrated.

B. Inlets

In our next example, we compute the scattering from perfectly conducting inlets. The

aperture of an inlet usually has a large radar cross-section around normal incidence:

therefore, a good understanding of its scattering characteristics is critical if measures

need to be taken for reducing its echo-area. An accurate computer simulation of

such a geometry provides a cost-effective and ready way of allowing the designer

to experiment with complex material fillings to achieve satisfactory results. All our

validations are carried out for empty inlets due to lack of reference data for more

complicated structures.
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Figure 6.4: Backscatter pattern of a metallic rectangular inlet (1A x 1A x 1.5A) for

HH polarization. Black dots indicate computed values and the solid line

represents measured data [1]. Mesh termination surface is spherical.

The geometry of interest is a perfectly conducting rectangular inlet, with dimen-

sions 1A × 1A × 1.5A. For the plots shown in Figures 6.4 and 6.5, we have enclosed
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Figure 6.5: Backscatter pattern of a metallic rectangular inlet (1A x 1A x 1.5A) for

VV polarization. Black dots indicate computed values and the solid line

represents measured data [1]. Mesh termination surface is spherical.

the target within a sphere of radius 1.35A, which is only about .35A from the farthest

edge of the scatterer. This resulted in a system of 224,476 unknowns and converged

in an average of 785 seconds per incidence angle on the 56 processor KSR1. The

computed values from our code agrees very well with measured data for both HH

and VV polarizations. As can be seen from the above discussion, we have obtained

our solution using significant computing resources and time.

Our next step is to use the conformal mesh termination scheme formulated in the

previous section and utilized in Example A. Therefore, instead of using a spherical

mesh truncation surface, we terminate the mesh with a rectangular box placed only

0.35A away from the scatterer (see inset of Figure 6.6). The problem size reduces dra-

matically to 145,000 unknowns, a 35% reduction over the spherical mesh termination

scheme. The convergence time for each excitation vector is about 220 seconds, less
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than 4 minutes, when run on all 56 processors of the KSR1. The computed values

are again compared with measured data for both polarizations in Figures 6.6 and

6.7; the agreement is excellent, albeit a bit worse than the spherical case. However,

this fact is overshadowed by the fact that we have reduced the problem size by more

than a third and computing time by about a fourth.
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Figure 6.6: Backscatter pattern of a metallic rectangular inlet (1A x 1A x 1.5A) for

HH polarization. Black dots indicate computed values and the solid

line represents measured data [1]. Mesh termination surface is piecewise

planar.

We then considered the problem of scattering from a perfectly conducting cylin-

drical inlet. Even though integral equation codes axe more efficient for such bodies

of revolution, our primary concern in this test was to examine the performance of

the conformal absorbing boundary conditions that we derived earlier. The target is

a perfectly conducting cylindrical inlet having a diameter of 1.25A and a height of

1.875A. We first used a rectangular outer boundary, placed .45A from the farthest
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Figure 6.7: Backscatter pattern of a metallic rectangular inlet (1_ × 1)_ × 1.5_) for

VV polarization. Black dots indicate computed values and the solid

line represents measured data [1]. Mesh termination surface is piecewise

planar.

edge of the target, to enclose the scatterer. The radar cross-section was then com-

puted for a C-polarized incident wave in the yz-plane and compared with measured

data (Figure 6.8). The agreement was found to be quite good for all lobes except

the third. We expect the results to improve on moving the outer boundary farther

away. The backscatter echo-area computed for the same geometry by Shankar [69]

using the finite difference-time domain method with the absorbing boundary placed

a few wavelengths from the scattering structure, agrees with the computed results

remarkably well for all incidence angles.

Next, we used a truly conformal termination scheme by using a cylindrical sur-

face for mesh truncation. It should be noted that this is the first instance of a

non-spherical surface (i.e., a surface having different principal curvatures) being ap-
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Figure 6.8: Backscatter pattern of a perfectly conducting cylindrical inlet (diame-

ter= 1.25A, height=l.875A) for HH polarization. The solid line indicates

measured data [2] and the black clots indicate computed data. Mesh

termination surface is a rectangular box

plied to terminate a finite element mesh for solving open problems. The cylindrical

outer boundary was placed about 0.45A from the target and RCS computations were

carried out for a ¢ polarized incident wave and compared with measured data [2] and

with a body of revolution code [3] (Figure 6.9). As can be observed from Figures 6.8

and 6.9, the far-field results for a cylindrical termination and a rectangular termina-

tion do not differ significantly. However, the savings in computational cost is quite

impressive. The cylindrical mesh termination has only 144,392 unknowns compared

to the 191,788 unknowns for a rectangular truncation scheme. A spherical mesh

termination would have swelled to about 265,000 unknowns, sampling density and

outer boundary distance remaining the same. Thus we have reduced the problem size

by about 45°£ and computation time by a similar, if not greater, amount by using
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a conformal mesh termination scheme. The savings in computational resourcesis

quite significant evenwhen wecomparethe rectangular and cylindrical termination

schemes- a 25% reduction in problem size and a similar decreasein computation

time. In Figure 6.10, we plot the backscatterpattern for the samecylindrical inlet
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Figure 6.9: Backscatter pattern of a perfectly conducting cylindrical inlet (diame-

ter= 1.25A, height=l.875A) for HH polarization. Black dots indicate

computed values, the solid line represents measured data [2] and the

dotted line is body of revolution data [3]. Mesh termination surface is a

circular cylinder•

in which the incident wave is 0 polarized. The agreement is seen to be decent for the

entire range of incident angles.

C. Lossy foam cylinder with embedded wires

The next geometry to be considered was a lossy foam (e, = 1.05 -j0.2) cylinder

having a radius of 1A and a height of 3.5A with 0.5A long perfectly conducting wires

embedded in it. The wires are spaced 0.5A apart from each other and have a diameter

of 0.01A. This is an interesting problem for two reasons: first, the orientation of the
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Figure 6.10: Backscatter pattern of a perfectly conducting cylindrical inlet (diam-

eter= 1.25A, height=l.875A) for VV polarization. Black dots indicate

computed values, the solid line is measured data [2] and the dotted

line represents reference data from a body of revolution code [3]. Mesh

termination surface is a circular cylinder.

embedded wires makes it a difficult geometry for other methodologies to handle;

second, the problem is very large since the cylinder has a volume of llA 3 and a

surface area of 28.27A 2.

As a first case, we consider the wires to be aligned along the axis of the cylinder

(the Z axis in this case) and compute the resulting backscatter pattern in the (Figure

6.11). The cylindrical mesh termination boundary was placed 0.45A from the flat

and curved surfaces of the foam cylinder. The resulting system of equations hvxi

437,064 unknowns but needed only an average of 3050 iterations to converge to the

desired answer. Thus each angle of incidence took a little more than 12.5 minutes

to compute on a 56-processor KSR1 massively parallel architecture. The impressive

convergence rate is due to the low contrast and the loss in the dielectric medium as
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Figure 6.11: Backscatter pattern of a lossy foam cylinder with three perfectly con-

ducting wires embedded along the axis. The incident electric field is

oriented parallel to the axis of the cylinder. Mesh termination surface

is a circular cylinder.

well as due to the presence of the metallic wires.

In the second case, the middle wire is offset 0.25)_ in the negative X-direction

from the cylinder axis. The number of unknowns and the time taken for convergence

is comparable to the earlier case. The effect of the offset wire on the backscatter

pattern can be studied in Figure 6.12. There is a slight asymmetry in the side lobes

of the resulting backscatter pattern but, as can be expected, the effect is very small.

D. Perfectly conducting plate

The motivation for testing the FEMATS code on the perfectly conducting plate was

two-fold. It is usually very difficult to model the scattering from the edges of the

plate even using integral equation methods. Therefore, we wanted to carry out some

tests to see how the code would behave at edge-on incidence. Secondly, we wanted
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Figure 6.12: Backscatter pattern of a lossy foam cylinder with the middle wire offset

0.25)_ from the cylinder axis. The incident electric field is oriented

parallel to the axis of the cylinder. Mesh termination surface is a circular

cylinder.

to examine the performance of termination boundaries of esoteric shapes. The first

choice was to enclose the plate in a rectangular box. The second choice was to use

a box with half cylinders attached to the faces normal to the plane of the plate

the reasoning being that since the edge of the plate behaves like a line source

and scatters cylindrical waves, a cylindrical mesh termination was most suitable for

wave absorption. It should be noted that both mesh termination schemes require

approximately the same number of unknowns; the superiority of one over the other

was thus decided only on the basis of computed backscatter values.

Our test case is a 3.5,k × 2,k perfectly conducting rectangular plate. In Figure

6.13, we plot the backscatter pattern for the 80 polarization in the xz plane, i.e., over

the long side of the plate. The computed values compare very well with reference
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Figure 6.13: Backscatter pattern (aoo) of a 3.5A x 2A perfectly conducting plate in

the xz plane. The white dots indicate box termination; the black dots

represent a combined box-cylinder termination.

data; however, the code does not pick up the sharp null at 0o = 450 and the two mesh

termination schemes perform as well, although a slight improvement is noticeable for

the box-cylinder termination.

Next, we plot the backscatter pattern of the same geometry for the ¢¢ polarization

over the long side of the plate in Figure 6.14. Again, the agreement with reference

data is quite good. However, the backscatter echo-area at edge-on incidence is not

calculated accurately.

In the next figure, we compute the RCS of the conducting plate in the yz plane,

i.e., over its short side, for the ¢¢ polarization. The backscatter echo-area for edge-on

incidence is picked up very well for a rectangular-cylindrical termination whereas a

rectangular truncation scheme gives completely incorrect results. These two schemes

have approximately the same storage requirement; in fact, the box-cylinder combi-
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Figure 6.14: Backscatter pattern (a¢_) of a 3.5A x 2A perfectly conducting plate in

the xz plane. The white dots indicate box termination; the black dots

represent a combined box-cylinder termination.

nation yields a slightly smaller system of equation. This example truly illustrates

the power of a conformal truncation scheme composed of simple shapes: not only

are the results far more accurate but even the storage requirement is slightly less.

In all the above simulations, the boundary was terminated at 0.35_ from the fiat

face of the plate and 0.55 from the edges of the plate. In order to test the accuracy

of the ABC method as a function of mesh termination distance, we computed the

backscatter patterns from the edges of the plate with increasing mesh termination

distance. Figure 6.16 shows that the backscatter values from the plate edges slowly

take the shape of the reference data as the mesh truncation distance is increased.

E. Glass plate

In the final example, we present the results for one of the most challenging problems

solved by the FEMATS method. The target is a simple rectangular glass slab 1.75_
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Figure 6.15: Backscatter pattern (a¢¢) of a 3.5A x 2A perfectly conducting plate in

the yz plane. The white dots indicate box termination; the black dots

represent a combined box-cylinder termination.

long, 1A wide and .125A thick. The relative permeability of glass is taken to be

3 -j.09. The backscatter pattern (aoo) is sought for the 0 = 80 ° cut. This is an

extremely difficult problem for any numerical method to handle since the incident

field is almost edge-on to the dielectric slab, causing the scattered field to have strong

higher order components which decay appreciably only at large distances from the

scatterer.

In our first attempt, we enclosed the glass plate in a flat box placed .45A from it.

Though the computed results were accurate for some angles, they departed signifi-

cantly from the reference data [69] for other incidences. The results did not show a

significant improvement on shifting the outer boundary 0.5A away from the scatterer

while maintaining its shape. The next step was to modify the shape of the outer

boundary such that the flat box had half cylinders attached to the faces normal to
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Figure 6.16: Backscatter pattern (_r##) of a 3.5A x 2A perfectly conducting plate in

the Vz plane. The numbers in the legend indicate mesh termination

distance from the plate edges.

the plane of the slab - the reasoning was the same as that for the perfectly con-

ducting rectangular plates mentioned in an earlier section. Further, this termination

scheme results in an outer boundary with no sharp edges. The free space between

two cylinders with their axes perpendicular to each other is filled with a quarter

sphere having the same radius as the cylinders (see Figure 6.17). As can be observed

in Figure 6.18, the computed results agree quite closely with the reference data for

most of the incident angles. The problem was solved with only 155,000 unknowns

and needed an average of 2700 iterations to converge to the specified tolerance. The

slow convergence is typical of geometries that are composed of dielectrics since the

linear system of equations becomes indefinite due to non-unit values of the relative

permittivity.

4!
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Figure 6.17: An eighth of a glass plate enclosed inside a smooth mesh termination

boundary composed of fiat planes and cylindrical and spherical sections.

6.3 Conclusion

In the previous section, we have used our FEMATS methodology to compute scat-

tering patterns from large, three dimensional geometries having arbitrary shapes and

complicated configurations and with material inhomogeneities. It has been shown

that the solution technique does indeed live upto its promise of delivering accurate

results with the expenditure of minimal computer resources. Very large problems

can be solved in real time with a fraction of the resources that existing numerical

electromagnetics codes require.

There are basically two parameters that govern the accuracy of the final result.
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The first one is the mesh termination technique. Though lower order absorbing

boundary conditions are simpler to implement, a significant penalty in computational

resources has to be paid for getting the same accuracy as the higher order ABCs. The

reliability and the order of the ABC is thus crucial to the computation process. The

second parameter is the shape of the mesh termination boundary and its distance

from the scatterer. As shown in the previous sections, significantly better results

can be obtained by using smooth termination boundaries in place of flat boxes with

sharp corners. The distance of the termination boundary from the scattering body is

also important in obtaining accurate results. We have determined that a distance of

.45A usually gives reliable results for large three dimensional geometries. For small

problems, distances of .3A - .35A are sufficient to give accurate far-field values. In

order to obtain reliable near-field values such as the input impedance of an antenna,
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the meshmust be terminated farther awayfrom the target.



CHAPTER VII

Conclusions

This thesis is one of the first works known to the author to tackle the problem

of three dimensional scattering using finite elements and ABCs. It started out as an

investigation into the methodology mentioned above, given its extremely attractive

features for solving large problems. The O(N) storage requirement and the iterative

equation solver are essentially the keys to this technique, since they allow the solution

of extremely large, realistic problems with minimal computational overhead. As the

technology progresses to higher frequencies and longer electrical dimensions, the

superiority of this solution methodology over integral equation or hybrid techniques

will become even more apparent.

The opening chapter outlined the motivation in choosing this solution technique

over other traditional methods. In Chapter 2, we described the basic concepts of

electromagnetics and finite elements. They were by no means complete or exhaustive

and the interested reader is referred to several excellent texts for reference [10, 13, 14].

Chapter 3 provided the rationale for employing edge basis functions for discretizing

electromagnetic field variables in three dimensional computation. A full review of

nodal and edge bases of various orders for two and three dimensions was also carried

out. In Chapter 4, the basic formulation of the solution technique was presented along

132
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with code validation for a large number of small and composite geometries. Since

the methodology was found to perform extremely well for small complex geometries

with inhomogeneities, we considered extending it to compute scattering from very

large problems. In order to achieve this goal, the first step was to make the finite

element code computationally efficient. Chapter 5 discussed the various optimization

techniques that were carried out to make the code as computationally efficient as

possible on a wide class of vector and parallel machines. Since the mesh termination

condition used till now were valid only for spherical or flat terminations, the next step

was to derive more efficient boundary conditions that would yield accurate results

even with reduced computational resources. In Chapter 6, new ABCs were derived

which are enforceable on mesh termination boundaries conformal to the surface of the

target and result in drastic reductions in the number of unknowns and hence solution

time. Thus, it can be stated that this thesis has achieved its objective of showing

the efficacy and the accuracy of computing three dimensional scattering from large,

composite and complex-shaped structures using finite elements in conjunction with

the ABC method of mesh termination.

Any research, however, by its very nature generates more questions than it an-

swers. The work outlined in the previous chapters is no exception. The author has

sought to provide answers to the more immediate questions but many more need to

be examined for making this methodology robust and viable in commercial applica-

tions. Tests on a large variety of complicated problems have produced encouraging

results and exhibited the versatility of this method. Future research into this method

must inevitably focus on the following aspects:

• iterative refinement of the solution through a posteriori error estimation and the

use of hierarchical basis functions. Hierarchical basis functions use p refinement
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instead of h refinement to adaptively correct the solution, maintaining the

coarse mesh throughout.

• further reduction in the number of unknowns through the use of

1. mixed node-based and edge-based elements. Since node-based elements

usually have half as many unknowns as edge-based elements, nodal basis

can be employed in free-space regions to reduce unknown count.

2. derivation of higher order boundary conditions. This would allow the

mesh termination boundary to be placed even closer to the target, thus

reducing the number of unknowns dramatically - the possible asymmetry

of the resulting equation system is an acceptable tradeoff.

• more robust, geometry-dependent, iteratively refined numerical mesh termi-

nation conditions that would guarantee the accuracy of the final solution. In

most cases, it is the mesh termination condition and its distance from the

scatterer which determine the accuracy of the computation. Numerical, itera-

tively refined ABCs could theoretically be applied very close to the scattering

or radiating target with excellent accuracy.

• extension of the formulation to antenna radiation and electromagnetic interfer-

ence(EMI) problems. The formulation for the antenna problem must include

efficient source modeling and reliable simulation of the near-field for impedance

calculations. EMI phenomena critical to electronic packaging can be predicted

efficiently by the technique through proper modeling of the circuit or the device

to be shielded.

• more efficient mesh generation packages dedicated to electromagnetics.
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Most of the extensions mentioned above are not trivial and each could form the

core of another doctoral dissertation. However, the efficient realization of even a few

of these topics would result in a very powerful technique for computing electromag-

netic radiation or scattering from arbitrary three dimensional structures reliably and

efficiently.
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APPENDIX A

Derivation of matrix elements

The derivation of the matrix elements in (4.7) amounts to evaluating the integrals

in (4.4) and (4.5). Therefore, from (4.4), we have

_--_(V x W_). (V x W_) - /trgi'gjVe (A.1)

since V x W_ = 2gi. The evaluation of the integral in (4.5) is more cumbersome.

Substituting into (4.5) the basis functions defined in (4.11), we obtain

Jr, W_.W_dv = _, fv. {(fi.fj)+ (r.D)+ (g, x r).(gj x r)} dv (A.2)_r

= e,.(I1+I2+I3)

where

D = (fixgj)+(fj xgi)

and

I, = L fi.fjdv (A.3)

I2 = fv, r.Ddv (A.4)

13 = fy, (gi x r).(gj x r)dv (A.5)
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Since f is a constant vector, 11 reduces to

I, = f,.fj V_ (A.6)

Since

X = E Lixi

i=1

4

y = _ Liy_
i=.1

4

z "- E Lizi

i--1

where Li are the shape functions for the tetrahedral element and xl, yi, zi(i = 1,-.., 4)

denote the x, y and z co-ordinates of the vertices of the tetrahedral element. Using the

standard formula for volume integration within a tetrahedral element and simplifying,

we have

, ,]z2 ¥ n_ + _ y_+ z,
i=l i=1 i=1

(A.7)

where D,,, is the ruth component of D. The evaluation of/3 can be simplified by the

use of basic vector identities. Therefore,

/3 = gi.gj fV_ Ir12 dv -- fv, (gi.r)(gj.r)dv

(A.8)

where 9i,,, represents the ruth component of the vector gi. Each of the volume

integrals in the above equation can be easily evaluated analytically and the result

expressed in the following general form:
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a,amdv = a,,am, + E at, E a,,,, (A.9)
i=1 i=1

where l, rn = 1,.-., 3 and al represents the variable x, as stands for the variable y

and a3 denotes the variable z.
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APPENDIX B

Derivation of some vector identities

The curl of a vector in the Dupin coordinate system is given by

OE
VxE=VTxE+fix On (B.1)

where VT x E is called the surface curl involving only the tangential derivatives and

is defined as

Vr x E = -fix VE. + t_iEt, - {,_2Et2 + fir. (E x fi) (B.2)

In the above equation, _i and _2 denote the principal curvatures of the surface

under consideration, Et,, Et2 are the tangential components and E, is the normal

component of the vector E on the surface.

We are interested in the evaluation of the three vector identities given in Chapter

5. Let us consider simplifying the tangential components of the curl of a vector, E

in this case. Using the definition of the curl given above, we have

[[ c3E'1 ,¢IEt,) tl= V,E. - [\ On +

= WrEn + fix V×Et

+
cgEt2 1¢2Et2)t_]On +

(B.3)

where -(fix fix V) = Vt. The first vector identity is, therefore, easily proved.
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Next, we will prove the second of the three identities. We start with the term

fi × V×VtE, and simplify it using the definition of the curl of a vector given above.

[ _0_:E.]= fixVx VEn- anJ

aE,,
= -fix Vxfi--

an

= (fixfixV) OE_
On

-

fix VxVtE_

Since V-E = V. E, + (V. fi)E, + -_, we can simplify the above relation even

further by substituting the appropriate expression for the normal derivative of the

normal component of the electric field and using the fact that the electric field is

divergence-free in a source-free region.

fi x VxV, E, = v,(v. E,) + (V. f)V,E.

= V,(V- Et) + 2_,,,V,E,, (B.5)

where _,_ = (,q + _2)/2 is the mean curvature.

The proof of the third identity is more complicated since it involves two curl

operations on the electric field. We first need to switch the positions of the outermost

fix and the V x operators to arrive at a simplified form of the rather complex

expression. Therefore,

fix Vx(f x VxE) = Vx {fix fix VxE} - fir,. (fix VxE)

_A,,{(vxv,),_,+ (VxE),_}

= -Vx{VxE-fi(VxE)_}-fiV,.(fixVxE)

-,,,,,_{(VxE),_, + (VxE),_2} (B.6)

Now we use the fact that the electric field satisfies the wave equation to reduce the
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expression even further.

fix Vx(fi x VxE) =

-_,, {(v xE), _.,+ (VxV.),i.,}

= V× {_,(VxV.),,}- k_v..,-.,,.,,{(VxV% h + (VxV.),,_}

(B.7)

where At; = t¢1 - t¢2.

Thus, we have shown that all three identities hold as long as the vector, E in this

case, is divergenceless and satisfies the vector wave equation.
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